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ABSTRACT

We propose a novel framework for robust out-of-distribution (OOD) detection by
explicitly designing the feature space. Our approach aligns feature norm with
model confidence by enforcing a zero-confidence baseline—defined as the fea-
ture norm at which the softmax output is uniform—and deriving an upper bound
on the feature norm through softmax sensitivity analysis. This strategy enables
in-domain samples to exhibit high confidence while ensuring that OOD samples,
which naturally possess lower feature norms, yield near-uniform predictions. Un-
like existing methods that simply modify the feature norm without optimizing
the underlying embedding space, our method learns an optimal feature space via
density ratio estimation using Kernel Logistic Regression and feature space aug-
mentation. Our theoretical analysis shows that the risk difference between the true
data distribution (comprising both known and unknown samples) and an auxiliary
domain—constructed from augmented OOD samples drawn from the inner region
of the feature space—is bounded. Extensive experiments show that our approach
significantly enhances OOD detection performance.

1 INTRODUCTION

In recent years, various tasks such as Positive-Unlabeled (PU) learning (Garg et al., 2021; Bekker
& Davis, 2020; Kiryo et al., 2017), open set recognition (Vaze et al., 2022), uncertainty estima-
tion (Lakshminarayanan et al., 2017), and out-of-distribution (OOD) detection (Liu et al., 2020;
Hendrycks & Gimpel, 2017; Dong et al., 2022) have emerged as critical challenges in machine
learning. Each task addresses a distinct aspect of model performance under varying conditions, from
handling unknown classes to predicting system failures. Although many researchers have developed
tailored solutions for these problems, most methods treat them separately and often overlook the
underlying structure of the feature space.

A common strategy is to use the feature norm as an indicator of confidence. In standard classification
networks, the logit for class i is calculated as zi = w⊤

i x = ∥wi∥∥x∥ cos(θi), where x denotes the
embedding of the input, wi is the corresponding weight vector (or class proxy), and cos(θi) measures
the angular similarity between x and wi. Intuitively, a lower feature norm ∥x∥ should imply lower
confidence. However, due to the exponential transformation in the softmax function, even small
increases in ∥x∥ can lead to disproportionate changes in predicted probability, especially in high-
dimensional spaces where cosine similarities are highly concentrated (peaky).

To address this issue, we propose a novel OOD detection framework that explicitly aligns feature
norm with confidence. Our key insight is that if feature norm and confidence are well-linked, OOD
detection can be easily facilitated. Specifically, we define a zero-confidence baseline—namely, the
feature norm at which the softmax output becomes uniform (i.e., 1/K for K classes)—and derive
an upper bound on the feature norm by analyzing the sensitivity of the softmax mapping. This upper
bound ensures that further increases in the feature norm yield only moderate changes in confidence.
By generating OOD embeddings within a controlled region of the embedding space—determined by
the ratio of the zero-confidence baseline to the upper bound—and enforcing that these augmented
samples yield uniform predictions, we encourage in-distribution (ID) samples to remain within a
narrow, interpretable range of feature norms. In turn, OOD samples, which are naturally associated
with low feature norms, yield near-uniform softmax outputs.
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Unlike previous methods (Park et al., 2023) that modify the feature norm for OOD detection while
retaining standard classification loss, our approach optimizes the feature space to establish a tight
link between the feature norm and confidence. We achieve this by employing density ratio esti-
mation techniques such as Kernel Logistic Regression and validating our strategy through feature
space augmentation. Our theoretical analysis demonstrates that the risk difference between the true
domain—i.e., the overall data distribution containing both known and unknown samples—and an
auxiliary domain, constructed using augmented OOD samples drawn from the inner region of the
feature space, is bounded. This bound suggests that our augmented OOD samples may reason-
ably approximate the unknown domain, indicating that when these samples lie within the controlled
region, they can serve a similar role to actual OOD data in supporting robust OOD detection.

Figure 1: Comparison of the auxiliary domain
Q (augmented OOD samples) with the true dis-
tribution P . Left: Feature norm distributions.
Right: Embedding space visualization, showing
the region (marked N0) where augmented OOD
samples approximate actual OOD data.

