
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GLSTM: MITIGATING OVER-SQUASHING BY
INCREASING STORAGE CAPACITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) leverage the graph structure to transmit infor-
mation between nodes, typically through the message-passing mechanism. While
these models have found a wide variety of applications, they are known to suf-
fer from over-squashing, where information from a large receptive field of node
representations is collapsed into a single fixed sized vector, resulting in an infor-
mation bottleneck. In this paper, we re-examine the over-squashing phenomenon
through the lens of model storage and retrieval capacity, which we define as the
amount of information that can be stored in a node’s representation for later use.
We study some of the limitations of existing tasks used to measure over-squashing
and introduce a new synthetic task to demonstrate that an information bottleneck
can saturate this capacity. Furthermore, we adapt ideas from the sequence model-
ing literature on associative memories, fast weight programmers, and the xLSTM
model to develop a novel GNN architecture with improved capacity. We demon-
strate strong performance of this architecture both on our capacity synthetic task,
as well as a range of real-world graph benchmarks.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Sperduti, 1993; Gori et al., 2005; Scarselli et al., 2008; Micheli,
2009; Bruna et al., 2014; Defferrard et al., 2017) have emerged as a standard framework for learning
on graph-structured data. The majority of these models follow a message passing paradigm, where
nodes iteratively exchange information with neighbors, commonly referred to as Message-Passing
Neural Networks (MPNNs). Examples of this family of architectures include GCN (Kipf & Welling,
2017), GAT (Veličković et al., 2018), GIN (Xu et al., 2018), and GraphSAGE (Hamilton et al., 2017).

Since each MPNN layer exchanges information between neighboring nodes to update node rep-
resentations, the number of layers thus dictates the receptive field: the set of nodes over which
information is aggregated. Deep MPNNs are, in theory, desirable as they can model long-range de-
pendencies, but scaling to many layers has historically been difficult due to two pervasive issues that
have received significant attention in the literature: over-smoothing and over-squashing. We focus
on the latter in this work.

Over-squashing was initially identified by Alon & Yahav (2021) as a problem of capacity; the com-
pression of information from a node’s receptive field into a fixed-size vector. This was linked with
depth and long-range dependencies, since on many graphs receptive fields grow exponentially with
depth. Later work (Topping et al., 2022; Di Giovanni et al., 2023a) identified that this bottleneck
could also result in low sensitivity as measured by the node Jacobian, linking graph topology and
aspects of model architecture via an upper bound on this Jacobian. This low sensitivity arises due
to repeated degree normalization and application of a contractive nonlinearity over many layers. We
argue (Sections 3 and 5.2) that these two issues – limited information storage capacity, and low
sensitivity – are distinct. This work revives the capacity viewpoint of over-squashing which has
received little attention since the work of Alon & Yahav (2021), and studies it in isolation from sen-
sitivity issues. We believe this focus on capacity not only provides a more complete understanding
of over-squashing but also highlights new directions to mitigate it.

To combat over-squashing, existing research has focused on ameliorating topological bottlenecks
through rewiring (Gasteiger et al., 2019; Gutteridge et al., 2023; Nguyen et al., 2023) and control-
ling the flow of information (Bresson & Laurent, 2017; Finkelshtein et al., 2024; Errica et al., 2025)

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

– both designed to reduce bottlenecks in the computational graph. However, this bottleneck is only
an issue if it (1) results in low sensitivity or (2) saturates the storage capacity. We target the latter
failure mode: adapting the MPNN architecture to improve its ability to store and retrieve informa-
tion. Framing over-squashing as a capacity limitation that can be addressed at the architecture level
exposes a previously unexplored path, and our results validate this direction.

To improve MPNN storage capacity we turn to the sequence modeling literature, which has a long
history of tackling equivalent problems (Hochreiter & Schmidhuber, 1997; Orvieto et al., 2023;
Gu & Dao, 2023; Beck et al., 2024; Arora et al., 2024). Taking inspiration from these works, we
introduce an MPNN architecture that utilizes associative memory (Beck et al., 2024; Schlag et al.,
2021; Hopfield, 1982), and demonstrate that this exhibits improved storage capacity.

Contributions. Our main contributions are as follows. In Section 3, we re-characterize over-
squashing as a combination of two distinct issues: saturating capacity and low sensitivity, which
we term capacity over-squashing and sensitivity over-squashing respectively. We discuss in Sec-
tion 3.1 the pitfalls of widely used over-squashing tasks, which either fail to evaluate capacity at all,
or evaluate the two issues in tandem and are thus unable to separate their effects. In Section 3.2,
we introduce a novel synthetic task, which to our knowledge is the first that measures capacity
over-squashing in isolation. In Section 4, we present a new MPNN architecture based on the re-
cent xLSTM architecture (Beck et al., 2024), which uses associative memory to increase capacity,
explicitly targeting this capacity over-squashing viewpoint. Section 5 demonstrates that this archi-
tecture performs well on our synthetic capacity task and a range of real-world benchmarks, and
Section 5.2 demonstrates empirically that capacity over-squashing can occur separately from
sensitivity over-squashing.

2 BACKGROUND AND RELATED WORK

Message Passing Neural Networks Let a graph G be a tuple (V, E) where V is the set of nodes
and E the set of edges. An edge from node u to v is denoted (u, v) ∈ E . The connectivity is encoded
by the adjacency matrix A ∈ R|V|×|V|, where Auv = 1 if (u, v) ∈ E and 0 otherwise. Each node v
has a feature vector xv ∈ Rd.

GNNs are functions fθ : (G, {xv}) 7→ y with parameters θ, trained via gradient descent to predict
node- or graph-level labels y. These models typically take the form of MPNNs, which compute
latent representations by composing L layers of the following “message passing” node-wise opera-
tion:

h(l)
u = ϕ(l)

(
h(l−1)
u , ψ(l)({h(l−1)

v : (u, v) ∈ E})
)
, (1)

where ψ(l) is a permutation-invariant aggregator, ϕ(l) combines neighbor messages with the previ-
ous embedding and h

(0)
v = xv . Throughout, we use “GNN” and “MPNN” interchangeably. Note

we depart from the more usual notation of k for layer index to avoid confusion with keys, introduced
in Section 3.2. The most commonly used aggregation function takes the form

ψ(l)({h(l−1)
v : (u, v) ∈ E}) =

∑
v

Ouv h
(l−1)
v , (2)

where O ∈ R|V|×|V| is some message-passing matrix. For GCN (Kipf & Welling, 2017), O =
D̃−1/2ÃD̃−1/2 with Ã = A + I for diagonal D̃ ∈ R|V|×|V| with D̃ii =

∑
j Ãij . We frequently

denote the set of message-passing neighbors of node u as Nu = {v ∈ V | Ouv ̸= 0} – if the
message-passing matrix is layer-dependent, we may superscript this with a layer index.
Hopfield Networks Hopfield networks (Hopfield, 1982) were introduced as associative memories
storing binary patterns via a “Hebbian learning” rule in which patterns are directly encoded via
an outer product. Later modifications increased storage capacity (Krotov & Hopfield, 2016; 2018)
or adapted to continuous states (Hopfield, 1984; Koiran, 1994). Retrieval is typically a multi-step
iterative process; Ramsauer et al. (2021) introduced a variant with the ability to retrieve patterns in
a single step, demonstrating equivalence with Transformer (Vaswani et al., 2017) key-value recall.
Fast Weight Programmers Fast Weight Programmers (FWPs) are a class of neural network moti-
vated by the idea of allowing variable network weights dependent on the input - termed fast weights.
One method to “program” the fast weights is to take outer products of learned projections of the

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

input (Schmidhuber, 1992). Schlag et al. (2021) observe that – up to normalization and activation
function differences – linear Transformers (Katharopoulos et al., 2020) are equivalent to FWPs.
xLSTM: Associative Memory for Language Modeling Recent work Beck et al. (2024; 2025)
introduced xLSTM, a development of the original LSTM Hochreiter & Schmidhuber (1997) archi-
tecture that resulted in a performant recurrent neural network capable of language modeling. Of
relevance to our work are the following LSTM limitations that xLSTM aims to address: the inability
to “revise storage decisions” and the limited storage capacity of the scalar cell states. The first of
these issues is addressed through modifying the original LSTM gating to use exponential activation
functions rather than sigmoid functions. The second is addressed by introducing associative mem-
ory, updated using an outer product update rule equivalent to that of FWPs to store keys and values
(see Appendix A for more details).

