
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GLSTM: MITIGATING OVER-SQUASHING BY
INCREASING STORAGE CAPACITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) leverage the graph structure to transmit infor-
mation between nodes, typically through the message-passing mechanism. While
these models have found a wide variety of applications, they are known to suf-
fer from over-squashing, where information from a large receptive field of node
representations is collapsed into a single fixed sized vector, resulting in an infor-
mation bottleneck. In this paper, we re-examine the over-squashing phenomenon
through the lens of model storage and retrieval capacity, which we define as the
amount of information that can be stored in a node’s representation for later use.
We study some of the limitations of existing tasks used to measure over-squashing
and introduce a new synthetic task to demonstrate that an information bottleneck
can saturate this capacity. Furthermore, we adapt ideas from the sequence model-
ing literature on associative memories, fast weight programmers, and the xLSTM
model to develop a novel GNN architecture with improved capacity. We demon-
strate strong performance of this architecture both on our capacity synthetic task,
as well as a range of real-world graph benchmarks.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Sperduti, 1993; Gori et al., 2005; Scarselli et al., 2008; Micheli,
2009; Bruna et al., 2014; Defferrard et al., 2017) have emerged as a standard framework for learning
on graph-structured data. The majority of these models follow a message passing paradigm, where
nodes iteratively exchange information with neighbors, commonly referred to as Message-Passing
Neural Networks (MPNNs). Examples of this family of architectures include GCN (Kipf & Welling,
2017), GAT (Veličković et al., 2018), GIN (Xu et al., 2018), and GraphSAGE (Hamilton et al., 2017).

Since each MPNN layer exchanges information between neighboring nodes to update node rep-
resentations, the number of layers thus dictates the receptive field: the set of nodes over which
information is aggregated. Deep MPNNs are, in theory, desirable as they can model long-range de-
pendencies, but scaling to many layers has historically been difficult due to two pervasive issues that
have received significant attention in the literature: over-smoothing and over-squashing. We focus
on the latter in this work.

Over-squashing was initially identified by Alon & Yahav (2021) as a problem of compressing in-
formation from a node’s receptive field into a fixed-size vector. This was linked with depth and
long-range dependencies, since receptive fields tend to grow exponentially with depth. Later work
(Topping et al., 2022; Di Giovanni et al., 2023a) identified that this bottleneck could also result in
low sensitivity as measured by the node Jacobian, linking graph topology and aspects of model ar-
chitecture via an upper bound on this Jacobian. This low sensitivity arises due to repeated degree
normalization and application of a contractive nonlinearity over many layers. Arnaiz-Rodriguez &
Errica (2025) suggest that these two descriptions of over-squashing are not the same, and that Alon
& Yahav (2021) define it as a problem of computational graph bottlenecks, while later work often
defines it as a problem of topological bottlenecks. We discuss this separation and its relation to our
work in Appendix A.

Instead of separating by issues of computational tree structure and bottlenecks, we suggest an alter-
native separation by resultant failure mode: limited information storage capacity, and low sensitivity.
In light of this, we highlight another divergence in the literature: the work of Alon & Yahav (2021)
implicitly described over-squashing as a capacity problem, and later work re-framed it as a problem
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of sensitivity. Focusing on the failure modes themselves not only allows us to revisit the issue of ca-
pacity originally discussed in Alon & Yahav (2021), but also to more directly motivate benchmarks
and remedies, both of which we discuss in this paper. We further contextualize this issue of capacity
by studying it in isolation from sensitivity issues. We believe this focus not only provides a more
complete understanding of over-squashing but also highlights new directions to mitigate it.

To combat over-squashing, existing research has focused on ameliorating topological bottlenecks
through rewiring (Gasteiger et al., 2019; Gutteridge et al., 2023; Nguyen et al., 2023) and control-
ling the flow of information (Bresson & Laurent, 2017; Finkelshtein et al., 2024; Errica et al., 2025)
– targeting topological and general computational bottlenecks respectively. However, these bottle-
necks are only an issue if they harm performance in some way: in this work we discuss issues of
(1) reduced sensitivity and (2) saturated storage capacity. Our proposed architecture in Section 4
targets the latter failure mode: adapting the MPNN architecture to improve its ability to store and
retrieve information. Framing over-squashing as a capacity limitation that can be addressed at the
architecture level exposes a previously unexplored path, and our results validate this direction.

To improve MPNN storage capacity we turn to the sequence modeling literature, which has a long
history of tackling equivalent problems (Hochreiter & Schmidhuber, 1997; Orvieto et al., 2023;
Gu & Dao, 2023; Beck et al., 2024; Arora et al., 2024). Taking inspiration from these works, we
introduce an MPNN architecture that utilizes associative memory (Beck et al., 2024; Schlag et al.,
2021; Hopfield, 1982), and demonstrate that this exhibits improved storage capacity.

Contributions. Our main contributions are as follows. In Section 3, we re-characterize over-
squashing into two distinct failure modes: saturating capacity and low sensitivity, which we term
capacity over-squashing and sensitivity over-squashing respectively. We discuss in Section 3.1 the
pitfalls of widely used over-squashing tasks, which either fail to evaluate capacity at all, or evaluate
the two issues in tandem and are thus unable to separate their effects. In Section 3.2, we introduce a
novel synthetic task, which to our knowledge is the first that measures capacity over-squashing in
isolation. In Section 4, we present a new MPNN architecture based on the recent xLSTM architec-
ture (Beck et al., 2024), which uses associative memory to increase capacity, explicitly targeting
this capacity over-squashing viewpoint. Section 5 demonstrates that this architecture performs well
on our synthetic capacity task and a range of real-world benchmarks, and Section 5.2 demonstrates
empirically that capacity over-squashing can occur separately from sensitivity over-squashing.

2 BACKGROUND AND RELATED WORK

Message Passing Neural Networks Let a graph G be a tuple (V, E) where V is the set of nodes
and E the set of edges. An edge from node u to v is denoted (u, v) ∈ E . The connectivity is encoded
by the adjacency matrix A ∈ R|V|×|V|, where Auv = 1 if (u, v) ∈ E and 0 otherwise. Each node v
has a feature vector xv ∈ Rd.

GNNs are functions fθ : (G, {xv}) 7→ y with parameters θ, trained via gradient descent to predict
node- or graph-level labels y. These models typically take the form of MPNNs, which compute
latent representations by composing L layers of the following node-wise operation:

h(l)
u = ϕ(l)

(
h(l−1)
u , ψ(l)({h(l−1)

v : (u, v) ∈ E})
)
, (1)

where ψ(l) is a permutation-invariant aggregator, ϕ(l) combines neighbor messages with the previ-
ous embedding and h

(0)
v = xv . Throughout, we use “GNN” and “MPNN” interchangeably. Note

we depart from the more usual notation of k for layer index to avoid confusion with keys, introduced
in Section 3.2. The most commonly used aggregation function takes the form

ψ(l)({h(l−1)
v : (u, v) ∈ E}) =

∑
v

Ouv h
(l−1)
v , (2)

where O ∈ R|V|×|V| is some message-passing matrix. For GCN (Kipf & Welling, 2017), O =
D̃−1/2ÃD̃−1/2 with Ã = A + I for diagonal D̃ ∈ R|V|×|V| with D̃ii =

∑
j Ãij . We frequently

denote the set of message-passing neighbors of node u as Nu = {v ∈ V | Ouv ̸= 0} – if the
message-passing matrix is layer-dependent, we may superscript this with a layer index.
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Fast Weight Programmers Fast Weight Programmers (FWPs) are a class of neural network moti-
vated by the idea of allowing variable network weights dependent on the input - termed fast weights.
One method to “program” the fast weights is to take outer products of learned projections of the
input (Schmidhuber, 1992). Schlag et al. (2021) observe that – up to normalization and activation
function differences – linear Transformers (Katharopoulos et al., 2020) are equivalent to FWPs.

xLSTM: Associative Memory for Language Modeling Recent work Beck et al. (2024; 2025)
introduced xLSTM, a development of the original LSTM Hochreiter & Schmidhuber (1997) archi-
tecture that resulted in a performant recurrent neural network capable of language modeling. Of
relevance to our work are the following limitations that xLSTM aims to address: the inability to
“revise storage decisions” and the limited storage capacity of the scalar cell states. The first of these
is addressed through modifying the original LSTM gating to use exponential activation functions.
The second is addressed by introducing associative memory, updated using an outer product update
rule equivalent to that of FWPs to store keys and values (see Appendix B for more details).

3 THE TWO FAILURE MODES OF OVER-SQUASHING

Over-squashing was initially introduced by Alon & Yahav (2021) as an issue of storage capacity.
They observed that recurrent sequence models exhibit a bottleneck in representing all the informa-
tion from their past inputs, and this bottleneck exists in a more harmful form in GNNs, in which
the information receptive field grows exponentially. They introduced a synthetic task to measure
over-squashing by propagating information through various sizes of binary tree.

