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ABSTRACT

Large language models (LLMs) have demonstrated significant advances in reading
comprehension. However, a persistent challenge lies in ensuring these models
maintain high accuracy in answering questions while reliably recognizing unan-
swerable queries. This issue remains critical, particularly as the length of supported
contexts continues to expand. To address this challenge, we propose a collaborative
multi-task workflow called FactGuard to automatically generate evidence-based
question-answer pairs and systematically construct unanswerable questions. Using
this methodology, we developed the FactGuard-Bench dataset, which comprises
25,220 examples of both answerable and unanswerable question scenarios, with
context lengths ranging from 4K to 128K. Experimental evaluations conducted
on nine popular LLMs reveal that all LLMs exhibit significant performance gap
between answerable and unanswerable questions and the most advanced mod-
els achieve only 67.67% overall accuracy. After training with FactGuard-Bench,
the model achieves an overall accuracy of 81.17%, along with enhanced reason-
ing capabilities on unanswerable questions. Our code is publicly available at
https://anonymous.4open.science/r/FACTGUARD-5BBC

1 INTRODUCTION

Comprehending text and answering questions are foundational capabilities in the field of Natural
Language Processing (NLP). Over the years, large language models (LLMs) have made substantial
progress in reading comprehension, including the ability to process long-context inputs of up to 128K
tokens(Yang et al., 2025; Liu et al., 2024). However, LLMs often tend to be overconfident (Slobodkin
et al., 2023) and specially face an increased risk of generating hallucination or plausible content on
unanswerable questions Deng et al. (2024). This will undermine confidence in LLM capabilities and
diminish their overall reliability.

Extracting answers to answerable questions or providing justifications for why certain questions are
unanswerable is equally essential for enhancing the practicality of LLMs. Answerable questions
can be resolved using information contained in the provided context, while unanswerable questions
arise when the context lacks sufficient or reliable evidence to support a definitive response. Handling
unanswerable questions presents a particularly challenging scenario, as it requires LLMs to deeply
comprehend the context, accurately determine that the question cannot be answered, and provide
appropriate reasons to convince the user.

Recently, many advanced works have made a lot of efforts on unanswerable questions (Deng et al.,
2024; Yehuda et al., 2024; Rajpurkar et al., 2018). SQuAD 2.0 (Rajpurkar et al., 2018) focuses on
the reading comprehension of models in both answerable and unanswerable questions with manual
annotation. Its texts are constrained by a context length of under 4K tokens and it does not include
explicit refusal responses for unanswerable questions. SelfAware (Yin et al., 2023) employs a
straightforward approach that prompts LLMs to detect unanswerable questions and response to them
using predefined replies such as, "The answer is unknown". KUQ (Amayuelas et al., 2023) handles
open-source LLMs on Known-Unknown questions in open-ended question-answering scenarios
rather than questions related to reading comprehension. Self-Aligned method(Deng et al., 2024)
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Figure 1: Illustration of FactGuard for data synthesis in a collaborative multi-task workflow frame-
work.

mainly focuses on reasoning responses to unanswerable questions and does not pay attention to long
context and it also requires manually labeled questions as seed data.

To overcome the above limitations, we propose a novel approach that employs a collaborative multi-
task workflow framework to enable automated data augmentation. We introduce FactGuard-Bench,
a reading comprehension dataset of 25,220 questions (8,829 answerable and 16,391 unanswerable)
with context lengths ranging from 4K to 128K, developed through our framework. Experiments show
that even the best-performing model achieves an overall accuracy of 67.67%, with significantly lower
performance on unanswerable questions compared to answerable ones. Through further training,
we achieved achieves an overall accuracy of 81.17%, along with enhanced reasoning capabilities on
unanswerable questions.

We highlight our contributions as follows:

1. Innovative collaborative multi-task workflow for Data Augmentation: We introduce
FactGuard, a collaborative multi-task workflow framework designed to dynamically gener-
ate both answerable and unanswerable questions through a coordinated multi-step process.
This approach produces contextually challenging examples that enhance the comprehension
ability of LLMs.

2. Development of Benchmark for Long-Context Evaluation: We curate FactGuard-
Bench, a long texts benchmark specifically tailored to assess the ability of LLMs to handle
answerable and unanswerable questions.

3. Enhancement of LLMs on unanswerable questions: Experiments with state-of-the-art
LLMs show our method enhanced the model’s ability to handle unanswerable questions and
generated well-reasoned answers when solving unanswerable questions.

