Under review as a conference paper at ICLR 2026

FITTING FEATURE NORM TO CONFIDENCE:
A REGULARIZATION APPROACH FOR ROBUST OUT-
OF-DISTRIBUTION DETECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a novel framework for robust out-of-distribution (OOD) detection by
explicitly designing the feature space. Our approach aligns feature norm with
model confidence by enforcing a zero-confidence baseline—defined as the fea-
ture norm at which the softmax output is uniform—and deriving an upper bound
on the feature norm through softmax sensitivity analysis. This strategy enables
in-domain samples to exhibit high confidence while ensuring that OOD samples,
which naturally possess lower feature norms, yield near-uniform predictions. Un-
like existing methods that simply modify the feature norm without optimizing
the underlying embedding space, our method learns an optimal feature space via
density ratio estimation using Kernel Logistic Regression and feature space aug-
mentation. Our theoretical analysis shows that the risk difference between the true
data distribution (comprising both known and unknown samples) and an auxiliary
domain—constructed from augmented OOD samples drawn from the inner region
of the feature space—is bounded. Extensive experiments show that our approach
significantly enhances OOD detection performance.

1 INTRODUCTION

In recent years, various tasks such as Positive-Unlabeled (PU) learning (Garg et al., | 2021; |Bekker
& Davis| 2020; [Kiryo et al.l 2017), open set recognition (Vaze et al., [2022), uncertainty estima-
tion (Lakshminarayanan et al.l [2017), and out-of-distribution (OOD) detection (Liu et al., 2020;
Hendrycks & Gimpell 2017; [Dong et al., [2022) have emerged as critical challenges in machine
learning. Each task addresses a distinct aspect of model performance under varying conditions, from
handling unknown classes to predicting system failures. Although many researchers have developed
tailored solutions for these problems, most methods treat them separately and often overlook the
underlying structure of the feature space.

A common strategy is to use the feature norm as an indicator of confidence. In standard classification
networks, the logit for class i is calculated as z; = w;'x = ||w;||||z|| cos(6;), where = denotes the
embedding of the input, w; is the corresponding weight vector (or class proxy), and cos(6;) measures
the angular similarity between x and w;. Intuitively, a lower feature norm ||x|| should imply lower
confidence. However, due to the exponential transformation in the softmax function, even small
increases in ||z|| can lead to disproportionate changes in predicted probability, especially in high-

dimensional spaces where cosine similarities are highly concentrated (peaky).

To address this issue, we propose a novel OOD detection framework that explicitly aligns feature
norm with confidence. Our key insight is that if feature norm and confidence are well-linked, OOD
detection can be easily facilitated. Specifically, we define a zero-confidence baseline—namely, the
feature norm at which the softmax output becomes uniform (i.e., 1/K for K classes)—and derive
an upper bound on the feature norm by analyzing the sensitivity of the softmax mapping. This upper
bound ensures that further increases in the feature norm yield only moderate changes in confidence.
By generating OOD embeddings within a controlled region of the embedding space—determined by
the ratio of the zero-confidence baseline to the upper bound—and enforcing that these augmented
samples yield uniform predictions, we encourage in-distribution (ID) samples to remain within a
narrow, interpretable range of feature norms. In turn, OOD samples, which are naturally associated
with low feature norms, yield near-uniform softmax outputs.
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Unlike previous methods (Park et al., [2023) that modify the feature norm for OOD detection while
retaining standard classification loss, our approach optimizes the feature space to establish a tight
link between the feature norm and confidence. We achieve this by employing density ratio esti-
mation techniques such as Kernel Logistic Regression and validating our strategy through feature
space augmentation. Our theoretical analysis demonstrates that the risk difference between the true
domain—i.e., the overall data distribution containing both known and unknown samples—and an
auxiliary domain, constructed using augmented OOD samples drawn from the inner region of the
feature space, is bounded. This bound suggests that our augmented OOD samples may reason-
ably approximate the unknown domain, indicating that when these samples lie within the controlled
region, they can serve a similar role to actual OOD data in supporting robust OOD detection.
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samples approximate actual OOD data. adaptive regularization significantly enhances
OOD detection performance. By unifying these

ideas within an optimized feature space, our work provides a strong theoretical foundation for future
research in feature space optimization.

2 RELATED WORK

Recent OOD Detection Technique. Recent advances in OOD detection, uncertainty estimation,
and confidence calibration have produced a rich body of research addressing the challenge of re-
liably distinguishing ID from OOD samples. Early efforts include dropout-based uncertainty es-
timation (Gal & Ghahramanil [2016), which treated dropout as an approximate Bayesian inference
method to explore model uncertainty. In a complementary approach, the trust score method (Jiang
et al., |2018) investigated the correlation between classifier outputs and prediction errors. Further-
more, several studies (Liang et al., 2018;|[Hendrycks & Gimpel,2017) established baselines for OOD
detection based on the maximum softmax probability (MSP), showing that misclassified and OOD
samples tend to exhibit lower MSP values. Subsequent research (Hein et al.,|2019) has analyzed the
inherent overconfidence of deep networks on OOD inputs and proposed mitigation strategies.

More recent methods leverage auxiliary data and tailored loss functions to further improve OOD de-
tection. For instance, OE (Hendrycks et al.,|2019a)) employed external outlier data to refine decision
boundaries, while ensemble techniques and self-supervised leave-out classifiers have also been ex-
plored (Vyas et al.l 2018)). Additionally, ReweightOOD (Regmi et al., 2024b) addressed challenges
arising from overlapping ID and OOD regions in the embedding space by adaptively reweighting
samples during contrastive optimization. It classified samples as easy or hard positives/negatives
based on their proximity to class centroids and improved separability.

Our approach differs from these methods as it does not rely on external OOD data or ensembles.
Instead, we construct an auxiliary domain bounded by the true joint distribution and generate aug-
mented OOD samples directly in the feature space. This enables robust OOD detection without
sacrificing the simplicity of the training objective.
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Feature Norm-Based Approaches. Several recent studies have examined the role of the feature
norm in the embedding space. In face recognition applications, MagFace (Meng et al., 2021) has
shown that the feature norm correlates with image quality. Moreover, other studies (Yu et al., |2020;
Ranjan et al., [2017) observed that ID samples tend to exhibit larger embedding magnitudes than
OOD samples. |Dhamija et al.|(2018) employed an entropic open-set loss to reduce the feature norm
of unknown samples, thereby enhancing the separability between known and unknown classes. Ad-
ditionally, studies in open-set recognition (Vaze et al., 2022)) have demonstrated that during training,
the feature norms of known classes increase, while uncertain or unknown samples remain close to
the origin. Most relevant to our work (Park et al.l[2023) theoretically established that feature norm is
equivalent to a classifier’s confidence, supporting OOD detection via confidence-based separation.
Building on these insights, T2FNorm (Regmi et al.| 2024a)) enforced hyperspherical constraints on
ID embeddings during training so that at test time, weakly activated OOD samples exhibit lower
norms and can be separated from ID samples by thresholding the maximum softmax probability.