Later research identified that this computational graph bottleneck also resulted in low sensitivity and
issues of signal propagation. Topping et al. (2022); Di Giovanni et al. (2023a) quantified this low
sensitivity via the Jacobian of node representations, establishing the following sensitivity bound: for
an MPNN with l layers, cσ Lipschitz constant of the activation, w maximal entry-value over weight
matrices, d embedding dimension and u, v ∈ V , one has∥∥∥∥∥ ∂h(l)

v

∂h
(0)
u

∥∥∥∥∥
L1

≤ (cσwd)
l︸ ︷︷ ︸

model

topology︷ ︸︸ ︷(
Ol

)
uv
, (3)

where O is the message passing matrix used by the MPNN as in Equation (2). This bound estab-
lishes that low sensitivity results from both graph topology as well as factors intrinsic to the MPNN
model. In particular, sensitivity is lowered by the nature of the message-passing, where the culprit
is successive powers of a degree-normalized adjacency matrix. It is also lowered by the contractive
nature of the nonlinearity σ and the values of the weight matrices, as established in (Arroyo et al.,
2025). Despite this analysis being purely one of sensitivity rather than capacity, it was also termed
over-squashing, and has been successful in establishing links to other areas, including the expressive
power of MPNNs (Di Giovanni et al., 2023b) and graph effective resistance (Black et al., 2023).

We argue that there are two distinct problems arising from bottlenecks in MPNNs: reduced sensi-
tivity (sensitivity over-squashing) and saturating storage capacity (capacity over-squashing). Due
to the influential paper of Topping et al. (2022) the sensitivity viewpoint on over-squashing has thus
far been the predominant approach in the literature; in this work, we seek to revisit the storage
capacity viewpoint and investigate how this issue can be avoided. We define storage capacity as the
amount of information that can be stored in a node’s representation for later use: a representation is
saturated when it is unable to store any more information.

Conflation With Depth The vast majority of existing research links over-squashing with depth.
To an extent, this is justified: the bound of Equation (3) decreases exponentially with MPNN depth,
and real-world graphs tend to exhibit receptive fields that grow exponentially in depth, leading to
capacity quickly becoming a problem for deep MPNNs. However, alongside recent work (Arnaiz-
Rodriguez & Errica, 2025), we highlight that over-squashing is not exclusively a problem of depth:
bottlenecks can be observed in single-layer GNNs acting on high-degree nodes – we exploit this
fact in our synthetic task of Section 3.2. Furthermore, in studying over-squashing only in the
deep regime, much of the literature has conflated the problem with issues of vanishing gradients,
themselves closely linked to the related problem of over-smoothing Di Giovanni et al. (2023b).
Arroyo et al. (2025) give a more precise treatment of how the issue of over-squashing relates to
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depth, through over-smoothing (zero collapse) and vanishing gradients. In this work we study over-
squashing in the shallow regime: this allows us to isolate the issue of saturating capacity, avoiding
the effects of depth on both reduced sensitivity (Equation (3)) and vanishing gradients.

3.1 EXISTING OVER-SQUASHING TASKS DO NOT (ONLY) TEST CAPACITY

Figure 1: Computational graphs. Left: Ring-
Transfer (Di Giovanni et al., 2023a). Middle:
Tree-NeighborsMatch (Alon & Yahav,
2021). Right: NAR, introduced in Sec-
tion 3.2. Nodes with informative features are
green, background gray. Red node is trained
to solve the task.
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Figure 2: Log Jacobian norms.
“Deep” graphs are binary trees of
Tree-NeighborsMatch (Alon & Yahav,
2021); “Shallow” graphs are single-level trees
with the same number of leaves. A GCN of
depth equal to the tree depth acts on each.
Jacobian norms are |∂h(L)

r /∂h
(0)
l |1 for root

r and leaf l (red/green in Figure 1). Shaded
area is standard deviation.

An instructive way of contrasting sensitivity against
capacity is via synthetic tasks. The most common
of these used to assess over-squashing are the Ring-
Transfer tasks of Di Giovanni et al. (2023a). The
goal of these tests is for a MPNN to ‘transfer’ fea-
tures contained at a target node to a source node,
across a large graph distance. Various graphs are
tested, in particular a ring of nodes, but the common
feature is that there exists a long shortest-path from
the source to target node. All of these exhibit an
exponentially growing receptive field of at least 2k
for k layers, since each node is connected to at least
two others; repeated aggregation and application of
MPNN layers and nonlinearities makes this a good
test of the sensitivity-based view of over-squashing.

However, this task is particularly ill-equipped to
test the issue of storage capacity, as the only rele-
vant information in the graph is that of the target
node, and all intermediate nodes are assigned con-
stant vectors of ones. In this way, there is only a sin-
gle node’s representation worth of information to be
transferred. It is unclear how much this task mea-
sures behavior found in real-world tasks: exponen-
tially growing receptive fields will not be padded by
nodes with identical representations. Figure 1 (left)
visualizes the computational graph of RingTransfer,
demonstrating that it is dominated by nodes con-
taining no information. Therefore, this task exhibits
a large computational bottleneck without any issues
of saturating capacity: this highlights the fact that,
beyond the computational bottleneck, saturated ca-
pacity is at least also dependent on the information
content of the task.

Alon & Yahav (2021) introduced the Tree-NeighborsMatch task to measure capacity by prop-
agating information from the leaf nodes of a variable-size binary tree. It shares similarities with
the task we introduce in Section 3.2 in that it controls the amount of information that is forced into
a single node representation. However, it propagates this information through a deep binary tree,
requiring variable-depth MPNNs. This significantly harms sensitivity: we visualize Jacobian norms
of a GCN acting on a deep binary tree vs a single layer tree with matching leaf counts in Figure 2,
demonstrating that this sensitivity drops off far faster for deep GCNs. This is unsurprising given
the bound of Equation (3): deep GCNs must additionally contend with “model” squashing terms
of nonlinearity and weight contraction that scale exponentially with depth. Therefore performance
degradation trends are due to both 1) saturating capacity and 2) low sensitivity; deep tasks such as
Tree-NeighborsMatch are impacted by both over-squashing issues, rather than isolating the
issue of capacity.

3.2 NEIGHBOR ASSOCIATIVE RECALL: ISOLATING STORAGE CAPACITY

We investigate storage capacity by measuring associative recall: this is a common approach taken
in the sequence-modeling literature (Ba et al., 2016; Schlag et al., 2021; Arora et al., 2024; Jelassi
et al., 2024), in which the question of model storage capacity is also clearly of interest. These
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synthetic tasks involve presenting the model with a sequence of key value pairs followed by a query
that corresponds to one of the presented keys, and the model must return the associated value.

To this end, we introduce a task that we refer to as Neighbor Associative Recall (NAR). Whereas
the sequence associative recall tasks measure the ability of a model to recall previous information
from a variable-length sequence, our graph adaptation is designed to measure the ability of a GNN
to recall information from the previous message passing round over a variable number of neighbors.

The task is designed as follows. For a given neighborhood size N we create a graph of N +3 nodes.
This graph consists of N “neighbor” nodes, a central node to which they are all connected, an inter-
mediate node connected to the central node, and a “query” node connected only to the intermediate
node. An example such graph is visualized in Figure 3.

Figure 3: An example graph with N =
5 from the NAR task. Key-value nodes
are shown in blue, the central node in
red and the query node in green. In this
graph,m is the randomly sampled index
of the key-value node associated with
query node q. The target for this graph
is a one-hot vector corresponding to vm.

For a fixed neighborhood size N we define a fixed set
of keys and values, N = |K| = |V|, and a pair of
learned vector embedding functions ek : K → Rdemb ,
ev : V → Rdemb for embedding dimension demb. Each
of the neighbor nodes n has a different assigned key
kn ∈ K, and also a value vn ∈ V, randomly sam-
pled with replacement. The input feature vector of these
nodes is a concatenation of the two learned embeddings
xn = [ek(kn); ev(vn)] ∈ R2demb . The intermediate node
and central node both have zero-valued feature vectors.
Associated with the query node q is a randomly sampled
key-value node m; the input feature vector for the query
node consists of the corresponding key embedding con-
catenated with a vector of zeroes, xq = [ek(km);0] ∈
R2demb . The model is trained such that the central node
must predict the value vm associated with the sampled
key node. Training is via cross-entropy loss where the tar-
get of the central node is a one-hot vector corresponding
to a fixed ordering of V. This approach can be viewed as a
graph adaptation of the sequence associative recall task of
Schlag et al. (2021). Results are presented in Section 5.1.
An alternative formulation of this task with a regression target is discussed in Appendix D.8.