2 RELATED WORK

2.1 MACHINE READING COMPREHENSION

Machine reading comprehension (MRC) is a hot research topic in the field of NLP, which focuses on
reading documents and answering related questions (Liu et al., 2019; Baradaran et al., 2022). Over
the years, machine reading comprehension has garnered significant attention from both academia
and industry (Hermann et al., 2015; Liu et al., 2019). With the rapid advancements of large language
models (LLMs) Zhao et al. (2023); Liu et al. (2023), retrieval-augmented generation (RAG) has
emerged as a promising framework for tackling reading comprehension tasks across diverse spe-
cialized domains (Zhao et al., 2024; Lewis et al., 2020). Nevertheless, even state-of-the-art RAG
frameworks are susceptible to retrieval accuracy limitations (Hu et al., 2019; Wang et al., 2024),
which emphasizes the critical importance of facticity Jacovi et al. (2025); Bi et al. (2024), i.e., the
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ability of a model to generate factually consistent and verifiable responses in information-seeking
scenarios. In this work, we emphasize scalable and robust evaluation of answerable and unanswerable
questions in reading comprehension.

2.2 LONG CONTEXT LLMS AND BENCHMARKS

Recent studies have emphasized the importance of extending positional embeddings to improve the
ability of LLMs to handle long contexts effectively (Su et al., 2021; Press et al., 2021; Chi et al., 2022).
Closed-source LLMs, in particular, have emerged as leaders in long-context modeling, benefiting
from progressively larger context windows. For instance, models such as GPT-4 (Achiam et al.,
2023) and Gemini Pro 1.5-1000k (Team et al., 2024) are capable of processing increasingly longer
documents, with context lengths ranging from 128k to 1000k tokens. Similarly, open-source LLMs,
including Qwen 2.5 (Yang et al., 2024a) and DeepSeek (DeepSeek-AI, 2024), also support context
lengths of at least 128k tokens. Key benchmarks for assessing long-context capabilities include NIAH
(gkamradt, 2023; Yu et al., 2025), Longbench Series (Bai et al., 2023; 2024), LooGLE (Li et al.,
2023), and L-Eval (An et al., 2024), among others. In FactGuard-Bench, we utilize a wider range of
context lengths to evaluate the LLM’s ability to understand, learn, and reason about information in
text.

2.3 DETECTION OF UNANSWERABLE QUESTIONS

In recent years, studies have increasingly focused on enhancing the ability of reading comprehension
models to detect unanswerable questions. Approaches such as those by (Yin et al., 2023) and
(Slobodkin et al., 2023) employ prompt engineering—for instance, by incorporating hints such as,
“If the question cannot be answered based on the passage, reply ‘unanswerable’”—to improve the
model’s ability to detect unanswerable questions. On the other hand, some methods (Agarwal et al.,
2023; Deng et al., 2024; Rajpurkar et al., 2018) construct datasets related to unanswer questions to
evaluate the model’s ability of detection of unanswerable questions. For example, (Agarwal et al.,
2023) categorized unanswerable questions into five distinct types: Incomplete Information, Future
Questions, Incorrect Information, Ambiguous, and Unmeasurable. They also introduced QnotA—a
dataset consisting of 400 samples designed to support this taxonomy. However, these datasets are
often small in scale, require expensive annotation manpower, and have a short context information.
We automatically constructed FactGuard-Bench generating by LLMs, a large-scale dataset comprising
tens of thousands of long texts. This dataset enables a comprehensive multi-dimensional evaluation
of model capabilities in detecting unanswerable questions.

3 FACTGUARD METHODOLOGY

As shown in Figure 1, we propose FactGuard, a collaborative multi-task workflow framework for
automated data synthesis. FactGuard consists of three primary stages: Preparation Stage, Answerable
QA Generation Stage, and Unanswerable QA Generation Stagee.

3.1 PREPARATION STAGE

We slice the original long document into multiple short text fragments. The window size is kept at
[500, 1000] and slicing is done on a paragraph by paragraph basis. We randomly select Fragment X
for the following sub-steps:

• Quality Scoring: Using LLM, we evaluate Fragment X in terms of fluency, coherence, and
logicality, assigning a quality score on a 5-point scale (scorei ∈ [1, 5]). Fragments with
score lower than 4 will be discarded to ensure their high quality.

• Topic Labeling: Then, we utilize LLM to extract structured information as topic labeling
(e.g., temporal expressions, numerical values, entity, locations, organizations, and events)
from Fragment X. Fragments without clear structured information will be discarded because
these structured information are important for QA generation.

After preparation stage, We obtain many high-quality fragments with clear structural information
from the original long document.