In contrast, our approach directly aligns feature norm with confidence by defining a zero-confidence
baseline (i.e., the feature norm at which the softmax output is uniform) and deriving an upper bound
on the feature norm based on the sensitivity of the softmax mapping. We then employ a targeted
augmentation strategy to generate OOD samples within a controlled, low-confidence region. This
explicit calibration of the feature space ensures that our augmented OOD samples approximate the
unknown domain, enabling robust OOD detection without additional density estimation modules.

3  METHOD
Let X be a random variable representing input images and Y be the corresponding label. Here, Y
is a discrete random variable taking values in the set {1,..., K}, corresponding to a multi-class

classification task with K classes. We assume that the true joint distribution of X and Y is given by
Ddata- From this distribution, we obtain N independent and identically distributed (i.i.d.) samples,
forming the dataset D = {(z,,,y»)}._,. The function f denotes a deep neural network trained for
multi-class classification. Given an input x € X, the network f produces two outputs: the predicted
label Y and the logit vector 2. The logits 2 are subsequently passed through the softmax function

osn to convert them into a probabilistic vector P. This probabilistic output P is referred to as the
confidence score, representing the network’s confidence in its prediction.

A critical component in the network is its final fully connected layer, which maps the embedding
space o (typically the output of one of the last hidden layers of f) to the logit space. Let g : X — R?
denote the embedding function that maps an input z to an embedding g(z), and let h : R? — RX
denote the mapping from the embedding space to the logit space. This layer is parameterized by the
weight matrix W and plays a crucial role in transforming the learned embeddings o into logits 2,
which are then used to determine the final classification output.

3.1 LEARNING FOR CONFIDENCE-BASED OOD DETECTION
Definition 1 (Domain). Given an input space X and a label space ), a domain is defined as any

joint distribution Py y over X' x ). In this context, the known classes form a subset of )/, denoted
as V. The unknown classes are defined as those belonging to the set J,, = YV \ V.

We aim to train a classifier f using samples D = {(z;,y;)}; drawn from the in-distribution
Px y|yey, so that f can correctly classify ID samples and reliably identify OOD samples by pro-
ducing near-uniform softmax outputs for unknown inputs.

Problem 1 (Learning for Reliable Confidence-based OOD Detection). Given independent and iden-
tically distributed (i.i.d.) samples D = {(x4,y;)};—, drawn from Px y|ycy,, the goal of learning
for reliable confidence-based OOD detection is to train a classifier f using D such that f can:

1. correctly classify samples from known classes,
2. identify samples from unknown classes, and
3. produces near-uniform predictions for OOD samples, thereby indicating low confidence.

These objectives correspond to different aspects of the task: the first condition addresses the classifi-
cation in a closed-set scenario, the second focuses on OOD detection, and the third relates to reliable
confidence (i.e., ensuring that the model is less confident when faced with unknown samples). From
the perspective of statistical learning, we formalize this by defining risks over the logit space.
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Logit Space Risk. Let [ : R x RX — R~ be a loss function, and let h represent any hypothesis
function in the set {h : R — RX} and any hypothesis function g in the set {g : X — RP}. For
the known classes, the logit risk is defined in the standard manner as:

Rpy(h) ::/X ’ l(h(g(z)),y) dPx y|yey, (T, y). (D

For the unknown classes, where ground-truth labels are unavailable, we adopt a uniform target
distribution. Specifically, for a classification task with K known classes, we define the uniform

target y € RX as
/111 o
Y=\xkx K)

This uniform target represents complete uncertainty among the K classes and encourages the clas-
sifier to output a flat probability distribution for unknown inputs. Thus, the logit risk for unknown
classes is defined as

Reu(h) = [ 1(1(6(0).5) dPyivey, (@) ®

These two risk components (logit space risk for both known and unknown classes) directly support
the key objectives of our framework: ensuring accurate in-domain classification, robust OOD detec-
tion, and reliable confidence calibration. Specifically, risks associated with known classes promote
high confidence in correct predictions, while the risk associated with unknown classes enforces low
confidence (i.e., near-uniform predictions) for OOD samples.

The total risk for the distribution Px y can be formulated as a weighted combination of the risks for
known and unknown classes. In the logit space, the a-risk is defined as:

R%(h) = (1 — Oé)Rp’k(h) + aRp,u(h), @)
where « is a weighting factor that reflects the importance of the unknown classes.

3.2 AUXILIARY DOMAIN CONSTRUCTION

Since no samples are available for unknown classes, directly computing the partial risk for these
classes is challenging. To address this, we introduce an auxiliary domain @) x y, following a similar
approach to that in|Fang et al.|(2021)).

Definition 2 (Auxiliary Domain). A domain @x,y defined over X x Y is called the auxiliary
domain for Px y if it satisfies the following conditions: Qx|ycy, = Px|yey,, @vix = Py|x,
and Px < @Qx, where Py < Qx denotes absolute continuity.

Theorem 1 (Boundedness of the Logit a-Risk Difference). Given a loss function ¢ that satisfies the
triangle inequality, and a hypothesis space H C {h X = RK}, if Qx,y is the auxiliary domain
for Px y (with the definitions of Rp ., (h), Rg (k) and Rp(h) = Rq i (h)), then for any h € H,
the following bound holds:

|R%(h) - R%(h” < adlh,y (PX|Yeyua QX\YE)?u) +aA, (5)

where the disparity discrepancy metric is defined as

dh 3 (PX\Yey,“ QXlYey“) i= sup / f(h/(g(x)),ﬂ) d<PX\Y€)}u - QX\Yeyu)(fU) ; (6)
WeH |Jx
and the residual term is defined as
— 3 / !
A= min (Rpo (W) + Rou(l)): )
Furthermore, we prove that

in RG(h) = min RE(h d in RS (h in R3(h). 8
min R (h) = min Rp(h) and argmin Rg(h) C arg min Ry (h) (8)

That is, the hypothesis that minimizes the risk in the auxiliary domain () minimizes the risk in the
true domain P.

Proof. Please refer to Appendix [
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To effectively handle unknown classes without available samples, we propose constructing an aux-
iliary domain Q) x y. This auxiliary domain is designed to closely approximate the overall data
distribution by incorporating both known and unknown samples. To achieve this, we first define a
latent space distribution U that uniformly covers the range of the embeddings. Let Z C R? denote
the latent (embedding) space produced by the network, and let g : X — R be the embedding
function. We define U as a probability distribution over Z, specifically as the uniform distribution

over the hyper-rectangle: d
U = []lm;, M), ©)
j=1
where, for each dimension j, !
mj = ;rén’ggj(x) and M, = rwneaggj(x). (10)

Thus, U uniformly covers the range of the embedding space induced by the training (ID) dataset D.

Following [Fang et al|(2021), we assume that the known class conditional distribution P)ﬂygyk is
absolutely continuous with respect to U; that is, for any U-measurable set A C Z,

Px|yey, (A) = /Ar(x) dU (z), (11)

dPx |y ey, ()

where r(z) = — 575

is the density ratio.

We define S as the set of latent representations of ID samples (i.e., drawn from Px y|ycy,) and T'
as the set of samples drawn from the uniform distribution U over the latent space. To estimate the
density ratio, we train a kernel logistic regression (KLR) model. In our formulation, samples from
S serve as positive examples, while samples from 7" are treated as unlabeled. Specifically, the KLR
estimates

w(z) = 1/1 + exp(—¢(z)), (12)
where z is the latent representation and we set ¢(z) = ||z||. Hence, the weight w(z) reflects the
likelihood that a sample from 7" is in-domain.