Fig.1 compares the auxiliary domain Q, which
contains the augmented OOD samples, with the
true distribution P that includes the actual OOD
data. The first column shows the distribution of
feature norms, and the second column depicts
the embedding space. In the feature norm plot,
we observe that through our proposed loss and
training, the distribution of feature norms for
augmented OOD samples in Q closely matches
that of the actual OOD dataset in P . Further-
more, in the embedding space, the region oc-
cupied by the augmented OOD samples within
N0 is similar to the area where the actual OOD
data is located, with the red circle indicating
N0. Thus, this bound demonstrates that our
augmented OOD samples effectively approxi-
mate the unknown domain, ensuring that when
these samples lie within the controlled region,
they play a role similar to actual OOD data in
driving robust OOD detection.

Our extensive experiments confirm that our
adaptive regularization significantly enhances
OOD detection performance. By unifying these

ideas within an optimized feature space, our work provides a strong theoretical foundation for future
research in feature space optimization.

2 RELATED WORK
Recent OOD Detection Technique. Recent advances in OOD detection, uncertainty estimation,
and confidence calibration have produced a rich body of research addressing the challenge of re-
liably distinguishing ID from OOD samples. Early efforts include dropout-based uncertainty es-
timation (Gal & Ghahramani, 2016), which treated dropout as an approximate Bayesian inference
method to explore model uncertainty. In a complementary approach, the trust score method (Jiang
et al., 2018) investigated the correlation between classifier outputs and prediction errors. Further-
more, several studies (Liang et al., 2018; Hendrycks & Gimpel, 2017) established baselines for OOD
detection based on the maximum softmax probability (MSP), showing that misclassified and OOD
samples tend to exhibit lower MSP values. Subsequent research (Hein et al., 2019) has analyzed the
inherent overconfidence of deep networks on OOD inputs and proposed mitigation strategies.

More recent methods leverage auxiliary data and tailored loss functions to further improve OOD de-
tection. For instance, OE (Hendrycks et al., 2019a) employed external outlier data to refine decision
boundaries, while ensemble techniques and self-supervised leave-out classifiers have also been ex-
plored (Vyas et al., 2018). Additionally, ReweightOOD (Regmi et al., 2024b) addressed challenges
arising from overlapping ID and OOD regions in the embedding space by adaptively reweighting
samples during contrastive optimization. It classified samples as easy or hard positives/negatives
based on their proximity to class centroids and improved separability.

Our approach differs from these methods as it does not rely on external OOD data or ensembles.
Instead, we construct an auxiliary domain bounded by the true joint distribution and generate aug-
mented OOD samples directly in the feature space. This enables robust OOD detection without
sacrificing the simplicity of the training objective.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Feature Norm-Based Approaches. Several recent studies have examined the role of the feature
norm in the embedding space. In face recognition applications, MagFace (Meng et al., 2021) has
shown that the feature norm correlates with image quality. Moreover, other studies (Yu et al., 2020;
Ranjan et al., 2017) observed that ID samples tend to exhibit larger embedding magnitudes than
OOD samples. Dhamija et al. (2018) employed an entropic open-set loss to reduce the feature norm
of unknown samples, thereby enhancing the separability between known and unknown classes. Ad-
ditionally, studies in open-set recognition (Vaze et al., 2022) have demonstrated that during training,
the feature norms of known classes increase, while uncertain or unknown samples remain close to
the origin. Most relevant to our work (Park et al., 2023) theoretically established that feature norm is
equivalent to a classifier’s confidence, supporting OOD detection via confidence-based separation.
Building on these insights, T2FNorm (Regmi et al., 2024a) enforced hyperspherical constraints on
ID embeddings during training so that at test time, weakly activated OOD samples exhibit lower
norms and can be separated from ID samples by thresholding the maximum softmax probability.

In contrast, our approach directly aligns feature norm with confidence by defining a zero-confidence
baseline (i.e., the feature norm at which the softmax output is uniform) and deriving an upper bound
on the feature norm based on the sensitivity of the softmax mapping. We then employ a targeted
augmentation strategy to generate OOD samples within a controlled, low-confidence region. This
explicit calibration of the feature space ensures that our augmented OOD samples approximate the
unknown domain, enabling robust OOD detection without additional density estimation modules.