3
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Reasoning Description Example

Lack of
Evidence

The question is re-
lated to the article,
but the factual basis
is deleted.

Fragment: ...There had been a lack of confidence in Murray since
Romani, and the two failed Gaza battles increased his unpopularity
among both the infantry and the mounted troops. After the war Al-
lenby acknowledged Murray’s achievements in a June 1919 despatch
in which he summed up his campaigns...
Question: According to this article, in what year did Allenby recog-
nize Murray’s accomplishments in his circular?
Answer: The question cannot be answered. The article mentions
Murray’s performance in the battle, but does not mention what year
Allenby recognized his accomplishments.

Misleading
Evidence

The key information
of the question is
misaligned against
the facts of the arti-
cle.

Fragment: Global and Local Mixture Consistency Cumulative
Learning (GLMC) for Long-Tailed Visual Recognition...The paper
introduces GLMC, a one-stage training strategy designed to improve
long-tailed visual recognition by enhancing the robustness of the
feature extractor and reducing the bias of the classifier towards head
classes. GLMC uses a global and local mixture consistency loss and
a cumulative head-tail soft label reweighted loss...
Raw Question: What are the core ideas behind the Global and Lo-
cal Mixture Consistency cumulative learning (GLMC) framework
and how does it improve long-tailed visual recognition?
Question1 with entity substitutions: What are the core ideas be-
hind the Global and Local Augmentation Consistency Learning
(GLACL) framework and how does it improve long-tailed visual
recognition?
Answer1: The article focuses on GLMC and does not mention
GLACL. The core ideas of GLACL cannot be answered, but about
GLMC...
Question2 with impossible condition insertions: What are the
core ideas behind the Global and Local Mixture Consistency cumu-
lative learning (GLMC) and framework and how does it improve
long-tailed visual recognition on CIFAR-100-LT?
Answer2: The article does not mention CIFAR-100-LT. The ques-
tion of how GLMC improves long-tailed visual recognition on
CIFAR-100-LT cannot be answered, but the article mentioned
GLMC improve long-tailed visual recognition by enhancing ...

Table 1: A detailed categorization of unanswerable examples in FactGuard-Bench.

3.2 ANSWERABLE QA GENERATION STAGE

On answerable QA generation stage, we generate questions, answers and evidence based on high-
quality fragments obtained in preparation stage. Note that evidence consists of specific text segments
from fragments that substantiate the answer. This design ensures that each question is firmly
grounded in the original long document. Since there are low-quality results for LLM generation, such
as questions that are not fluent or the evidence does not come from the fragments, we filter them with
quality judgment after answerable QA generation.

After QA Generation stage, we can obtain the answerable questions, answers and evidence derived
from the original text.

3.3 UNANSWERABLE QA GENERATION STAGE

On unanswerable QA generation stage, we generate unanswerable questions and their corresponding
answers based on the answerable questions that have already been generated in the QA generation
stage. There are mainly two methods for generating unanswerable QA:

• Unanswerable questions of lacking evidence: We simply remove the evidence from
fragment, thus making the question unanswerable due to lack of information. For the
rejection response, we ask the LLM to provide a reasonable rejection response that echoes
the question, and then introduce the main content of the document to prove that the answer
cannot be found in the text.

• Unanswerable questions of misleading evidence: To create misleading questions, we use
LLM to rewrite question through entity substitutions and impossible condition insertions.
When rewriting the question through entity replacement, we require that in the rejection
responses generated by LLM, it should be indicated that the content appearing in the article
is related to the entity before replacement, rather than that of the entity after replacement.
When rewriting the question through impossible condition insertions, We require LLM
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to first refer to the explanation in the rejection response to clarify that the answers to the
questions with impossible condition insertions cannot be found in the original text, and then
answer the original questions before rewriting.

As shown in Table 1, a detailed overview of unanswerable examples in FactGuard-Bench can be
found. For unanswerable questions of lacking evidence lacking evidence, we remove the evidence
from the original fragment. For unanswerable questions with misleading evidence, the Fragment
remains unchanged, but we rewrite the questions using entity substitution or impossible condition
insertions.

To ensure the quality of unanswerable questions, we review process for the generated data by
employing Retrieval Augmented Generation (RAG) techniques. This approach allows us to extract
the top N relevant passages from a lengthy article for short-reading comprehension and to filter out
data that contain conflicting answers. Furthermore, we employ the World Wide Web to filter common-
sense knowledge, effectively circumventing the inherent conflict between context-faithfulness and
common-sense accuracy.