3 THE TWO FACES OF OVER-SQUASHING

Over-squashing was initially introduced by Alon & Yahav (2021) as an issue of storage capacity.
They observed that recurrent sequence models exhibit a bottleneck in representing all the informa-
tion from their past inputs, and this bottleneck exists in a more harmful form in GNNs, in which
the information receptive field grows exponentially. They introduced a synthetic task to measure
over-squashing by propagating information through various sizes of binary tree.

Later research identified that this computational graph bottleneck also resulted in low sensitivity and
issues of signal propagation. Topping et al. (2022); Di Giovanni et al. (2023a) quantified this low
sensitivity via the Jacobian of node representations, establishing the following sensitivity bound: for
an MPNN with l layers, cσ Lipschitz constant of the activation, w maximal entry-value over weight
matrices, d embedding dimension and u, v ∈ V , one has∥∥∥∥∥ ∂h(l)

v

∂h
(0)
u

∥∥∥∥∥
1

≤ (cσwd)
l︸ ︷︷ ︸

model

topology︷ ︸︸ ︷(
Ol

)
uv
, (3)

where O is the message passing matrix used by the MPNN as in Equation (2). This bound estab-
lishes that low sensitivity results from both graph topology as well as factors intrinsic to the MPNN
model. In particular, sensitivity is lowered by the nature of the message-passing, where the culprit
is successive powers of a degree-normalized adjacency matrix. It is also lowered by the contractive
nature of the nonlinearity σ and the values of the weight matrices, as established in (Arroyo et al.,
2025). Despite this analysis being purely one of sensitivity rather than capacity, it was also termed
over-squashing, and has been successful in establishing links to other areas, including the expressive
power of MPNNs (Di Giovanni et al., 2023b) and graph effective resistance (Black et al., 2023).

We argue that there are two distinct problems arising from bottlenecks in MPNNs: reduced sensi-
tivity (sensitivity over-squashing) and saturating storage capacity (capacity over-squashing). While
due to the influential paper of Topping et al. (2022) the sensitivity viewpoint on over-squashing has
thus far been the predominant approach in the literature; in this work, we seek to revisit the storage
capacity viewpoint and investigate how this issue can be avoided. We define storage capacity as the
amount of information that can be stored in a node’s representation for later use: a representation is
saturated when it is unable to store any more information.

Conflation With Depth The vast majority of existing research links over-squashing with depth.
To an extent, this is justified: the bound of Equation (3) decreases exponentially with MPNN depth,
and real-world graphs tend to exhibit receptive fields that grow exponentially in depth, leading to
capacity quickly becoming a problem for deep MPNNs. However, alongside recent work (Arnaiz-
Rodriguez & Errica, 2025), we highlight that over-squashing is not exclusively a problem of depth:
bottlenecks can be observed in single-layer GNNs acting on high-degree nodes – we exploit this
fact in our synthetic task of Section 3.2. Furthermore, in studying over-squashing only in the
deep regime, much of the literature has conflated the problem with issues of vanishing gradients,
themselves closely linked to the related problem of over-smoothing Di Giovanni et al. (2023b).
Arroyo et al. (2025) give a more precise treatment of how the issue of over-squashing relates to
depth, through over-smoothing (zero collapse) and vanishing gradients. In this work we study over-
squashing in the shallow regime: this allows us to isolate the issue of saturating capacity, avoiding
the effects of depth on both reduced sensitivity (Equation (3)) and vanishing gradients.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 EXISTING OVER-SQUASHING TASKS DO NOT (ONLY) TEST CAPACITY

Figure 1: Computational graphs. Left: Ring-
Transfer (Di Giovanni et al., 2023a). Mid-
dle: Tree-NeighborsMatch (Alon & Ya-
hav, 2021). Right: NAR, introduced in Sec-
tion 3.2. Nodes with informative features are
green, background gray. Output of the red node
is trained to solve the task.

0 25 50 75 100 125

Leaf Node Count

10¡4

10¡3

10¡2

10¡1

100
J
ac

o
b
ia

n
 N

o
rm

Deep Graph

Shallow Graph

Identity

Tanh

ReLU

GELU

Figure 2: Log Jacobian norms. “Deep” graphs
are binary trees of Tree-NeighborsMatch
(Alon & Yahav, 2021); “Shallow” graphs are
single-level trees with the same number of
leaves. A GCN of depth equal to the tree
depth acts on each. Jacobian norms are
|∂h(L)

r /∂h
(0)
l |1 for root r and leaf l (red/green

in Figure 1). Shaded area is standard deviation.

An instructive way of contrasting sensitivity
against capacity is via synthetic tasks. The most
common synthetic tasks currently used to as-
sess over-squashing are the RingTransfer tasks
of Di Giovanni et al. (2023a). The goal of these
tests is for a MPNN to ‘transfer’ features con-
tained at a target node to a source node, across a
large graph distance. Various graphs are tested,
in particular a ring of nodes, but the common
feature is that there exists a long shortest-path
from the source to target node, so the informa-
tion must be passed through many nodes. All
of these exhibit an exponentially growing re-
ceptive field of at least 2k for k layers, since
each node is connected to at least two others;
repeated aggregation over neighborhoods and
application of MPNN layers and nonlinearities
makes this a good test of the sensitivity-based
view of over-squashing.

However, this task is particularly ill-equipped
to test the issue of storage capacity, as the
only relevant information in the graph is that
of the target node, and all intermediate nodes
are assigned constant vectors of ones. In this
way, there is only a single node’s representa-
tion worth of information to be transferred. It
is unclear how much this task measures behav-
ior found in real-world tasks, as over-squashing
will not comprise sensitivity issues in isolation:
exponentially growing receptive fields will not
be padded by nodes with identical represen-
tations containing no new information. Fig-
ure 1 (left) visualizes the computational graph
of RingTransfer, demonstrating that it is domi-
nated by nodes containing no information.

Alon & Yahav (2021) introduced the Tree-NeighborsMatch task to measure capacity via prop-
agating information from the leaf nodes of a variable-size binary tree. It shares similarities with the
task we introduce in Section 3.2 in that it controls the amount of information that is forced into a
bottleneck of a single node representation. However, it propagates this information through a deep
binary tree, requiring variable-depth MPNNs to solve this task. This depth significantly worsens
sensitivity: we visualize Jacobian norms of a GCN acting on a deep binary tree vs a single layer
tree with matching leaf counts in Figure 2, demonstrating that this sensitivity drops off far faster
for deep GCNs. This is unsurprising given the bound of Equation (3), showing that the deep GCN
must additionally contend with “model” squashing terms of nonlinearity and weight contraction that
scale exponentially with depth. Therefore we expect performance degradation trends to be due to
both 1) saturating capacity and 2) low sensitivity; deep tasks such as Tree-NeighborsMatch
are impacted by both over-squashing issues, rather than isolating the issue of capacity.