Leveraging this analysis, we simplify the auxiliary domain construction. Rather than performing
full density estimation over the entire embedding space, we treat samples from U with feature norms
below a specified threshold as OOD, while directly using the actual ID samples. This yields an aux-
iliary domain consisting of true in-domain data and augmented OOD samples (uniformly sampled
from the low feature norm region), approximating the unknown domain without complex density
estimation procedures.

3.3 FEATURE NORM-BASED AUGMENTATION AND LEARNING DYNAMICS

Our approach leverages the intrinsic structure of the embedding space to generate augmented OOD
samples and regulates the mapping between the feature norm and the network output. As discussed
in Introduction, when the feature norm exceeds a certain threshold, the softmax output tends to
saturate, which can disrupt the reliable linking of feature norm to confidence. To maintain a strong
and consistent mapping between feature norm and confidence, we identify a controlled range where
this mapping is smooth. This process is driven by two key thresholds computed from ID data:

e Confidence Baseline Norm (Ny): This is the feature norm at which the softmax output becomes
uniform (i.e., each class receives a probability of1 /K ), corresponding to a state of zero confidence.

o Confidence Saturation Bound (Nc,p): This is defined as the smallest feature norm above Ny at
which the numerical derivative of the softmax output with respect to the feature norm exceeds a
specified threshold (e.g., 1.0). In other words, N, marks the upper limit of the region where the
mapping from feature norm to softmax output remains smooth and controlled. In our framework,
ID samples are encouraged to have feature norms below N.,, to ensure a reliable link between the
feature norm and the model’s confidence.

We then define a scaling ratio 7 = ]\va 9 which is used to guide our OOD augmentation.
cap

Forward Pass and Threshold Computation. During a forward pass, the network produces em-
beddings g(x). We compute the feature norm ||g(x)|| and the cosine similarities between g(x) and
each class representative. These statistics are used to determine Ny by identifying the candidate
feature norm at which the softmax output is closest to uniform (i.e., 1/K). We then obtain N, as
the smallest candidate feature norm above Ny at which the approximate (numerical) derivative of
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Figure 2: Visualization of the feature space for the baseline Cross Entropy (CE) method (top
row) and our proposed CE+Ours method (bottom row) across various datasets. The proposed
method shows improved feature space organization, with clusters positioned further from the origin,
indicating larger feature norms. Consequently, the OOD samples from six datasets are concentrated
near the origin, forming a balanced circular distribution with smaller feature norms. In contrast, the
baseline CE method exhibits clustering bias, with OOD samples more unevenly distributed.

Table 1: Performance comparison between the Cross Entropy (CE) method and the CE+Ours
method on various datasets for OOD detection tasks in terms of FPR @95, AUROC, AUPR-in, and
AUPR-out. Notably, the accuracy for CE and CE+Ours is 95.81% and 95.14%, respectively.

Dataset | Method | FPR@95] AUROCT AUPR-int AUPR-out?
NotMNIST ‘ CE / CE+Qurs ‘ 87.24/16.20 81.45/96.40 60.34 / 93.84 88.68 /97.88
FashionMNIST CE / CE+Ours 21.91/9.65 93.06 /97.80 92.82/97.89 92.03/97.62
NearQOD |  CE/CE+Ours | 54.58 /12.93 87.25/97.10 76.58 1 95.89 90.36/ 97.62
Texture CE / CE+Ours 57.90/6.42 88.97 / 98.55 87.77198.74 86.25 /98.00
CIFAR-10 CE/ CE+Ours 23.83/2.53 93.79 /99.30 93.571/99.34 93.62/99.26
TinyImaeeNet CE / CE+Ours 26.97 /3.64 93.13/99.01 92.58 /98.96 93.05/99.01
Phg’m CE 24.76 1 3.82 93.53/99.00 82.50/97.13 97.96 /99.71
FarOOD | CE | 33.36/4.10 92.36/98.96 89.11/98.54 92.72/98.99

the softmax output with respect to the feature norm exceeds a specified threshold ¢ (e.g., 1.0). Their
ratio, 7, is subsequently calculated.

OOD Augmentation. For each batch, we compute the average ID feature norm, p;p. We then
generate augmented OOD embeddings by uniformly sampling within a ball of radius 7 - prp in the
embedding space. This random augmentation ensures that the generated OOD samples lie within a
controlled, low-confidence region—effectively approximating the unknown domain.

Learning Dynamics. The final training objective is formulated as a weighted combination of two
lossterms: 1.ID Loss: The standard cross-entropy loss computed on ID samples, which promotes
correct classification. 2.00D Loss: A loss computed on the augmented OOD embeddings that
penalizes high-confidence outputs (e.g., by reducing the maximum softmax probability).

If an ID sample’s feature norm becomes excessively large, its OOD augmentation (scaled by 7)
incurs a penalty that counteracts further norm increases. This mechanism enforces a smooth and
continuous mapping between feature norm and network output, ensuring that ID samples maintain
high confidence while augmented OOD samples yield near-uniform (low-confidence) predictions.

In summary, by explicitly computing Ny (the zero-confidence baseline) and N, (the confidence

saturation bound) to derive the scaling ratio 7 = %;’p, our method employs feature norm-based aug-
mentation to generate OOD samples in a controlled, low-confidence region of the embedding space.
This strategy ensures that ID samples remain in a range where small changes in norm yield gradual
changes in output, while augmented OOD samples approximate the unknown domain. By rely-
ing solely on intrinsic feature norms without additional density estimation modules, our approach
naturally aligns feature norms with network confidence. Combined with a joint training loss, this
results in an optimal embedding space where the risk difference between the true distribution and

the augmented domain is bounded, ensuring robust OOD detection.

4 EXPERIMENTS

For our experiments, we followed the OpenOOD benchmark (Yang et al., [2022), which empha-
sizes fair comparison in OOD detection tasks. OpenOOD addresses several key challenges in the
field: (1) Although OOD detection shares a common goal with tasks like open-set learning, open-
set recognition, and novelty detection, these tasks are often referred to by different names, lead-
ing to inconsistency in evaluation. (2) Due to the nature of the task, experiments require sepa-
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Table 2: FPR@95 results on CIFAR-10 with various OOD sets. Lower FPR@95 values indicate
better performance. The best and second-best values are boldfaced and underlined, respectively.