3 METHOD

Let X be a random variable representing input images and Y be the corresponding label. Here, Y
is a discrete random variable taking values in the set {1, . . . ,K}, corresponding to a multi-class
classification task with K classes. We assume that the true joint distribution of X and Y is given by
pdata. From this distribution, we obtain N independent and identically distributed (i.i.d.) samples,
forming the dataset D = {(xn, yn)}Nn=1. The function f denotes a deep neural network trained for
multi-class classification. Given an input x ∈ X , the network f produces two outputs: the predicted
label Ŷ and the logit vector ẑ. The logits ẑ are subsequently passed through the softmax function
σSM to convert them into a probabilistic vector P̂ . This probabilistic output P̂ is referred to as the
confidence score, representing the network’s confidence in its prediction.

A critical component in the network is its final fully connected layer, which maps the embedding
space o (typically the output of one of the last hidden layers of f ) to the logit space. Let g : X → Rd

denote the embedding function that maps an input x to an embedding g(x), and let h : Rd → RK

denote the mapping from the embedding space to the logit space. This layer is parameterized by the
weight matrix W and plays a crucial role in transforming the learned embeddings o into logits ẑ,
which are then used to determine the final classification output.

3.1 LEARNING FOR CONFIDENCE-BASED OOD DETECTION

Definition 1 (Domain). Given an input space X and a label space Y , a domain is defined as any
joint distribution PX,Y over X × Y . In this context, the known classes form a subset of Y , denoted
as Yk. The unknown classes are defined as those belonging to the set Yu = Y \ Yk.

We aim to train a classifier f using samples D = {(xi, yi)}ni=1 drawn from the in-distribution
PX,Y |Y ∈Yk

so that f can correctly classify ID samples and reliably identify OOD samples by pro-
ducing near-uniform softmax outputs for unknown inputs.
Problem 1 (Learning for Reliable Confidence-based OOD Detection). Given independent and iden-
tically distributed (i.i.d.) samples D = {(xi, yi)}ni=1 drawn from PX,Y |Y ∈Yk

, the goal of learning
for reliable confidence-based OOD detection is to train a classifier f using D such that f can:

1. correctly classify samples from known classes,

2. identify samples from unknown classes, and

3. produces near-uniform predictions for OOD samples, thereby indicating low confidence.

These objectives correspond to different aspects of the task: the first condition addresses the classifi-
cation in a closed-set scenario, the second focuses on OOD detection, and the third relates to reliable
confidence (i.e., ensuring that the model is less confident when faced with unknown samples). From
the perspective of statistical learning, we formalize this by defining risks over the logit space.
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Logit Space Risk. Let l : RK × RK → R≥0 be a loss function, and let h represent any hypothesis
function in the set {h : RD → RK} and any hypothesis function g in the set {g : X → RD}. For
the known classes, the logit risk is defined in the standard manner as:

RP,k(h) :=

∫
X×Yk

l
(
h
(
g(x)

)
, y
)
dPX,Y |Y ∈Yk

(x, y). (1)

For the unknown classes, where ground-truth labels are unavailable, we adopt a uniform target
distribution. Specifically, for a classification task with K known classes, we define the uniform
target ȳ ∈ RK as

ȳ =

(
1

K
,
1

K
, . . . ,

1

K

)
. (2)

This uniform target represents complete uncertainty among the K classes and encourages the clas-
sifier to output a flat probability distribution for unknown inputs. Thus, the logit risk for unknown
classes is defined as

RP,u(h) :=

∫
X
l
(
h
(
g(x)

)
, ȳ

)
dPX|Y ∈Yu

(x). (3)

These two risk components (logit space risk for both known and unknown classes) directly support
the key objectives of our framework: ensuring accurate in-domain classification, robust OOD detec-
tion, and reliable confidence calibration. Specifically, risks associated with known classes promote
high confidence in correct predictions, while the risk associated with unknown classes enforces low
confidence (i.e., near-uniform predictions) for OOD samples.