3.2 NEIGHBOR ASSOCIATIVE RECALL: ISOLATING STORAGE CAPACITY

We investigate storage capacity by measuring associative recall: this is a common approach taken
in the sequence-modeling literature (Ba et al., 2016; Schlag et al., 2021; Arora et al., 2024; Jelassi
et al., 2024), in which the question of model storage capacity is also clearly of interest. These
synthetic tasks involve presenting the model with a sequence of key value pairs followed by a query
that corresponds to one of the presented keys, and the model must return the associated value.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

To this end, we introduce a task that we refer to as Neighbor Associative Recall (NAR). Whereas
the sequence associative recall tasks measure the ability of a model to recall previous information
from a variable-length sequence, our graph adaptation is designed to measure the ability of a GNN
to recall information from the previous message passing round over a variable number of neighbors.

The task is designed as follows. For a given neighborhood size N we create a graph of N +3 nodes.
This graph consists of N “neighbor” nodes, a central node to which they are all connected, an inter-
mediate node connected to the central node, and a “query” node connected only to the intermediate
node. An example such graph is visualized in Figure 3.

Figure 3: An example graph with N =
5 from the NAR task. Key-value nodes
are shown in blue, the central node in
red and the query node in green. In this
graph,m is the randomly sampled index
of the key-value node associated with
query node q. The target for this graph
is a one-hot vector corresponding to vm.

For a fixed neighborhood size N we define a fixed set
of keys and values, N = |K| = |V|, and a pair of
learned vector embedding functions ek : K → Rdemb ,
ev : V → Rdemb for embedding dimension demb. Each
of the neighbor nodes n has a different assigned key
kn ∈ K, and also a value vn ∈ V, randomly sam-
pled with replacement. The input feature vector of these
nodes is a concatenation of the two learned embeddings
xn = [ek(kn); ev(vn)] ∈ R2demb . The intermediate node
and central node both have zero-valued feature vectors.
Associated with the query node q is a randomly sampled
key-value node m; the input feature vector for the query
node consists of the corresponding key embedding con-
catenated with a vector of zeroes, xq = [ek(km);0] ∈
R2demb . The model is trained such that the central node
must predict the value vm associated with the sampled
key node. Training is via cross-entropy loss where the tar-
get of the central node is a one-hot vector corresponding
to a fixed ordering of V. This approach can be viewed as a
graph adaptation of the sequence associative recall task of
Schlag et al. (2021). Results are presented in Section 5.1.
An alternative formulation of this task with a regression target is discussed in Appendix B.6.

NAR is designed such that the receptive field of the central node will comprise only the neighbor
nodes in the first layer. In order to perfectly solve the task, it must store all of the key-value informa-
tion in this initial receptive field, as it is impossible to limit the scope of the information that might
later be required. In the second layer, the receptive field will include the query node: now, the model
must selectively recall the correct value from its immediate neighbors.

This task is novel as it assesses over-squashing in the shallow regime: MPNNs tested in Section 5.1
consist of just two message passing layers. This more effectively isolates the issue of capacity,
without secondary effects from low sensitivity and vanishing gradients as visualized in Figure 2.

4 GLSTM: COMBINING GRAPH NETWORKS AND ASSOCIATIVE MEMORY

Prior work on over-squashing has focused almost exclusively on mitigating sensitivity issues, often
through graph rewiring (Gasteiger et al., 2019; Gutteridge et al., 2023; Nguyen et al., 2023). By
contrast, we find no studies that tackle capacity over-squashing directly. Motivated by memory-
capacity gains in sequence models (Ba et al., 2016; Beck et al., 2024), we introduce associative
memory into an MPNN architecture to explicitly enlarge its information-storage capacity. We can
specifically measure this increased capacity in the graph setting using the NAR task, introduced
above. We further introduce the gating scheme of Beck et al. (2024) to investigate its efficacy in the
graph setting, given strong sequence modeling performance. Since these adaptations are inspired in
part by their successful use in xLSTM, we refer to our related graph architecture as gLSTM.

For any node u at layer l, in addition to the usual MPNN vector hidden state h(l)
u , gLSTM maintains

a matrix hidden state C
(l)
u . The initial hidden state h

(0)
u is the input node feature vector xu. Keys

and values are used to update C
(l)
u via an FWP-style outer product rule: these are projections of the

previous vector hidden state h
(l−1)
u . The next vector hidden state h

(l)
u is determined by “querying”

C
(l)
u via matrix multiplication with another projection of the previous vector hidden states.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The modified gLSTM update equations are given below. Highlighted in blue are the differences to
xLSTM. Biases correspond exactly to xLSTM (Appendix A) and are omitted for clarity.

State (and normalization) updates:

C(l)
u = f (l)u C(l−1)

u +
∑

v∈N (l)
u ∪{u}

i(l)v v(l)
v ⊗ k(l)

v

n(l)
u = f (l)u n(l−1)

u +
∑

v∈N (l)
u ∪{u}

i(l)v k(l)
v

m(l)
u = max

({
f̃ (l)u +m(l−1)

u

}
∪
{
ĩ(l)v | ∀v ∈ N (l)

u ∪ {u}
})

Query / Key / Value computation:

q(l)
u = Wq

h(l−1)
u ;

∑
v∈N (l)

u

h(l−1)
v


k(l)
u =

1√
d
Wkh

(l−1)
u

v(l)
u = Wvh

(l−1)
u

The square brackets above denote vector concatenation. Concatenating the hidden state for the node
and its neighbours in this way keeps them separate and allows the query – which will determine
what is retrieved from the matrix memory – to separately depend on both the previous state of the
node itself and the previous states of its neighbours.

Gate computation:

i(l)u = exp
(
ĩ(l)u −m(l)

u

)
ĩ(l)u = wT

i h
(l−1)
u

f (l)u = exp
(
f̃ (l)u +m(l−1)

u −m(l)
u

)
f̃ (l)u = wT

f h
(l−1)
u

o(l)
u = σ

(
õ(l)
u

)
õ(l)
u = Woh

(l−1)
u

Output:

h̃(l)
u =

C
(l)
u q

(l)
u

max
{∣∣∣n(l)⊤

u q
(l)
u

∣∣∣ , 1}
h(l)
u = o(l)

u ⊙ h̃(l)
u

Block Structure Arroyo et al. (2025) note that sensitivity over-squashing issues are largely caused
by vanishing gradients – a phenomenon well-explored in the sequence-modeling literature. In an
attempt to address this, gLSTM therefore uses a similar block structure to the mLSTM block upon
which it is based. Of particular importance is the residual connection – which brings the norm of the
layer-wise Jacobian to the edge of chaos – and use of input and hidden norms, which regulate the
magnitude of the Jacobian norms. Figure 4 visualizes the block structure of gLSTM that we employ.

NORM

NORM

FORGET KEY VALUE

DOWN PROJ.

QUERY

INPUT OUTPUT

HEADS
AGGR.

AGGR.

Figure 4: gLSTM block structure. Gate layers
shown in orange, query/key/value computation in
dark blue. Aggr. is short for aggregation, and
represents (K-hop) aggregation across neighbor-
hoods. Symbols ⊙,⊗,+, · denote respectively
Hadamard product, outer product, vector addition,
matrix multiplication.

K-Hop Aggregation Following Arroyo et al.
(2025) we combine the memory capabilities of
the xLSTM block with a highly connected mes-
sage passing graph structure: employing a k-
hop aggregation scheme. In this setting, each
node u at layer l will aggregate information
from the neighborhood

N (l)
u = {v ∈ V | dG(u, v) = l} ,

where dG : V × V → R≥0 is the length of the
minimal walk connecting nodes u and v. This
approach resembles that of Ding et al. (2024),
but with an additional recurrence: hidden states
are used as input at each step. This substan-
tially changes the way information can propa-
gate through the graph.