After unanswerable QA generation stage, we can obtaine the unanswerable questions along with
reasonable response that remain highly relevant to the original text.

Remark FactGuard ensures the generation of high-quality, contextually relevant answerable and
unanswerable questions. The multi-task collaboration framework not only enhances the efficiency of
the data augmentation process but also significantly improves the diversity and complexity of the
generated datasets.

4 BENCHMARK CONSTRUCTIONS

FactGuard dynamically generates answerable and unanswerable questions by leveraging a multi-task
collaboration process. The LLM underlying the whole process is Qwen2.5-72B-Instruct Yang et al.
(2024b). We collect raw, lengthy texts from the open-source community as the initial input for our
process. These texts cover both Chinese and English languages and span domains such as law and
books. Specifically, the datasets include legal datasets such as Pile of Law (Henderson et al., 2022),
Tiger Law (Chen et al., 2023), the book dataset Gutenberg 1, open-copyright Chinese books, and so
on.

4.1 CHARACTERISTICS

We develop a large-scale dataset of long context, FactGuard-Bench, using FactGuard framework.
FactGuard-Bench includes 25,220 data examples generated from 16,742 texts. Detailed statistical
information regarding FactGuard-Bench is presented in Table 2 and distributions of FactGuard-Bench
in terms of domain, question type and length illustrate in Figure 2. The dataset includes English (en)
and Chinese (zh) across two domains, law and books, and features two types of questions: answerable
and unanswerable. Unanswerable questions are either due to a lack of evidence or misleading
evidence. Example lengths range from 4K to 128k tokens.

4.2 MANUAL REVIEW

To verify the quality of the synthetic data, we randomly sampled 480 examples for manual review.
Each example was independently assessed by three annotators with human guidelines (Thakur et al.,
2024) classifying example as qualified and unqualified. The human guidelines can be found in
Appendix A.1. The inter-annotator agreement, as measured by Fleiss’s Kappa (Cohen, 1960), was
substantial (κ = 0.64), indicating a reliable set of human judgments. The overall quality of FactGuard-
Bench is 93.96% which indicates that the synthetic data generated by our method maintains high
quality and the details can be found in Appendix A.2.

1www.gutenberg.org
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FactGuard-Bench

Overall En Zh
0-16k 16-32k 32k-64k 64k-128k 0-16k 16-32k 32k-64k 64k-128k

Train 19100 2043 2508 3077 3071 4065 3141 826 369
Dev 1920 300 300 270 270 300 120 300 60
Test 4200 600 600 600 600 600 300 300 600

Table 2: Dataset statistics of FactGuard-Bench.

Figure 2: Distributions of FactGuard-Bench in terms of domain, question type and length.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

To evaluate the ability of LLMs on FactGuard-Bench, our experiments included several open-source
models that have been instruction-tuned using Supervised Fine-Tuning (SFT) (Ouyang et al., 2022)
and Reinforcement Learning from Human Feedback (RLHF) (Stiennon et al., 2020; Bai et al., 2022).
Specifically, we utilized the following open-source models: Mistral-Large-Instruct-2411 (123B)
(Jiang et al., 2024), DeepSeek-V3-0324 (685B) (Liu et al., 2024), Llama3.3-70B-Instruct (Dubey
et al., 2024), Qwen2.5 series models (Yang et al., 2024a). We also obtained evaluation results through
API calls for several proprietary models. These included GPT-4o2 from OpenAI (Achiam et al., 2023),
Gemini1.5 Pro (GeminiTeam, 2024). Please note that we provide the operational URL addresses
of these proprietary models and document the version numbers used in our experiments to ensure
reproducibility.

We employ full-parameter SFT training on Qwen2.5 series models (Yang et al., 2024a) to validate
the effectiveness of FactGuard-Bench. We utilized the AdamW optimizer, setting the learning rate
to 2× 10−5 with 2 epoch for full-paramenter SFT. We set the warm-up ratio to 0.1 and the weight
decay to 0.1.

5.2 EVALUATION SETTINGS AND METRICS

We evaluate the model’s capabilities by assessing the consistency between its predicted answers and
the ground truth, rather than relying on metrics such as Exact Match (EM) or F1 Rajpurkar et al.
(2018), which require threshold tuning. Leveraging the discriminative capabilities of LLM-as-Judge
approach Zheng et al. (2023), our evaluation differentiates between answerable and unanswerable
questions. For answerable questions, a prediction is assigned a score of 1 if it contains the correct
information fragments from the ground truth; otherwise, it is scored 0. For unanswerable questions,
responses are assigned a score of 1 if they appropriately recognize the unanswerable nature of the
question (e.g., through rejection), and a score of 0 if they generate hallucinatory content.