Training Post-processor Near-OOD Far-OOD ID ACC
CIFAR-100 TIN Avg. MNIST SVHN Textures Places365 Avg.
ConfBranch(DeVries & Taylor}2018) ConfBranch 34.44 28.11 31.28 15.79 14.06 27.24 28.85 2148 94.88
RotPred(Hendrycks et al.[|2019b) RotPred 34.24 22.04 28.14 9.24 3.20 9.87 26.61 12.23 95.35
G-ODIN(Hsu et al.l|2020) G-ODIN 48.86 42.21 4554 453 1072 27.27 4330 2145 9470
CSI(Tack et al.{ 12020} MSP 37.57 29.74 33.66 24.41 17.56 2895 3476 2642 91.16
ARPL{Chen et al.l[2021) ARPL 43.38 37.28 4033 2149 3568 35.19 3721 3239 93.66
MOS(Huang & L1\ [2021) MOS 79.38 78.05 78.72 6595 57.79 76.78 51.09 6290 94.83
VOS(Du et al.l[2022) EBO 61.57 5249 57.03 3592 31.50 46.53 47.78 4043 9431
LogitNorm(Wei et al.| 2022) MSP 34.37 24.30 29.34 393 833 2194 21.04 13.81 94.30
CIDER(Ming et al.||2023) KNN 35.60 28.61 32.11 2476 8.04  25.05 25.03  20.72 -
NPOS(Tao et al.[[2023) KNN 35.71 29.57 32.64 2296 641 20.80 32,19 20.59 -
T2FNorm(Kegmi et al.|[2024a) T2FNorm 30.60 2233 2647 350 572 19.49 2227 1275 94.69
OE(Hendrycks et al.[[2019a) MSP 36.71 297 19.84 2467 1.25 12.07 1453  13.13 94.63
MCD{Yu & Aizawa, 2019) MCD 34.36 2598 30.17 62.11 1943 2251 2410  32.03 94.95
UDG(Yang et al.|[2021)) MSP 40.75 29.93 35.34 16.61 17.39 19.70 27.70  20.35 92.36
MixOE(Zhang et al.[[2023) MSP 5829  44.62 5145 3828 20.36 33.19 4354 3384 94.55
RandAugment(Cubuk et al.||2020) MSP 40.08 30.95 3551 15.03 20.97 30.30 3033  24.16 95.59
AugMix(Hendrycks et al.[J2020) MSP 41.83 33.52 37.68 23.74 2442 2561 3422 27.00 95.01
PixMix(Hendrycks et al.;|2022) MSP 28.91 21.01 2496 2744 10.14 6.64 21.11 16.33  95.15
RegMixup(Pinto et al.;[2022) MSP 54.89 42.68 48.78 20.74 36.94 4430 4321  36.30 95.75
Ours MSP 25.31 20.26 22.79 2.75 3.62 5.62 11.63 591 9532
Table 3: AUROC on CIFAR-10 with OOD sets. Higher values indicate better performance.
Alg. Near-OOD Far-OOD
CIFAR-100 TIN Avg. MNIST SVHN Textures Places365 Avg.
DeVries & Taylor| (2018) 88.91 90.77 89.84 94.49 95.42 91.10 90.39 92.85
Hendrycks et al.[(2019b) 91.19 94.17 92.68 97.52 98.89 97.30 92.76 96.62
Hsu et al.[(2020) 88.14 90.09 89.12 98.95 97.76 95.02 90.31 95.51
lack et al.|(2U20) 88.16 90.87 89.51 92.55 95.18 90.71 89.56 92.00
Chen et al.|(2021) 86.76 88.12 87.44 92.62 87.69 88.57 88.39 89.31
Huang & Li|(2021) 70.57 72.34 71.45 74.81 73.66 70.35 86.81 76.41
Du et al.[(2022) 86.57 88.84 87.70 91.56 92.18 89.68 89.90 90.83
Wei et al.| (2022) 90.95 93.70 92.33 99.14 98.25 94.77 94.79 96.74
Ming et al.|(2023) 89.47 91.94 90.71 93.30 98.06 93.71 93.77 94.71
Tao et al.[(2023)) 88.57 90.99 89.78 92.64 98.88 94.44 90.32 94.07
Regmi et al.[(Z024a) 91.56 94.02 92.79 99.28 98.81 95.44 94.40 96.98
Hendrycks et al.[(2019a) 90.54 99.11 94.82 90.22 99.60 97.58 96.58 96.00
Yu & Aizawal(2019) 89.88 92.18 91.03 84.22 93.76 93.35 92.66 91.00
Yang et al.|(2021) 88.62 91.20 89.91 95.81 94.55 93.92 91.97 94.06
Zhang et al.[(2023) 87.47 90.00 88.73 91.66 93.82 91.84 90.38 91.93
Cubuk et al.|(2020) 89.26 91.03 90.15 95.26 93.33 91.17 91.12 92.72
Hendrycks et al.[(2020) 88.61 90.26 89.43 92.33 92.19 91.91 90.19 91.66
Hendrycks et al.| (2022) 90.86 92.65 91.76 98.47 99.18 98.27 98.09 98.50
Pinto et al.[(Z022) 84.71 85.96 85.33 99.02 94.94 81.66 96.19 92.95
Ours 91.82 94.88 93.35 99.23 98.96 98.56 97.48 98.56

rate in-domain and OOD domains. However, the choice of datasets for each domain lacks consis-
tency across studies. Thus, OpenOOD defines both near-OOD and far-OOD categories relative to
the training data. Appendix and [D] presents more results on ImageNet-200
and outlines our hyperparameter tuning strategy.

4.1 EXPERIMENTS ON MNIST

We conducted the experiments on the MNIST dataset. In the OpenOOD framework, near-OOD
datasets include notMNIST and FashionMNIST, while far-OOD datasets consist of Texture, CIFAR-
10, TinyImageNet (TIN), and Places365. For evaluation, we used the following metrics: classifi-
cation accuracy, FPR@95, AUROC, AUPR-in, and AUPR-out, reporting the average performance
across both near-OOD and far-OOD scenarios. For the network architecture, we used a LeNet
model, setting the dimensionality of the pre-softmax layer to 2 for visualization purposes. To utilize
all regions in the embedding space, the final layer ReLU activation was omitted. Additionally, we
employed Maximum Softmax Probability (MSP) to perform OOD evaluation across both the base-
line model and our method (CE+Ours). We used standard MSP to align with recent training-time
methods that avoid post-hoc detectors. The hyperparameters are set to « = 0.1 and § = 1.0.

Table (1| shows that our method (CE+QOurs) consistently outperforms the baseline cross-entropy
model across all key metrics. For instance, in NearOOD, our method achieves a significantly lower
FPR@95 of 12.93% compared to 54.58% with the baseline, highlighting its superior ability to min-
imize false positives. Similarly, in FarOOD, our method shows a substantial improvement in AU-
ROC, reaching 98.96%, a notable increase from the baseline’s 92.36%. Our approach enhances both
OOD detection and confidence calibration. Fig[2]illustrates the qualitative comparison, highlighting
the advantages of our proposed method. The top row shows the feature space produced by the base-
line Cross Entropy (CE) method, while the bottom row shows the feature space generated by our
CE+Ours method. In the baseline, the class clusters are relatively close to the origin, and the OOD
datasets are also positioned near the origin, making it challenging to effectively differentiate OOD
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Table 4: AUPR _out on CIFAR-10 with OOD sets. Higher values indicate better performance.