This aggregation scheme appears to greatly im-
prove gLSTM performance: our synthetic task
in Section 5.1 significantly benefits from this
aggregation scheme, and the ablations in Ap-
pendix B.2 demonstrate that it improves perfor-
mance in all but one of the tested benchmarks.
We hypothesize that – in addition to providing

a highly connected computational graph that lessens over-squashing sensitivity bottleneck issues
– this is because it also provides an extremely useful inductive bias for the recall mechanism of
gLSTM. Information that has previously been stored in the associative memory is not then included
in later message passing rounds, and later nodes are able to query this memory in isolation.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

5.1 NEIGHBOR ASSOCIATIVE RECALL

We train various models on NAR with varying neighbor count N , with results shown in Figure 5a.
Throughout this section we compare gLSTM using K-hop aggregation to GCN using standard ag-
gregation, since gLSTM performs significantly better in this task when using K-hop aggregation
whereas GCN performance is harmed by K-hop. We present additional results in Appendix B.5
where we separate by aggregation method and include results for a larger number of models. A
comparison of the number of trainable parameters is shown in Figure 5b. Fair comparison between
matrix and vector memory is nontrivial, so we select these parameter counts to “favor” GCN.

These results demonstrate that gLSTM shows significantly improved recall abilities compared to
GCN. gLSTM retains perfect recall until the number of neighbors equals the memory dimension of
the model: beyond this is where capacity over-squashing appears to become a problem. This agrees
with intuition, since the maximum number of orthogonal key vectors (and separately, value vectors)
is equal to the memory dimension. However, it is interesting to note how the performance decreases
slowly as the neighbor count exceeds this limit, particularly for higher memory dimensions: this ap-
pears to be a graph analog of the “graceful saturation” described by Smolensky (1990). By contrast,
capacity over-squashing starts much earlier at just N = 8 for the largest GCN model tested.

0 20 40 60 80 100

Number of Neighbours

0.00

0.25

0.50

0.75

1.00

A
cc

u
ra

cy

gLSTM dim. 8

gLSTM dim. 16

gLSTM dim. 32

GCN dim. 64

GCN dim. 128

GCN dim. 256

(a) Accuracy

gLSTM GCN

104

105

T
ra

in
a
b
le

 P
ar

am
et

er
s

8

16

32

64

128

256

(b) Parameter counts

Figure 5: Test-set mean Accuracy (standard deviation shaded) for the NAR task, for gLSTM and
GCN models with various hidden dimensions shown in Figure 5a, number of trainable parameters
in Figure 5b. Note that gLSTM uses K-hop aggregation here, whereas GCN does not; see Ap-
pendix B.5 for separated performance by aggregation strategy.

5.2 HOW DOES CAPACITY RELATE TO SENSITIVITY?

In this section, we investigate empirically how capacity over-squashing – as measured by perfor-
mance on NAR – relates to sensitivity over-squashing.

We directly measure the Jacobian norm of Topping et al. (2022); Di Giovanni et al. (2023a), com-
puting the sensitivity of the output feature vector on the central (output) node c to the input vectors
on the key-value neighbor nodes n, |∂h(2)

c /∂xn|1. These results are visualized in Figure 6a.

We see therefore that sensitivity, as measured by the Jacobian norm, does not correlate with NAR
performance. Given that NAR performance degradation is due to capacity over-squashing, we there-
fore observe that capacity over-squashing can occur without sensitivity over-squashing. This is
clear from the fact that 1) sensitivity increases consistently for GCN models above N = 16 to the
point where it matches initial sensitivity, despite no increase in performance and 2) sensitivity for
gLSTM tends to carry on increasing beyond where performance starts to degrade. We note these
trends – as with all observations we make in this section – hold true for the NAR regression task in
Appendix B.6.1.

However, if we examine the difference in Jacobian norms between the neighbor nodes which are
selected (those which have a key corresponding to the query node) vs background, we see trends that
align with our notion of capacity. Figure 6a visualizes the ratio of Jacobian norms for selected nodes
to that for background nodes. We observe that for all GCN models this ratio quickly falls to unity
at the point where capacity over-squashing starts to occur, and gLSTM ratios consistently plateau –
and start to slowly decrease – at their memory dimension, similarly coinciding with capacity over-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

squashing. It appears therefore that capacity over-squashing harms a model’s ability to be selectively
sensitive to different nodes in the NAR task.

0 20 40 60 80 100

Number of Neighbours

101

102

103

F
u
ll
 J

ac
ob

ia
n
 N

or
m

(a) Jacobian norms

0 20 40 60 80 100

Number of Neighbours

100

101

J
a
co

b
ia

n
 N

o
rm

 R
a
ti
os

gLSTM dim. 8

gLSTM dim. 16

gLSTM dim. 32

GCN dim. 64

GCN dim. 128

GCN dim. 256

(b) Jacobian norm ratios

Figure 6: Left: Mean Jacobian norms for different gLSTM and GCN models, with varying number
of neighbors in the NAR task. Right: Mean ratio between the Jacobian norms of the selected (key
corresponds to query) to background (key is different from query) neighbor nodes, for varying model
dimensions. Standard deviation shaded in both plots.

Another over-squashing sensitivity metric is that of Di Giovanni et al. (2023b), who introduce the
maximal mixing metric. For node-level function Y : Rn×d → Rn×d, the mixing of features associ-
ated with nodes u, v at a given node i is defined as

mix
Y

(i, v, u) = max
X

∥∥∥∥∂2 (Y (X))i
∂xu∂xv

∥∥∥∥ .
Although motivated through intuition of mixing, we observe the mixed partial derivative can equally
be viewed as a composition of partial derivatives quantifying selective sensitivity - how much the
sensitivity with respect to one node feature varies with respect to another node feature. In this
respect, we expect it to be highly relevant to the sensitivity ratios visible in Figures 6b and 9.

To study this empirically for NAR, we take the maximum over the measured Hessians for different
models. These Hessian 3-tensors are large, so we further limit to a subset of the overall tensor in
order to compute them on available hardware: we are most interested in how the output sensitivity
to the neighbor value vectors varies with the query vector, so we limit to the corresponding input
dimensions. For the central, neighbor and query nodes c, n, q this adapted mixing metric is

mix(c, n, q) = max
0≤α<N,
0≤β<demb,

demb≤γ<2demb

∣∣∣∣∣∣
∂2

(
h
(2)
c

)
α

∂ (xq)β ∂ (xn)γ

∣∣∣∣∣∣ ,
which we plot in Figure 7. We see that gLSTM consistently exhibits greater maximum Hessian
values than GCN, and that this collapses for GCN models above 8 neighbors, consistent with the
drop in performance. As with the Jacobian ratios, we see plateauing and slow decrease of maximum
Hessian values above the memory dimension, but these trends are less pronounced.

0 20 40 60 80 100

Number of Neighbours

10¡4

10¡2

100

H
es

si
an

 M
ax

 V
a
lu

e

gLSTM dim. 8

gLSTM dim. 16

gLSTM dim. 32

GCN dim. 64

GCN dim. 128

GCN dim. 256

Figure 7: Mean of the maximum Hessian values for different gLSTM and GCN models, averaged
across test set examples and different neighbor nodes. Standard deviation shaded.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.3 LONG RANGE BENCHMARKS

Table 1: Mean and standard deviation of log10(MSE), averaged over 4 random weight initializations
on the GPP tasks from Gravina et al. (2023), from which we report baselines. See Appendix B.1 for
discussion of baseline choice. Top score in bold, second underlined. Lower is better.