2https://openai.com/index/gpt-4o-system-card/
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We selected Qwen2.5-72B-Instruct Yang et al. (2024b) as the discriminant model for our experiments.
The accuracy of LLM-based evaluation is about 94% after manual evaluation, and more details will
be discussed in the Appendix B.

5.3 EXPERIMENTAL RESULTS

5.3.1 ANSWER CONSISTENCY EVALUATION

The evaluation of answer consistency on the FactGuard-Bench test set is presented in Table 3. The
analysis distinguishes between answerable and unanswerable questions, with the latter further divided
into lack of evidence and misleading evidence categories. From Table 3, we can clearly see that
both closed-source and open-source LLMs exhibit significant performance gap between answerable
and unanswerable questions. For example, GPT-4o achieves an accuracy of 87.89% on answering
Chinese questions, but only reaches 37.06% on unanswerable questions with lack evidence and 30.3%
on those with misleading evidence. This trend highlights the limitations of current LLMs in handling
unanswerable questions and further underscores the value of FactGuard-Bench.

5.3.2 SCALING COMPARISON EVALUATION

We performed supervised fine-tuning (SFT) experiments on Qwen series models of varying scales
and the results are shown in Table 4. The results show that the performance of models at different
scales has been significantly improved after sft. For example, the Qwen2.5-3B-Instruct obtains a
rise in overall accuracy from 45.39% to 78.94% after sft. Notably, The overall accuracy improves
with increasing model scale, and models of all scales can achieve significant improvements on
unanswerable questions, which indicate the validity and broad applicability of FactGuard-Bench.
Additionally, our experiments with sft reveal a trade-off inherent in fine-tuning with FactGuard-Bench.
This can be seen from the performance of the sft by Qwen2.5-14B-Instruct in Chinese that while it
enhances the model’s capability on unanswerable questions, it also results in a slight decrease on
answerable questions.

In Figure 3, we show prediction accuracy on Qwen series models of different scales on unanswerable
questions in English. We can clearly see that the Qwen models exhibit progressively stronger
performance on unanswerable questions as the model scale increases, especially in the lack of
evidence scenario. Furthermore, after sft with FactGuard-bench, models of various scales consistently
achieve strong performance on unanswerable questions. The results demonstrate that our method
enhances model performance across scales and provides a generalizable strategy for improving the
reliability of large language models.

5.3.3 DIFFERENT LENGTH INTERVALS EVALUATION

Figure 4 presents prediction accuracy of different length intervals on unanswerable questions. We
can clearly observe from Figure 4a that all models achieve best performance on shorter texts (0–4k),
with a noticeable drop in performance as text length increases. Notably, in Figure 4b, we present
the results of sft on the Qwen2.5 series models. The results show substantial improvements in
unanswerable questions in all length categories, with consistent outperformance over baseline system.
These findings underscore the value of FactGuard-Bench in improving model robustness and confirm

FactGuard-Bench Test
En Zh

Model Overall Answerable Lack of Misleading Answerable Lack of Misleading
questions evidence evidence questions evidence evidence

GPT-4o (20240806) 45.9 89.89 41.57 40.78 87.89 37.06 30.30
DeepSeek-V3-0324 46.39 89.57 34.41 40.17 85.55 39.51 36.61
Llama-3.3-70B-Instruct 43.81 90.37 46.19 43.18 87.5 27.62 18.70
Mistral-Large-Instruct-2411 45.78 89.89 52.41 45.82 86.33 31.25 18.85
Gemini1.5-Pro (202409) 58.20 86.25 54.60 59.61 83.05 45.45 50.81
Qwen2.5-32B-Instruct 67.67 86.36 71.43 67.65 84.76 63.28 55.43

Table 3: Prediction accuracy on the test set of FactGuard-Bench. Note that unanswerable questions
include lack of evidence and misleading evidence.