Alg. Near-OOD Far-OOD
CIFAR-100 TIN Avg. MNIST SVHN Textures Places365 Avg.
DeVries & Taylor] (2018) 85.22 85.78 85.50 98.71 97.26 81.78 96.16 93.48
Hendrycks et al.| (2019b)) 89.20 91.75 90.47 99.43 99.33 94.10 97.30 97.54
Hsu et al.[{Z020) 88.09 88.41 88.25 99.83 99.12 93.41 97.05 97.35
Tack et al.| (2020) 85.45 87.30 86.37 98.49 97.75 82.99 96.38 93.90
Chen et al.|(Z0Z1) 83.25 82.66 82.96 98.53 93.27 78.27 95.58 91.41
Huang & Li(ZUZ1) 72.70 72.13 72.41 95.24 87.20 62.67 95.85 85.24
Du et al.[(20227) 86.17 86.98 86.57 98.53 96.37 84.05 96.83 93.95
Wet et al.|(2022) 89.62 91.61 90.62 99.87 99.31 91.68 98.29 97.29
Ming et al.[(2023) 87.27 88.68 87.97 98.75 99.19 88.93 97.88 96.19
Tao et al.[(2023) 85.63 87.08 86.36 98.54 99.60 90.18 96.48 96.20
Regmi et al.[(2024a) 90.20 91.91 91.06 99.89 99.54 92.85 98.17 97.61
Hendrycks et al.[(2019a) 89.83 98.68 94.25 97.20 99.80 96.11 98.90 98.00
Yu & Aizawa (2019) 87.07 88.38 87.73 97.01 96.39 87.12 97.30 94.45
Yang et al.[(2021) 86.31 87.48 86.89 99.26 96.86 87.68 97.12 95.23
Zhang et al.[(2023) 86.88 87.90 87.39 98.63 97.06 87.48 96.95 95.03
Cubuk et al.|(Z020) 87.07 87.59 87.33 99.13 96.65 84.24 96.85 94.22
Hendrycks et al.[(2020) 86.36 86.59 86.48 98.54 96.16 85.37 96.56 94.15
Hendrycks et al.| (2022) 90.86 92.65 91.76 98.47 99.18 98.27 98.09 98.50
Pinto et al.[(Z022) 84.71 85.96 85.33 99.02 94.94 81.66 96.19 92.95
Ours 91.26 93.66 92.46 99.52 98.74 98.52 98.27 98.76
Table 5: FPR@95 results on CIFAR-100 with various OOD sets.
Training Post-processor Near-OOD Far-OOD ID ACC
CIFAR-10 TIN Avg. MNIST SVHN Textures Places365 Avg.
ConfBranch(DeVries & Taylor[2018) ConfBranch 7456  65.86 70.21 5595 76.01 8543 69.90 71.82 76.59
RotPred(Hendrycks et al| [Z0T9D) RotPred 72.00 53.17 62.58 22.77 15.64 40.03 59.56 3450 76.03
G-ODIN(Hsu et al.{[Z020) G-ODIN 78.82 56.34 67.58 27.19 42.68 35.83 65.03 42.68 74.46
CSI(Tack et al.[[2020) MSP 72.62  67.90 70.26 80.54 67.21 90.51 69.41 7692 61.60
ARPL{Chen et al.|[2021) ARPL 64.84 5827 61.56 59.12 59.76  71.66 62.01 63.14 70.70
MOS(Huang & Li\[202T) MOS 60.60 5149 56.05 52.70 5633 61.24 58.86 57.28 76.98
VOS(Du et al.[[2022)) EBO 59.23  51.89 55.56 48.56 47.23 62.55 56.44 5370 7720
LogitNorm(We et al..2022) MSP 73.88 51.89 62.89 34.12 4752 77.38 5544  53.61 76.34
CIDER(Ming et al.}[2023)) KNN 8271 6133 72.02 7532 17.82 54.43 69.30 54.22 -
NPOS(Tao et al[[2023) KNN 72.50 54.21 63.35 6698 30.67 47.39 59.47 51.13 -
T2FNorm(Regmi et al.|2024a) T2FNorm 67.07 49.88 58.47 39.39 4429 66.82 5450 51.25 7643
OE(Hendrycks et al.[[Z019a)) MSP 61.26 021 30.73 5331 5184 55.83 5830 54.82 76.84
MCD{(Yu & Aizawal [Z019) MCD 62.65 49.10 55.88 62.78 4371 56.89 54.17 5439 75.83
UDG(Yang et al.l 2021) MSP 66.40 5643 61.42 45.14 59.67 71.33 59.85 59.00 71.54
MixOE(Zhang et al.[[2023) MSP 61.12 4932 5522 5949 73.09 66.04 56.93  63.88 75.13
RandAugment(Cubuk et al.|[2020) MSP 59.24  50.86 55.05 66.73 60.50 59.04 5722 60.87 178.16
AugMix(Hendrycks et al.[[2020) MSP 59.27 53.33 5630 61.94 5189 61.35 58.24 5836 76.45
PixMix(Hendrycks et al.| [2022) MSP 62.16 51.50 56.83 70.32 30.76 3747 55.13 4842 77.63
RegMixup(Pinto et al.[[202Z) MSP 62.59  49.65 56.12 56.77 5597 59.73 57.53  57.50 79.23
Ours MSP 50.36  45.63 48.00 30.31 3593 39.66 46.31 38.05 78.95

samples from in-domain samples. In contrast, our method separates the class clusters further from
the origin, increasing the feature norms and improving the identification of OOD data. Unlike the
baseline CE method, where OOD samples tend to cluster around specific training sets, our method
achieves a more uniform circular distribution for the OOD samples. This enhances OOD detection
and results in a more balanced feature space representation.

4.2 EXPERIMENTS ON CIFAR-10 AND CIFAR-100

Following our MNIST experiments, we adhere to the OpenOOD benchmark (Yang et al.} 2022). For
our backbone, we used ResNet18 (He et al.,|2016)), extracting 512-dimensional embeddings from the
layer preceding the classification head. When CIFAR-10 is the in-domain dataset, OpenOOD defines
CIFAR-100 and TinyImageNet (TIN) as near-OOD, and MNIST, SVHN, Textures, and Places365 as
far-OOD. For CIFAR-100 as the in-domain dataset, CIFAR-10 and TIN serve as near-OOD, while
MNIST, SVHN, Textures, and Places365 are considered far-OOD. For CIFAR-10, the hyperparam-
eters were set to « = 1.0 and § = 1.0; for CIFAR-100, they were set to « = 0.1 and § = 1.0.

Since the compared methods train models directly, both OOD detection performance and classifica-
tion accuracy are important metrics. The OOD detection results, measured by FPR @95, AUROC,
and AUPR _out, for CIFAR-10 as the in-domain dataset are presented in Tables 2] [3] and[] Due to
space constraints, the values for the “Training” and ”Post-processor’” columns, as well as the classi-
fication accuracy (which are identical across metrics), are omitted in Table E] andE} Similar results
for CIFAR-100 as the in-domain dataset are provided in Tables[5} [] and

Our experimental results reveal significant performance variation across different OOD datasets,
underscoring the importance of robust average metrics. For the CIFAR-10 experiments, Table 2]
shows that our proposed method achieves the second-best near-OOD average FPR @95 and the best
far-OOD average FPR@95. In Table[3] our method attains the second-best AUROC in the near-OOD
average and the best AUROC in the far-OOD average. Table [ indicates that for AUPR _out, our
method produces the best near-OOD average and the second-best far-OOD average performance.
For the CIFAR-100 experiments, Table [5] demonstrates that our approach yields the second-best
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Table 6: AUROC results on CIFAR-100 with OOD sets.