Method Diam. Ecc. SSSP
GCN 0.742 ± 0.047 0.846 ± 0.003 0.950 ± 0.000
GAT 0.822 ± 0.075 0.791 ± 0.022 0.695 ± 0.150
GraphSAGE 0.865 ± 0.40 0.286 ± 0.184 0.786 ± 0.021
GIN 0.613 ± 0.099 0.950 ± 0.001 -0.541 ± 0.419
GCNII 0.529 ± 0.057 0.764 ± 0.036 -1.132 ± 0.013
DGC 0.603 ± 0.005 0.826 ± 0.003 -0.148 ± 0.023
GRAND 0.672 ± 0.049 0.660 ± 0.139 -0.094 ± 0.340
A-DGN -0.546 ± 0.033 0.305 ± 0.118 -3.402 ± 0.137
gLSTM (ours) -0.715 ± 0.030 -4.036 ± 0.311 -2.836 ± 0.178
- K-hop 0.042 ± 0.123 0.673 ± 0.021 -3.377 ± 0.142

Table 2: Mean and standard deviation on LRGB
(Dwivedi et al., 2022), averaged over four random
weight initializations. Baselines from the LRGB
reevaluation of Tönshoff et al. (2024) and K-hop
methods from Arroyo et al. (2025). All methods
adhere to a 500k parameter limit. Top score in
bold, second underlined.

Method Peptides-Func Peptides-Struct
AP (↑) MAE (↓)

GCN 0.6860±0.0050 0.2460±0.0007
GatedGCN 0.6765±0.0047 0.2477±0.0009
GINE 0.6621±0.0067 0.2473±0.0017
GPS 0.6534±0.0091 0.2509±0.0014

K-hop methods
kGCN-SSM 0.6902±0.0022 0.2581±0.0003
DRew-GCN 0.6804±0.0144 0.2766±0.0019

gLSTM (ours) 0.7250±0.0023 0.2527±0.0015

We evaluate gLSTM on the Graph Property
Prediction (GPP) tasks from Gravina et al.
(2023) and the Long Range Graph Benchmark
(LRGB) from Dwivedi et al. (2022). These
benchmarks are both designed to require long
range interactions to solve, and thus are an in-
teresting test of the ability of gLSTM to over-
come over-squashing and over-smoothing in
real world tasks in order to facilitate long range
interactions. Performance is reported in Table 1
and Table 2 respectively.

gLSTM achieves comfortably state of the art
results on the Diameter and Eccentricity GPP
tasks, and very strong performance on SSSP;
notably SSSP is the only tested task in which
k-hop decreases performance. LRGB results
show that gLSTM achieves strong performance
in Peptides-Func but relatively weak perfor-
mance on Peptides-Struct. We hypothesize
that the weaker performance on Peptides-Struct
may be due to long-range interactions being
less relevant for this task, which is very effec-
tively solved by a few-layer GCN. See Appendix B.2 for gLSTM ablations on these benchmarks
and Appendix B.3 for details around hyperparameters used.

6 CONCLUSION

In this work, we revisit over-squashing, disambiguating two bottleneck-related issues of sensitivity
over-squashing and capacity over-squashing. We introduce a synthetic task that measures capacity
over-squashing in isolation and we show that associative memory can improve MPNN capacity. The
resulting architecture achieves strong results on real-world benchmarks.

Many avenues for future work remain open. Whereas the sensitivity issue of over-squashing has
a mathematical basis via the node Jacobian, to our knowledge the capacity issue does not. Theo-
retically quantifying this capacity could afford similar directions to those explored via sensitivity,
establishing provable links to topology and model properties. With regards to the gLSTM architec-
ture, we translate to a graph setting the gating and associative memory of xLSTM but do not retain
the efficiency and parallel training, leaving open future avenues for exploring more efficient MPNN
architectures.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We make available all of our code and experiment configurations to aid reproduction of results. Our
experiments utilize the widely-used PyTorch Geometric GraphGym (You et al., 2020) framework
which defines a standard framework for MPNN research.

For easiest reproduction of our results, please consult the readme in the code repository provided in
Appendix B. The repository includes all necessary information to run the experiments: in particular,
configs containing the hyperparameters used (also reported in Appendix B.3) and code for all plots
used in the paper.

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In International Conference on Learning Representations, 2021.

Adrian Arnaiz-Rodriguez and Federico Errica. Oversmoothing, “oversquashing”’, heterophily,
long-range, and more: Demystifying common beliefs in graph machine learning. arXiv preprint
arXiv:2505.15547, 2025.

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri
Rudra, and Christopher Ré. Zoology: Measuring and improving recall in efficient language mod-
els. In Proceedings of 12th International Conference on Learning Representations (ICLR). ICLR,
2024.

Álvaro Arroyo, Alessio Gravina, Benjamin Gutteridge, Federico Barbero, Claudio Gallicchio, Xi-
aowen Dong, Michael Bronstein, and Pierre Vandergheynst. On vanishing gradients, over-
smoothing, and over-squashing in gnns: Bridging recurrent and graph learning. arXiv preprint
arXiv:2502.10818, 2025.

Jimmy Ba, Geoffrey E Hinton, Volodymyr Mnih, Joel Z Leibo, and Catalin Ionescu. Using fast
weights to attend to the recent past. Advances in neural information processing systems, 29,
2016.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. Advances in Neural Information Processing Systems, 37:107547–
107603, 2024.

Maximilian Beck, Korbinian Pöppel, Phillip Lippe, Richard Kurle, Patrick M Blies, Günter Klam-
bauer, Sebastian Böck, and Sepp Hochreiter. xLSTM 7b: A recurrent LLM for fast and efficient
inference. In Forty-second International Conference on Machine Learning, 2025.

Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing in
gnns through the lens of effective resistance. In International Conference on Machine Learning,
pp. 2528–2547. PMLR, 2023.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553, 2017.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs, 2014.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering, 2017.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M
Bronstein. On over-squashing in message passing neural networks: The impact of width, depth,
and topology. In International conference on machine learning, pp. 7865–7885. PMLR, 2023a.

Francesco Di Giovanni, T Konstantin Rusch, Michael Bronstein, Andreea Deac, Marc Lackenby,
Siddhartha Mishra, and Petar Veličković. How does over-squashing affect the power of gnns?
Transactions on Machine Learning Research, 2024, 2023b.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yuhui Ding, Antonio Orvieto, Bobby He, and Thomas Hofmann. Recurrent distance filtering for
graph representation learning. In International Conference on Machine Learning, pp. 11002–
11015. PMLR, 2024.

Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long range graph benchmark. Advances in Neural Information
Processing Systems, 35:22326–22340, 2022.

Federico Errica, Henrik Christiansen, Viktor Zaverkin, Takashi Maruyama, Mathias Niepert, and
Francesco Alesiani. Adaptive message passing: A general framework to mitigate oversmooth-
ing, oversquashing, and underreaching. In Forty-second International Conference on Machine
Learning, 2025.

Ben Finkelshtein, Xingyue Huang, Michael Bronstein, and İsmail İlkan Ceylan. Cooperative graph
neural networks. In Proceedings of the 41st International Conference on Machine Learning, pp.
13633–13659, 2024.

Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. Advances in neural information processing systems, 32, 2019.

M Gori, G Monfardini, and F Scarselli. A new model for learning in graph domains. In Proceedings.
2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2, pp. 729–734.
IEEE, 2005.

Alessio Gravina, Davide Bacciu, Claudio Gallicchio, et al. Anti-symmetric dgn: a stable architecture
for deep graph networks. In Proceedings of the Eleventh International Conference on Learning
Representations (ICLR 2023), 2023.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di Giovanni. Drew: Dy-
namically rewired message passing with delay. In International Conference on Machine Learning,
pp. 12252–12267. PMLR, 2023.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

John J Hopfield. Neurons with graded response have collective computational properties like those
of two-state neurons. Proceedings of the national academy of sciences, 81(10):3088–3092, 1984.

Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Trans-
formers are better than state space models at copying. In International Conference on Machine
Learning, pp. 21502–21521. PMLR, 2024.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works, 2017.

Pascal Koiran. Dynamics of discrete time, continuous state hopfield networks. Neural Computation,
6(3):459–468, 1994.