7
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FactGuard-Bench Test
En Zh

Model Overall Answerable Lack of Misleading Answerable Lack of Misleading
questions evidence evidence questions evidence evidence

Qwen2.5-3B-Instruct 45.39 80.75 48.03 43.50 73.83 39.51 27.66
Qwen2.5-7B-Instruct 47.49 85.02 54.96 42.69 80.86 40.91 30.26
Qwen2.5-14B-Instruct 65.17 85.37 68.65 64.80 85.16 59.79 52.5
Qwen2.5-32B-Instruct 67.67 86.36 71.43 67.65 84.76 63.28 55.43
Qwen2.5-3B-Instruct-sft 78.74 ↑ 82.62 ↑ 84.83 ↑ 78.88 ↑ 80.47 ↑ 96.85 ↑ 68.34 ↑
Qwen2.5-7B-Instruct-sft 79.11 ↑ 83.15 ↓ 85.06 ↑ 81.54 ↑ 80.85 ↓ 86.36 ↑ 68.23 ↑
Qwen2.5-14B-Instruct-sft 79.95 ↑ 86.33 ↑ 85.29 ↑ 81.61 ↑ 80.07 ↓ 89.16 ↑ 69.56 ↑
Qwen2.5-32B-Instruct-sft 81.17 ↑ 89.04 ↑ 89.52 ↑ 81.86 ↑ 84.77 ↑ 92.31 ↑ 68.86 ↑

Table 4: Prediction accuracy of Qwen2.5 series models after sft on FactGuard-Bench.

(a) Lack of evidence. (b) Misleading of evidence.

Figure 3: Prediction accuracy on LLMs of different scales on unanswerable questions.

its efficacy as a benchmark for driving progress in the evaluation and development of models handling
unanswerable questions.

5.3.4 REASONING ABILITY EVALUATION FOR UNANSWERABLE QUESTIONS

We evaluate the model’s ability to refuse unanswerable questions and to avoid generating hallucination
content. Specifically, we employ LLMs to categorize the responses to unanswerable questions into
three distinct types: incorrect answers, correct answers-direct refusals, and correct answers-reasoned
answers.

The results of Figure 5a reveal a consistent pattern among baseline models: a predominant tendency to
generate incorrect answers rather than employing refusal mechanisms or providing reasoned responses.
It is worth noting that the application of sft yields significant improvements, not only enhancing
response accuracy but also substantially increasing the rates of reasoned answers. Moreover, we
examined how varying ratios of answerable to unanswerable data in sft of Qwen2.5-7B-Instruct affect
reasoning capabilities, as illustrated in Figure 5b. The results demonstrate that even a modest ratio,
such as 8:1, leads to significant improvements in reasoning performance. A detailed case study can
be found Appendix C.These findings indicate FactGuard-Bench can effectively enhance reasoning

(a) LLMs. (b) Qwen series with sft.

Figure 4: Prediction accuracy of different length intervals on unanswerable questions.
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(a) Percentage breakdown of answering unanswer-
able questions in the FactGuard-Bench test set.

(b) The proportion of reasoning answers.

Figure 5: Reasoning ability on unanswerable questions

ability of unanswerable questions which is crucial to proactively explain why a question lacks a
definitive answer and help users refine their queries or adjust their expectations.

5.3.5 CROSS-BENCHMARK GENERATION ABILITY EVALUATION

To assess the generalizability of our method and confirm that it does not overfit on synthetic data, we
evaluated Qwen2.5 series models fine-tuned on FactGuard-Bench using cross-benchmark validation
on the SQuAD 2.0 dataset(Rajpurkar et al., 2018), which has fully human-annotated answerable and
unanswerable questions. As shown in Table 5, models trained with FactGuard-Bench are predicted
on the dev set of SQuAD 2.0 and show improvements in their overall metrics, especially in handling
unanswerable questions. These results confirm the generalization capability of our approach. We
can also see that while it enhances the model’s capability on unanswerable questions, it also results
in a decrease on answerable questions. For example, the Qwen2.5-7B-Instruct obtains a rise on
unanswerable questions from 44.77% to 80.30% after sft with a drop on answerable questions from
94.16% to 86.10%. And as the scale of the model increases, the room for improvement left through
fine-tuning becomes smaller. In the future, one of our important long-term goals is to enhance the
model’s ability on unanswerable questions while maintaining performance for answerable ones.

Model Overall answerable unanswerable
Qwen2.5-3B-Instruct 67.51 92.51 42.57
Qwen2.5-7B-Instruct 69.43 94.16 44.77
Qwen2.5-14B-Instruct 76.12 93.96 58.33
Qwen2.5-32B-Instruct 78.66 94.43 62.93
Qwen2.5-3B-Instruct-sft 78.22 ↑ 16% 85.31 ↓ 8% 71.15 ↑ 67%

Qwen2.5-7B-Instruct-sft 83.20 ↑ 20% 86.10 ↓ 8% 80.30 ↑ 79%

Qwen2.5-14B-Instruct-sft 80.38 ↑ 6% 86.30 ↓ 8% 74.48 ↑ 28%

Qwen2.5-32B-Instruct-sft 79.47↑ 1.02% 90.55 ↓ 4% 68.41↑ 8.7%

Table 5: Prediction accuracy on the dev set of SQuAD 2.0.

