Under review as a conference paper at ICLR 2026

GLSTM: MITIGATING OVER-SQUASHING BY
INCREASING STORAGE CAPACITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) leverage the graph structure to transmit infor-
mation between nodes, typically through the message-passing mechanism. While
these models have found a wide variety of applications, they are known to suf-
fer from over-squashing, where information from a large receptive field of node
representations is collapsed into a single fixed sized vector, resulting in an infor-
mation bottleneck. In this paper, we re-examine the over-squashing phenomenon
through the lens of model storage and retrieval capacity, which we define as the
amount of information that can be stored in a node’s representation for later use.
We study some of the limitations of existing tasks used to measure over-squashing
and introduce a new synthetic task to demonstrate that an information bottleneck
can saturate this capacity. Furthermore, we adapt ideas from the sequence model-
ing literature on associative memories, fast weight programmers, and the xXLSTM
model to develop a novel GNN architecture with improved capacity. We demon-
strate strong performance of this architecture both on our capacity synthetic task,
as well as a range of real-world graph benchmarks.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Sperduti, 1993} |Gori et al., 2005} Scarselli et al., [2008}; Micheli,
2009; Bruna et al.,|2014; Defferrard et al.,2017)) have emerged as a standard framework for learning
on graph-structured data. The majority of these models follow a message passing paradigm, where
nodes iteratively exchange information with neighbors, commonly referred to as Message-Passing
Neural Networks (MPNNs). Examples of this family of architectures include GCN (Kipf & Welling,
2017), GAT (Velickovic et al.,[2018), GIN (Xu et al., 2018)), and GraphSAGE (Hamilton et al.,[2017).

Since each MPNN layer exchanges information between neighboring nodes to update node rep-
resentations, the number of layers thus dictates the receptive field: the set of nodes over which
information is aggregated. Deep MPNNSs are, in theory, desirable as they can model long-range de-
pendencies, but scaling to many layers has historically been difficult due to two pervasive issues that
have received significant attention in the literature: over-smoothing and over-squashing. We focus
on the latter in this work.

Over-squashing was initially identified by |Alon & Yahav| (2021} as a problem of compressing in-
formation from a node’s receptive field into a fixed-size vector. This was linked with depth and
long-range dependencies, since receptive fields tend to grow exponentially with depth. Later work
(Topping et al., [2022; D1 Giovanni et al., 2023a) identified that this bottleneck could also result in
low sensitivity as measured by the node Jacobian, linking graph topology and aspects of model ar-
chitecture via an upper bound on this Jacobian. This low sensitivity arises due to repeated degree
normalization and application of a contractive nonlinearity over many layers. |Arnaiz-Rodriguez &
Errical (2025) suggest that these two descriptions of over-squashing are not the same, and that/Alon
& Yahav| (2021)) define it as a problem of computational graph bottlenecks, while later work often
defines it as a problem of topological bottlenecks. We discuss this separation and its relation to our
work in Appendix [A]

Instead of separating by issues of computational tree structure and bottlenecks, we suggest an alter-
native separation by resultant failure mode: limited information storage capacity, and low sensitivity.
In light of this, we highlight another divergence in the literature: the work of |/Alon & Yahav|(2021)
implicitly described over-squashing as a capacity problem, and later work re-framed it as a problem

Under review as a conference paper at ICLR 2026

of sensitivity. Focusing on the failure modes themselves not only allows us to revisit the issue of ca-
pacity originally discussed in|Alon & Yahav|(2021), but also to more directly motivate benchmarks
and remedies, both of which we discuss in this paper. We further contextualize this issue of capacity
by studying it in isolation from sensitivity issues. We believe this focus not only provides a more
complete understanding of over-squashing but also highlights new directions to mitigate it.

To combat over-squashing, existing research has focused on ameliorating topological bottlenecks
through rewiring (Gasteiger et al [2019; |Gutteridge et al., 2023} Nguyen et al.l 2023)) and control-
ling the flow of information (Bresson & Laurent, 2017; Finkelshtein et al.,2024; Errica et al., [2025))
— targeting topological and general computational bottlenecks respectively. However, these bottle-
necks are only an issue if they harm performance in some way: in this work we discuss issues of
(1) reduced sensitivity and (2) saturated storage capacity. Our proposed architecture in Section [4]
targets the latter failure mode: adapting the MPNN architecture to improve its ability to store and
retrieve information. Framing over-squashing as a capacity limitation that can be addressed at the
architecture level exposes a previously unexplored path, and our results validate this direction.

To improve MPNN storage capacity we turn to the sequence modeling literature, which has a long
history of tackling equivalent problems (Hochreiter & Schmidhuber, [1997; |Orvieto et al., 2023
Gu & Dao, 2023 Beck et al., 2024} |Arora et al., 2024). Taking inspiration from these works, we
introduce an MPNN architecture that utilizes associative memory (Beck et al.| 2024} Schlag et al.,
2021; Hopfield, 1982)), and demonstrate that this exhibits improved storage capacity.

Contributions. Our main contributions are as follows. In Section 3] we re-characterize over-
squashing into two distinct failure modes: saturating capacity and low sensitivity, which we term
capacity over-squashing and sensitivity over-squashing respectively. We discuss in Section [3.1] the
pitfalls of widely used over-squashing tasks, which either fail to evaluate capacity at all, or evaluate
the two issues in tandem and are thus unable to separate their effects. In Section[3.2] we introduce a
novel synthetic task, which to our knowledge is the first that measures capacity over-squashing in
isolation. In Section 4] we present a new MPNN architecture based on the recent xLSTM architec-
ture (Beck et al.| 2024)), which uses associative memory to increase capacity, explicitly targeting
this capacity over-squashing viewpoint. Section [5|demonstrates that this architecture performs well
on our synthetic capacity task and a range of real-world benchmarks, and Section demonstrates
empirically that capacity over-squashing can occur separately from sensitivity over-squashing.

2 BACKGROUND AND RELATED WORK

Message Passing Neural Networks Let a graph G be a tuple (V, £) where V is the set of nodes
and & the set of edges. An edge from node u to v is denoted (u, v) € £. The connectivity is encoded
by the adjacency matrix A € RIVI*IVI where A, = 1if (u,v) € &£ and 0 otherwise. Each node v
has a feature vector x, € R<.

GNNs are functions fg: (G, {x,}) — y with parameters 0, trained via gradient descent to predict
node- or graph-level labels y. These models typically take the form of MPNNs, which compute
latent representations by composing L layers of the following node-wise operation:

h(l d)m(h(l D, p® ({h(l 1. s (u,v) 65})) (1)

where 1) is a permutation-invariant aggregator, “) combines neighbor messages with the previ-

ous embedding and hSJO) = x,. Throughout, we use “GNN” and “MPNN” interchangeably. Note
we depart from the more usual notation of % for layer index to avoid confusion with keys, introduced
in Section[3.2] The most commonly used aggregation function takes the form

ORI (u,0) € £}) Zom,hl b 2)

where O € RIVIXIVI is some message-passing matrix. For GCN (Kipf & Welling| 2017), O =
D~'2AD~'/? with A = A + I for diagonal D € RIVI*VI with D;; = > A,j. We frequently

denote the set of message-passing neighbors of node u as N, = {v € V \ O,., # 0} — if the
message-passing matrix is layer-dependent, we may superscript this with a layer index.

2

Under review as a conference paper at ICLR 2026

Fast Weight Programmers Fast Weight Programmers (FWPs) are a class of neural network moti-
vated by the idea of allowing variable network weights dependent on the input - termed fast weights.
One method to “program” the fast weights is to take outer products of learned projections of the
input (Schmidhuber, [1992)). [Schlag et al.| (2021)) observe that — up to normalization and activation
function differences — linear Transformers (Katharopoulos et al., |2020) are equivalent to FWPs.

xLSTM: Associative Memory for Language Modeling Recent work [Beck et al.| (2024} 2025)
introduced xLSTM, a development of the original LSTM Hochreiter & Schmidhuber| (1997) archi-
tecture that resulted in a performant recurrent neural network capable of language modeling. Of
relevance to our work are the following limitations that XLSTM aims to address: the inability to
“revise storage decisions” and the limited storage capacity of the scalar cell states. The first of these
is addressed through modifying the original LSTM gating to use exponential activation functions.
The second is addressed by introducing associative memory, updated using an outer product update
rule equivalent to that of FWPs to store keys and values (see Appendix [B]for more details).

3 THE TwoO FAILURE MODES OF OVER-SQUASHING

Over-squashing was initially introduced by |Alon & Yahav|(2021)) as an issue of storage capacity.
They observed that recurrent sequence models exhibit a bottleneck in representing all the informa-
tion from their past inputs, and this bottleneck exists in a more harmful form in GNNs, in which
the information receptive field grows exponentially. They introduced a synthetic task to measure
over-squashing by propagating information through various sizes of binary tree.

Later research identified that this computational graph bottleneck also resulted in low sensitivity and
issues of signal propagation. [Topping et al.| (2022); D1 Giovanni et al.| (2023a) quantified this low
sensitivity via the Jacobian of node representations, establishing the following sensitivity bound: for
an MPNN with [layers, ¢, Lipschitz constant of the activation, w maximal entry-value over weight
matrices, d embedding dimension and u, v € V, one has

topology
onV 1
— | < leowd) (O, (3)
ohi” ||, ~—~—

model

where O is the message passing matrix used by the MPNN as in Equation (2). This bound estab-
lishes that low sensitivity results from both graph topology as well as factors intrinsic to the MPNN
model. In particular, sensitivity is lowered by the nature of the message-passing, where the culprit
is successive powers of a degree-normalized adjacency matrix. It is also lowered by the contractive
nature of the nonlinearity o and the values of the weight matrices, as established in (Arroyo et al.,
2025)). Despite this analysis being purely one of sensitivity rather than capacity, it was also termed
over-squashing, and has been successful in establishing links to other areas, including the expressive
power of MPNNs (Di Giovanni et al.|[2023b)) and graph effective resistance (Black et al., 2023).

We argue that there are two distinct problems arising from bottlenecks in MPNNs: reduced sensi-
tivity (sensitivity over-squashing) and saturating storage capacity (capacity over-squashing). Due
to the influential paper of [Topping et al.[(2022) the sensitivity viewpoint on over-squashing has thus
far been the predominant approach in the literature; in this work, we seek to revisit the storage
capacity viewpoint and investigate how this issue can be avoided. We define storage capacity as the
amount of information that can be stored in a node’s representation for later use: a representation is
saturated when it is unable to store any more information.