NAR is designed such that the receptive field of the central node will comprise only the neighbor
nodes in the first layer. In order to perfectly solve the task, it must store all of the key-value informa-
tion in this initial receptive field, as it is impossible to limit the scope of the information that might
later be required. In the second layer, the receptive field will include the query node: now, the model
must selectively recall the correct value from its immediate neighbors.

This task is novel as it assesses over-squashing in the shallow regime: MPNNs tested in Section 5.1
consist of just two message passing layers. This more effectively isolates the issue of capacity,
without secondary effects from low sensitivity and vanishing gradients as visualized in Figure 2.

4 GLSTM: COMBINING GRAPH NETWORKS AND ASSOCIATIVE MEMORY

Prior work on over-squashing has focused almost exclusively on mitigating sensitivity issues, often
through graph rewiring (Gasteiger et al., 2019; Gutteridge et al., 2023; Nguyen et al., 2023). Some
work has implicitly tackled capacity over-squashing by moderating the flow of information into node
representations (Bresson & Laurent, 2017; Finkelshtein et al., 2024; Errica et al., 2025) thus reducing
capacity requirements, but we are unaware of any work that has attempted to increase capacity at an
architecture level. Motivated by memory-capacity gains in sequence models (Ba et al., 2016; Beck
et al., 2024), we introduce associative memory into an MPNN architecture to explicitly enlarge its
information-storage capacity; we measure this in the graph setting using the NAR task introduced
above. We further introduce the gating scheme of Beck et al. (2024) to investigate its efficacy in the
graph setting, given strong sequence modeling performance. Since these adaptations are inspired in
part by their successful use in xLSTM, we refer to our related graph architecture as gLSTM.

5
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For any node u at layer l, in addition to the usual MPNN vector hidden state h(l)
u , gLSTM maintains

a matrix hidden state C
(l)
u . The initial hidden state h

(0)
u is the input node feature vector xu. Keys

and values are used to update C
(l)
u via an FWP-style outer product rule: these are projections of the

previous vector hidden state h
(l−1)
u . The next vector hidden state h

(l)
u is determined by “querying”

C
(l)
u via matrix multiplication with another projection of the previous vector hidden states.

The modified gLSTM update equations are given below. Highlighted in blue are the differences to
xLSTM. Biases correspond exactly to xLSTM (Appendix B) and are omitted for clarity.

State (and normalization) updates:

C(l)
u = f (l)u C(l−1)

u +
∑

v∈N (l)
u ∪{u}

i(l)v v(l)
v ⊗ k(l)

v

n(l)
u = f (l)u n(l−1)

u +
∑

v∈N (l)
u ∪{u}

i(l)v k(l)
v

m(l)
u = max

({
f̃ (l)u +m(l−1)

u

}
∪
{
ĩ(l)v | ∀v ∈ N (l)

u ∪ {u}
})

Query / Key / Value computation:

q(l)
u = Wq

h(l−1)
u ;

∑
v∈N (l)

u

h(l−1)
v


k(l)
u =

1√
d
Wkh

(l−1)
u

v(l)
u = Wvh

(l−1)
u

The square brackets above denote vector concatenation. Concatenating the hidden state for the node
and its neighbours in this way keeps them separate and allows the query – which will determine
what is retrieved from the matrix memory – to separately depend on both the previous state of the
node itself and the previous states of its neighbours.

Gate computation:

i(l)u = exp
(
ĩ(l)u −m(l)

u

)
ĩ(l)u = wT

i h
(l−1)
u

f (l)u = exp
(
f̃ (l)u +m(l−1)

u −m(l)
u

)
f̃ (l)u = wT

f h
(l−1)
u

o(l)
u = σ

(
õ(l)
u

)
õ(l)
u = Woh

(l−1)
u

Output:

h̃(l)
u =

C
(l)
u q

(l)
u

max
{∣∣∣n(l)⊤

u q
(l)
u

∣∣∣ , 1}
h(l)
u = o(l)

u ⊙ h̃(l)
u

Block Structure Arroyo et al. (2025) note that sensitivity over-squashing issues are largely caused
by vanishing gradients – a phenomenon well-explored in the sequence-modeling literature. In an
attempt to address this, gLSTM therefore uses a similar block structure to the mLSTM block upon
which it is based. Of particular importance is the residual connection – which brings the norm of the
layer-wise Jacobian to the edge of chaos – and use of input and hidden norms, which regulate the
magnitude of the Jacobian norms. Figure 4 visualizes the block structure of gLSTM that we employ.

NORM

NORM

FORGET KEY VALUE

DOWN PROJ.

QUERY

INPUT OUTPUT

HEADS
AGGR.

AGGR.

Figure 4: gLSTM block structure. Gates shown in
orange, query/key/value in dark blue. Aggr. repre-
sents aggregation across neighborhoods. Symbols
⊙,⊗,+, · denote Hadamard product, outer prod-
uct, vector addition, matrix multiplication.

K-Hop Aggregation Following Arroyo et al.
(2025) we combine the memory capabilities of
the xLSTM block with a highly connected mes-
sage passing graph structure: employing a k-
hop aggregation scheme. In this setting, each
node u at layer l will aggregate information
from the neighborhood

N (l)
u = {v ∈ V | dG(u, v) = l} ,

where dG : V × V → R≥0 is the length of
the minimal walk connecting nodes u and v.
This approach resembles that of Ding et al.
(2024), but with an additional recurrence: hid-
den states are used as input at each step. This
substantially changes the way information can
propagate through the graph. Furthermore, it
also has links to ChebNet (Defferrard et al.,
2017), which has recently been found to per-
form strongly on long-range tasks (Hariri et al.,
2025).
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This aggregation scheme appears to greatly im-
prove gLSTM performance: our synthetic task in Section 5.1 significantly benefits from this aggre-
gation scheme, and the ablations in Appendix D.2 demonstrate that it improves performance in all
but one of the tested benchmarks. We hypothesize that – in addition to providing a highly connected
computational graph that lessens over-squashing sensitivity bottleneck issues – this is because it also
provides an extremely useful inductive bias for the recall mechanism of gLSTM. Information that
has previously been stored in the associative memory is not then included in later message passing
rounds, and later nodes are able to query this memory in isolation.

5 EXPERIMENTS

5.1 NEIGHBOR ASSOCIATIVE RECALL

We train various models on NAR with varying neighbor count N , with results shown in Figure 5a.
Throughout this section we compare gLSTM using K-hop aggregation to GCN using standard ag-
gregation, since gLSTM performs significantly better in this task when using K-hop aggregation
whereas GCN performance is harmed by K-hop. We present additional results in Appendix D.7
where we separate by aggregation method and include results for a larger number of models. A
comparison of the number of trainable parameters is shown in Figure 5b. Fair comparison between
matrix and vector memory is nontrivial, so we select these parameter counts to “favor” GCN.

These results demonstrate that gLSTM shows significantly improved recall abilities compared to
GCN. gLSTM retains perfect recall until the number of neighbors equals the memory dimension of
the model: beyond this is where capacity over-squashing appears to become a problem. This agrees
with intuition, since the maximum number of orthogonal key vectors (and separately, value vectors)
is equal to the memory dimension. However, it is interesting to note how the performance decreases
slowly as the neighbor count exceeds this limit, particularly for higher memory dimensions: this ap-
pears to be a graph analog of the “graceful saturation” described by Smolensky (1990). By contrast,
capacity over-squashing starts much earlier at just N = 8 for the largest GCN model tested.
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Figure 5: Test-set mean Accuracy (standard deviation shaded) for the NAR task, for gLSTM and
GCN models with various hidden dimensions shown in Figure 5a, number of trainable parameters
in Figure 5b. Note that gLSTM uses K-hop aggregation here, whereas GCN does not; see Ap-
pendix D.7 for separated performance by aggregation strategy.

5.2 HOW DOES CAPACITY RELATE TO SENSITIVITY?

In this section, we investigate empirically how capacity over-squashing – as measured by perfor-
mance on NAR – relates to sensitivity over-squashing.

We directly measure the Jacobian norm of Topping et al. (2022); Di Giovanni et al. (2023a), com-
puting the sensitivity of the output feature vector on the central (output) node c to the input vectors
on the key-value neighbor nodes n, |∂h(2)

c /∂xn|L1 . These results are visualized in Figure 6a.

We see therefore that sensitivity, as measured by the Jacobian norm, does not correlate with NAR
performance. Given that NAR performance degradation is due to capacity over-squashing, we there-
fore observe that capacity over-squashing can occur without sensitivity over-squashing. This is
clear from the fact that 1) sensitivity increases consistently for GCN models above N = 16 to the
point where it matches initial sensitivity, despite no increase in performance and 2) sensitivity for
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gLSTM tends to carry on increasing beyond where performance starts to degrade. We note these
trends – as with all observations we make in this section – hold true for the NAR regression task in
Appendix D.8.1.