6 CONCLUSION

In this paper, we presented FactGuard, a collaborative multi-task workflow framework for dynamically
generating both answerable and realistic unanswerable questions with strong contextual relevance.
Besides, we provide FactGuard-Bench, a meticulously curated benchmark designed to evaluate LLMs’
performance on answerable and unanswerable questions in long-context reading comprehension.
Experimental results have shown that LLMs exhibit significant performance gap between answerable
and unanswerable questions and achieve best performance on shorter texts, with a noticeable drop
in performance as text length increases. Training with FactGuard-Bench can enhances the model’s
capability on unanswerable questions with reasoning answer and enhance the performance of different
length interval, which indicates the effectiveness and strong scalability of our method.
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A MANUAL REVIEW OF DETAILS

A.1 HUMAN ANNOTATION GUIDELINES

You will be given a document, a question and a answer and the answer given by an LLM. Your task
is to judge if the answer given by the LLM is correct, as if you were the LLMs teacher grading their
exam. An answer should be counted as correct if it correctly answers the question based on the
content of the document. In doing so, please follow the following guidelines:

• For answerable questions, the answers that are generated strictly based on the provided
document content, ensuring they remain accurate and free from hallucinations should be
marked correct.

• For unanswerable questions, the answers that correctly indicate unanswerability and provide
appropriate justification based on the text content should be considered correct.

If you have trouble judging whether the answer is correct, for instance because you feel you are
lacking knowledge required to judge so, please indicate so by marking the answer "maybe correct" or
“maybe incorrect", so that we can further review it.

A.2 SYNTHETIC DATA QUALITY

We hired three people on a crowdsourcing platform to perform the annotation and used a voting
method to select the final answer. We asked each annotator to spend at least 10 minutes reading
the text and evaluating each example.The results are shown in Table 6. The lower quality in the
misleading evidence category was due to the omission of clarifications during the synthesis of answers,
as the relevant instructions were not followed. However, the overall quality of 93.96% indicates the
high value of our method.

QA class Answerable Unanswerable
Lack of evidence Misleading evidence

Number 120 120 240

Quality(%) 94.17 93.89
96.67 92.50

Overall quality(%) 93.96

Table 6: Manual review of synthetic data quality.

B LLM-BASED EVALUATION

To ascertain the reliability of the discriminative model employed in our evaluation, we randomly
selected 300 samples for manual review based on the discriminant model’s results of discriminating
Qwen2.5-72B answers from standardized answers. Consistent with our approach to validating

Task 1: Answer Consistency Evaluation.
QA class Answerable question Lack of evidence Misleading evidence
Number 80 60 160

Quality(%) 95.00 93.33 93.75
Overall quality(%) 94.00

Task 2: Reasoning Ability for Unanswerable Questions.
Answer class Incorrect answers Direct refusals Reasoned answers

Number 60 111 49
Quality(%) 93.33 91.89 97.96

Overall quality(%) 93.64

Table 7: Manual review results of judgment quality by the discriminative model on Qwen2.5-72B
response answers.
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Who is described as untameable, irresistible, and peremptory?

Question 

The document does not describe any character or individual as untameable, 

irresistible, and peremptory. However, the character of Kenyon in the 

"Westminster Play" section displays traits that could be interpreted as matching 

this description, given his determined and unyielding opposition to the closure of 

the debate, despite the efforts of others to persuade him otherwise. He is portrayed 

as immovable in his stance and unwilling to compromise, which aligns with the 

traits you mentioned. Yet, the exact adjectives "untameable, irresistible, and 

peremptory" are not used to describe him or anyone else.

Answer 

Qwen2.5-7B-Instruct-SFT

【True】

The Bishop of St. Asaph is described as untameable, irresistible, and peremptory, but 

more specifically, it is Kenyon who is described as untameable and irresistible, and 

also as having an untameable and irresistible “Yoic” (which he later corrects to “No”).

Qwen2.5-7B-Instruct  

【False】

According to the provided document, there is no specific mention of any individual 

or entity being described as untameable, irresistible, and peremptory. The document 

primarily focuses on the technological advancements and market trends in cloud 

computing, detailing the innovative solutions and services offered by Alibaba Cloud. 

It discusses various aspects such as the growth of cloud infrastructure, the impact of 

artificial intelligence, and the strategic directions for future development, but does 

not include character descriptions or attributes like those mentioned in your 

question.