The total risk for the distribution PX,Y can be formulated as a weighted combination of the risks for
known and unknown classes. In the logit space, the α-risk is defined as:

Rα
P (h) := (1− α)RP,k(h) + αRP,u(h), (4)

where α is a weighting factor that reflects the importance of the unknown classes.

3.2 AUXILIARY DOMAIN CONSTRUCTION

Since no samples are available for unknown classes, directly computing the partial risk for these
classes is challenging. To address this, we introduce an auxiliary domain QX,Y , following a similar
approach to that in Fang et al. (2021).
Definition 2 (Auxiliary Domain). A domain QX,Y defined over X × Y is called the auxiliary
domain for PX,Y if it satisfies the following conditions: QX|Y ∈Yk

= PX|Y ∈Yk
, QY |X = PY |X ,

and PX ≪ QX , where PX ≪ QX denotes absolute continuity.
Theorem 1 (Boundedness of the Logit α-Risk Difference). Given a loss function ℓ that satisfies the
triangle inequality, and a hypothesis space H ⊂

{
h : X → RK

}
, if QX,Y is the auxiliary domain

for PX,Y (with the definitions of RP,u(h), RQ,u(h) and RP,k(h) = RQ,k(h)), then for any h ∈ H,
the following bound holds:∣∣Rα

P (h)−Rα
Q(h)

∣∣ ≤ αdlh,H

(
PX|Y ∈Yu

, QX|Y ∈Yu

)
+ αΛ, (5)

where the disparity discrepancy metric is defined as

dlh,H

(
PX|Y ∈Yu

, QX|Y ∈Yu

)
:= sup

h′∈H

∣∣∣∣∫
X
ℓ
(
h′(g(x)), ȳ

)
d
(
PX|Y ∈Yu

−QX|Y ∈Yu

)
(x)

∣∣∣∣ , (6)

and the residual term is defined as

Λ := min
h′∈H

(
RP,u(h

′) +RQ,u(h
′)
)
. (7)

Furthermore, we prove that

min
h∈H

Rα
Q(h) = min

h∈H
Rα

P (h) and argmin
h∈H

Rα
Q(h) ⊂ argmin

h∈H
Rα

P (h). (8)

That is, the hypothesis that minimizes the risk in the auxiliary domain Q minimizes the risk in the
true domain P .

Proof. Please refer to Appendix A.

4
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To effectively handle unknown classes without available samples, we propose constructing an aux-
iliary domain QX,Y . This auxiliary domain is designed to closely approximate the overall data
distribution by incorporating both known and unknown samples. To achieve this, we first define a
latent space distribution U that uniformly covers the range of the embeddings. Let Z ⊂ Rd denote
the latent (embedding) space produced by the network, and let g : X → Rd be the embedding
function. We define U as a probability distribution over Z, specifically as the uniform distribution
over the hyper-rectangle:

U =

d∏
j=1

[mj ,Mj ], (9)

where, for each dimension j,

mj = min
x∈D

gj(x) and Mj = max
x∈D

gj(x). (10)

Thus, U uniformly covers the range of the embedding space induced by the training (ID) dataset D.

Following Fang et al. (2021), we assume that the known class conditional distribution PX|Y ∈Yk
is

absolutely continuous with respect to U ; that is, for any U -measurable set A ⊂ Z,

PX|Y ∈Yk
(A) =

∫
A

r(x) dU(x), (11)

where r(x) =
dPX|Y ∈Yk

(x)

dU(x) is the density ratio.

We define S as the set of latent representations of ID samples (i.e., drawn from PX,Y |Y ∈Yk
) and T

as the set of samples drawn from the uniform distribution U over the latent space. To estimate the
density ratio, we train a kernel logistic regression (KLR) model. In our formulation, samples from
S serve as positive examples, while samples from T are treated as unlabeled. Specifically, the KLR
estimates

w(z) = 1/1 + exp(−ϕ(z)), (12)
where z is the latent representation and we set ϕ(z) = ∥x∥. Hence, the weight w(z) reflects the
likelihood that a sample from T is in-domain.