However, if we examine the difference in Jacobian norms between the neighbor nodes which are
selected (those which have a key corresponding to the query node) vs background, we see trends that
align with our notion of capacity. Figure 6a visualizes the ratio of Jacobian norms for selected nodes
to that for background nodes. We observe that for all GCN models this ratio quickly falls to unity
at the point where capacity over-squashing starts to occur, and gLSTM ratios consistently plateau –
and start to slowly decrease – at their memory dimension, similarly coinciding with capacity over-
squashing. It appears therefore that capacity over-squashing harms a model’s ability to be selectively
sensitive to different nodes in the NAR task.
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Figure 6: Left: Mean Jacobian norms for different gLSTM and GCN models, with varying number
of neighbors in the NAR task. Right: Mean ratio between the Jacobian norms of the selected (key
corresponds to query) to background (key is different from query) neighbor nodes, for varying model
dimensions. Standard deviation shaded in both plots.

Another over-squashing sensitivity metric is that of Di Giovanni et al. (2023b), who introduce the
maximal mixing metric. For node-level function Y : Rn×d → Rn×d, the mixing of features associ-
ated with nodes u, v at a given node i is defined as

mix
Y

(i, v, u) = max
X

∥∥∥∥∂2 (Y (X))i
∂xu∂xv

∥∥∥∥ .
Although motivated through intuition of mixing, we observe the mixed partial derivative can equally
be viewed as a composition of partial derivatives quantifying selective sensitivity - how much the
sensitivity with respect to one node feature varies with respect to another node feature. In this
respect, we expect it to be highly relevant to the sensitivity ratios visible in Figures 6b and 10.

To study this empirically for NAR, we take the maximum over the measured Hessians for different
models. These Hessian 3-tensors are large, so we further limit to a subset of the overall tensor in
order to compute them on available hardware: we are most interested in how the output sensitivity
to the neighbor value vectors varies with the query vector, so we limit to the corresponding input
dimensions. For the central, neighbor and query nodes c, n, q this adapted mixing metric is

mix(c, n, q) = max
0≤α<N,
0≤β<demb,

demb≤γ<2demb

∣∣∣∣∣∣
∂2

(
h
(2)
c

)
α

∂ (xq)β ∂ (xn)γ

∣∣∣∣∣∣ ,
which we plot in Figure 7. We see that gLSTM consistently exhibits greater maximum Hessian
values than GCN, and that this collapses for GCN models above 8 neighbors, consistent with the
drop in performance. As with the Jacobian ratios, we see plateauing and slow decrease of maximum
Hessian values above the memory dimension, but these trends are less pronounced.
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Figure 7: Mean of the maximum Hessian values for different gLSTM and GCN models, averaged
across test set examples and different neighbor nodes. Standard deviation shaded.

5.3 LONG RANGE BENCHMARKS

Table 1: Mean and standard deviation of log10(MSE), averaged over 4 random weight initializations
on the GPP tasks from Gravina et al. (2023), from which we report baselines. See Appendix D.1 for
discussion of baseline choice. Top score in bold, second underlined. Lower is better.

Method Diam. Ecc. SSSP
GCN 0.742 ± 0.047 0.846 ± 0.003 0.950 ± 0.000
GAT 0.822 ± 0.075 0.791 ± 0.022 0.695 ± 0.150
GraphSAGE 0.865 ± 0.40 0.286 ± 0.184 0.786 ± 0.021
GIN 0.613 ± 0.099 0.950 ± 0.001 -0.541 ± 0.419
GCNII 0.529 ± 0.057 0.764 ± 0.036 -1.132 ± 0.013
DGC 0.603 ± 0.005 0.826 ± 0.003 -0.148 ± 0.023
GRAND 0.672 ± 0.049 0.660 ± 0.139 -0.094 ± 0.340
A-DGN -0.546 ± 0.033 0.305 ± 0.118 -3.402 ± 0.137
gLSTM (ours) -0.715 ± 0.030 -4.036 ± 0.311 -2.836 ± 0.178
- K-hop 0.042 ± 0.123 0.673 ± 0.021 -3.377 ± 0.142

Table 2: Mean and standard deviation on LRGB
(Dwivedi et al., 2022), averaged over four ran-
dom weight initializations. Baselines from the
LRGB reevaluation of Tönshoff et al. (2024), K-
hop methods from Arroyo et al. (2025), rewiring
baseline from Barbero et al. (2024b). All meth-
ods adhere to a 500k parameter limit. Top score
in bold, second underlined.

Method Peptides-Func Peptides-Struct
AP (↑) MAE (↓)

GCN 0.6860±0.0050 0.2460±0.0007
GatedGCN 0.6765±0.0047 0.2477±0.0009
GINE 0.6621±0.0067 0.2473±0.0017
GPS 0.6534±0.0091 0.2509±0.0014

K-hop methods
kGCN-SSM 0.6902±0.0022 0.2581±0.0003
DRew-GCN 0.6804±0.0144 0.2766±0.0019

Rewiring
LASER 0.6440±0.0010 0.3043±0.0019

gLSTM (ours) 0.7250±0.0023 0.2527±0.0015
- K-hop 0.6030±0.0096 0.2638±0.0010

We evaluate gLSTM on the Graph Property
Prediction (GPP) tasks from Gravina et al.
(2023) and the Long Range Graph Benchmark
(LRGB) from Dwivedi et al. (2022). These
benchmarks are both designed to require long
range interactions to solve, and thus are an in-
teresting test of the ability of gLSTM to over-
come over-squashing and over-smoothing in
real world tasks in order to facilitate long range
interactions. Performance is reported in Table 1
and Table 2 respectively.

gLSTM achieves comfortably state of the art
results on the Diameter and Eccentricity GPP
tasks, and very strong performance on SSSP;
notably SSSP is the only tested task in which
k-hop decreases performance. LRGB re-
sults show that gLSTM achieves strong per-
formance in Peptides-Func but relatively weak
performance on Peptides-Struct. We hypothe-
size that the weaker performance on Peptides-
Struct may be due to long-range interactions
being less relevant for this task, which is
very effectively solved by a few-layer GCN.
See Appendix D.2 for gLSTM ablations on
these benchmarks and Appendix D.5 for details
around hyperparameters used.
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6 CONCLUSION

In this work, we revisit over-squashing, disambiguating two bottleneck-related issues of sensitivity
over-squashing and capacity over-squashing. We introduce a synthetic task that measures capacity
over-squashing in isolation and we show that associative memory can improve MPNN capacity. The
resulting architecture achieves strong results on real-world benchmarks.

Future Work Many avenues remain open. Whereas the sensitivity issue of over-squashing has
a mathematical basis via the node Jacobian, to our knowledge, the capacity issue does not. Theo-
retically quantifying this capacity could afford similar directions to those explored via sensitivity,
establishing links to topology and model properties. With regards to architecture, we translate to a
graph setting the gating and associative memory of xLSTM but do not retain the efficiency and par-
allel training, leaving open future work on more efficient MPNNs: we highlight that the recent work
of Pöppel et al. (2025) achieves these efficiency gains in the specific case of directed acyclic graphs.
Another potential avenue would be to apply our findings to prevention of issues of over-mixing and
representational collapse (Barbero et al., 2024a; 2025) in Transformer architectures.

REPRODUCIBILITY STATEMENT

We make available all of our code and experiment configurations to aid reproduction of results. Our
experiments utilize the widely-used PyTorch Geometric GraphGym (You et al., 2020) framework
which defines a standard framework for MPNN research.

For easiest reproduction of our results, please consult the readme in the code repository provided in
Appendix D. The repository includes all necessary information to run the experiments: in particular,
configs containing the hyperparameters used (also reported in Appendix D.5) and code for all plots
used in the paper.
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Álvaro Arroyo, Alessio Gravina, Benjamin Gutteridge, Federico Barbero, Claudio Gallicchio, Xi-
aowen Dong, Michael Bronstein, and Pierre Vandergheynst. On vanishing gradients, over-
smoothing, and over-squashing in gnns: Bridging recurrent and graph learning. arXiv preprint
arXiv:2502.10818, 2025.

Jimmy Ba, Geoffrey E Hinton, Volodymyr Mnih, Joel Z Leibo, and Catalin Ionescu. Using fast
weights to attend to the recent past. Advances in neural information processing systems, 29,
2016.

Federico Barbero, Andrea Banino, Steven Kapturowski, Dharshan Kumaran, João Madeira Araújo,
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Ali Hariri, Álvaro Arroyo, Alessio Gravina, Moshe Eliasof, Carola-Bibiane Schönlieb, Davide
Bacciu, Kamyar Azizzadenesheli, Xiaowen Dong, and Pierre Vandergheynst. Return of cheb-
net: Understanding and improving an overlooked gnn on long range tasks. arXiv preprint
arXiv:2506.07624, 2025.