Conflation With Depth The vast majority of existing research links over-squashing with depth.
To an extent, this is justified: the bound of Equation (3]) decreases exponentially with MPNN depth,
and real-world graphs tend to exhibit receptive fields that grow exponentially in depth, leading to
capacity quickly becoming a problem for deep MPNNs. However, alongside recent work (Arnaiz-
Rodriguez & Errical [2025), we highlight that over-squashing is not exclusively a problem of depth:
bottlenecks can be observed in single-layer GNNs acting on high-degree nodes — we exploit this
fact in our synthetic task of Section Furthermore, in studying over-squashing only in the
deep regime, much of the literature has conflated the problem with issues of vanishing gradients,
themselves closely linked to the related problem of over-smoothing |Di Giovanni et al.| (2023b).
Arroyo et al.|(2025) give a more precise treatment of how the issue of over-squashing relates to

Under review as a conference paper at ICLR 2026

depth, through over-smoothing (zero collapse) and vanishing gradients. In this work we study over-
squashing in the shallow regime: this allows us to isolate the issue of saturating capacity, avoiding

the effects of depth on both reduced sensitivity (Equation (3))) and vanishing gradients.

3.1

An instructive way of contrasting sensitivity against
capacity is via synthetic tasks. The most common
of these used to assess over-squashing are the Ring-
Transfer tasks of D1 Giovanni et al.| (2023a). The
goal of these tests is for a MPNN to ‘transfer’ fea-
tures contained at a target node to a source node,
across a large graph distance. Various graphs are
tested, in particular a ring of nodes, but the common
feature is that there exists a long shortest-path from
the source to target node. All of these exhibit an
exponentially growing receptive field of at least 2"
for k layers, since each node is connected to at least
two others; repeated aggregation and application of
MPNN layers and nonlinearities makes this a good
test of the sensitivity-based view of over-squashing.

However, this task is particularly ill-equipped to
test the issue of storage capacity, as the only rele-
vant information in the graph is that of the target
node, and all intermediate nodes are assigned con-
stant vectors of ones. In this way, there is only a sin-
gle node’s representation worth of information to be
transferred. It is unclear how much this task mea-
sures behavior found in real-world tasks: exponen-
tially growing receptive fields will not be padded by
nodes with identical representations. Figure[T] (left)
visualizes the computational graph of RingTransfer,
demonstrating that it is dominated by nodes con-
taining no information. Therefore, this task exhibits
a large computational bottleneck without any issues
of saturating capacity: this highlights the fact that,
beyond the computational bottleneck, saturated ca-
pacity is at least also dependent on the information

EXISTING OVER-SQUASHING TASKS DO NOT (ONLY) TEST CAPACITY

A

VANVAN

A
AWAN

A .

VANV ANEEVAN

Figure 1: Computational graphs. Left: Ring-
Transfer (D1 Giovanni et al., 2023a). Middle:
Tree—-NeighborsMatch (Alon & Yahav,
2021). Right: NAR, introduced in Sec-
tion[3.21 Nodes with informative features are
green, background gray. Red node is trained
to solve the task.

wme Deep Graph = Identity ReLU
@ Shallow Graph = Tanh = GELU
0
é 10 E
2 107" 4
g 10-2
£ 107° o
=}
S 103
= 1
1074 4
LI L L B | L LR B
0 25 50 75 100 125
Leaf Node Count
Figure 2: Log Jacobian norms.
“Deep” graphs are binary trees of

Tree—-NeighborsMatch (Alon & Yahav,
2021)); “Shallow” graphs are single-level trees
with the same number of leaves. A GCN of
depth equal to the tree depth acts on each.

Jacobian norms are |8h£L)/ 8hl(0)\1 for root
r and leaf [(red/green in Figure [I). Shaded

area is standard deviation.
content of the task.

Alon & Yahav|(2021) introduced the Tree—-NeighborsMatch task to measure capacity by prop-
agating information from the leaf nodes of a variable-size binary tree. It shares similarities with
the task we introduce in Section[3.2]in that it controls the amount of information that is forced into
a single node representation. However, it propagates this information through a deep binary tree,
requiring variable-depth MPNNs. This significantly harms sensitivity: we visualize Jacobian norms
of a GCN acting on a deep binary tree vs a single layer tree with matching leaf counts in Figure [2]
demonstrating that this sensitivity drops off far faster for deep GCNs. This is unsurprising given
the bound of Equation (3): deep GCNs must additionally contend with “model” squashing terms
of nonlinearity and weight contraction that scale exponentially with depth. Therefore performance
degradation trends are due to both 1) saturating capacity and 2) low sensitivity; deep tasks such as
Tree-NeighborsMatch are impacted by both over-squashing issues, rather than isolating the
issue of capacity.

3.2 NEIGHBOR ASSOCIATIVE RECALL: ISOLATING STORAGE CAPACITY

We investigate storage capacity by measuring associative recall: this is a common approach taken
in the sequence-modeling literature (Ba et al., [2016; [Schlag et al.l 2021}, |Arora et al., [2024; Jelassi
et al.l |2024)), in which the question of model storage capacity is also clearly of interest. These

Under review as a conference paper at ICLR 2026

synthetic tasks involve presenting the model with a sequence of key value pairs followed by a query
that corresponds to one of the presented keys, and the model must return the associated value.

To this end, we introduce a task that we refer to as Neighbor Associative Recall (NAR). Whereas
the sequence associative recall tasks measure the ability of a model to recall previous information
from a variable-length sequence, our graph adaptation is designed to measure the ability of a GNN
to recall information from the previous message passing round over a variable number of neighbors.

The task is designed as follows. For a given neighborhood size /N we create a graph of N + 3 nodes.
This graph consists of N “neighbor” nodes, a central node to which they are all connected, an inter-
mediate node connected to the central node, and a “query” node connected only to the intermediate
node. An example such graph is visualized in Figure[3]

For a fixed neighborhood size N we define a fixed set A (ek(km))
of keys and values, N = |K| = [V|, and a pair of " \ew(vm)
learned vector embedding functions e;, : K — R emd
e, : V — R for embedding dimension denp. Each o
of the neighbor nodes n has a different assigned key ()
k, € K, and also a value v, € V, randomly sam-

pled with replacement. The input feature vector of these

nodes is a concatenation of the two learned embeddings (3)

x, = [ex(kn); ey(v,)] € R2dem . The intermediate node exlln)
and central node both have zero-valued feature vectors. \.m“ N (0 >
Associated with the query node g is a randomly sampled

key-value node m; the input feature vector for the query

node consists of the corresponding key embedding con- Figure 3: An example graph with N =
catenated with a vector of zeroes, x, = [ex(k,);0] € 5 from the NAR task. Key-value nodes
R2%m The model is trained such that the central node are shown in blue, the central node in
must predict the value v,, associated with the sampled red and the query node in green. In this
key node. Training is via cross-entropy loss where the tar- ~ graph, m is the randomly sampled index
get of the central node is a one-hot vector corresponding of the key-value node associated with
to a fixed ordering of V. This approach can be viewed asa query node q. The target for this graph
graph adaptation of the sequence associative recall task of is a one-hot vector corresponding to vy, .
Schlag et al.| (2021). Results are presented in Section[5.1]

An alternative formulation of this task with a regression target is discussed in Appendix

NAR is designed such that the receptive field of the central node will comprise only the neighbor
nodes in the first layer. In order to perfectly solve the task, it must store all of the key-value informa-
tion in this initial receptive field, as it is impossible to limit the scope of the information that might
later be required. In the second layer, the receptive field will include the query node: now, the model
must selectively recall the correct value from its immediate neighbors.

This task is novel as it assesses over-squashing in the shallow regime: MPNNSs tested in Section[5.1]
consist of just two message passing layers. This more effectively isolates the issue of capacity,
without secondary effects from low sensitivity and vanishing gradients as visualized in Figure 2}

4 GLSTM: COMBINING GRAPH NETWORKS AND ASSOCIATIVE MEMORY

Prior work on over-squashing has focused almost exclusively on mitigating sensitivity issues, often
through graph rewiring (Gasteiger et al., 2019; |Gutteridge et al., [2023; Nguyen et al.l 2023). Some
work has implicitly tackled capacity over-squashing by moderating the flow of information into node
representations (Bresson & Laurent,[2017; Finkelshtein et al.| 2024} |Errica et al.,|2025)) thus reducing
capacity requirements, but we are unaware of any work that has attempted to increase capacity at an
architecture level. Motivated by memory-capacity gains in sequence models (Ba et al.,[2016; Beck
et al., [2024), we introduce associative memory into an MPNN architecture to explicitly enlarge its
information-storage capacity; we measure this in the graph setting using the NAR task introduced
above. We further introduce the gating scheme of [Beck et al.[(2024) to investigate its efficacy in the
graph setting, given strong sequence modeling performance. Since these adaptations are inspired in
part by their successful use in XLSTM, we refer to our related graph architecture as gLSTM.

Under review as a conference paper at ICLR 2026

For any node w at layer [, in addition to the usual MPNN vector hidden state hq(f), gLSTM maintains

a matrix hidden state C’y). The initial hidden state hgo) is the input node feature vector x,,. Keys
and values are used to update Cq(f) via an FWP-style outer product rule: these are projections of the
previous vector hidden state hg =Y The next vector hidden state hff) is determined by “querying”
Cq(f) via matrix multiplication with another projection of the previous vector hidden states.

The modified gLSTM update equations are given below. Highlighted in blue are the differences to
xLSTM. Biases correspond exactly to XLSTM (Appendix [B) and are omitted for clarity.

State (and normalization) updates: Query / Key / Value computation:
CO =i 1 T i) o kD
'UEJ\/’L(LI)U{u} q?Sl) = Wf] hgtliw Z h’s,'lim
r(0)
) — (D), (1=1) FHOJAQ) vEN.
Sl Z R m_ L (1-1)
’UE./\“FL(LUU{U,} ku = ﬁthu

0 = ({20 40 (0 N XD UE}) -

The square brackets above denote vector concatenation. Concatenating the hidden state for the node
and its neighbours in this way keeps them separate and allows the query — which will determine
what is retrieved from the matrix memory — to separately depend on both the previous state of the
node itself and the previous states of its neighbours.

Gate computation: Output:

i = exp(0 _ g)) 30 = TR~ o _ D g
FO = exp (fl(f) T mﬂ)) o = w’ Tp(-1) ’ max{‘n(l) TPl 1}
o) = a(5") 50 — W,RID hy =ol) © A

Block Structure |Arroyo et al.|(2025) note that sensitivity over-squashing issues are largely caused
by vanishing gradients — a phenomenon well-explored in the sequence-modeling literature. In an
attempt to address this, gLSTM therefore uses a similar block structure to the mLSTM block upon
which it is based. Of particular importance is the residual connection — which brings the norm of the
layer-wise Jacobian to the edge of chaos — and use of input and hidden norms, which regulate the
magnitude of the Jacobian norms. Figure[d]visualizes the block structure of gLSTM that we employ.

ot Bl K-Hop Aggregation Following|Arroyo et al.
H ? (2025) we combine the memory capabilities of

the XLSTM block with a highly connected mes-
sage passing graph structure: employing a k-
hop aggregation scheme. In this setting, each
node u at layer [will aggregate information
¢ — from the neighborhood

NP ={v eV |dg(u,v) =1},

;E pe where dg : V x V — Ryxq is the length of
the minimal walk connecting nodes » and v.