Leveraging this analysis, we simplify the auxiliary domain construction. Rather than performing
full density estimation over the entire embedding space, we treat samples from U with feature norms
below a specified threshold as OOD, while directly using the actual ID samples. This yields an aux-
iliary domain consisting of true in-domain data and augmented OOD samples (uniformly sampled
from the low feature norm region), approximating the unknown domain without complex density
estimation procedures.

3.3 FEATURE NORM-BASED AUGMENTATION AND LEARNING DYNAMICS

Our approach leverages the intrinsic structure of the embedding space to generate augmented OOD
samples and regulates the mapping between the feature norm and the network output. As discussed
in Introduction, when the feature norm exceeds a certain threshold, the softmax output tends to
saturate, which can disrupt the reliable linking of feature norm to confidence. To maintain a strong
and consistent mapping between feature norm and confidence, we identify a controlled range where
this mapping is smooth. This process is driven by two key thresholds computed from ID data:

• Confidence Baseline Norm (N0): This is the feature norm at which the softmax output becomes
uniform (i.e., each class receives a probability of1/K ), corresponding to a state of zero confidence.

• Confidence Saturation Bound (Ncap): This is defined as the smallest feature norm above N0 at
which the numerical derivative of the softmax output with respect to the feature norm exceeds a
specified threshold (e.g., 1.0). In other words, Ncap marks the upper limit of the region where the
mapping from feature norm to softmax output remains smooth and controlled. In our framework,
ID samples are encouraged to have feature norms below Ncap to ensure a reliable link between the
feature norm and the model’s confidence.

We then define a scaling ratio τ = N0

Ncap
, which is used to guide our OOD augmentation.

Forward Pass and Threshold Computation. During a forward pass, the network produces em-
beddings g(x). We compute the feature norm ∥g(x)∥ and the cosine similarities between g(x) and
each class representative. These statistics are used to determine N0 by identifying the candidate
feature norm at which the softmax output is closest to uniform (i.e., 1/K). We then obtain Ncap as
the smallest candidate feature norm above N0 at which the approximate (numerical) derivative of

5
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Figure 2: Visualization of the feature space for the baseline Cross Entropy (CE) method (top
row) and our proposed CE+Ours method (bottom row) across various datasets. The proposed
method shows improved feature space organization, with clusters positioned further from the origin,
indicating larger feature norms. Consequently, the OOD samples from six datasets are concentrated
near the origin, forming a balanced circular distribution with smaller feature norms. In contrast, the
baseline CE method exhibits clustering bias, with OOD samples more unevenly distributed.

Table 1: Performance comparison between the Cross Entropy (CE) method and the CE+Ours
method on various datasets for OOD detection tasks in terms of FPR@95, AUROC, AUPR-in, and
AUPR-out. Notably, the accuracy for CE and CE+Ours is 95.81% and 95.14%, respectively.

Dataset Method FPR@95↓ AUROC↑ AUPR-in↑ AUPR-out↑

NotMNIST CE / CE+Ours 87.24 / 16.20 81.45 / 96.40 60.34 / 93.84 88.68 / 97.88
FashionMNIST CE / CE+Ours 21.91 / 9.65 93.06 / 97.80 92.82 /97.89 92.03 / 97.62

NearOOD CE / CE+Ours 54.58 /12.93 87.25 / 97.10 76.58 / 95.89 90.36 / 97.62

Texture CE / CE+Ours 57.90 / 6.42 88.97 / 98.55 87.77 / 98.74 86.25 /98.00
CIFAR-10 CE/ CE+Ours 23.83 / 2.53 93.79 /99.30 93.57 / 99.34 93.62 /99.26
TinyImageNet CE / CE+Ours 26.97 / 3.64 93.13 / 99.01 92.58 /98.96 93.05 / 99.01
Places365 CE 24.76 / 3.82 93.53 / 99.00 82.50 / 97.13 97.96 /99.71

FarOOD CE 33.36 / 4.10 92.36 / 98.96 89.11 / 98.54 92.72 / 98.99

the softmax output with respect to the feature norm exceeds a specified threshold δ (e.g., 1.0). Their
ratio, τ , is subsequently calculated.