Simon Heilig, Alessio Gravina, Alessandro Trenta, Claudio Gallicchio, and Davide Bacciu. Port-
hamiltonian architectural bias for long-range propagation in deep graph networks. In The Thir-
teenth International Conference on Learning Representations, 2025.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020.

Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Trans-
formers are better than state space models at copying. In International Conference on Machine
Learning, pp. 21502–21521. PMLR, 2024.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works, 2017.

Alessio Micheli. Neural Network for Graphs: A Contextual Constructive Approach. IEEE Trans-
actions on Neural Networks, 20(3):498–511, 2009.

Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh
Nguyen. Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In In-
ternational Conference on Machine Learning, pp. 25956–25979. PMLR, 2023.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
canu, and Soham De. Resurrecting recurrent neural networks for long sequences. In International
Conference on Machine Learning, pp. 26670–26698. PMLR, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at the evaluation of gnns under heterophily: Are we really making progress? arXiv
preprint arXiv:2302.11640, 2023.

Korbinian Pöppel, Richard Freinschlag, Thomas Schmied, Wei Lin, and Sepp Hochreiter. pLSTM:
parallelizable linear source transition mark networks. In ICML 2025 Workshop on Long-Context
Foundation Models, 2025.
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A RELATIONSHIP TO COMPUTATIONAL (AND TOPOLOGICAL)
BOTTLENECKS

Arnaiz-Rodriguez & Errica (2025) identify a separation in the over-squashing literature between the
initial work of Alon & Yahav (2021) and the later work of Topping et al. (2022); Di Giovanni et al.
(2023a). They point out that the original over-squashing definition of (Alon & Yahav, 2021) was
associated with the computational tree, and Topping et al. (2022) later connected over-squashing
to the existence of topological bottlenecks. They suggest that these definitions constitute different
problems, and that – as a community – we should discard the term “over-squashing” and separate it
into (at least) two separate terms: (1) computational tree bottlenecks and (2) topological bottlenecks
(in the underlying graph).

This makes a valuable point: topological bottlenecks may or may not be involved when structural
issues exist with the computational tree. The authors fairly point out that the umbrella term “over-
squashing” has sometimes hidden some of the complexity of the problem, and the field may ben-
efit from work identifying explicitly whether it is dealing with topological bottlenecks (as is the
case with e.g. rewiring) or bottlenecks of the computational tree (e.g. adaptive message passing).
We’re unsure that framing these as separate is helpful, since topological bottlenecks must be me-
diated through the computational tree in order to impact message passing, but the point stands that
some methods to combat over-squashing specifically target topological bottlenecks (and as such any
changes to the computational graph are implicit), and some methods target general computational
bottlenecks, and that this is not always clear.

Despite the complexity, we believe the term “over-squashing” still has utility as an umbrella term that
describes issues that arise from the presence of bottlenecks and depth in the computational tree. The
distinction made by Arnaiz-Rodriguez & Errica (2025) clarifies that sometimes these issues arise
due to topological bottlenecks in the underlying graph, and sometimes they do not. The relevance
of our work is then in exploring how this structure manifests as performance issues, and the main
body of our paper argues that this is due to separate issues of capacity and sensitivity.

Precisely how issues of capacity and sensitivity relate to the structure of the computational tree and
the presence of bottlenecks is complex, although we take initial steps to clarify this in our paper.
It would not be correct to suggest for example that capacity issues correspond to computational
bottlenecks and low sensitivity to topological bottlenecks. In particular:

• Our RingTransfer discussion of Section 3.1 highlights that computational bottlenecks can
exist without capacity issues.

• Arnaiz-Rodriguez & Errica (2025) highlight that low sensitivity does not necessarily imply
the existence of computational tree bottlenecks (or topological bottlenecks).

• On the other hand, both topological bottlenecks and general computational bottlenecks
can cause low sensitivity. This is clear since the Equation (3) defines an upper bound on
sensitivity in terms of the computational tree (defined by successive powers of the message-
passing matrix), and we refer the reader to the work of Topping et al. (2022) for proofs in
the case of specifically topological bottlenecks.

Additionally, while the discussion in this Appendix has so far focused on the computational tree, we
highlight that the causes of the failure modes discussed in our work extend beyond structural issues:
issues of capacity also depend at least on (1) information content of the task and (2) storage capacity
of the model, as explored in Sections 3.1 and 3.2 respectively, and issues of sensitivity are highly
dependent on the model dynamics, as explored in e.g. Arroyo et al. (2025); Heilig et al. (2025);
Gravina et al. (2023; 2025).

B XLSTM UPDATE EQUATIONS

Beck et al. (2024) initially designed xLSTM as a combination of sLSTM blocks and mLSTM blocks
- using scalar memory and matrix (associative) memory respectively. However, their follow up work
(Beck et al., 2025) uses only mLSTM blocks, and these form the inspiration for gLSTM. Therefore,
we will exclusively introduce the mLSTM block update equations in this section.
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The update equations, presented in a similar manner to Section 4, are given below.

State (and normalization) updates:

Ct = f tCt−1 + itvt ⊗ kt (4)

nt = f tnt−1 + itkt (5)

mt = max
(
f̃ t +mt−1, ĩt

)
(6)

Query / Key / Value computation:

qt = Wqx
t + bq (7)

kt =
1√
d
Wkx

t + bk (8)

vt = Wvx
t + bv (9)

Gate computation:

it = exp
(̃
it −mt

)
ĩt = wT

i x
t + bi (10)

f t = exp
(
f̃ t +mt−1 −mt

)
f̃ t = wT

f x
t + bf (11)

ot = σ
(
õt
)

õt = Wox
t + bo (12)

Output:

h̃t = Ctqt/max
{∣∣nt Tqt

∣∣ , 1} (13)

ht = ot ⊙ h̃t (14)

C DATASET DETAILS

In table Table 3 we present a summary of the statistics of the datasets used throughout this work.
We use the standard splits provided for each of the datasets, using the standard loading functionality
from GraphGym (and PyTorch Geometric). For GPP (without a default implementation in PyTorch
Geometric) we use the original splits of Gravina et al. (2023): 5120 graphs as training set, 640 as
validation set, and 1280 as test set.

For the NAR task (for all neighbor values), we use a split of 8,000 train graphs, 1,000 validation
graphs and 1,000 test graphs. We note that when testing gLSTM on this dataset, we vary the memory
(matrix) dimension as described in the main text, and set the vector dimension to twice that of the
matrix dimension.

D ADDITIONAL EXPERIMENTS

Our code for reproducing all experimental results in the main paper and appendices is publicly
available at https://anonymous.4open.science/r/GNN-xLSTM-9A2D .

D.1 ADDITIONAL GPP BASELINES

We note that due to a subtle PyTorch issue in the original GPP code implementation, normalization
is not applied to the dataset targets. A refactor appears to have unknowingly fixed this issue in later
iterations of the code so later experiments are run on a normalized variant of the dataset. Unfor-
tunately, this results in unfair comparison, as results can be substantially different between the two
variants of the dataset.

Therefore, in the main body of the paper we test only on the baselines provided in the original GPP
paper (Gravina et al., 2023), as we are confident these use the un-normalized variant of the dataset,
and this provides us with the largest number of baselines to test against. We additionally ensure that
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Table 3: Summary of datasets used throughout this work. Node and edge values are the average per
graph, where applicable. LRGB statistics retrieved from Dwivedi et al. (2022), OGB statistics from
Hu et al. (2020), Heterophilous from Platonov et al. (2023). GPP statistics computed; dataset from
Gravina et al. (2023); Corso et al. (2020).

Dataset Group Task Setting #Graphs Nodes Edges

Peptides-Func LRGB Graph cls. Inductive 15,535 150.94 307.30
Peptides-Struct LRGB Graph reg. Inductive 15,535 150.94 307.30

Diameter GPP Graph reg. Inductive 7,040 28.82 98.95
Eccentricity GPP Node reg. Inductive 7,040 28.82 98.95
SSSP GPP Node reg. Inductive 7,040 28.82 98.95

arXiv OGB Node cls. Transductive 1 169,343 1,166,243
Products OGB Node cls. Transductive 1 2,449,029 61,859,140

Amazon-Ratings Heterophilous Node cls. Transductive 1 24,492 93,050
Roman-Empire Heterophilous Node cls. Transductive 1 22,662 32,927
Minesweeper Heterophilous Node cls. Transductive 1 10,000 39,402

our method uses the same, un-normalized GPP variant. We separately test on the normalized version
of the dataset, with results presented in Table 4 and hyperparameters in Table 14. This allows us
to additionally test against a range of more recent methods that specifically target sensitivity over-
squashing. We achieve state of the art results on the normalized variant of this benchmark.