This approach resembles that of Ding et al.
NORM (2024), but with an additional recurrence: hid-
CH R den states are used as input at each step. This
substantially changes the way information can

Figure 4: gL.STM block structure. Gates shown in propagate through the graph. Furthermore, it
orange, query/key/value in dark blue. Aggr. repre- 3150 has links to ChebNet (Defferrard et al),
sents aggregation across neighborhoods. Symbols p(17), which has recently been found to per-

©, ®, +, - denote Hadamard product, outer prod- form strongly on long-range tasks (Hariri et al,
uct, vector addition, matrix multiplication. 2023).

NOR.M

JHEADS

Under review as a conference paper at ICLR 2026

This aggregation scheme appears to greatly im-
prove gLSTM performance: our synthetic task in Section [5.1] significantly benefits from this aggre-
gation scheme, and the ablations in Appendix demonstrate that it improves performance in all
but one of the tested benchmarks. We hypothesize that — in addition to providing a highly connected
computational graph that lessens over-squashing sensitivity bottleneck issues — this is because it also
provides an extremely useful inductive bias for the recall mechanism of gLSTM. Information that
has previously been stored in the associative memory is not then included in later message passing
rounds, and later nodes are able to query this memory in isolation.

5 EXPERIMENTS

5.1 NEIGHBOR ASSOCIATIVE RECALL

We train various models on NAR with varying neighbor count N, with results shown in Figure [5a]
Throughout this section we compare gL.STM using K-hop aggregation to GCN using standard ag-
gregation, since gL.STM performs significantly better in this task when using K-hop aggregation
whereas GCN performance is harmed by K-hop. We present additional results in Appendix
where we separate by aggregation method and include results for a larger number of models. A
comparison of the number of trainable parameters is shown in Figure[5b] Fair comparison between
matrix and vector memory is nontrivial, so we select these parameter counts to “favor” GCN.

These results demonstrate that gLSTM shows significantly improved recall abilities compared to
GCN. gLLSTM retains perfect recall until the number of neighbors equals the memory dimension of
the model: beyond this is where capacity over-squashing appears to become a problem. This agrees
with intuition, since the maximum number of orthogonal key vectors (and separately, value vectors)
is equal to the memory dimension. However, it is interesting to note how the performance decreases
slowly as the neighbor count exceeds this limit, particularly for higher memory dimensions: this ap-
pears to be a graph analog of the “graceful saturation” described by Smolensky| (1990). By contrast,
capacity over-squashing starts much earlier at just N = 8 for the largest GCN model tested.

1.00
@ gLSTM dim. 8 »
. 075 @ gLSTM dim. 16|
£ 00 eLSTM dim. 32| £
= b9
g 56 GONdim. 64 | 3
=< 025 GCN dim. 128 | £
]
¢ GCN dim. 256 &
0.00
" T T T T
0 20 40 60 80 100 LSTM GON
Number of Neighbours
(a) Accuracy (b) Parameter counts

Figure 5: Test-set mean Accuracy (standard deviation shaded) for the NAR task, for gLSTM and
GCN models with various hidden dimensions shown in Figure [5a] number of trainable parameters
in Figure 5Bl Note that gLSTM uses K-hop aggregation here, whereas GCN does not; see Ap-
pendix for separated performance by aggregation strategy.

5.2 How DOES CAPACITY RELATE TO SENSITIVITY?

In this section, we investigate empirically how capacity over-squashing — as measured by perfor-
mance on NAR - relates to sensitivity over-squashing.

We directly measure the Jacobian norm of [Topping et al.| (2022)); [Di Giovanni et al.| (2023a), com-
puting the sensitivity of the output feature vector on the central (output) node c to the input vectors

on the key-value neighbor nodes n, 8h£2) /O0xy|L,. These results are visualized in Figure

We see therefore that sensitivity, as measured by the Jacobian norm, does not correlate with NAR
performance. Given that NAR performance degradation is due to capacity over-squashing, we there-
fore observe that capacity over-squashing can occur without sensitivity over-squashing. This is
clear from the fact that 1) sensitivity increases consistently for GCN models above N = 16 to the
point where it matches initial sensitivity, despite no increase in performance and 2) sensitivity for

Under review as a conference paper at ICLR 2026

gLSTM tends to carry on increasing beyond where performance starts to degrade. We note these
trends — as with all observations we make in this section — hold true for the NAR regression task in

Appendix[D.81]

However, if we examine the difference in Jacobian norms between the neighbor nodes which are
selected (those which have a key corresponding to the query node) vs background, we see trends that
align with our notion of capacity. Figure[6a] visualizes the ratio of Jacobian norms for selected nodes
to that for background nodes. We observe that for all GCN models this ratio quickly falls to unity
at the point where capacity over-squashing starts to occur, and gLSTM ratios consistently plateau —
and start to slowly decrease — at their memory dimension, similarly coinciding with capacity over-
squashing. It appears therefore that capacity over-squashing harms a model’s ability to be selectively
sensitive to different nodes in the NAR task.

2 10° 4 g 101
E £ @ gLSTM dim. 8
z /‘ = - @ gLSTM dim. 16
S 107 4 Z / LSTM dim. 32
3 Y — B y gl dim.
: = | % 3 et
= 10! 4 £ 004 Q" > GON dim. 128
f-'u: 8 ¢ GCN dim. 256
’i
T T T T ° T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Number of Neighbours Number of Neighbours
(a) Jacobian norms (b) Jacobian norm ratios

Figure 6: Left: Mean Jacobian norms for different gLSTM and GCN models, with varying number
of neighbors in the NAR task. Right: Mean ratio between the Jacobian norms of the selected (key
corresponds to query) to background (key is different from query) neighbor nodes, for varying model
dimensions. Standard deviation shaded in both plots.

Another over-squashing sensitivity metric is that of |[Di Giovanni et al.| (2023b)), who introduce the
maximal mixing metric. For node-level function Y : R"*¢ — R"X¢ the mixing of features associ-
ated with nodes u, v at a given node ¢ is defined as

& (Y (X)),
0x,0x,

rriix(i,v,u) = max

Although motivated through intuition of mixing, we observe the mixed partial derivative can equally
be viewed as a composition of partial derivatives quantifying selective sensitivity - how much the
sensitivity with respect to one node feature varies with respect to another node feature. In this
respect, we expect it to be highly relevant to the sensitivity ratios visible in Figures [6b]and [I0]

To study this empirically for NAR, we take the maximum over the measured Hessians for different
models. These Hessian 3-tensors are large, so we further limit to a subset of the overall tensor in
order to compute them on available hardware: we are most interested in how the output sensitivity
to the neighbor value vectors varies with the query vector, so we limit to the corresponding input
dimensions. For the central, neighbor and query nodes c, n, g this adapted mixing metric is

o (n)
mix(e,n,q) = WX G (m. |
0 hdgy, |\ Fa)5 O Fn)y
emb <y <2demp

which we plot in Figure [7]] We see that gLSTM consistently exhibits greater maximum Hessian
values than GCN, and that this collapses for GCN models above 8 neighbors, consistent with the
drop in performance. As with the Jacobian ratios, we see plateauing and slow decrease of maximum
Hessian values above the memory dimension, but these trends are less pronounced.

Under review as a conference paper at ICLR 2026

£ 10° ::>°<k\ @ gLSTM dim. 8
; w @ gLSTM dim. 16
% A .
S 1072 1 gLSTM dim. 32
s 3¢ GON dim. 64
% 4 N GCN dim. 128
£ 107 =0 3¢ GON dim. 256
-t Tt 1 T 1 1
0 20 40 60 80 100

Number of Neighbours

Figure 7: Mean of the maximum Hessian values for different gLSTM and GCN models, averaged
across test set examples and different neighbor nodes. Standard deviation shaded.

5.3 LONG RANGE BENCHMARKS

Table 1: Mean and standard deviation of log;,(MSE), averaged over 4 random weight initializations
on the GPP tasks from |Gravina et al.|(2023)), from which we report baselines. See Appendix for
discussion of baseline choice. Top score in bold, second underlined. Lower is better.

Method Diam. Ecc. SSSP

GCN 0.742 £0.047 0.846 +£0.003 0.950 +0.000
GAT 0.822+0.075 0.791 £0.022 0.695 +0.150
GraphSAGE 0.865 + 0.40 0.286 +£0.184 0.786 +0.021
GIN 0.613+0.099 0.950%0.001 -0.541+0.419
GCNII 0.529 £ 0.057 0.764 £0.036 -1.132+0.013
DGC 0.603 £0.005 0.826 +£0.003 -0.148 +0.023
GRAND 0.672+0.049 0.660+0.139 -0.094 + 0.340
A-DGN -0.546 £ 0.033 0.305+0.118 -3.402 +0.137
gLSTM (ours) -0.715+£0.030 -4.036 £ 0.311 -2.836+0.178
- K-hop 0.042+0.123 0.673+£0.021 -3.377+£0.142

We evaluate gLSTM on the Graph Property
Prediction (GPP) tasks from |Gravina et al.
(2023)) and the Long Range Graph Benchmark
(LRGB) from Dwivedi et al.| (2022). These
benchmarks are both designed to require long
range interactions to solve, and thus are an in-
teresting test of the ability of gLSTM to over-
come over-squashing and over-smoothing in
real world tasks in order to facilitate long range
interactions. Performance is reported in Table[I]
and Table [2|respectively.

gLSTM achieves comfortably state of the art
results on the Diameter and Eccentricity GPP
tasks, and very strong performance on SSSP;
notably SSSP is the only tested task in which
k-hop decreases performance. @~ LRGB re-
sults show that gLSTM achieves strong per-
formance in Peptides-Func but relatively weak
performance on Peptides-Struct. We hypothe-
size that the weaker performance on Peptides-
Struct may be due to long-range interactions
being less relevant for this task, which is
very effectively solved by a few-layer GCN.
See Appendix [D.2] for gLSTM ablations on
these benchmarks and Appendix [D.5|for details
around hyperparameters used.

Table 2: Mean and standard deviation on LRGB
(Dwivedi et al. |2022), averaged over four ran-

dom weight initializations.