Alg Near-OOD Far-OOD

CIFAR-10 TIN Avg. MNIST SVHN Textures Places365 Avg.
DeVries & Taylor] (2018) 68.80 74.41 71.60 74.29 65.51 65.39 70.42 68.90
Hendrycks et al.[(2019b) 71.11 81.75 76.43 93.10 95.39 88.16 76.95 88.40
Hsu et al.[{Z020) 73.04 81.26 77.15 91.15 83.74 89.62 78.17 85.67
Tack et al.| (Z020) 69.50 73.40 71.45 51.79 80.24 62.22 70.99 66.31
Chen et al.|(2021) 73.38 76.50 74.94 73.77 76.45 69.93 74.62 73.69
Huang & Li(Z0Z1) 78.54 82.26 80.40 80.68 81.59 79.92 78.50 80.17
Du et al.[(2022) 79.14 82.73 80.93 82.29 84.23 78.41 80.34 81.32
Wer et al.| (2022) 74.57 82.37 78.47 90.69 82.80 72.37 80.25 81.53
Ming et al.[(2023) 67.55 78.65 73.10 68.14 97.17 82.21 74.43 80.49
1ao et al.[(2023) 75.37 81.32 78.35 73.26 92.43 85.55 77.92 82.29
Regmi et al.|(2024a) 76.09 83.59 79.84 86.22 86.04 77.32 81.35 82.73
Hendrycks et al.[(2019a) 76.70 99.89 88.30 80.63 84.37 82.18 78.39 81.41
Yu & Aizawal (2019) 75.40 78.75 77.07 68.25 75.92 77.07 77.65 74.72
Yang et al.[(2021) 75.15 80.90 78.02 33.88 79.80 75.57 79.11 79.59
Zhang et al.[(2023) 78.17 83.73 80.95 76.06 72.28 77.34 79.92 76.40
Cubuk et al.|(Z020) 78.64 81.90 80.27 69.52 76.06 78.08 78.97 75.66
Hendrycks et al.[(2020) 77.80 80.91 79.36 72.75 81.16 76.32 78.51 77.18
Hendrycks et al.|(2022) 76.56 83.16 79.86 69.56 93.43 91.81 81.44 84.06
Pinto et al.[(2022) 78.40 83.25 80.83 78.75 79.47 78.13 79.79 79.04
Ours 78.96 83.82 81.39 90.98 87.63 86.38 85.26 87.56

Table 7: AUPR out results on CIFAR-100 with OOD sets.

Alg. Near-OOD Far-OOD

CIFAR-10 TIN Avg. MNIST SVHN Textures Places365 Avg.
DeVries & Taylor] (2018) 65.88 61.93 63.90 93.34 81.02 51.74 87.24 78.33
Hendrycks et al.|(2019b) 66.57 70.53 68.55 98.38 97.60 78.09 89.86 90.98
Hsu et al.[(2020) 71.57 71.28 71.42 98.20 91.05 82.72 91.41 90.84
Tack et al.| (Z020) 67.57 62.72 65.14 88.11 91.76 51.46 88.16 79.87
Chen et al.| (2021)) 70.67 65.05 67.86 94.24 87.95 53.85 89.49 81.38
Huang & Li/(2021) 75.65 71.89 73.77 95.79 90.85 68.00 91.02 86.41
Du et al.[(2022) 76.39 73.08 74.74 96.30 91.74 65.21 91.97 86.31
Wei et al.|(2022) 72.74 72.59 72.66 98.36 90.93 57.83 91.96 84.77
Ming et al.[(2023) 65.66 68.96 67.31 93.71 99.02 73.11 90.11 88.99
Tao et al.[(2023) 73.56 71.12 72.34 94.93 96.92 77.12 90.92 89.97
Regmi et al.[(2024a) 73.38 74.02 73.70 97.13 92.87 64.15 9241 86.64
Hendrycks et al.[(2019a) 72.95 99.86 86.40 95.92 93.03 73.84 91.31 88.53
Yu & Aizawa (2019) 70.54 62.49 66.51 90.61 82.73 58.31 89.24 80.22
Yang et al.[(2021) 72.52 71.16 71.84 96.72 90.09 62.93 91.75 85.37
Zhang et al.[(2023) 75.59 74.78 75.18 94.57 86.30 64.96 91.88 84.43
Cubuk et al.|(2020) 76.54 72.27 74.40 93.05 87.50 64.20 91.51 84.06
Hendrycks et al.[(2020) 75.29 70.64 72.96 93.84 90.21 61.26 91.26 84.14
Hendrycks et al.| (2022) 73.91 75.02 74.47 92.86 97.43 88.76 93.08 93.03
Pinto et al.[(2022) 76.36 74.11 75.24 95.76 89.03 63.73 91.92 85.11
Ours 78.37 75.25 76.81 98.92 93.52 81.34 91.91 91.42

performance for both the near-OOD and far-OOD averages. Comparable trends are observed in
Tables[6] and [7] for AUROC and AUPR _out.

Overall, these results highlight that performance on individual OOD datasets can vary considerably.
For example, OE (Hendrycks et al.l 2019a) exhibits considerable variation across different OOD
datasets (e.g., FPR@95 of 61 on CIFAR-10) but performs extremely well on others (e.g., 0.21 on
TIN). This large variation indicates that evaluating an algorithm’s robustness requires examining
the average metrics for near-OOD and far-OOD datasets. In this context, our method stands out
by consistently achieving the best or second-best average performance across all evaluated metrics
(FPR@95, AUROC, and AUPR _out).

This robust performance is attributable to our dynamic, data-driven hyperparameter, which is deter-
mined solely by the threshold at which the numerical derivative of the softmax output with respect
to the feature norm exceeds a specified value () and by the balance factor (a)) between the ID and
OOD losses. Unlike other methods that rely on manually tuned hyperparameters or additional OOD
data, our approach automatically adapts to the distribution of the ID data, leading to more consistent
and robust OOD detection.

5 CONCLUSION

We introduced a method for OOD detection that directly optimizes the feature space. Our approach
leverages feature norm optimization to ensure that ID and OOD samples are well-separated in the
embedding space. By defining two key thresholds, we derive a scaling ratio that guides the augmen-
tation of OOD samples. These augmented OOD samples, generated by random sampling within a
controlled, low-output region, effectively approximate the unknown domain. Our theoretical analy-
sis demonstrates that the risk difference between the true data distribution (i.e., the overall distribu-
tion containing both known and unknown samples) and the auxiliary domain constructed using these
augmented OOD samples is bounded. This result validates our approach of minimizing risks in the
auxiliary domain as an effective surrogate for minimizing risks in the original domain. Extensive
experiments confirm that our method significantly outperforms the baseline cross-entropy method.
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A PROOF OF THEOREM 1

Risk Difference Decomposition: Since by assumption Rp(h) = Rg i (h), the overall risk differ-
ence is determined solely by the unknown risk:

R (h) = Ry (R)] = |(1 = a)Rpx(h) + aRpu(h) = [(1 = a)Rpx(h) + aRq.u(h)|

(A.1)
- a’RRu(h) - RQ,u(h)’.
We now focus on bounding A := |Rp,(h) — Rg u(h)|.
Expressing the Difference in Unknown Risks: By definition,
Rea(h) = [ o(hg(@)).5) dPxver, (o) (a2)
x
and
Rq.u(h) = / é(h(g(m)),g) dQx|yey, (). (A.3)
X
Define the signed measure
u(@) = (Pxjvey, — Qxlyvey,) (@)- (A4)
Then,
Reu(h) = Ro.(8) = [ ¢(h(g(a)).5) du(a). (A5)
X
Taking the absolute value,
Rew(h) ~ Rou(h)| = | [ ¢(hg(0).9) duta). (A6)
X