Table 4: Mean and standard deviation of log10(MSE), averaged over 4 random weight initializations
on the Normalized version of the GPP tasks from Gravina et al. (2023). Baselines reported from
Arroyo et al. (2025); Eliasof et al. (2025). Top score in bold. Lower is better.

Method Diam. Ecc. SSSP
Differential Equation Inspired GNNs
SWAN −0.598± 0.115 −0.074± 0.219 −3.543± 0.083
PH-DGN −0.547± 0.107 −0.935± 0.210 −4.299± 0.072

K-hop methods
DRew-GCN −2.402± 0.110 −2.029± 0.024 −1.602± 0.008
kGCN-SSM −3.075± 0.055 −4.265± 0.178 −3.604± 0.029

GPS −0.512± 0.043 0.608± 0.028 −3.599± 0.195
GRAMA −0.866± 0.051 −1.301± 0.126 −3.935± 0.070

gLSTM (ours) -3.684 ± 0.057 -5.912 ± 1.116 -5.321 ± 0.603

D.2 ABLATIONS

To identify what elements of the gLSTM architecture are most important for performance on these
benchmarks, we perform ablations on the GPP and LRGB datasets. For LRGB, a task with a param-
eter limit, we ablate in two different settings: the first is simply removing the ablated component,
for which results are presented in Table 6. The second is to scale the hidden dimension h to keep
the parameter count as close as possible to the 500k limit - i.e. when removing gating, this will
correspondingly increase the hidden dimension. We include these experiments as they more accu-
rately represent the reality of testing a model variant on a task with a parameter limit; these results
are presented in Table 7. These two ablation settings show very similar results. GPP ablations are
presented in Table 5.

We see that ablating gating only significantly reduces performance on Peptides-Func - other than
this, it either leaves performance the same or in some cases, improves performance (GPP Ecc. in
particular).
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Table 5: Ablation of gLSTM performance on Diam, Ecc, and SSSP from the GPP benchmark. Mean
and standard deviation are reported, averaged over four random weight initializations. Other than
ablation, all other model settings are held constant; thus ablations with gating removed have reduced
parameter count.

Model Diam. Ecc. SSSP
gLSTM -0.715 ± 0.030 -4.036 ± 0.311 -2.836 ± 0.178

- Output gate -0.70 ± 0.05 -3.71 ± 0.16 -2.77 ± 0.19
- Input gate -0.75 ± 0.01 -4.72 ± 0.36 -3.27 ± 0.16
- Forget gate -0.71 ± 0.03 -4.30 ± 0.21 -3.14 ± 0.07
- All gates -0.75 ± 0.03 -4.14 ± 0.42 -3.16 ± 0.15
- K-hop aggregation 0.04 ± 0.12 0.67 ± 0.02 -3.38 ± 0.14

Table 6: Ablation of gLSTM performance on Peptides-Func and Peptides-Struct from the LRGB.
Mean and standard deviation are reported, averaged over four random weight initializations. Other
than ablation, all other model settings are held constant; thus ablations with gating removed have
reduced parameter count.

Model Peptides-Func Peptides-Struct
AP (↑) MAE (↓)

gLSTM 0.7250 ± 0.0023 0.2527 ± 0.0015

- Output gate 0.7086 ± 0.0049 0.2540 ± 0.0016
- Input gate 0.7186 ± 0.0029 0.2524 ± 0.0027
- Forget gate 0.7236 ± 0.0063 0.2522 ± 0.0011
- All gates 0.7180 ± 0.0088 0.2526 ± 0.0012
- Positional encoding 0.7208 ± 0.0072 0.2539 ± 0.0036
- K-hop aggregation 0.6030 ± 0.0096 0.2638 ± 0.0010

Table 7: Ablation of gLSTM performance on Peptides-Func and Peptides-Struct from the LRGB.
Mean and standard deviation are reported, averaged over four random weight initializations. All
methods adhere to a 500k parameter limit such that hidden dimension varies to keep parameter
count as close to this as possible.

Model Peptides-Func Peptides-Struct
AP (↑) MAE (↓)

gLSTM 0.7250 ± 0.0023 0.2527 ± 0.0015

- Output gate 0.7202 ± 0.0056 0.2537 ± 0.0011
- Input gate 0.7193 ± 0.0110 0.2518 ± 0.0027
- Forget gate 0.7148 ± 0.0107 0.2545 ± 0.0043
- All gates 0.7188 ± 0.0060 0.2528 ± 0.0035
- Positional encoding 0.7211 ± 0.0062 0.2601 ± 0.0017
- K-hop aggregation 0.6030 ± 0.0096 0.2638 ± 0.0010
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Table 8: Mean and standard deviation on Heterophilic Datasets, averaged over four random weight
initializations.

Model Roman-empire Amazon-ratings Minesweeper
Acc ↑ Acc ↑ AUC ↑

MPNNs
GAT 80.87±0.30 49.09±0.63 92.01±0.68

GAT (LapPE) 84.80±0.46 44.90±0.73 93.50±0.54

GAT (RWSE) 86.62±0.53 48.58±0.41 92.53±0.65

Gated-GCN 74.46±0.54 43.00±0.32 87.54±1.22

GCN 73.69±0.74 48.70±0.63 89.75±0.52

GCN (LapPE) 83.37±0.55 44.35±0.36 94.26±0.49

GCN (RWSE) 84.84±0.55 46.40±0.55 93.84±0.48

CO-GNN(Σ, Σ) 91.57±0.32 51.28±0.56 95.09±1.18

CO-GNN(µ, µ) 91.37±0.35 54.17±0.37 97.31±0.41

SAGE 85.74±0.67 53.63±0.39 93.51±0.57

Graph Transformers
Exphormer 89.03±0.37 53.51±0.46 90.74±0.53

NAGphormer 74.34±0.77 51.26±0.72 84.19±0.66

GOAT 71.59±1.25 44.61±0.50 81.09±1.02

GPS 82.00±0.61 53.10±0.42 90.63±0.67

GPSGCN+Performer (LapPE) 83.96±0.53 48.20±0.67 93.85±0.41

GPSGCN+Performer (RWSE) 84.72±0.65 48.08±0.85 92.88±0.50

GPSGCN+Transformer (LapPE) OOM OOM 91.82±0.41

GPSGCN+Transformer (RWSE) OOM OOM 91.17±0.51

GT 86.51±0.73 51.17±0.66 91.85±0.76

GT-sep 87.32±0.39 52.18±0.80 92.29±0.47

Polynormer 92.55±0.30 54.81±0.49 97.46±0.36

Heterophily-Designated GNNs
CPGNN 63.96±0.62 39.79±0.77 52.03±5.46

FAGCN 65.22±0.56 44.12±0.30 88.17±0.73

FSGNN 79.92±0.56 52.74±0.83 90.08±0.70

GBK-GNN 74.57±0.47 45.98±0.71 90.85±0.58

GloGNN 59.63±0.69 36.89±0.14 51.08±1.23

GPR-GNN 64.85±0.27 44.88±0.34 86.24±0.61

H2GCN 60.11±0.52 36.47±0.23 89.71±0.31

JacobiConv 71.14±0.42 43.55±0.48 89.66±0.40

Graph SSMs
GMN 87.69±0.50 54.07±0.31 91.01±0.23

GPS + Mamba 83.10±0.28 45.13±0.97 89.93±0.54

GRAMAGCN 88.61±0.43 53.48±0.62 95.27±0.71

MP-SSM 90.91±0.48 53.65±0.71 95.33±0.72

Ours
gLSTM (ours) 88.12 ± 0.35 51.98 ± 0.45 92.08 ± 0.88
+ K-hop 83.48 ± 0.30 52.25 ± 0.31 87.55 ± 0.78

D.3 HETEROPHILIC BENCHMARKS

We additionally evaluate gLSTM on the heterophilic datasets of Platonov et al. (2023), shown in
Table 8. Hyperparameters and sweeps are documented in Appendix D.5 (Table 13).

gLSTM achieves good MPNN-level performance, but is outperformed by some Graph Transformer
architectures. Notably, the addition of K-hop aggregation here actually harms performance signif-
icantly in two of the three datasets. We suggest this may be due in part to the lack of long-range
dependencies in these datasets, whereas the GPP and LRGB datasets evaluated in the main text are
designed specifically to contain long range dependencies. This explanation would imply that K-hop
provides a useful inductive bias for long range dependencies specifically.
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Table 9: Mean and standard deviation on OGBN, averaged over four random weight initializations.