Baselines from the

LRGB reevaluation of [Tonshoff et al.| (2024), K-
hop methods from |Arroyo et al|(2025), rewiring
baseline from [Barbero et al. (2024b). All meth-
ods adhere to a 500k parameter limit. Top score
in bold, second underlined.

Method Peptides-Func Peptides-Struct
AP (1) MAE (})

GCN 0.6860£0.0050 0.2460+0.0007
GatedGCN 0.6765+0.0047 0.2477+0.0009
GINE 0.6621+0.0067 0.2473+0.0017
GPS 0.6534+0.0091 0.2509+0.0014
K-hop methods

kGCN-SSM 0.6902+0.0022 0.2581+0.0003
DRew-GCN 0.6804+0.0144 0.2766+0.0019
Rewiring

LASER 0.64404£0.0010 0.3043+0.0019
gLSTM (ours) 0.7250+0.0023 0.2527+0.0015
- K-hop 0.6030+0.0096 0.2638+0.0010

Under review as a conference paper at ICLR 2026

6 CONCLUSION

In this work, we revisit over-squashing, disambiguating two bottleneck-related issues of sensitivity
over-squashing and capacity over-squashing. We introduce a synthetic task that measures capacity
over-squashing in isolation and we show that associative memory can improve MPNN capacity. The
resulting architecture achieves strong results on real-world benchmarks.

Future Work Many avenues remain open. Whereas the sensitivity issue of over-squashing has
a mathematical basis via the node Jacobian, to our knowledge, the capacity issue does not. Theo-
retically quantifying this capacity could afford similar directions to those explored via sensitivity,
establishing links to topology and model properties. With regards to architecture, we translate to a
graph setting the gating and associative memory of xXLSTM but do not retain the efficiency and par-
allel training, leaving open future work on more efficient MPNNs: we highlight that the recent work
of |Poppel et al.| (2025) achieves these efficiency gains in the specific case of directed acyclic graphs.
Another potential avenue would be to apply our findings to prevention of issues of over-mixing and
representational collapse (Barbero et al.,[2024a}2025)) in Transformer architectures.

REPRODUCIBILITY STATEMENT

We make available all of our code and experiment configurations to aid reproduction of results. Our
experiments utilize the widely-used PyTorch Geometric GraphGym (You et al [2020) framework
which defines a standard framework for MPNN research.

For easiest reproduction of our results, please consult the readme in the code repository provided in
Appendix D] The repository includes all necessary information to run the experiments: in particular,
configs containing the hyperparameters used (also reported in Appendix and code for all plots
used in the paper.

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In International Conference on Learning Representations, 2021.

Adrian Arnaiz-Rodriguez and Federico Errica. Oversmoothing, “oversquashing™’, heterophily,
long-range, and more: Demystifying common beliefs in graph machine learning. arXiv preprint
arXiv:2505.15547, 2025.

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri
Rudra, and Christopher Ré. Zoology: Measuring and improving recall in efficient language mod-
els. In Proceedings of 12th International Conference on Learning Representations (ICLR). ICLR,
2024.

Alvaro Arroyo, Alessio Gravina, Benjamin Gutteridge, Federico Barbero, Claudio Gallicchio, Xi-
aowen Dong, Michael Bronstein, and Pierre Vandergheynst. On vanishing gradients, over-
smoothing, and over-squashing in gnns: Bridging recurrent and graph learning. arXiv preprint
arXiv:2502.10818, 2025.

Jimmy Ba, Geoffrey E Hinton, Volodymyr Mnih, Joel Z Leibo, and Catalin Ionescu. Using fast
weights to attend to the recent past. Advances in neural information processing systems, 29,
2016.

Federico Barbero, Andrea Banino, Steven Kapturowski, Dharshan Kumaran, Jodo Madeira Aratjo,
Oleksandr Vitvitskyi, Razvan Pascanu, and Petar Velickovié. Transformers need glasses! infor-
mation over-squashing in language tasks. Advances in Neural Information Processing Systems,
37:98111-98142, 2024a.

Federico Barbero, Ameya Velingker, Amin Saberi, Michael M. Bronstein, and Francesco Di Gio-

vanni. Locality-aware graph rewiring in GNNs. In The Twelfth International Conference on
Learning Representations, 2024b.

10

Under review as a conference paper at ICLR 2026

Federico Barbero, Alvaro Arroyo, Xiangming Gu, Christos Perivolaropoulos, Michael Bronstein,
Petar Velickovi¢, and Razvan Pascanu. Why do llms attend to the first token? arXiv preprint
arXiv:2504.02732, 2025.

Maximilian Beck, Korbinian Poppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Giinter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. Advances in Neural Information Processing Systems, 37:107547—
107603, 2024.

Maximilian Beck, Korbinian Poppel, Phillip Lippe, Richard Kurle, Patrick M Blies, Giinter Klam-
bauer, Sebastian Bock, and Sepp Hochreiter. xLSTM 7b: A recurrent LLM for fast and efficient
inference. In Forty-second International Conference on Machine Learning, 2025.

Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing in
gnns through the lens of effective resistance. In International Conference on Machine Learning,
pp. 2528-2547. PMLR, 2023.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553,2017.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs, 2014.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Lio, and Petar Velickovi¢. Principal
neighbourhood aggregation for graph nets. Advances in neural information processing systems,
33:13260-13271, 2020.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering, 2017.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M
Bronstein. On over-squashing in message passing neural networks: The impact of width, depth,
and topology. In International conference on machine learning, pp. 7865-7885. PMLR, 2023a.

Francesco Di Giovanni, T Konstantin Rusch, Michael Bronstein, Andreea Deac, Marc Lackenby,
Siddhartha Mishra, and Petar Velickovi¢. How does over-squashing affect the power of gnns?
Transactions on Machine Learning Research, 2024, 2023b.

Yuhui Ding, Antonio Orvieto, Bobby He, and Thomas Hofmann. Recurrent distance filtering for
graph representation learning. In International Conference on Machine Learning, pp. 11002—
11015. PMLR, 2024.

Vijay Prakash Dwivedi, Ladislav Rampasek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long range graph benchmark. Advances in Neural Information
Processing Systems, 35:22326-22340, 2022.

Moshe Eliasof, Alessio Gravina, Andrea Ceni, Claudio Gallicchio, Davide Bacciu, and Carola-
Bibiane Schonlieb. Grama: Adaptive graph autoregressive moving average models. arXiv preprint
arXiv:2501.12732, 2025.

Federico Errica, Henrik Christiansen, Viktor Zaverkin, Takashi Maruyama, Mathias Niepert, and
Francesco Alesiani. Adaptive message passing: A general framework to mitigate oversmooth-
ing, oversquashing, and underreaching. In Forty-second International Conference on Machine
Learning, 2025.

Ben Finkelshtein, Xingyue Huang, Michael Bronstein, and Ismail Ilkan Ceylan. Cooperative graph
neural networks. In Proceedings of the 41st International Conference on Machine Learning, pp.
13633-13659, 2024.

Johannes Gasteiger, Stefan Weillenberger, and Stephan Giinnemann. Diffusion improves graph

learning. Advances in neural information processing systems, 32, 2019.

11

Under review as a conference paper at ICLR 2026

M Gori, G Monfardini, and F Scarselli. A new model for learning in graph domains. In Proceedings.
2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2, pp. 729-734.
IEEE, 2005.

Alessio Gravina, Davide Bacciu, Claudio Gallicchio, et al. Anti-symmetric dgn: a stable architecture
for deep graph networks. In Proceedings of the Eleventh International Conference on Learning
Representations (ICLR 2023), 2023.

Alessio Gravina, Moshe Eliasof, Claudio Gallicchio, Davide Bacciu, and Carola-Bibiane Schonlieb.
On oversquashing in graph neural networks through the lens of dynamical systems. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 16906-16914, 2025.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di Giovanni. Drew: Dy-
namically rewired message passing with delay. In International Conference on Machine Learning,
pp. 12252-12267. PMLR, 2023.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Ali Hariri, Alvaro Arroyo, Alessio Gravina, Moshe Eliasof, Carola-Bibiane Schonlieb, Davide
Bacciu, Kamyar Azizzadenesheli, Xiaowen Dong, and Pierre Vandergheynst. Return of cheb-
net: Understanding and improving an overlooked gnn on long range tasks. arXiv preprint
arXiv:2506.07624, 2025.

Simon Heilig, Alessio Gravina, Alessandro Trenta, Claudio Gallicchio, and Davide Bacciu. Port-
hamiltonian architectural bias for long-range propagation in deep graph networks. In The Thir-
teenth International Conference on Learning Representations, 2025.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554-2558, 1982.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118-22133, 2020.

Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Trans-
formers are better than state space models at copying. In International Conference on Machine
Learning, pp. 21502-21521. PMLR, 2024.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Francois Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156-5165. PMLR, 2020.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works, 2017.

Alessio Micheli. Neural Network for Graphs: A Contextual Constructive Approach. [EEE Trans-
actions on Neural Networks, 20(3):498-511, 2009.

Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh
Nguyen. Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In In-
ternational Conference on Machine Learning, pp. 25956-25979. PMLR, 2023.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-

canu, and Soham De. Resurrecting recurrent neural networks for long sequences. In International
Conference on Machine Learning, pp. 26670-26698. PMLR, 2023.

12

Under review as a conference paper at ICLR 2026

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at the evaluation of gnns under heterophily: Are we really making progress? arXiv
preprint arXiv:2302.11640, 2023.

Korbinian Poppel, Richard Freinschlag, Thomas Schmied, Wei Lin, and Sepp Hochreiter. pLSTM:
parallelizable linear source transition mark networks. In ICML 2025 Workshop on Long-Context
Foundation Models, 2025.

Ladislav Rampések, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501-14515, 2022.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61-80, 2008.

Imanol Schlag, Kazuki Irie, and Jiirgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International conference on machine learning, pp. 9355-9366. PMLR, 2021.

Jiirgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 4(1):131-139, 1992.

Paul Smolensky. Tensor product variable binding and the representation of symbolic structures in
connectionist systems. Artificial intelligence, 46(1-2):159-216, 1990.

Alessandro Sperduti. Encoding labeled graphs by labeling raam. Advances in Neural Information
Processing Systems, 6, 1993.

Jan Tonshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go? reassess-
ing the long-range graph benchmark. Transactions on Machine Learning Research, 2024. ISSN
2835-8856.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In Interna-
tional Conference on Learning Representations, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. ArXiv, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Jiaxuan You, Rex Ying, and Jure Leskovec. Design space for graph neural networks. In NeurlIPS,
2020.