Decomposing the Integral via an Intermediate Function: Let &’ € H be arbitrary. Then, add and
subtract £ (h’ (9(x)), gj) inside the integral:

Rp.u(h) — R.u(h) = /

X

(¢(hlg(@)).7) — (' (9@)).7) | duz)

(A7)
+ [ e((o@).5)duto).
x
Taking absolute values and applying the triangle inequality for integrals, we obtain
|Rpu(h) — Rou(h)| < I + Iz, (A.8)
where
I::/Ehgx,y — LKW (g(x)),7)]| du(z (A9)
v=| [ [(rtoten.z) — (4 (o), ) | dute)
and
I = /e(h'(g(x)),g) du(z)| . (A.10)
x

Bounding /; Using the Triangle Inequality: By the triangle inequality for the loss ¢ (which satis-
fies the triangle inequality), for any = we have

o(ng@)).5) = e(W (9@)).5)| < €(Alg@). R (9(x)))- (A1)
Therefore,

I < /X (o). W (9(2))) dip ) (A12)

12
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where d|p|(z) denotes the total variation measure of p.

Relating the First Term to A: We now wish to bound

/ ¢((g(@)). W (9(x))) dlp (). (A.13)
X
There are h’ that satisfies

£(hg(@), W (9(2)) ) < £(W (9(2)).5)- (A.14)

Let us define the hypothesis space H' for A’ such that it satisfies equation Then, for any
h' € H’, integrating both sides with respect to the positive measure Px|ycy, + Qx|yey,, We
obtain

[ t(utatan. w o)) a(Paven, +Qxver. )@ < [

| (W) ) d(Priver. +@xver. ) @)

(A.15)
The right-hand side is equal to Rp,, (k') + Rg,,(h'). Since this inequality holds for any h' € H/,
we define the residual term as

/. . ’ /
A= min (Reu() + Rou(h)). (A.16)

Under our training assumption for unknown samples, the model is encouraged to produce low-
confidence predictions. As a result, for unknown x, we expect that h(g(z)) ~ @.

As h(g(z)) approaches g, the hypothesis space H’ expands. When h(g(x)) exactly matches g, the
space H’ coincides with H. Consequently, we obtain

. 7 / ~ . / / [
min (Rp7u(h ) + Ro.u(h )) ~ min (Rp,u(h )+ Ro.u(h )) — A

Thus, we conclude that [; < A.

Bounding /> by the Disparity Discrepancy Metric: The second term,

/X (M (9(2)).5) du(a)

is bounded by definition of the disparity discrepancy metric:

I = , (A.17)

I < sup / €<h/(9($))7§> d(PX|Y€yu - QX\Yeyu)(x) = dﬁm—t (PXIYeyua QXlYeyu)
h'eH |Jx
(A.18)
Final Bound: Combining the bounds for /; and I, we obtain
[Rpu(h) = Ra.u(h)] < A+ d 5y (Pxivey, Qxivey, ). (A.19)
Finally, since
|RE(h) — RS (h)| = o |Rpu(h) — Rou(h)], (A.20)
it follows that
|[R2(h) = R3(1)] < ad) 0 (Pxivey, @xivey, ) +ah. (A21)

Although we have established that | R (k) — R%(h)| is bounded, we must further demonstrate the
relationship between the minimizers of the two risks. Specifically, we prove that

and
ar g min ]i h C aIg min li h/ . A.23

13
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Assumption: Following Assumption 1 in [Fang et al.| (2021), we assume that there exists a hypoth-
esis h € H and a distribution P defined over X, with supp(P) = X, such that

/X 160 hlo@)),6(0))dPyx (si2)AP () = 0 (A24)

where ¢ is a function on ) defined by

Y1, otherwise.
there exist hypotheses that can perfectly classify the unknown classes.

o(y) = {y, ity € Yu, In other words, the hypothesis space H is sufficiently expressive so that

Consistency of Minimum «a-Risk: By the above assumption, there exists some i € H such that
Rp.,,(h) = 0; similarly, there exists some i € H such that Rg ,,(h) = 0. Hence, we have

in R%(h A.25
}LrélﬁRP( ) (A.25)
—min(1—a) [ (g ) dPxyer ) +a [ 1) DiPayer. ) (426
heH XXV X
=(1- i A2
(1 - ) min Ry (h), (A27)
Then similar to RE, RO“Q follows,
in R (h) = (1 — i h). A28
min R (h) = (1 — o) min Rq x(h) (A.28)
Moreover, since Px|yeyr = Qx|yeyr, it follows that
in R . (h) = min RS . (h A.29
min R (h) = min Rg . (h), (A.29)
and thus,
in Rp(h) = (1 — in RS . (h) = (1— in RS ,(h) = min RG (h). A.30
min Rp(h) = (1 - o) min Rp (k) = (1 — o) min Rg (k) = min R (h) (A.30)

This shows that the minimum value of the a-risk for distribution P is equal to the minimum value of
the a-risk for distribution Q .

Optimal Hypothesis Consistency Between () and P: Let hg € argminpey RY) (h) be any opti-

mal hypothesis for ¢. Since g .(hq) = 0, we have

RaQ(hQ) == (1 - Q)RQ_’k(/’LQ) = (1 - OL)Rp’k(hQ). (A31)
Moreover, since Px < Qx, it follows that Px|ycy., < Qx|yeyu-

Therefore,
| tkato@). iQxven(@) = [ ilholoa). DPxveyala) =0, (a3
which implies that
RG(hg) = (1 = a)Roi(hg) = (1 — a)Rpi(hq) = Rp(hq)- (A33)
Furthermore, by the consistency of the minimum a-risk,
R§(hg) = heiﬂ Rg(h) = hmgl}_[l RE(h). (A.34)

Thus, any hypothesis that minimizes R (h) also minimizes /2% (h). This implies that

arg }z%l?g Rg(h) C arg irélﬁ RE(h). (A.35)

14
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Algorithm 1 Feature Norm-based OOD Augmentation

Require: Network ¢(-), ID dataset Dip, class centers C = {c1,...,ck }, derivative threshold 9,
batch size B, OOD loss weight A
Ensure: Trained network parameters
1: for each training iteration do
2:  Sample mini-batch {(z;,v:;)}2, ~Dmp
3:  Compute embeddings and norms: z; <—g(x;), n; < |zl
4:  Compute baseline norm

. T )
No ¢ argmin ‘softmax(C (zi)) — ?1H

5:  Compute saturation bound
Neap min{n > Ny : % mgx[softmax(CT(zin%))}k > 5}

. . B
Compute scaling ratio and mean norm: 7 < =2, pp < & > i, 0
cap

Generate OOD embeddings {Z;} s.t. ||Z;]| < 7 uip
8:  Compute losses:
B B
1 1 ; 5.
Lip <+ 5 Z CE(SOftmaX(WZi)a 91)7 Loop + 5 Zm]?x[softmax(Wzl)]k

i=1 =1

9:  Total loss and update: £ < Lip + A Loop
10:  Update parameters via V.L
11: end for

B ALGORITHMIC DESCRIPTION

Algorithm I{describes the whole pipeline of the proposed feature-Norm-based OOD augmentation.