Dmitry Krotov and John Hopfield. Dense associative memory is robust to adversarial inputs. Neural
computation, 30(12):3151–3167, 2018.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dmitry Krotov and John J Hopfield. Dense associative memory for pattern recognition. Advances
in neural information processing systems, 29, 2016.

Alessio Micheli. Neural Network for Graphs: A Contextual Constructive Approach. IEEE Trans-
actions on Neural Networks, 20(3):498–511, 2009.

Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh
Nguyen. Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In In-
ternational Conference on Machine Learning, pp. 25956–25979. PMLR, 2023.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
canu, and Soham De. Resurrecting recurrent neural networks for long sequences. In International
Conference on Machine Learning, pp. 26670–26698. PMLR, 2023.

Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Lukas Gru-
ber, Markus Holzleitner, Thomas Adler, David Kreil, Michael K Kopp, Günter Klambauer, Jo-
hannes Brandstetter, and Sepp Hochreiter. Hopfield networks is all you need. In International
Conference on Learning Representations, 2021.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International conference on machine learning, pp. 9355–9366. PMLR, 2021.

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 4(1):131–139, 1992.

Paul Smolensky. Tensor product variable binding and the representation of symbolic structures in
connectionist systems. Artificial intelligence, 46(1-2):159–216, 1990.

Alessandro Sperduti. Encoding labeled graphs by labeling raam. Advances in Neural Information
Processing Systems, 6, 1993.

Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go? reassess-
ing the long-range graph benchmark. Transactions on Machine Learning Research, 2024. ISSN
2835-8856.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In Interna-
tional Conference on Learning Representations, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. ArXiv, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Jiaxuan You, Rex Ying, and Jure Leskovec. Design space for graph neural networks. In NeurIPS,
2020.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A XLSTM UPDATE EQUATIONS

Beck et al. (2024) initially designed xLSTM as a combination of sLSTM blocks and mLSTM blocks
- using scalar memory and matrix (associative) memory respectively. However, their follow up work
(Beck et al., 2025) uses only mLSTM blocks, and these form the inspiration for gLSTM. Therefore,
we will exclusively introduce the mLSTM block update equations in this section.

The update equations, presented in a similar manner to Section 4, are given below.

State (and normalization) updates:

Ct = f tCt−1 + itvt ⊗ kt (4)

nt = f tnt−1 + itkt (5)

mt = max
(
f̃ t +mt−1, ĩt

)
(6)

Query / Key / Value computation:

qt = Wqx
t + bq (7)

kt =
1√
d
Wkx

t + bk (8)

vt = Wvx
t + bv (9)

Gate computation:

it = exp
(̃
it −mt

)
ĩt = wT

i x
t + bi (10)

f t = exp
(
f̃ t +mt−1 −mt

)
f̃ t = wT

f x
t + bf (11)

ot = σ
(
õt
)

õt = Wox
t + bo (12)

Output:

h̃t = Ctqt/max
{∣∣nt Tqt

∣∣ , 1} (13)

ht = ot ⊙ h̃t (14)

B ADDITIONAL EXPERIMENTS

Our code for reproducing all experimental results in the main paper and appendices is publicly
available at https://anonymous.4open.science/r/GNN-xLSTM-9A2D.

B.1 GPP BASELINES

We note that due to a subtle PyTorch issue in the original GPP code implementation, normalization
is not applied to the dataset targets. A refactor appears to have unknowingly fixed this issue in later
iterations of the code so later experiments are run on a normalized variant of the dataset. Unfor-
tunately, this results in unfair comparison, as results can be substantially different between the two
variants of the dataset.

Therefore, we test only on the baselines provided in the original GPP paper (Gravina et al., 2023),
as we are confident these use the un-normalized variant of the dataset, and this provides us with the
largest number of baselines to test against. We additionally ensure that our method uses the same,
un-normalized GPP variant.

B.2 ABLATIONS

To identify what elements of the gLSTM architecture are most important for performance on these
benchmarks, we perform ablations on the GPP and LRGB datasets. For LRGB, a task with a param-
eter limit, we ablate in two different settings: the first is simply removing the ablated component,

13

https://anonymous.4open.science/r/GNN-xLSTM-9A2D


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

for which results are presented in Table 4. The second is to scale the hidden dimension h to keep
the parameter count as close as possible to the 500k limit - i.e. when removing gating, this will
correspondingly increase the hidden dimension. We include these experiments as they more accu-
rately represent the reality of testing a model variant on a task with a parameter limit; these results
are presented in Table 5. These two ablation settings show very similar results. GPP ablations are
presented in Table 3.

We see that ablating gating only significantly reduces performance on Peptides-Func - other than
this, it either leaves performance the same or in some cases, improves performance (GPP Ecc. in
particular).

Table 3: Ablation of gLSTM performance on Diam, Ecc, and SSSP from the GPP benchmark. Mean
and standard deviation are reported, averaged over four random weight initializations. Other than
ablation, all other model settings are held constant; thus ablations with gating removed have reduced
parameter count.

Model Diam. Ecc. SSSP
gLSTM -0.715 ± 0.030 -4.036 ± 0.311 -2.836 ± 0.178

- Output gate -0.70 ± 0.05 -3.71 ± 0.16 -2.77 ± 0.19
- Input gate -0.75 ± 0.01 -4.72 ± 0.36 -3.27 ± 0.16
- Forget gate -0.71 ± 0.03 -4.30 ± 0.21 -3.14 ± 0.07
- All gates -0.75 ± 0.03 -4.14 ± 0.42 -3.16 ± 0.15
- K-hop aggregation 0.04 ± 0.12 0.67 ± 0.02 -3.38 ± 0.14

Table 4: Ablation of gLSTM performance on Peptides-Func and Peptides-Struct from the LRGB.
Mean and standard deviation are reported, averaged over four random weight initializations. Other
than ablation, all other model settings are held constant; thus ablations with gating removed have
reduced parameter count.

Model Peptides-Func Peptides-Struct
AP (↑) MAE (↓)

gLSTM 0.7250 ± 0.0023 0.2527 ± 0.0015

- Output gate 0.7086 ± 0.0049 0.2540 ± 0.0016
- Input gate 0.7186 ± 0.0029 0.2524 ± 0.0027
- Forget gate 0.7236 ± 0.0063 0.2522 ± 0.0011
- All gates 0.7180 ± 0.0088 0.2526 ± 0.0012
- Positional encoding 0.7208 ± 0.0072 0.2539 ± 0.0036
- K-hop aggregation 0.6030 ± 0.0096 0.2638 ± 0.0010

Table 5: Ablation of gLSTM performance on Peptides-Func and Peptides-Struct from the LRGB.
Mean and standard deviation are reported, averaged over four random weight initializations. All
methods adhere to a 500k parameter limit such that hidden dimension varies to keep parameter
count as close to this as possible.

Model Peptides-Func Peptides-Struct
AP (↑) MAE (↓)

gLSTM 0.7250 ± 0.0023 0.2527 ± 0.0015

- Output gate 0.7202 ± 0.0056 0.2537 ± 0.0011
- Input gate 0.7193 ± 0.0110 0.2518 ± 0.0027
- Forget gate 0.7148 ± 0.0107 0.2545 ± 0.0043
- All gates 0.7188 ± 0.0060 0.2528 ± 0.0035
- Positional encoding 0.7211 ± 0.0062 0.2601 ± 0.0017
- K-hop aggregation 0.6030 ± 0.0096 0.2638 ± 0.0010

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.3 HYPERPARAMETERS

In Tables 6 and 7 we present the hyperparameter sweeps and chosen hyperparameters for GPP and
LRGB respectively.