13

Under review as a conference paper at ICLR 2026

A RELATIONSHIP TO COMPUTATIONAL (AND TOPOLOGICAL)
BOTTLENECKS

Arnaiz-Rodriguez & Errical(2025) identify a separation in the over-squashing literature between the
initial work of |/Alon & Yahav|(2021)) and the later work of [Topping et al.| (2022)); Di Giovanni et al.
(2023a). They point out that the original over-squashing definition of (Alon & Yahav, [2021)) was
associated with the computational tree, and [Topping et al.| (2022) later connected over-squashing
to the existence of topological bottlenecks. They suggest that these definitions constitute different
problems, and that — as a community — we should discard the term “over-squashing” and separate it
into (at least) two separate terms: (1) computational tree bottlenecks and (2) topological bottlenecks
(in the underlying graph).

This makes a valuable point: topological bottlenecks may or may not be involved when structural
issues exist with the computational tree. The authors fairly point out that the umbrella term “over-
squashing” has sometimes hidden some of the complexity of the problem, and the field may ben-
efit from work identifying explicitly whether it is dealing with topological bottlenecks (as is the
case with e.g. rewiring) or bottlenecks of the computational tree (e.g. adaptive message passing).
We’re unsure that framing these as separate is helpful, since topological bottlenecks must be me-
diated through the computational tree in order to impact message passing, but the point stands that
some methods to combat over-squashing specifically target topological bottlenecks (and as such any
changes to the computational graph are implicit), and some methods target general computational
bottlenecks, and that this is not always clear.

Despite the complexity, we believe the term “over-squashing” still has utility as an umbrella term that
describes issues that arise from the presence of bottlenecks and depth in the computational tree. The
distinction made by |Arnaiz-Rodriguez & Errical (2025) clarifies that sometimes these issues arise
due to topological bottlenecks in the underlying graph, and sometimes they do not. The relevance
of our work is then in exploring how this structure manifests as performance issues, and the main
body of our paper argues that this is due to separate issues of capacity and sensitivity.

Precisely how issues of capacity and sensitivity relate to the structure of the computational tree and
the presence of bottlenecks is complex, although we take initial steps to clarify this in our paper.
It would not be correct to suggest for example that capacity issues correspond to computational
bottlenecks and low sensitivity to topological bottlenecks. In particular:

* Our RingTransfer discussion of Section highlights that computational bottlenecks can
exist without capacity issues.

* |Arnaiz-Rodriguez & Errical(2025)) highlight that low sensitivity does not necessarily imply
the existence of computational tree bottlenecks (or topological bottlenecks).

* On the other hand, both topological bottlenecks and general computational bottlenecks
can cause low sensitivity. This is clear since the Equation (3) defines an upper bound on
sensitivity in terms of the computational tree (defined by successive powers of the message-
passing matrix), and we refer the reader to the work of Topping et al.| (2022) for proofs in
the case of specifically topological bottlenecks.

Additionally, while the discussion in this Appendix has so far focused on the computational tree, we
highlight that the causes of the failure modes discussed in our work extend beyond structural issues:
issues of capacity also depend at least on (1) information content of the task and (2) storage capacity
of the model, as explored in Sections [3.1] and [3.2] respectively, and issues of sensitivity are highly
dependent on the model dynamics, as explored in e.g. |Arroyo et al. (2025); Heilig et al.| (2025));
Gravina et al. (2023} 2025).

B XLSTM UPDATE EQUATIONS

Beck et al.[(2024) initially designed XLSTM as a combination of SLSTM blocks and mL.STM blocks
- using scalar memory and matrix (associative) memory respectively. However, their follow up work
(Beck et al.| |2025) uses only mLSTM blocks, and these form the inspiration for gLSTM. Therefore,
we will exclusively introduce the mLSTM block update equations in this section.

14

Under review as a conference paper at ICLR 2026

The update equations, presented in a similar manner to Section[d] are given below.

State (and normalization) updates:

Ct _ ftCt71 + Z-t,vt ® kt (4)
nt — ftntfl 4 itkt (5)
m! = max (ft + mtﬁl,%t) (6)

Query / Key / Value computation:

q' =Wyz' +b, (7N
1

vt = Wya! + b, 9)

Gate computation:
it = exp (%t — mt) it = ’wiT:L't + b; (10)
ft=exp (ftert*l fmt) ft :w?athtbf (11
o' = (") 6' = W,xt + b, (12)

Output:

ht = tht/max{|ntht|,1} (13)
ht = ot & Rt (14)

C DATASET DETAILS

In table Table [3] we present a summary of the statistics of the datasets used throughout this work.
We use the standard splits provided for each of the datasets, using the standard loading functionality
from GraphGym (and PyTorch Geometric). For GPP (without a default implementation in PyTorch
Geometric) we use the original splits of |Gravina et al.| (2023): 5120 graphs as training set, 640 as
validation set, and 1280 as test set.

For the NAR task (for all neighbor values), we use a split of 8,000 train graphs, 1,000 validation
graphs and 1,000 test graphs. We note that when testing gL.STM on this dataset, we vary the memory
(matrix) dimension as described in the main text, and set the vector dimension to twice that of the
matrix dimension.

D ADDITIONAL EXPERIMENTS

Our code for reproducing all experimental results in the main paper and appendices is publicly
available athhttps://anonymous.4open.science/r/GNN-xLSTM—9A2D|.

D.1 ADDITIONAL GPP BASELINES

We note that due to a subtle PyTorch issue in the original GPP code implementation, normalization
is not applied to the dataset targets. A refactor appears to have unknowingly fixed this issue in later
iterations of the code so later experiments are run on a normalized variant of the dataset. Unfor-
tunately, this results in unfair comparison, as results can be substantially different between the two
variants of the dataset.

Therefore, in the main body of the paper we test only on the baselines provided in the original GPP
paper (Gravina et al., |2023)), as we are confident these use the un-normalized variant of the dataset,
and this provides us with the largest number of baselines to test against. We additionally ensure that

15

https://anonymous.4open.science/r/GNN-xLSTM-9A2D

Under review as a conference paper at ICLR 2026

Table 3: Summary of datasets used throughout this work. Node and edge values are the average per
graph, where applicable. LRGB statistics retrieved from |Dwivedi et al.| (2022), OGB statistics from
Hu et al.| (2020), Heterophilous from Platonov et al.| (2023). GPP statistics computed; dataset from
Gravina et al.| (2023);|Corso et al.| (2020).

Dataset Group Task Setting #Graphs Nodes Edges
Peptides-Func LRGB Graph cls. Inductive 15,535 150.94 307.30
Peptides-Struct LRGB Graph reg. Inductive 15,535 150.94 307.30
Diameter GPP Graphreg. Inductive 7,040 28.82 98.95
Eccentricity GPP Node reg. Inductive 7,040 28.82 98.95
SSSP GPP Node reg. Inductive 7,040 28.82 98.95
arXiv OGB Node cls. Transductive 1 169,343 1,166,243
Products OGB Node cls. Transductive 1 2,449,029 61,859,140
Amazon-Ratings Heterophilous Node cls. Transductive 1 24,492 93,050
Roman-Empire Heterophilous Node cls. Transductive 1 22,662 32,927
Minesweeper Heterophilous Node cls. Transductive 1 10,000 39,402

our method uses the same, un-normalized GPP variant. We separately test on the normalized version
of the dataset, with results presented in Table 4] and hyperparameters in Table [T4] This allows us
to additionally test against a range of more recent methods that specifically target sensitivity over-
squashing. We achieve state of the art results on the normalized variant of this benchmark.

Table 4: Mean and standard deviation of log,,(MSE), averaged over 4 random weight initializations
on the Normalized version of the GPP tasks from |Gravina et al.| (2023). Baselines reported from
Arroyo et al.[(2025); |[Eliasof et al.| (2025). Top score in bold. Lower is better.

Method Diam. Ecc. SSSp
Differential Equation Inspired GNNs

SWAN —0.598 £ 0.115 —0.074+0.219 —3.543 +0.083
PH-DGN —0.547 £0.107 —0.935+0.210 —4.299 +0.072
K-hop methods

DRew-GCN —2.402+£0.110 —2.029+£0.024 —1.602 4+ 0.008
kGCN-SSM —3.075+£0.055 —4.265+0.178 —3.604 4+ 0.029
GPS —0.5124+0.043 0.608 £0.028 —3.599 +0.195
GRAMA —0.866 £ 0.0561 —1.301 +£0.126 —3.935+0.070

gLSTM (ours) -3.684 + 0.057 -5.912 £1.116 -5.321 £ 0.603

D.2 ABLATIONS

To identify what elements of the gLSTM architecture are most important for performance on these
benchmarks, we perform ablations on the GPP and LRGB datasets. For LRGB, a task with a param-
eter limit, we ablate in two different settings: the first is simply removing the ablated component,
for which results are presented in Table[6] The second is to scale the hidden dimension h to keep
the parameter count as close as possible to the 500k limit - i.e. when removing gating, this will
correspondingly increase the hidden dimension. We include these experiments as they more accu-
rately represent the reality of testing a model variant on a task with a parameter limit; these results
are presented in Table[7] These two ablation settings show very similar results. GPP ablations are
presented in Table[3]

We see that ablating gating only significantly reduces performance on Peptides-Func - other than
this, it either leaves performance the same or in some cases, improves performance (GPP Ecc. in
particular).

16

Under review as a conference paper at ICLR 2026

Table 5: Ablation of gL.STM performance on Diam, Ecc, and SSSP from the GPP benchmark. Mean
and standard deviation are reported, averaged over four random weight initializations. Other than
ablation, all other model settings are held constant; thus ablations with gating removed have reduced
parameter count.

Model Diam. Ecc. SSSpP
eLSTM -0.715 £ 0.030 -4.036 £ 0.311 -2.836 = 0.178
- Output gate -0.70 £ 0.05 -3.71 £ 0.16 -2.77 £ 0.19
- Input gate -0.75 £ 0.01 -4.72 £0.36 -3.27+£0.16
- Forget gate -0.71 £ 0.03 -4.30 £ 0.21 -3.14 £ 0.07
- All gates -0.75 £ 0.03 -4.14 £ 0.42 -3.16 £ 0.15
- K-hop aggregation 0.04 +£0.12 0.67 £ 0.02 -3.38+0.14

Table 6: Ablation of gl.STM performance on Peptides-Func and Peptides-Struct from the LRGB.
Mean and standard deviation are reported, averaged over four random weight initializations. Other
than ablation, all other model settings are held constant; thus ablations with gating removed have
reduced parameter count.