OOD Augmentation. For each batch, we compute the average ID feature norm, µID. We then
generate augmented OOD embeddings by uniformly sampling within a ball of radius τ · µID in the
embedding space. This random augmentation ensures that the generated OOD samples lie within a
controlled, low-confidence region—effectively approximating the unknown domain.

Learning Dynamics. The final training objective is formulated as a weighted combination of two
loss terms: 1.ID Loss: The standard cross-entropy loss computed on ID samples, which promotes
correct classification. 2.OOD Loss: A loss computed on the augmented OOD embeddings that
penalizes high-confidence outputs (e.g., by reducing the maximum softmax probability).

If an ID sample’s feature norm becomes excessively large, its OOD augmentation (scaled by τ )
incurs a penalty that counteracts further norm increases. This mechanism enforces a smooth and
continuous mapping between feature norm and network output, ensuring that ID samples maintain
high confidence while augmented OOD samples yield near-uniform (low-confidence) predictions.

In summary, by explicitly computing N0 (the zero-confidence baseline) and Ncap (the confidence
saturation bound) to derive the scaling ratio τ = N0

Ncap
, our method employs feature norm-based aug-

mentation to generate OOD samples in a controlled, low-confidence region of the embedding space.
This strategy ensures that ID samples remain in a range where small changes in norm yield gradual
changes in output, while augmented OOD samples approximate the unknown domain. By rely-
ing solely on intrinsic feature norms without additional density estimation modules, our approach
naturally aligns feature norms with network confidence. Combined with a joint training loss, this
results in an optimal embedding space where the risk difference between the true distribution and
the augmented domain is bounded, ensuring robust OOD detection.

4 EXPERIMENTS

For our experiments, we followed the OpenOOD benchmark (Yang et al., 2022), which empha-
sizes fair comparison in OOD detection tasks. OpenOOD addresses several key challenges in the
field: (1) Although OOD detection shares a common goal with tasks like open-set learning, open-
set recognition, and novelty detection, these tasks are often referred to by different names, lead-
ing to inconsistency in evaluation. (2) Due to the nature of the task, experiments require sepa-
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Table 2: FPR@95 results on CIFAR-10 with various OOD sets. Lower FPR@95 values indicate
better performance. The best and second-best values are boldfaced and underlined, respectively.
Training Post-processor Near-OOD Far-OOD ID ACC

CIFAR-100 TIN Avg. MNIST SVHN Textures Places365 Avg.

ConfBranch(DeVries & Taylor, 2018) ConfBranch 34.44 28.11 31.28 15.79 14.06 27.24 28.85 21.48 94.88
RotPred(Hendrycks et al., 2019b) RotPred 34.24 22.04 28.14 9.24 3.20 9.87 26.61 12.23 95.35
G-ODIN(Hsu et al., 2020) G-ODIN 48.86 42.21 45.54 4.53 10.72 27.27 43.30 21.45 94.70
CSI(Tack et al., 2020) MSP 37.57 29.74 33.66 24.41 17.56 28.95 34.76 26.42 91.16
ARPL(Chen et al., 2021) ARPL 43.38 37.28 40.33 21.49 35.68 35.19 37.21 32.39 93.66
MOS(Huang & Li, 2021) MOS 79.38 78.05 78.72 65.95 57.79 76.78 51.09 62.90 94.83
VOS(Du et al., 2022) EBO 61.57 52.49 57.03 35.92 31.50 46.53 47.78 40.43 94.31
LogitNorm(Wei et al., 2022) MSP 34.37 24.30 29.34 3.93 8.33 21.94 21.04 13.81 94.30
CIDER(Ming et al., 2023) KNN 35.60 28.61 32.11 24.76 8.04 25.05 25.03 20.72 -
NPOS(Tao et al., 2023) KNN 35.71 29.57 32.64 22.96 6.41 20.80 32.19 20.59 -
T2FNorm(Regmi et al., 2024a) T2FNorm 30.60 22.33 26.47 3.50 5.72 19.49 22.27 12.75 94.69
OE(Hendrycks et al., 2019a) MSP 36.71 2.97 19.84 24.67 1.25 12.07 14.53 13.13 94.63
MCD(Yu & Aizawa, 2019) MCD 34.36 25.98 30.17 62.11 19.43 22.51 24.10 32.03 94.95
UDG(Yang et al., 2021) MSP 40.75 29.93 35.34 16.61 17.39 19.70 27.70 20.35 92.36
MixOE(Zhang et al., 2023) MSP 58.29 44.62 51.45 38.28 20.36 33.19 43.54 33.84 94.55
RandAugment(Cubuk et al., 2020) MSP 40.08 30.95 35.51 15.03 20.97 30.30 30.33 24.16 95.59
AugMix(Hendrycks et al., 2020) MSP 41.83 33.52 37.68 23.74 24.42 25.61 34.22 27.00 95.01
PixMix(Hendrycks et al., 2022) MSP 28.91 21.01 24.96 27.44 10.14 6.64 21.11 16.33 95.15
RegMixup(Pinto et al., 2022) MSP 54.89 42.68 48.78 20.74 36.94 44.30 43.21 36.30 95.75
Ours MSP 25.31 20.26 22.79 2.75 3.62 5.62 11.63 5.91 95.32