C INTERPRETABLE HYPERPARAMETER TUNING

Our central hypothesis—that aligning feature norm with confidence enhances OOD detection—also
drives interpretable hyperparameter tuning: We selected § based on the separability of feature norms
between ID and OOD samples (Fig[I] left). For c, which balances ID and OOD loss, we prioritized
maintaining ID classification accuracy, as very small a can excessively lower ID confidence and hurt
accuracy. We believe that this interpretability-driven hyperparameter selection, based OOD metrics,
feature norm distributions, and ID accuracy, makes our method more robust and explainable.

D EXPERIMENTAL RESULTS ON IMAGENET-200

We also conducted OOD detection experiments on ImageNet-200. As shown in Tables
our method achieved consistently strong performance across both near- and far-OOD settings, rank-
ing 3rd/2nd/3rd on FPR@95 (near/far/ID), 2nd on AUROC (near/far), and 1st/2nd on AUPR-out
(near/far). This contrasts with many methods that excel on only one type of OOD.

15
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Table A.1: FPR@95 results on ImageNet-200 with various OODs. Please refer to the main text
for references.

Alg. Near-OOD Far-OOD ID ACC
SSB-hard NINCO  Avg. iNaturalist ~ Textures  Openlmage-O  Avg.
ConfBranch(DeVries & Taylor] 72.24 50.63 6144 23.84 42.42 37.99 3475 8592
CRotPred( 72.00 48.84 6042 20.51 26.44 31.51 26.16  86.37
G-ODIN(Hsu et al m 78.23 61.52  69.87 26.13 28.98 3543 3018 84.56
ARme 65.73 4575 5574 29.32 42.87 37.20 3646  83.95
MOS(Huang & Lil 2021} 74.35 68.85  71.60  49.55 51.27 53.86 51.56  85.60
VOS(Du et al’ | 69.93 49.85  59.89 25.53 39.74 36.77 3401 86.23
LogitNorm w. 67.46 4546  56.46 15.70 32.13 30.49 26.11  86.04
CIDER(Ming et al| 2023) 75.50 4469 6010  26.54 31.51 3247 30.17 /
NPOS(Tao et al. . 74.29 49.89  62.09 20.01 16.87 28.40 21.76 /
T2FNOrm(|—IRegm1 et al} [2024a) 65.94 44.09 5501 13.47 33.46 29.17 2537  86.87
(Hendrycks et al.| 2019 64.67 3993 5230 27.03 41.92 33.56 3417 85.82
MC@?D 65.69 4374 5471 21.74 38.11 29.93 2993 86.12
75.84 61.94 6889  49.26 71.94 64.92 62.04  68.11
68.26 4769 5797 30.84 51.44 40.51 4093 8571
65.97 4439 5518 25.82 44.16 3541 3513 86.58
65.91 44.02 5497 25.08 41.49 33.70 3342 87.01
67.81 4627  57.04 27.29 44.42 37.07 36.26 8579
65.70 41.85 5378 24.70 42.20 34.73 33.88 8725
65.56 4395 5476 14.02 29.63 22.16 21.94  86.98
Table A.2: AUROC results on ImageNet-200 with various OODs.
Near-OOD Far-OOD
Alg.
SSB-hard NINCO Avg. iNaturalist Textures Openlmage-O Avg.
ConfBranCh 2018) 75.01 83.19 79.10 93.40 89.64 88.26 90.43
77.04 86.15 81.59 93.47 93.81 90.41 92.56
) 72.94 81.63 77.28 93.12 93.67 90.18 92.33
ARPLD 79.24 84.81 82.02 91.54 88.11 88.04 89.23
MOS(Huang & Li} 2021} 66.54 73.14 69.84 79.69 81.38 80.29 80.46
VOS(Du et al] m. 79.68 85.35 82.51 92.77 90.95 89.28 91.00
LogitNorm m» 78.42 86.90 82.66 96.26 91.85 91.01 93.04
CIDER(Ming et al| 2023) 76.04 85.13 80.58 90.69 92.38 88.92 90.66
NPOS(Tao et al. u 74.29 84.50 79.40 94.81 96.97 91.69 94.49
TZFNormd—lRegml et al} [2024a) 79.00 86.99 83.00 96.87 91.95 91.81 93.55
(Hendrycks et al.| 2019 82.34 87.35 84.84 90.30 87.76 89.01 89.02
MC%WH@?D 81.51 85.74 83.62 90.83 86.87 89.12 88.94
70.73 77.88 74.30 85.95 81.79 78.54 82.09
80.23 85.01 82.62 90.64 86.80 87.36 88.27
80.18 86.16 83.17 93.07 88.81 89.12 90.34
80.43 86.55 83.49 93.17 89.28 89.61 90.68
78.79 85.51 82.15 92.48 89.81 88.41 90.23
80.85 87.41 84.13 93.28 89.59 89.56 90.81
81.23 87.36 84.30 96.23 92.22 91.98 94.02
Table A.3: AUPR out results on ImageNet-200 with various OODs.
Near-OOD Far-OOD
Alg.
SSB-hard NINCO Avg. iNaturalist Textures Openlmage-O Avg.
ConfBranch(DeVries & Taylor] [2018) 92.94 71.27 82.11 92.18 83.05 90.80 88.67
CRotPred(Hendrycks et al.[[2019b) 93.23 76.51 84.87 90.85 87.33 92.11 90.10
G-ODIN(Hsu et al.| [2020) 92.42 73.12 82.77 92.81 90.23 93.07 92.04
ARPL(Chen et al}[2021) 94.36 74.33 84.35 90.97 80.84 91.09 87.63
MOS(Huang & Lil K!Z{I' 89.15 57.62 73.38 7375 61.76 82.86 72.79
VOS 94.72 76.47 85.59 91.69 86.42 92.24 90.11
LogitNorm({Wei et al}2022) 94.05 78.76 86.41 96.16 87.10 93.48 92.25
CIDER(Ming et al.|[2023) 93.22 7341 83.32 88.09 88.15 91.26 89.16
NPOS(Tao et al | 92.88 75.86 84.37 94.66 95.63 94.21 94.83
T2FNorm(Regmi et al.|2024a) 94.26 79.03 86.64 96.82 87.57 94.21 92.87
E(Hendrycks et al.[[2019a) 95.59 78.12 86.86 86.42 77.91 91.11 85.15
Mc‘ﬁm‘ 95.13 7375 84.44 87.01 71.21 90.47 82.90
91.35 64.82 78.09 85.54 74.60 84.74 81.63
94.83 74.72 84.78 88.94 78.66 90.43 86.01
94.74 76.67 85.71 92.44 82.74 91.95 89.04
94.79 76.94 85.86 92.28 83.14 92.20 89.21
94.19 75.62 84.90 91.62 85.39 91.50 89.50
94.90 78.69 86.80 92.57 83.77 92.28 89.54
94.89 78.95 86.92 96.12 93.28 94.85 94.75
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