Model Peptides-Func Peptides-Struct
AP (1) MAE (1)
gLSTM 0.7250 + 0.0023 0.2527 £ 0.0015
- Output gate 0.7086 £+ 0.0049 0.2540 +£ 0.0016
- Input gate 0.7186 £ 0.0029 0.2524 + 0.0027
- Forget gate 0.7236 + 0.0063 0.2522 £ 0.0011
- All gates 0.7180 £+ 0.0088 0.2526 + 0.0012
- Positional encoding 0.7208 £ 0.0072 0.2539 £ 0.0036
- K-hop aggregation ~ 0.6030 4 0.0096 0.2638 4+ 0.0010

Table 7: Ablation of gLSTM performance on Peptides-Func and Peptides-Struct from the LRGB.
Mean and standard deviation are reported, averaged over four random weight initializations. All
methods adhere to a 500k parameter limit such that hidden dimension varies to keep parameter
count as close to this as possible.

Model Peptides-Func Peptides-Struct
AP (1) MAE (1)
gLSTM 0.7250 +0.0023 0.2527 £ 0.0015
- Output gate 0.7202 £+ 0.0056 0.2537 £ 0.0011
- Input gate 0.7193 £ 0.0110 0.2518 £ 0.0027
- Forget gate 0.7148 £ 0.0107 0.2545 4+ 0.0043
- All gates 0.7188 £ 0.0060 0.2528 + 0.0035

- Positional encoding
- K-hop aggregation

0.7211 £ 0.0062
0.6030 £ 0.0096

0.2601 £ 0.0017
0.2638 £+ 0.0010

17

Under review as a conference paper at ICLR 2026

Table 8: Mean and standard deviation on Heterophilic Datasets, averaged over four random weight
initializations.

Model Roman-empire Amazon-ratings Minesweeper
Acc T Acc T AUC 1
MPNNs
GAT 80.87+0.30 49.0910.63 92.01 1068
GAT (LapPE) 84~80:t0.46 44.90:|:0_73 93.50:‘:0'54
GAT (RWSE) 86.6210 53 485810 41 92.5310 65
Gated-GCN 74.46i0,54 43‘00i0.32 87.54i1,22
GCN 73.6910. 74 487040 63 89.751 0.5
GCN (LapPE) 83.37:‘:0.55 44-35:|:0.36 94.26:‘:0.49
GCN (RWSE) 84.84 1055 46.4010.55 93.841¢.48
CO-GNN(Z, %) 91.5710.52 51.28.0.56 95.09 1 15
CO—GNN(,U, ,u) 91.37:‘:0.35 54.17:&0,37 97.31:‘:0.41
SAGE 85.74 19.67 53.6319.39 93.5110.57
Graph Transformers
Exphormer 89.03i0,37 53-51i0.46 90-74i0.53
NAGphormer 74-34:t0.77 51.26:|:0_72 84~19:t0.66
GOAT 715911 25 44.61 40 50 81.094 1 02
GPS 82.0010.61 53.1010.42 90.631¢.67
GPSgeN+performer (LapPE) 83.9640.53 48.2040.67 93.85+0.41
GPSgeN+performer (RWSE) 84.72410.65 48.08+0.85 92.88.+0.50
GPSGCN+Transformer (LaPPE) OOM OOM 91-82i0.41
GPSGCN+Transf0rmer (RWSE) OoOM OoOM 9117:t051
GT 86.51:‘:0.73 51-17:|:0.66 91.85:‘:0.76
GT—SCp 87.32i0,39 52‘18i0,80 92-29i0.47
Polynormer 92.55410.30 54.81410.49 97.4619.36
Heterophily-Designated GNNs
CPGNN 63.9619.62 39.7910.77 52.0315.46
FAGCN 65.2240.56 441240 30 88.1710.73
FSGNN 79.92_ 956 52.74 9.3 90.0819.70
GBK-GNN 74.57 10.47 459810.71 90.8510.58
GloGNN 59~63:t0.69 36.89:|:0_14 51.08:‘:1'23
GPR-GNN 64.851¢.27 44.8810.34 86.24 1961
H2GCN 60.11 19 52 36.4710.23 89.71410.31
JacobiConv 71.14i0_42 43~55:|:0.48 89.66:‘:0'40
Graph SSMs
GMN 87.6940.50 54.0740.31 91.0140.03
GPS + Mamba 83.10:‘:0.28 45.13:&0.97 89.93:‘:0.54
GRAMAGeN 88.6110.43 53.4819.62 95.2710.71
MP-SSM 90.910.45 53.6540.71 95.3340.72
Ours
gL.STM (ours) 88.12 £ 0.35 5198 +£0.45 92.08 £ 0.88
+ K-hop 83.48 £ 0.30 5225+ 031 87.55+0.78

D.3 HETEROPHILIC BENCHMARKS

We additionally evaluate gL.STM on the heterophilic datasets of [Platonov et al.| (2023)), shown in
Table[8] Hyperparameters and sweeps are documented in Appendix [D.5](Table[13).

gL.STM achieves good MPNN-level performance, but is outperformed by some Graph Transformer
architectures. Notably, the addition of K-hop aggregation here actually harms performance signif-
icantly in two of the three datasets. We suggest this may be due in part to the lack of long-range
dependencies in these datasets, whereas the GPP and LRGB datasets evaluated in the main text are
designed specifically to contain long range dependencies. This explanation would imply that K-hop
provides a useful inductive bias for long range dependencies specifically.

18

Under review as a conference paper at ICLR 2026

Table 9: Mean and standard deviation on OGBN, averaged over four random weight initializations.

Method Arxiv Products

GCN 71.74+£0.29 75.64 £0.21
ChebNet 73.27+0.23 -
ChebNetll 72.32 +0.23 -
GraphSAGE 71.49 +0.27 78.29 £0.16
GAT 72.02 +0.44 79.45 £ 0.59
NodeFormer 59.90 £0.42 72.93 £ 0.13
GraphGPS 70.97 £ 0.41 OOM
GOAT 72.41 +0.40 82.00 £ 0.43
NAGphormer 70.13 £0.55 73.55 £ 0.21
Exphormer 72.44 £ 0.28 OoOM
SGFormer 72.63 +0.13 74.16 £ 0.31
Polynormer 73.46 £ 0.16 83.82 £0.11

gLSTM (ours) 71.91 £ 0.32 81.52 +0.29

D.4 LARGE GRAPH BENCHMARKS AND SCALING EXPERIMENTS

This section investigates the scaling of gL.STM to large graphs, for which we use the Arxiv and Prod-
ucts node classification datasets from the Open Graph Benchmark 2020). ogbn-arxiv
comprises 169,343 nodes and 1,166,243 edges, while ogbn-products comprises 2,449,029
nodes and 61,859,140 edges. We evaluate gLSTM on these graphs without K-hop aggregation,
which would be prohibitively expensive to compute on these graphs. However, as noted in Ap-
pendix [D.3] it appears that K-hop aggregation is of particular importance for long-range dependen-
cies, so it is unclear whether it would improve performance on these benchmarks anyway.

Results on these datasets are presented in Table[9] Hyperparameters and sweeps are documented in
Appendix [D-5] (Table[T2).

We highlight that although the model which achieves best validation-set performance on
ogbn-arxiv is large, thus incurring high runtime and VRAM usage, significantly smaller mod-
els achieve comparable results with only a small decrease in accuracy: in particular, a model with
memory dimension 8, 8 heads and 4 layers achieves an accuracy of 71.31 £ 0.25.

We use ogbn—-arxiv to empirically measure gLSTM epoch time and VRAM scaling with the
number of heads and memory dimension: these results are visualized in Figure [§] reporting both
absolute values and multiples of the corresponding metric for a GCN model with 4 layers and hidden
dimension 256 on the same dataset. As expected, these values appear to scale linearly with the
number of heads and quadratically with the (matrix) memory dimension.

We highlight that we have not optimized any of the gLSTM code for CUDA efficiency, so the relative
epoch times and VRAM usages may be overstated, and future improvements are likely possible.

D.5 HYPERPARAMETERS

In Tables [I0] and [IT| we present the hyperparameter sweeps and chosen hyperparameters for results
in the main body of the paper: GPP and LRGB respectively. In Tables[T2]to[T4] we present the hyper-
parameter sweeps and chosen hyperparameters for the normalized version of GPP (Appendix [D-T)),
Heterophilic benchmarks (Appendix and OGBN benchmarks (Appendix [D.4) respectively.

D.6 OVERSMOOTHING AND LONG RANGE DEPENDENCIES

We test empirically that gLSTM is able to learn long range dependencies by evaluating on the
RingTransfer task introduced in [Di Giovanni et al.| (2023a)). Results for gLSTM, GCN and GNN-
SSM are shown for various ring sizes (and corresponding number of message
passing layers) in Figure

19

Under review as a conference paper at ICLR 2026

Table 10: Hyperparameter sweeps for gLSTM on LRGB tasks. In bold are the hyperparameters
that achieved the best validation set performance, and thus were those used in the main results of
the paper. Note that hidden dimension was not directly swept over, as this was maximized for each
configuration such that the model remained within the 500k parameter budget. Due to compute
limitations, hyperparameter sweeps were not exhaustive, but used Weights and Biases Bayesian
Optimization routine with Hyperband early termination.

Hyperparameter Peptides-Func Peptides-Struct
Memory Dimension 8, 16, 32 8, 16, 32
Number of Heads 1-2-8 1-5-8
Message Passing Layers 10-27-50 4-23-40

Input Norm Type Layer Layer, None
Hidden Norm Type Group Group

Act. Func. (between block) GeLU, ReLU, None GeLU, ReLLU, None
Dropout 0.1 0.0,0.1,0.2
Hidden Dimension 45 42

Table 11: Hyperparameter sweeps for gLSTM on GPP tasks. In bold are the hyperparameters that
achieved the best validation set performance, and thus were those used in the main results of the
paper. Hyperparameters were tested exhaustively via grid search.

Hyperparameter Diam. Ecc. SSSp
Memory Dimension 8, 16 8,16 8,16
Number of Heads 1,2,3,4 1,2,3,4 1,2,3,4
Message Passing Layers 1,5, 10,20 1,5,10,20 1,5,10,20
Input Norm Type None None None
Hidden Norm Type Group Group Group

Act. Func. (between block) Tanh, ReLU, None Tanh, ReLU, None Tanh, ReLU, None
Dropout 0.0 0.0 0.0
Hidden Dimension 10, 20, 30 10, 20, 30 10, 20, 30

Table 12: Hyperparameter sweeps for gLSTM on OGBN (Hu et al., |2020) tasks. Bold entries
indicate the hyperparameters that achieved the best validation performance and were used in the
main experiments.

Hyperparameter ogbn-arxiv ogbn-products
Memory Dimension 8,16,32 8,16,32
Number of Heads 4.8 4.8
Message Passing Layers 4,6,8,10 4,6,8,10
Input Norm Type Batch Layer
Hidden Norm Type Group Group
Act. Func. (between block) ReLU ReLU
Dropout 0.5 0.5
Hidden Dimension 256 256

20

Under review as a conference paper at ICLR 2026

Table 13: Hyperparameter sweeps for gLSTM on the heterophilous datasets of |[Platonov et al.
(2023)). Bold entries indicate the hyperparameters selected based on validation performance. Sweep

ranges were identical across datasets.