Method Arxiv Products
GCN 71.74± 0.29 75.64± 0.21
ChebNet 73.27± 0.23 -
ChebNetII 72.32± 0.23 -
GraphSAGE 71.49± 0.27 78.29± 0.16
GAT 72.02± 0.44 79.45± 0.59
NodeFormer 59.90± 0.42 72.93± 0.13
GraphGPS 70.97± 0.41 OOM
GOAT 72.41± 0.40 82.00± 0.43
NAGphormer 70.13± 0.55 73.55± 0.21
Exphormer 72.44± 0.28 OOM
SGFormer 72.63± 0.13 74.16± 0.31
Polynormer 73.46± 0.16 83.82± 0.11

gLSTM (ours) 71.91± 0.32 81.52± 0.29

D.4 LARGE GRAPH BENCHMARKS AND SCALING EXPERIMENTS

This section investigates the scaling of gLSTM to large graphs, for which we use the Arxiv and Prod-
ucts node classification datasets from the Open Graph Benchmark (Hu et al., 2020). ogbn-arxiv
comprises 169,343 nodes and 1,166,243 edges, while ogbn-products comprises 2,449,029
nodes and 61,859,140 edges. We evaluate gLSTM on these graphs without K-hop aggregation,
which would be prohibitively expensive to compute on these graphs. However, as noted in Ap-
pendix D.3, it appears that K-hop aggregation is of particular importance for long-range dependen-
cies, so it is unclear whether it would improve performance on these benchmarks anyway.

Results on these datasets are presented in Table 9. Hyperparameters and sweeps are documented in
Appendix D.5 (Table 12).

We highlight that although the model which achieves best validation-set performance on
ogbn-arxiv is large, thus incurring high runtime and VRAM usage, significantly smaller mod-
els achieve comparable results with only a small decrease in accuracy: in particular, a model with
memory dimension 8, 8 heads and 4 layers achieves an accuracy of 71.31± 0.25.

We use ogbn-arxiv to empirically measure gLSTM epoch time and VRAM scaling with the
number of heads and memory dimension: these results are visualized in Figure 8, reporting both
absolute values and multiples of the corresponding metric for a GCN model with 4 layers and hidden
dimension 256 on the same dataset. As expected, these values appear to scale linearly with the
number of heads and quadratically with the (matrix) memory dimension.

We highlight that we have not optimized any of the gLSTM code for CUDA efficiency, so the relative
epoch times and VRAM usages may be overstated, and future improvements are likely possible.

D.5 HYPERPARAMETERS

In Tables 10 and 11 we present the hyperparameter sweeps and chosen hyperparameters for results
in the main body of the paper: GPP and LRGB respectively. In Tables 12 to 14 we present the hyper-
parameter sweeps and chosen hyperparameters for the normalized version of GPP (Appendix D.1),
Heterophilic benchmarks (Appendix D.3) and OGBN benchmarks (Appendix D.4) respectively.

D.6 OVERSMOOTHING AND LONG RANGE DEPENDENCIES

We test empirically that gLSTM is able to learn long range dependencies by evaluating on the
RingTransfer task introduced in Di Giovanni et al. (2023a). Results for gLSTM, GCN and GNN-
SSM (Arroyo et al., 2025) are shown for various ring sizes (and corresponding number of message
passing layers) in Figure 9.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 10: Hyperparameter sweeps for gLSTM on LRGB tasks. In bold are the hyperparameters
that achieved the best validation set performance, and thus were those used in the main results of
the paper. Note that hidden dimension was not directly swept over, as this was maximized for each
configuration such that the model remained within the 500k parameter budget. Due to compute
limitations, hyperparameter sweeps were not exhaustive, but used Weights and Biases Bayesian
Optimization routine with Hyperband early termination.

Hyperparameter Peptides-Func Peptides-Struct
Memory Dimension 8, 16, 32 8, 16, 32
Number of Heads 1-2-8 1-5-8
Message Passing Layers 10-27-50 4-23-40
Input Norm Type Layer Layer, None
Hidden Norm Type Group Group
Act. Func. (between block) GeLU, ReLU, None GeLU, ReLU, None
Dropout 0.1 0.0, 0.1, 0.2
Hidden Dimension 45 42

Table 11: Hyperparameter sweeps for gLSTM on GPP tasks. In bold are the hyperparameters that
achieved the best validation set performance, and thus were those used in the main results of the
paper. Hyperparameters were tested exhaustively via grid search.

Hyperparameter Diam. Ecc. SSSP
Memory Dimension 8, 16 8, 16 8, 16
Number of Heads 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4
Message Passing Layers 1, 5, 10, 20 1, 5, 10, 20 1, 5, 10, 20
Input Norm Type None None None
Hidden Norm Type Group Group Group
Act. Func. (between block) Tanh, ReLU, None Tanh, ReLU, None Tanh, ReLU, None
Dropout 0.0 0.0 0.0
Hidden Dimension 10, 20, 30 10, 20, 30 10, 20, 30

Table 12: Hyperparameter sweeps for gLSTM on OGBN (Hu et al., 2020) tasks. Bold entries
indicate the hyperparameters that achieved the best validation performance and were used in the
main experiments.

Hyperparameter ogbn-arxiv ogbn-products
Memory Dimension 8,16,32 8,16,32
Number of Heads 4,8 4,8
Message Passing Layers 4,6,8,10 4,6,8,10
Input Norm Type Batch Layer
Hidden Norm Type Group Group
Act. Func. (between block) ReLU ReLU
Dropout 0.5 0.5
Hidden Dimension 256 256
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Table 13: Hyperparameter sweeps for gLSTM on the heterophilous datasets of Platonov et al.
(2023). Bold entries indicate the hyperparameters selected based on validation performance. Sweep
ranges were identical across datasets.

Hyperparameter Amazon Ratings Minesweeper Roman Empire
Memory Dimension 8,16,32 8,16,32 8,16,32
Number of Heads 4,8 4,8 4,8
Message Passing Layers 4,6,8,10,12 4,6,8,10,12 4,6,8,10,12
Input Norm Type Batch Batch Batch
Hidden Norm Type Group Group Group
Act. Func. (between block) ReLU ReLU ReLU
Dropout 0.5 0.2 0.5
Hidden Dimension 512 64 512

Table 14: Hyperparameter sweeps for gLSTM on the Normalized-GPP tasks: sweep is performed
only over Normalized-Diam and these parameters are used for all other experiments. In bold are the
hyperparameters that achieved the best validation set performance, and thus were those used for test
set evaluation.

Hyperparameter Normalized-Diam.
Memory Dimension 8, 16, 32
Number of Heads 1-4-8
Message Passing Layers 4-10-40
Input Norm Type Layer
Hidden Norm Type Group
Act. Func. (between block) GeLU, ReLU, None
Dropout 0.0 0.1 0.2
Hidden Dimension 512
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(a) Mean epoch time vs. number of heads
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(b) Mean epoch time vs. memory dimension
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(c) Max memory usage vs. number of heads
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Figure 8: Scaling behavior of gLSTM, empirically reported on the ogbn-arxiv dataset (Hu et al.,
2020). Mean epoch time and max memory usage is reported, both in absolute terms and relative to
GCN with 4 layers and hidden dimension of 256. All parameters other than that being varied are
fixed to that of the top-performing model: see Table 12.
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Figure 9: Performance on the RingTransfer task.

D.7 ADDITIONAL NAR CLASSIFICATION RESULTS

In this section, we present various additional results from the NAR task presented in the main body
of the paper.

We visualize the Jacobian norms - separated by selected vs background nodes - for the mixed ag-
gregation strategies used in the main paper in Figure 10. This is, in effect, the more granular plot of
Figure 6b.

D.7.1 COMPARISON AGAINST (GRAPH) TRANSFORMER BASELINES

In addition to the MPNN comparisons presented in the main body of the paper and Appendix D.7.3,
we compare gLSTM against two Transformer baselines: GraphGPS (Rampášek et al., 2022) and
a regular Transformer (Vaswani et al., 2017) block utilizing softmax attention. These results are
visualized in Figure 11.

From this figure, we see that softmax attention with a sufficiently high hidden dimension is able to
solve the task perfectly, as expected. Curiously, GraphGPS fails significantly earlier, at 32 neighbors
for all hidden dimensions tested: while we unsure of the precise reason for this, we speculate that
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Figure 10: Left: Mean Jacobian norms for gLSTM of memory dimension 16, with varying number
of neighbors in the NAR task, separated by whether the neighbor node corresponds to the given
query (selected) or not (background). Middle: Same, with GCN of hidden dimension 64. Right:
Mean ratios of Jacobian norms for selected nodes to background nodes, for these two models. Stan-
dard deviation visualized in bar chart error bars and line chart shaded area.
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Figure 11: Comparison of gLSTM performance against Transformer baselines: GPS (Rampášek
et al., 2022) and a standard Transformer baseline with softmax attention. Both of these use Laplacian
positional encodings appended to the node feature vectors. Test-set mean accuracy is shown, with
standard deviation shaded, averaged over 3 runs. Note that gLSTM uses K-hop aggregation here,
whereas GPS does not.

the GCN aspect of the architecture may be actively harming performance. We note however that
GraphGPS does outperform all MPNNs tested, other than gLSTM.