Table 3: AUROC on CIFAR-10 with OOD sets. Higher values indicate better performance.
Alg. Near-OOD Far-OOD

CIFAR-100 TIN Avg. MNIST SVHN Textures Places365 Avg.

DeVries & Taylor (2018) 88.91 90.77 89.84 94.49 95.42 91.10 90.39 92.85
Hendrycks et al. (2019b) 91.19 94.17 92.68 97.52 98.89 97.30 92.76 96.62
Hsu et al. (2020) 88.14 90.09 89.12 98.95 97.76 95.02 90.31 95.51
Tack et al. (2020) 88.16 90.87 89.51 92.55 95.18 90.71 89.56 92.00
Chen et al. (2021) 86.76 88.12 87.44 92.62 87.69 88.57 88.39 89.31
Huang & Li (2021) 70.57 72.34 71.45 74.81 73.66 70.35 86.81 76.41
Du et al. (2022) 86.57 88.84 87.70 91.56 92.18 89.68 89.90 90.83
Wei et al. (2022) 90.95 93.70 92.33 99.14 98.25 94.77 94.79 96.74
Ming et al. (2023) 89.47 91.94 90.71 93.30 98.06 93.71 93.77 94.71
Tao et al. (2023) 88.57 90.99 89.78 92.64 98.88 94.44 90.32 94.07
Regmi et al. (2024a) 91.56 94.02 92.79 99.28 98.81 95.44 94.40 96.98
Hendrycks et al. (2019a) 90.54 99.11 94.82 90.22 99.60 97.58 96.58 96.00
Yu & Aizawa (2019) 89.88 92.18 91.03 84.22 93.76 93.35 92.66 91.00
Yang et al. (2021) 88.62 91.20 89.91 95.81 94.55 93.92 91.97 94.06
Zhang et al. (2023) 87.47 90.00 88.73 91.66 93.82 91.84 90.38 91.93
Cubuk et al. (2020) 89.26 91.03 90.15 95.26 93.33 91.17 91.12 92.72
Hendrycks et al. (2020) 88.61 90.26 89.43 92.33 92.19 91.91 90.19 91.66
Hendrycks et al. (2022) 90.86 92.65 91.76 98.47 99.18 98.27 98.09 98.50
Pinto et al. (2022) 84.71 85.96 85.33 99.02 94.94 81.66 96.19 92.95
Ours 91.82 94.88 93.35 99.23 98.96 98.56 97.48 98.56

rate in-domain and OOD domains. However, the choice of datasets for each domain lacks consis-
tency across studies. Thus, OpenOOD defines both near-OOD and far-OOD categories relative to
the training data. Appendix C and D presents more results on ImageNet-200
and outlines our hyperparameter tuning strategy.