Hyperparameter Amazon Ratings Minesweeper Roman Empire
Memory Dimension 8,16,32 8,16,32 8,16,32
Number of Heads 4.8 4.8 4.8
Message Passing Layers 4,6,8,10,12 4,6,8,10,12 4,6,8,10,12
Input Norm Type Batch Batch Batch
Hidden Norm Type Group Group Group
Act. Func. (between block) ReLLU ReLlU ReLLU
Dropout 0.5 0.2 0.5
Hidden Dimension 512 64 512

Table 14: Hyperparameter sweeps for gLSTM on the Normalized-GPP tasks: sweep is performed
only over Normalized-Diam and these parameters are used for all other experiments. In bold are the
hyperparameters that achieved the best validation set performance, and thus were those used for test

set evaluation.

Hyperparameter

Normalized-Diam.

Memory Dimension
Number of Heads

Message Passing Layers
Input Norm Type

Hidden Norm Type

Act. Func. (between block)
Dropout

Hidden Dimension

8,16, 32
1-4-8
4-10-40
Layer
Group
GeLU, ReLU, None
0.00.10.2
512

21

Under review as a conference paper at ICLR 2026

Gating=False
| Gating=Truc

T
3

0.40 4

)
=
&
&
T
-

T
£

0.30 4

T
o

0.25 4

0.20 4

Mean Epoch Time (s
r
~

Mean Epoch Time (s)

0.15 4

T
w

S
Multiple of GCN Mean Epoch Time
Multiple of GCN Mean Epoch Time

4 0.10 4

T
©

0 2 4 8 10 12 0 5 10 15 20 25 30

Number of Heads Memory Dim
(a) Mean epoch time vs. number of heads (b) Mean epoch time vs. memory dimension
909 1 20.0
07 » % 10 175 E’gz
— 5 _ S
= 704 30 2 2 =
o 2 < 150 3
E Fos 7, %0 125 %
Z w0 = z =
E F 2027 = 10.0 7
£ 404 3 E 20 3
] Fis S i Frs =
= 304 ;; B 2
20 10 ;; 104 5.0 ;;
F25
10 4
0 > H o 5 10 12 0 5 10 5 20 P 30
Number of Heads Memory Dim
(c) Max memory usage vs. number of heads (d) Max memory usage vs. memory dimension

Figure 8: Scaling behavior of gLSTM, empirically reported on the ogbn—-arxiv dataset
[2020). Mean epoch time and max memory usage is reported, both in absolute terms and relative to
GCN with 4 layers and hidden dimension of 256. All parameters other than that being varied are
fixed to that of the top-performing model: see Table

1.0
0.8
& —e— gLSTM
g 0.6 —e— GNN-SSM
3
! —e— GCN
0.2
005 50 100 150 200 250 300

Number of Layers

Figure 9: Performance on the RingTransfer task.

D.7 ADDITIONAL NAR CLASSIFICATION RESULTS

In this section, we present various additional results from the NAR task presented in the main body
of the paper.

We visualize the Jacobian norms - separated by selected vs background nodes - for the mixed ag-
gregation strategies used in the main paper in Figure[T0] This is, in effect, the more granular plot of

Figure [6b]

D.7.1 COMPARISON AGAINST (GRAPH) TRANSFORMER BASELINES

In addition to the MPNN comparisons presented in the main body of the paper and Appendix [D.7.3]
we compare gL.STM against two Transformer baselines: GraphGPS (Rampasek et al., [2022) and
a regular Transformer (Vaswani et al.| [2017) block utilizing softmax attention. These results are
visualized in Figure[TT]

From this figure, we see that softmax attention with a sufficiently high hidden dimension is able to
solve the task perfectly, as expected. Curiously, GraphGPS fails significantly earlier, at 32 neighbors
for all hidden dimensions tested: while we unsure of the precise reason for this, we speculate that

22

Under review as a conference paper at ICLR 2026

gLSTM dim. 16 GCN dim. 64 Ratios
1400
Il Selected N Selected

1200 B Background 175 B Background

1000 150 %
E E &
Z 800 2 12 g
g g z
B3 2 100]
g 600 o 8 £
2 E 2
= = 7 g o
£ 400 A e = 10° 4

50 2
200 1
L 2% —— gLSTM
08 == GCN
SR S S S o IR R A R AR L R B R s s s s LY
4 8 16 32 48 64 80 96 4 8 16 32 48 64 80 96 4 8 16 32 48 64 80 96
Number of Neighbours Number of Neighbours Number of Neighbours

Figure 10: Left: Mean Jacobian norms for gLSTM of memory dimension 16, with varying number
of neighbors in the NAR task, separated by whether the neighbor node corresponds to the given
query (selected) or not (background). Middle: Same, with GCN of hidden dimension 64. Right:
Mean ratios of Jacobian norms for selected nodes to background nodes, for these two models. Stan-
dard deviation visualized in bar chart error bars and line chart shaded area.

@ gLSTM dim. 8 = GPSdim. 64 ¢ Transformer dim. 64
@ ¢LSTM dim. 16 GPS dim. 128 % Tran 128
“® gLSTM dim. 32 % GPS dim. 256 Tran

Figure 11: Comparison of gLSTM performance against Transformer baselines: GPS
and a standard Transformer baseline with softmax attention. Both of these use Laplacian
positional encodings appended to the node feature vectors. Test-set mean accuracy is shown, with
standard deviation shaded, averaged over 3 runs. Note that gLSTM uses K-hop aggregation here,
whereas GPS does not.

the GCN aspect of the architecture may be actively harming performance. We note however that
GraphGPS does outperform all MPNNs tested, other than gLSTM.

It is also interesting to note that at lower dimensions, softmax attention reaches a neighbor count
at which it also starts to fail. It seems clear that this arises simply from the initial embedding of
the integer key, query and value symbols: when the size of these alphabets exceeds half the hidden
dimension (recall half of the embedding vector is used to encode the key, the other half the query), it
is no longer possible for each symbol to have a learned orthogonal vector and there will be overlap.

D.7.2 TRAINING CURVES: FAILURE AT NAR IS AN ISSUE OF GENERALIZATION

This section investigates further what exactly causes GCN and other models to fail at NAR. We
observe in Figure[T2]that for several models, above the point where test set accuracy decreases, train
set accuracy remains high: thus, the failure mode seems to be one of generalization. We suggest
that this is consistent with the capacity intuition: at the point at which the model is no longer able
to separably store the neighbor representations, it collapses instead to memorizing the aggregated
neighbor representation and corresponding value. Since these specific combinations are not shared
with the test set, this does not generalize.

23

Under review as a conference paper at ICLR 2026

8 Neighbours

32 Neighbours

104 1.0 4
0.9 ‘
0.8
0.8
- 0.7 - 0.6
7 & g
g Z
067 =
0.4
0.5
0.4 02
03] J
T T T T T T T T T T T T T T T T T T
0 2 50 75 100 125 150 175 200 0 2 50 75 100 125 150 175 200
Epoch Epoch
1.0 4 1.0 7
0.9]
0.8 1
08]
5 0.7 2 0.6
n & &
=" g
o 206 2
0.4
0.5
).4
¢ 0.2 1
0.3 N
T T T T T T T T T T T T T T T T T T
0 25 50 75 100 125 150 175 200 0 2 50 75 100 125 150 175 200
Epoch Epoch
1.0 4
1.0 4
0.9
0.8
0 0.8
= I =
e f g 064
= Z07 g
E} < <
06 041
0.5 02
0.4 1
T T T T T T T T T 0.0 T T T T T T T T T
0 25 50 75 100 125 150 175 200 2 50 75 100 125 150 175 200
Epoch Epoch

Figure 12: Train and test set accuracies plotted against epoch count. Left column contains the results
for experiments using 8 neighbor nodes, right column for 32 neighbors. Top row visualises GCN
results, second GPS, third gLSTM. gLSTM is the only one that remains able to generalize at 32

neighbors (and beyond).

24

Under review as a conference paper at ICLR 2026

@ gLSTM dim. 8 =€ GAT dim. 64

@ gLSTM dim. 16 ¢ GAT dim. 128

@ gLSTM dim. 32 GAT dim. 256

¢ GCN dim. 64 9% GatedGCN dim. 64
¢ GCN dim. 128 ¢ GatedGCN dim. 128
¢ GCN dim. 256 ¢ GatedGCN dim. 256

0.8

Accuracy
e
2

:

S
=
L

0.2 4

0.0

T T T T
0 20 40 60 80 100
Number of Neighbours

Figure 13: NAR Accuracy where all models do not use K-hop aggregation, for an expanded set of
models.

@ gLSTM dim. 8 =€ GAT dim. 64

@ gLSTM dim. 16 ¢ GAT dim. 128

@ gLSTM dim. 32 GAT dim. 256

¢ GCN dim. 64 ¢ GatedGCN dim. 64
¢ GCN dim. 128 9¢ GatedGCN dim. 128
¢ GCN dim. 256 € GatedGCN dim. 256

Accuracy
e
2
:

P

0.2

0.0

T T T T
0 20 40 60 80 100

Number of Neighbours

Figure 14: NAR Accuracy where all models do use K-hop aggregation, for an expanded set of
models.

D.7.3 PERFORMANCE SEPARATED BY AGGREGATION STRATEGY
We next separate out no-K-hop and K-hop aggregation, and plot results for a larger set of models, in
Figures[13|and [I4] respectively.

We additionally verify that the number of layers is not the reason behind GCN being unable to solve
NAR at higher neighbor counts. Figure [I6] visualizes the performance of GCN models with hidden

106 4

10° 4

Trainable Parameters

gLSTM GCN GAT GatedGCN

Figure 15: Number of trainable parameters for the expanded set of models tested in Figures

and @

25

Under review as a conference paper at ICLR 2026

=€ 2 layers 4 layers =€ 5 layers
=é 3 layers
1.0
&
g
§ 0.5
< M (V)
0.0 A) e
0 20 40 60 80 100

Number of Neighbours

Figure 16: NAR Accuracy for GCN of hidden dimension 128, no K-hop, for varying numbers of
GCN layers.

dimension 128 and various layer counts; it transpires that 2 layers performs best out of the tested
layer counts.

D.7.4 ADDITIONAL SENSITIVITY METRIC RESULTS

We plot in this section the sensitivity metric trends of gLSTM vs GCN, both using K-hop aggrega-
tion.