Llama-3.3-70B-Instruct 

【True】

Mr. Inderwick, Q.C., is described as “untameable, irresistible, and peremptory” in 

the context of his examination in a divorce case. 

GPT-4o 

【False】

The document does not provide a specific description of someone being 

untameable, irresistible, and peremptory. The text primarily focuses on other 

aspects and does not contain this particular combination of words. Therefore, I 

cannot accurately answer your question based on the the information given in the 

document.

剑楠对纫菁的感情发生了怎样的变化？
Ho w has Jian Nan’s feelings for Ren Jing changed?

Question 

根据原文，文中描述的是剑尘对纫菁的感情变化，而不是剑楠。剑尘对纫菁
的感情经历了从同情到深深的爱慕，再到因丧失信任而转变的过程。…

According to the original text, the text describes the change in Jian Chen's 

feelings for Ren Jing, not Jian Nan. Jian Chen's feelings for Ren Jing went 

through a process of change from sympathy to deep admiration, and then to loss 

of trust. …

Answer 

Qwen2.5-7B-Instruct-SFT

【True】

剑楠对纫菁的感情从最初的同情和爱意逐渐转变为对纫菁的理解和宽容。… 

Jian Nan‘s feelings towards Ren Jing gradually changed from sympathy and love to 

understanding and tolerance of Renjing. …

                                                                                        

Qwen2.5-7B-Instruct  

【False】

剑尘对纫菁的感情经历了从热烈到失望，再到试图超脱的过程。…                                                                  

Jian Chen‘s feelings for Ren Jing went from passion to disappointment, and then to 

trying to detach himself. …

Llama-3.3-70B-Instruct 

【False】

通过文档内容分析，剑尘（文中提到的剑楠即是剑尘）对纫菁的感情经历
了以下几个明显的变化…                                  

Through the analysis of the document content, Jian Chen (the Jian Nan 

mentioned in the text is Jian Chen)‘s feelings towards Ren Jing have undergone 

the following obvious changes...

GPT-4o 

【False】

根据原文，文中描述的是**剑尘**对纫菁感情的变化，而非**剑楠**。剑尘
对纫菁的感情经历了显著的变化。最初，…  

According to the original text, the text describes the change in **Jian Chen**‘s 

feelings towards Ren Jing, not **Jian Nan**. Jian Chen’s feelings towards Ren 

Jing have undergone significant changes. Initially,…

Figure 6: Case study. An examples of lack of evidence in English on the left, and an example
of misleading evidence in Chinese on the right (translated below). Red underlined text indicates
hallucinatory content and green italicized text indicates useful explanations.

synthetic data quality, we employed a three-person voting mechanism. The outcome of this manual
review is detailed in Table 7.

In Task 1: Answer Consistency Evaluation, human annotators evaluated whether the discriminative
model accurately identified the consistency between its predictions and the ground truth for answerable
and unanswerable questions. The results demonstrate that the discriminative model achieved a
commendable accuracy of 94.00% in Task 1.

In Task 2: Reasoning Ability for Unanswerable Questions, the manual review focused on whether
the discriminative model could accurately classify responses into three distinct categories: incorrect
answers, direct refusals, and reasoned answers. The evaluation revealed that the model achieved an
overall classification accuracy of 93.64%. However, due to subtle or ambiguous rejection/clarification
phrasing, the model produced more false negatives than false positives. Although slightly outper-
formed by human benchmarks, the automated system excels in efficiency, consistency, and scalability,
enabling robust iterative refinement.

C CASE STUDY

To facilitate a clear and intuitive comparison of various models for generating reasoning-based
answers to unanswerable questions, we present two distinct scenarios in Figure C. In the lack
of evidence scenario, GPT4o and Qwen2.5-7B-Instruct display significant hallucination in their
responses, frequently generating factually incorrect answers. Llama-3.3-70B-Instruct had both
rejection tendencies and reasoning, making it a highly desirable response. In the misleading evidence
scenario, all baseline models are misled by the question, resulting in incorrect answers. However,
after fine-tuning with SFT, this issue is mitigated, enabling the models to provide accurate responses
that align with the given text.
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D LLM USAGE STATEMENT

In the drafting of this article, large language models (LLMs) served as an auxiliary tool for writing.
LLMs assisted mainly in enhancing grammatical accuracy, polishing wording, and improving the
overall readability of the text. All core works, including designing the methodology, setting up
experiments and interpreting findings, were entirely conducted by the human authors.
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