It is also interesting to note that at lower dimensions, softmax attention reaches a neighbor count
at which it also starts to fail. It seems clear that this arises simply from the initial embedding of
the integer key, query and value symbols: when the size of these alphabets exceeds half the hidden
dimension (recall half of the embedding vector is used to encode the key, the other half the query), it
is no longer possible for each symbol to have a learned orthogonal vector and there will be overlap.

D.7.2 TRAINING CURVES: FAILURE AT NAR IS AN ISSUE OF GENERALIZATION

This section investigates further what exactly causes GCN and other models to fail at NAR. We
observe in Figure 12 that for several models, above the point where test set accuracy decreases, train
set accuracy remains high: thus, the failure mode seems to be one of generalization. We suggest
that this is consistent with the capacity intuition: at the point at which the model is no longer able
to separably store the neighbor representations, it collapses instead to memorizing the aggregated
neighbor representation and corresponding value. Since these specific combinations are not shared
with the test set, this does not generalize.
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Figure 12: Train and test set accuracies plotted against epoch count. Left column contains the results
for experiments using 8 neighbor nodes, right column for 32 neighbors. Top row visualises GCN
results, second GPS, third gLSTM. gLSTM is the only one that remains able to generalize at 32
neighbors (and beyond).
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Figure 13: NAR Accuracy where all models do not use K-hop aggregation, for an expanded set of
models.
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Figure 14: NAR Accuracy where all models do use K-hop aggregation, for an expanded set of
models.

D.7.3 PERFORMANCE SEPARATED BY AGGREGATION STRATEGY

We next separate out no-K-hop and K-hop aggregation, and plot results for a larger set of models, in
Figures 13 and 14 respectively.

We additionally verify that the number of layers is not the reason behind GCN being unable to solve
NAR at higher neighbor counts. Figure 16 visualizes the performance of GCN models with hidden
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Figure 15: Number of trainable parameters for the expanded set of models tested in Figures 13
and 14.
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Figure 16: NAR Accuracy for GCN of hidden dimension 128, no K-hop, for varying numbers of
GCN layers.

dimension 128 and various layer counts; it transpires that 2 layers performs best out of the tested
layer counts.

D.7.4 ADDITIONAL SENSITIVITY METRIC RESULTS

We plot in this section the sensitivity metric trends of gLSTM vs GCN, both using K-hop aggrega-
tion.

Figure 17a visualizes the Jacobian norms for different model sizes and numbers of neighbors; Fig-
ure 17b shows the ratios between selected and background node Jacobian norms. Figure 18 separates
out the Jacobian norms for gLSTM memory dimension 16 and GCN hidden dimension 64. Figure 19
visualizes the Hessian mixing metric for all models.
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Figure 17: Left: Average Jacobian norms for different gLSTM and GCN models, with varying
number of neighbors in the NAR task. Right: The ratio between the Jacobian norms of the selected
(key corresponds to query) to background (key is different from query) neighbor nodes, for the
different models - see Figure 18. This plot differs from that in the main body of the paper in that
both gLSTM and GCN use K-hop aggregation.

D.8 NEIGHBOR ASSOCIATIVE RECALL REGRESSION RESULTS

In this section, we present results for the regression variant of the NAR task presented in the main
body of the paper. We refer to this as Neighbor Associative Recall Regression (NARR).

Similarly to NAR, for a given neighborhood size N we create a graph of N + 3 nodes. This graph
consists of N “neighbor” nodes, a central node to which they are all connected, and an intermediate
node connected to the central node and a “query” node connected only to the intermediate node.

Each of the neighbor nodes has a feature vector representing a key and a value. The values consist
of a fixed-dimensional vector of length V where each element is randomly sampled from a standard
normal distribution. The keys are each unique one-hot vectors of dimension N . The query node’s
feature vector contains a single one-hot vector, equal to one of the one-hot vectors of the neighbor
nodes. The target of the graph is for the central node to predict the value of the neighbor node,
corresponding to the key that matches the query node. Each node u is therefore equipped with an
input feature vector x ∈ RV+2N , where the first V elements comprise the value, the nextN elements
the key and the final N elements the query. Where a node does not have one of these features, the
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Figure 18: Left: Jacobian norms for gLSTM of memory dimension 16, with varying number of
neighbors in the NAR task, separated by whether the neighbor node corresponds to the given query
(selected) or not (background). Middle: Same, with GCN of hidden dimension 64. Right: Ratios
of Jacobian norms for selected nodes to background nodes, for these two models. This plot differs
from that in the main body of the paper in that both gLSTM and GCN use K-hop aggregation.
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Figure 19: Mean of the maximum Hessian values for different gLSTM and GCN models, averaged
across test set examples and different neighbor nodes. This plot differs from that in the main body
of the paper in that both gLSTM and GCN use K-hop aggregation.

vector elements are set to zero. We note the use of one-hot encoding for keys and values means
that the first linear layer of the model acts as a learned embedding function, where multiplication
with the one-hot encoding simply selects the corresponding column of the weight matrix. For our
experiments, we use V = 16.

Since the value vectors lack the sparsity of NAR, this appears to be a “harder” task in the sense
that it is more taxing on memory capacity. This means that some of the over-squashing trends are
more defined, particularly trends in sensitivity-based measures - see Appendix D.8.1. However,
our experiments suggest that the regression target means that NARR becomes too hard for vector-
memory MPNNs to effectively solve, visible in Figures 20 and 21.

Performance (MSE) for NARR is shown in Figures 20 and 21 for no-K-hop and K-hop aggregation
respectively. We note that the performance curves in Figure 21 look similar to those obtained by
the sequence modeling variant of this experiment in Schlag et al. (2021). The number of trainable
parameters is shown in Figure 22.

D.8.1 RELATIONSHIP TO OVER-SQUASHING SENSITIVITY METRICS

As with NAR in the main paper, we visualize the behavior of sensitivity-based over-squashing met-
rics for different neighbor counts and different models. Similarly to the main paper, we compare
gLSTM using K-hop aggregation and GCN without. We note that – perhaps due to the increased
difficulty of the task – the trends discussed in Section 5.2 are actually more pronounced for the
NARR task.

Figure 23a visualizes the Jacobian norms for different model sizes and numbers of neighbors; Fig-
ure 23b shows the ratios between selected and background node Jacobian norms. Figure 24 separates
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Figure 20: NARR MSE where all models do not use K-hop aggregation.
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Figure 21: NAR Accuracy where all models do use K-hop aggregation.
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Figure 22: Number of trainable parameters for the expanded set of models tested in Figures 20
and 21.
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out the Jacobian norms for gLSTM memory dimension 16 and GCN hidden dimension 64. Figure 25
visualizes the Hessian mixing metric for all models.
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Figure 23: Left: Average Jacobian norms for different gLSTM and GCN models, with varying
number of neighbors in the NARR task. Right: The ratio between the Jacobian norms of the selected
(key corresponds to query) to background (key is different from query) neighbor nodes, for the
different models - see Figure 24.
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Figure 24: Left: Jacobian norms for gLSTM of memory dimension 16, with varying number of
neighbors in the NARR task, separated by whether the neighbor node corresponds to the given
query (selected) or not (background). Middle: Same, with GCN of hidden dimension 64. Right:
Ratios of Jacobian norms for selected nodes to background nodes, for these two models.
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Figure 25: Mean of the maximum Hessian values for different gLSTM and GCN models, averaged
across test set examples and different neighbor nodes.

We note that the sensitivity difference between selected and background nodes is particularly stark
here, even more so for classification-based NAR; gLSTM consistently shows a sharp drop-off in
Figure 23b at the memory dimension, and GCN maintains a ratio remarkably close to unity. This
closely aligns with the performance of these models, Figure 21 demonstrates that gLSTM perfor-
mance begins to drop off quickly when the number of neighbors matches the memory dimension,
and Figure 20 demonstrates that GCN is never able to solve the task, for any tested number of
neighbors.

We hypothesize that the strong impact of the K-hop aggregation on the model’s ability to selectively
recall - particularly visible for NARR - may partially explain the dramatic performance decrease

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

when ablating this aggregation, discussed in Appendix D.2. We note that, while gLSTM consis-
tently demonstrates superior performance to GCN, the improved performance is most striking when
additionally using K-hop aggregation; it appears that the inductive bias introduced by the K-hop
aggregation is particularly suited to the selective recall required by this task.
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