Figure visualizes the Jacobian norms for different model sizes and numbers of neighbors; Fig-
ure ﬂ%ws the ratios between selected and background node Jacobian norms. Figure[I§]separates
out the Jacobian norms for gLSTM memory dimension 16 and GCN hidden dimension 64. Figure[I9]
visualizes the Hessian mixing metric for all models.

10

10° 4 g
E10 £ @ ¢LSTM dim. 8
A ~ - “© gLSTM dim. 16
£ 10° 4 g Y, gLSTM dim. 32
g = - T ¢ GON dim. 64
;: 10! 4 E 100 1 et == GCN dim. 128
2 5] =¢ GCN dim. 256
g
=
T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Number of Neighbours Number of Neighbours
(a) Jacobian norms (b) Jacobian norm ratios

Figure 17: Left: Average Jacobian norms for different gLSTM and GCN models, with varying
number of neighbors in the NAR task. Right: The ratio between the Jacobian norms of the selected
(key corresponds to query) to background (key is different from query) neighbor nodes, for the
different models - see Figure [T8] This plot differs from that in the main body of the paper in that
both gL.STM and GCN use K-hop aggregation.

D.8 NEIGHBOR ASSOCIATIVE RECALL REGRESSION RESULTS

In this section, we present results for the regression variant of the NAR task presented in the main
body of the paper. We refer to this as Neighbor Associative Recall Regression (NARR).

Similarly to NAR, for a given neighborhood size N we create a graph of N + 3 nodes. This graph
consists of N “neighbor’” nodes, a central node to which they are all connected, and an intermediate
node connected to the central node and a “query” node connected only to the intermediate node.

Each of the neighbor nodes has a feature vector representing a key and a value. The values consist
of a fixed-dimensional vector of length V' where each element is randomly sampled from a standard
normal distribution. The keys are each unique one-hot vectors of dimension N. The query node’s
feature vector contains a single one-hot vector, equal to one of the one-hot vectors of the neighbor
nodes. The target of the graph is for the central node to predict the value of the neighbor node,
corresponding to the key that matches the query node. Each node w is therefore equipped with an
input feature vector x € RV +2N where the first V elements comprise the value, the next IV elements
the key and the final NV elements the query. Where a node does not have one of these features, the

26

Under review as a conference paper at ICLR 2026

gLSTM dim. 16 GCN dim. 64 Ratios
1400 o
N Selected N Selected
1200 B Background %0 B Background
.S
=
E 1000 4 g Eg
15} S o
Z 800 # 607 5
2 E z
2 < =
S 600 S £
= = 40 S
= = 3
g 400 E| ;100 —0—0—0—0—0—0—0
E}
| =~
200 20 M
i —@— gL.STM
0 - = ll == GCN
N S S S S S () rrrprrerrrreprrerETETeT e S S e I S
4 8 16 32 48 64 80 96 4 8 16 32 48 64 80 96 4 8 16 32 48 64 80 96
Number of Neighbours Number of Neighbours Number of Neighbours

Figure 18: Left: Jacobian norms for gLSTM of memory dimension 16, with varying number of
neighbors in the NAR task, separated by whether the neighbor node corresponds to the given query
(selected) or not (background). Middle: Same, with GCN of hidden dimension 64. Right: Ratios
of Jacobian norms for selected nodes to background nodes, for these two models. This plot differs
from that in the main body of the paper in that both gLSTM and GCN use K-hop aggregation.

£ 100 1 % @ gLSTM dim. 8
S T ———3 ||® sLSTM dim. 16
ERTRE v gLSTM dim. 32
- A 3¢ GCN dim. 64
% 104 5% =) GCN dim. 128
2 > GON dim. 256

e e R —

0 20 40 60 80 100

Number of Neighbours

Figure 19: Mean of the maximum Hessian values for different gLSTM and GCN models, averaged
across test set examples and different neighbor nodes. This plot differs from that in the main body
of the paper in that both gLSTM and GCN use K-hop aggregation.

vector elements are set to zero. We note the use of one-hot encoding for keys and values means
that the first linear layer of the model acts as a learned embedding function, where multiplication
with the one-hot encoding simply selects the corresponding column of the weight matrix. For our
experiments, we use V' = 16.

Since the value vectors lack the sparsity of NAR, this appears to be a “harder” task in the sense
that it is more taxing on memory capacity. This means that some of the over-squashing trends are
more defined, particularly trends in sensitivity-based measures - see Appendix [D.8.1] However,
our experiments suggest that the regression target means that NARR becomes too hard for vector-
memory MPNNS to effectively solve, visible in Figures [20]and [2T}

Performance (MSE) for NARR is shown in Figures[20]and [21] for no-K-hop and K-hop aggregation
respectively. We note that the performance curves in FiguIrT_eﬂlZfl look similar to those obtained by
the sequence modeling variant of this experiment in Schlag et al.[(2021). The number of trainable
parameters is shown in Figure[22]

D.8.1 RELATIONSHIP TO OVER-SQUASHING SENSITIVITY METRICS

As with NAR in the main paper, we visualize the behavior of sensitivity-based over-squashing met-
rics for different neighbor counts and different models. Similarly to the main paper, we compare
gL.STM using K-hop aggregation and GCN without. We note that — perhaps due to the increased
difficulty of the task — the trends discussed in Section [5.2] are actually more pronounced for the
NARR task.

Figure visualizes the Jacobian norms for different model sizes and numbers of neighbors; Fig-
ure shows the ratios between selected and background node Jacobian norms. Figure[24]separates

27

Under review as a conference paper at ICLR 2026

@ gLSTM dim. 8 =€ GCN dim. 64
@ gLSTM dim. 16 #¢ GCN dim. 128
@ gLSTM dim. 32 9 GCN dim. 256

0.8 4

0.2

—

T T T
20 40 60 80
Number of Neighbours

T
100

Figure 20: NARR MSE where all models do not use K-hop aggregation.

@ gLSTM dim. 8 =€ GCN dim. 64
@ gLSTM dim. 16 <¢ GCN dim. 128
@ gLSTM dim. 32 % GCN dim. 256

0.8 4

0.6 4

MSE

0.4

0.2 4

—

—

0.0 4

20 40 60 80
Number of Neighbours

T
100

Figure 21: NAR Accuracy where all models do use K-hop aggregation.

Figure 22: Number of trainable parameters for the

and @

<
L

Trainable Parameters

gLSTM GON

28

expanded set of models tested in Figures

Under review as a conference paper at ICLR 2026

out the Jacobian norms for gLSTM memory dimension 16 and GCN hidden dimension 64. Figure[23]
visualizes the Hessian mixing metric for all models.

a 2 10!
£ 10 4 B @ gLSTM dim. 8
z - @ gLSTM dim. 16
% Z @ gLSTM dim. 32
3 - ¢ GCN dim. 64
3 =
= 100 % 8 GON dim. 128
= g 3 2 100 4 e —)
= & 9 =6 GCN dim. 256
=] <
=
T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Number of Neighbours Number of Neighbours
(a) Jacobian norms (b) Jacobian norm ratios

Figure 23: Left: Average Jacobian norms for different gLSTM and GCN models, with varying
number of neighbors in the NARR task. Right: The ratio between the Jacobian norms of the selected
(key corresponds to query) to background (key is different from query) neighbor nodes, for the
different models - see Figure@

¢gLSTM dim. 16 GOCN dim. 64 Ratios
300 BN Sclected w0l [Sclected 6x 100 —&— gLSTM
B Background i B Background =& GCN
250
3 4x10°
g g
£ 20 z 3x10°
S 150 3
]] 2 x10°
lar’] lar’]
= = 47
Z 100 Z
50 2]
10° {o—0—0—0—0—0—0—9
U ey . 0 ey : S R S SN SN L
4 8 16 32 48 64 80 96 4 8 16 32 48 64 80 96 4 8 16 32 48 64 80 96
Number of Neighbours Number of Neighbours Number of Neighbours

Figure 24: Left: Jacobian norms for gLSTM of memory dimension 16, with varying number of
neighbors in the NARR task, separated by whether the neighbor node corresponds to the given
query (selected) or not (background). Middle: Same, with GCN of hidden dimension 64. Right:
Ratios of Jacobian norms for selected nodes to background nodes, for these two models.

10° 4
o .
Bl e = — —
= @ gLSTM dim. 16
E 1077 o “© gLSTM dim. 32
=1 .
% 2¢ GCN dim. 64

=1 e
& 101 M GCN dim. 128
Z]
5 26 GCN dim. 256

T T T T T T

0 20 40 60 80 100

Number of Neighbours

Figure 25: Mean of the maximum Hessian values for different gLSTM and GCN models, averaged
across test set examples and different neighbor nodes.

We note that the sensitivity difference between selected and background nodes is particularly stark
here, even more so for classification-based NAR; gLSTM consistently shows a sharp drop-off in
Figure 23b] at the memory dimension, and GCN maintains a ratio remarkably close to unity. This
closely aligns with the performance of these models, Figure 2] demonstrates that gLSTM perfor-
mance begins to drop off quickly when the number of neighbors matches the memory dimension,
and Figure demonstrates that GCN is never able to solve the task, for any tested number of
neighbors.

We hypothesize that the strong impact of the K-hop aggregation on the model’s ability to selectively
recall - particularly visible for NARR - may partially explain the dramatic performance decrease

29

Under review as a conference paper at ICLR 2026

when ablating this aggregation, discussed in Appendix [D.2] We note that, while gLSTM consis-
tently demonstrates superior performance to GCN, the improved performance is most striking when
additionally using K-hop aggregation; it appears that the inductive bias introduced by the K-hop
aggregation is particularly suited to the selective recall required by this task.

30

	Introduction
	Background and Related Work
	The Two Failure Modes of Over-Squashing
	Existing Over-Squashing Tasks do not (Only) test Capacity
	Neighbor Associative Recall: Isolating Storage Capacity

	gLSTM: Combining Graph Networks and Associative Memory
	Experiments
	Neighbor Associative Recall
	How does Capacity Relate to Sensitivity?
	Long Range Benchmarks

	Conclusion
	Relationship to Computational (and Topological) Bottlenecks
	xLSTM Update Equations
	Dataset Details
	Additional Experiments
	Additional GPP Baselines
	Ablations
	Heterophilic Benchmarks
	Large Graph Benchmarks and Scaling Experiments
	Hyperparameters
	Oversmoothing and Long Range Dependencies
	Additional NAR Classification Results
	Comparison against (Graph) Transformer Baselines
	Training Curves: Failure at NAR is an Issue of Generalization
	Performance Separated by Aggregation Strategy
	Additional Sensitivity Metric Results

	Neighbor Associative Recall Regression Results
	Relationship to Over-Squashing Sensitivity Metrics