Table 6: Hyperparameter sweeps for gLSTM on LRGB tasks. In bold are the hyperparameters that
achieved the best validation set performance, and thus were those used in the main results of the
paper. Note that hidden dimension was not directly swept over, as this was maximized for each
configuration such that the model remained within the 500k parameter budget. Due to compute
limitations, hyperparameter sweeps were not exhaustive, but used Weights and Biases Bayesian
Optimization routine with Hyperband early termination.

Hyperparameter Peptides-Func Peptides-Struct
Memory Dimension 8, 16, 32 8, 16, 32
Number of Heads 1-2-8 1-5-8
Message Passing Layers 10-27-50 4-23-40
Input Norm Type Layer Layer, None
Hidden Norm Type Group Group
Act. Func. (between block) GeLU, ReLU, None GeLU, ReLU, None
Dropout 0.1 0.0, 0.1, 0.2
Hidden Dimension 45 42

Table 7: Hyperparameter sweeps for gLSTM on GPP tasks. In bold are the hyperparameters that
achieved the best validation set performance, and thus were those used in the main results of the
paper. Hyperparameters were tested exhaustively via grid search.

Hyperparameter Diam. Ecc. SSSP
Memory Dimension 8, 16 8, 16 8, 16
Number of Heads 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4
Message Passing Layers 1, 5, 10, 20 1, 5, 10, 20 1, 5, 10, 20
Input Norm Type None None None
Hidden Norm Type Group Group Group
Act. Func. (between block) Tanh, ReLU, None Tanh, ReLU, None Tanh, ReLU, None
Dropout 0.0 0.0 0.0
Hidden Dimension 10, 20, 30 10, 20, 30 10, 20, 30

B.4 OVERSMOOTHING AND LONG RANGE DEPENDENCIES

We test empirically that gLSTM is able to learn long range dependencies by evaluating on the
RingTransfer task introduced in Di Giovanni et al. (2023a). Results for gLSTM, GCN and GNN-
SSM (Arroyo et al., 2025) are shown for various ring sizes (and corresponding number of message
passing layers) in Figure 8.

0 50 100 150 200 250 300
Number of Layers

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy gLSTM

GNN-SSM

GCN

Figure 8: Performance on the RingTransfer task.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.5 ADDITIONAL NAR CLASSIFICATION RESULTS

In this section, we present additional results from the NAR task presented in the main body of the
paper.

We first visualize the Jacobian norms - separated by selected vs background nodes - for the mixed
aggregation strategies used in the main paper in Figure 9. This is, in effect, the more granular plot
of Figure 6b.

4 8 16 32 48 64 80 96

Number of Neighbours

0

200

400

600

800

1000

1200

1400

F
u
ll
 J

ac
ob

ia
n
 N

o
rm

gLSTM dim. 16

Selected

Background

4 8 16 32 48 64 80 96

Number of Neighbours

0

25

50

75

100

125

150

175

F
u
ll
 J

ac
ob

ia
n
 N

o
rm

GCN dim. 64

Selected

Background

4 8 16 32 48 64 80 96

Number of Neighbours

100

F
u
ll
 J

ac
ob

ia
n
 N

or
m

 R
a
ti
o

Ratios

gLSTM

GCN

Figure 9: Left: Mean Jacobian norms for gLSTM of memory dimension 16, with varying number of
neighbors in the NAR task, separated by whether the neighbor node corresponds to the given query
(selected) or not (background). Middle: Same, with GCN of hidden dimension 64. Right: Mean
ratios of Jacobian norms for selected nodes to background nodes, for these two models. Standard
deviation visualized in bar chart error bars and line chart shaded area.

We next separate out no-K-hop and K-hop aggregation, and plot results for a larger set of models, in
Figures 10 and 11 respectively.

We additionally verify that the number of layers is not the reason behind GCN being unable to solve
NAR at higher neighbor counts. Figure 13 visualizes the performance of GCN models with hidden
dimension 128 and various layer counts; it transpires that 2 layers performs best out of the tested
layer counts.

0 20 40 60 80 100

Number of Neighbours

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

gLSTM dim. 8

gLSTM dim. 16

gLSTM dim. 32

GCN dim. 64

GCN dim. 128

GCN dim. 256

GAT dim. 64

GAT dim. 128

GAT dim. 256

GatedGCN dim. 64

GatedGCN dim. 128

GatedGCN dim. 256

Figure 10: NAR Accuracy where all models do not use K-hop aggregation, for an expanded set of
models.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100

Number of Neighbours

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

gLSTM dim. 8

gLSTM dim. 16

gLSTM dim. 32

GCN dim. 64

GCN dim. 128

GCN dim. 256

GAT dim. 64

GAT dim. 128

GAT dim. 256

GatedGCN dim. 64

GatedGCN dim. 128

GatedGCN dim. 256

Figure 11: NAR Accuracy where all models do use K-hop aggregation, for an expanded set of
models.

gLSTM GCN GAT GatedGCN

104

105

106

T
ra

in
ab

le
 P

ar
am

et
er

s

8

16

32

64

128

256

64

128

256

64

128

256

Figure 12: Number of trainable parameters for the expanded set of models tested in Figures 10
and 11.

0 20 40 60 80 100

Number of Neighbours

0.0

0.5

1.0

A
cc

u
ra

cy

2 layers

3 layers

4 layers 5 layers

Figure 13: NAR Accuracy for GCN of hidden dimension 128, no K-hop, for varying numbers of
GCN layers.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.5.1 ADDITIONAL SENSITIVITY METRIC RESULTS

We plot in this section the sensitivity metric trends of gLSTM vs GCN, both using K-hop aggrega-
tion.

Figure 14a visualizes the Jacobian norms for different model sizes and numbers of neighbors; Fig-
ure 14b shows the ratios between selected and background node Jacobian norms. Figure 15 separates
out the Jacobian norms for gLSTM memory dimension 16 and GCN hidden dimension 64. Figure 16
visualizes the Hessian mixing metric for all models.

0 20 40 60 80 100

Number of Neighbours

101

102

103

F
u
ll
 J

ac
ob

ia
n
 N

or
m

(a) Jacobian norms

0 20 40 60 80 100

Number of Neighbours

100

101

J
a
co

b
ia

n
 N

o
rm

 R
a
ti
os

gLSTM dim. 8

gLSTM dim. 16

gLSTM dim. 32

GCN dim. 64

GCN dim. 128

GCN dim. 256

(b) Jacobian norm ratios

Figure 14: Left: Average Jacobian norms for different gLSTM and GCN models, with varying
number of neighbors in the NAR task. Right: The ratio between the Jacobian norms of the selected
(key corresponds to query) to background (key is different from query) neighbor nodes, for the
different models - see Figure 15. This plot differs from that in the main body of the paper in that
both gLSTM and GCN use K-hop aggregation.

4 8 16 32 48 64 80 96

Number of Neighbours

0

200

400

600

800

1000

1200

1400

F
u
ll
 J

ac
ob

ia
n
 N

or
m

gLSTM dim. 16

Selected

Background

4 8 16 32 48 64 80 96

Number of Neighbours

0

20

40

60

80

F
u
ll
 J

ac
ob

ia
n
 N

or
m

GCN dim. 64

Selected

Background

4 8 16 32 48 64 80 96

Number of Neighbours

100

F
u
ll
 J

ac
ob

ia
n
 N

or
m

 R
at

io
Ratios

gLSTM

GCN

Figure 15: Left: Jacobian norms for gLSTM of memory dimension 16, with varying number of
neighbors in the NAR task, separated by whether the neighbor node corresponds to the given query
(selected) or not (background). Middle: Same, with GCN of hidden dimension 64. Right: Ratios
of Jacobian norms for selected nodes to background nodes, for these two models. This plot differs
from that in the main body of the paper in that both gLSTM and GCN use K-hop aggregation.

0 20 40 60 80 100

Number of Neighbours

10¡4

10¡2

100

H
es

si
an

 M
ax

 V
al

u
e

gLSTM dim. 8

gLSTM dim. 16

gLSTM dim. 32

GCN dim. 64

GCN dim. 128

GCN dim. 256

Figure 16: Mean of the maximum Hessian values for different gLSTM and GCN models, averaged
across test set examples and different neighbor nodes. This plot differs from that in the main body
of the paper in that both gLSTM and GCN use K-hop aggregation.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100

Number of Neighbours

0.2

0.4

0.6

0.8

1.0

M
S
E

gLSTM dim. 8

gLSTM dim. 16

gLSTM dim. 32

GCN dim. 64

GCN dim. 128

GCN dim. 256

Figure 17: NARR MSE where all models do not use K-hop aggregation.

B.6 NEIGHBOR ASSOCIATIVE RECALL REGRESSION RESULTS

In this section, we present results for the regression variant of the NAR task presented in the main
body of the paper. We refer to this as Neighbor Associative Recall Regression (NARR).

Similarly to NAR, for a given neighborhood size N we create a graph of N + 3 nodes. This graph
consists of N “neighbor” nodes, a central node to which they are all connected, and an intermediate
node connected to the central node and a “query” node connected only to the intermediate node.

Each of the neighbor nodes has a feature vector representing a key and a value. The values consist
of a fixed-dimensional vector of length V where each element is randomly sampled from a standard
normal distribution. The keys are each unique one-hot vectors of dimension N . The query node’s
feature vector contains a single one-hot vector, equal to one of the one-hot vectors of the neighbor
nodes. The target of the graph is for the central node to predict the value of the neighbor node,
corresponding to the key that matches the query node. Each node u is therefore equipped with an
input feature vector x ∈ RV+2N , where the first V elements comprise the value, the nextN elements
the key and the final N elements the query. Where a node does not have one of these features, the
vector elements are set to zero. We note the use of one-hot encoding for keys and values means
that the first linear layer of the model acts as a learned embedding function, where multiplication
with the one-hot encoding simply selects the corresponding column of the weight matrix. For our
experiments, we use V = 16.

Since the value vectors lack the sparsity of NAR, this appears to be a “harder” task in the sense
that it is more taxing on memory capacity. This means that some of the over-squashing trends are
more defined, particularly trends in sensitivity-based measures - see Appendix B.6.1. However,
our experiments suggest that the regression target means that NARR becomes too hard for vector-
memory MPNNs to effectively solve, visible in Figures 17 and 18.

Performance (MSE) for NARR is shown in Figures 17 and 18 for no-K-hop and K-hop aggregation
respectively. We note that the performance curves in Figure 18 look similar to those obtained by
the sequence modeling variant of this experiment in Schlag et al. (2021). The number of trainable
parameters is shown in Figure 19.

B.6.1 RELATIONSHIP TO OVER-SQUASHING SENSITIVITY METRICS

As with NAR in the main paper, we visualize the behavior of sensitivity-based over-squashing met-
rics for different neighbor counts and different models. Similarly to the main paper, we compare
gLSTM using K-hop aggregation and GCN without. We note that – perhaps due to the increased
difficulty of the task – the trends discussed in Section 5.2 are actually more pronounced for the
NARR task.

Figure 20a visualizes the Jacobian norms for different model sizes and numbers of neighbors; Fig-
ure 20b shows the ratios between selected and background node Jacobian norms. Figure 21 separates
out the Jacobian norms for gLSTM memory dimension 16 and GCN hidden dimension 64. Figure 22
visualizes the Hessian mixing metric for all models.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100

Number of Neighbours

0.0

0.2

0.4

0.6

0.8

1.0

M
S
E

gLSTM dim. 8

gLSTM dim. 16

gLSTM dim. 32

GCN dim. 64

GCN dim. 128

GCN dim. 256

Figure 18: NAR Accuracy where all models do use K-hop aggregation.

gLSTM GCN

104

105

T
ra

in
ab

le
 P

ar
am

et
er

s

8

16

32

64

128

256

Figure 19: Number of trainable parameters for the expanded set of models tested in Figures 17
and 18.

We note that the sensitivity difference between selected and background nodes is particularly stark
here, even more so for classification-based NAR; gLSTM consistently shows a sharp drop-off in
Figure 20b at the memory dimension, and GCN maintains a ratio remarkably close to unity. This
closely aligns with the performance of these models, Figure 18 demonstrates that gLSTM perfor-
mance begins to drop off quickly when the number of neighbors matches the memory dimension,
and Figure 17 demonstrates that GCN is never able to solve the task, for any tested number of
neighbors.

We hypothesize that the strong impact of the K-hop aggregation on the model’s ability to selectively
recall - particularly visible for NARR - may partially explain the dramatic performance decrease
when ablating this aggregation, discussed in Appendix B.2. We note that, while gLSTM consis-
tently demonstrates superior performance to GCN, the improved performance is most striking when
additionally using K-hop aggregation; it appears that the inductive bias introduced by the K-hop
aggregation is particularly suited to the selective recall required by this task.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100

Number of Neighbours

101

102

F
u
ll
 J

a
co

b
ia

n
 N

or
m

(a) Jacobian norms

0 20 40 60 80 100

Number of Neighbours

100

101

J
ac

ob
ia

n
 N

or
m

 R
a
ti
os

gLSTM dim. 8

gLSTM dim. 16

gLSTM dim. 32

GCN dim. 64

GCN dim. 128

GCN dim. 256

(b) Jacobian norm ratios

Figure 20: Left: Average Jacobian norms for different gLSTM and GCN models, with varying
number of neighbors in the NARR task. Right: The ratio between the Jacobian norms of the selected
(key corresponds to query) to background (key is different from query) neighbor nodes, for the
different models - see Figure 21.

4 8 16 32 48 64 80 96

Number of Neighbours

0

50

100

150

200

250

300

F
u
ll
 J

ac
ob

ia
n
 N

or
m

gLSTM dim. 16

Selected

Background

4 8 16 32 48 64 80 96

Number of Neighbours

0

2

4

6

8

10

F
u
ll
 J

ac
ob

ia
n
 N

or
m

GCN dim. 64

Selected

Background

4 8 16 32 48 64 80 96

Number of Neighbours

100

2£100

3£100

4£100

6£100

F
u
ll
 J

ac
ob

ia
n
 N

or
m

 R
at

io

Ratios

gLSTM

GCN

Figure 21: Left: Jacobian norms for gLSTM of memory dimension 16, with varying number of
neighbors in the NARR task, separated by whether the neighbor node corresponds to the given
query (selected) or not (background). Middle: Same, with GCN of hidden dimension 64. Right:
Ratios of Jacobian norms for selected nodes to background nodes, for these two models.

0 20 40 60 80 100

Number of Neighbours

10¡4

10¡2

100

H
es

si
an

 M
ax

 V
al

u
e

gLSTM dim. 8

gLSTM dim. 16

gLSTM dim. 32

GCN dim. 64

GCN dim. 128

GCN dim. 256

Figure 22: Mean of the maximum Hessian values for different gLSTM and GCN models, averaged
across test set examples and different neighbor nodes.

21


	Introduction
	Background and Related Work
	The Two Faces of Over-Squashing
	Existing Over-Squashing Tasks do not (Only) test Capacity
	Neighbor Associative Recall: Isolating Storage Capacity

	gLSTM: Combining Graph Networks and Associative Memory
	Experiments
	Neighbor Associative Recall
	How does Capacity Relate to Sensitivity?
	Long Range Benchmarks

	Conclusion
	xLSTM Update Equations
	Additional Experiments
	GPP Baselines
	Ablations
	Hyperparameters
	Oversmoothing and Long Range Dependencies
	Additional NAR Classification Results
	Additional Sensitivity Metric Results

	Neighbor Associative Recall Regression Results
	Relationship to Over-Squashing Sensitivity Metrics