4.1 EXPERIMENTS ON MNIST
We conducted the experiments on the MNIST dataset. In the OpenOOD framework, near-OOD
datasets include notMNIST and FashionMNIST, while far-OOD datasets consist of Texture, CIFAR-
10, TinyImageNet (TIN), and Places365. For evaluation, we used the following metrics: classifi-
cation accuracy, FPR@95, AUROC, AUPR-in, and AUPR-out, reporting the average performance
across both near-OOD and far-OOD scenarios. For the network architecture, we used a LeNet
model, setting the dimensionality of the pre-softmax layer to 2 for visualization purposes. To utilize
all regions in the embedding space, the final layer ReLU activation was omitted. Additionally, we
employed Maximum Softmax Probability (MSP) to perform OOD evaluation across both the base-
line model and our method (CE+Ours). We used standard MSP to align with recent training-time
methods that avoid post-hoc detectors. The hyperparameters are set to α = 0.1 and δ = 1.0.

Table 1 shows that our method (CE+Ours) consistently outperforms the baseline cross-entropy
model across all key metrics. For instance, in NearOOD, our method achieves a significantly lower
FPR@95 of 12.93% compared to 54.58% with the baseline, highlighting its superior ability to min-
imize false positives. Similarly, in FarOOD, our method shows a substantial improvement in AU-
ROC, reaching 98.96%, a notable increase from the baseline’s 92.36%. Our approach enhances both
OOD detection and confidence calibration. Fig.2 illustrates the qualitative comparison, highlighting
the advantages of our proposed method. The top row shows the feature space produced by the base-
line Cross Entropy (CE) method, while the bottom row shows the feature space generated by our
CE+Ours method. In the baseline, the class clusters are relatively close to the origin, and the OOD
datasets are also positioned near the origin, making it challenging to effectively differentiate OOD
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Table 4: AUPR out on CIFAR-10 with OOD sets. Higher values indicate better performance.
Alg. Near-OOD Far-OOD

CIFAR-100 TIN Avg. MNIST SVHN Textures Places365 Avg.

DeVries & Taylor (2018) 85.22 85.78 85.50 98.71 97.26 81.78 96.16 93.48
Hendrycks et al. (2019b) 89.20 91.75 90.47 99.43 99.33 94.10 97.30 97.54
Hsu et al. (2020) 88.09 88.41 88.25 99.83 99.12 93.41 97.05 97.35
Tack et al. (2020) 85.45 87.30 86.37 98.49 97.75 82.99 96.38 93.90
Chen et al. (2021) 83.25 82.66 82.96 98.53 93.27 78.27 95.58 91.41
Huang & Li (2021) 72.70 72.13 72.41 95.24 87.20 62.67 95.85 85.24
Du et al. (2022) 86.17 86.98 86.57 98.53 96.37 84.05 96.83 93.95
Wei et al. (2022) 89.62 91.61 90.62 99.87 99.31 91.68 98.29 97.29
Ming et al. (2023) 87.27 88.68 87.97 98.75 99.19 88.93 97.88 96.19
Tao et al. (2023) 85.63 87.08 86.36 98.54 99.60 90.18 96.48 96.20
Regmi et al. (2024a) 90.20 91.91 91.06 99.89 99.54 92.85 98.17 97.61
Hendrycks et al. (2019a) 89.83 98.68 94.25 97.20 99.80 96.11 98.90 98.00
Yu & Aizawa (2019) 87.07 88.38 87.73 97.01 96.39 87.12 97.30 94.45
Yang et al. (2021) 86.31 87.48 86.89 99.26 96.86 87.68 97.12 95.23
Zhang et al. (2023) 86.88 87.90 87.39 98.63 97.06 87.48 96.95 95.03
Cubuk et al. (2020) 87.07 87.59 87.33 99.13 96.65 84.24 96.85 94.22
Hendrycks et al. (2020) 86.36 86.59 86.48 98.54 96.16 85.37 96.56 94.15
Hendrycks et al. (2022) 90.86 92.65 91.76 98.47 99.18 98.27 98.09 98.50
Pinto et al. (2022) 84.71 85.96 85.33 99.02 94.94 81.66 96.19 92.95
Ours 91.26 93.66 92.46 99.52 98.74 98.52 98.27 98.76

Table 5: FPR@95 results on CIFAR-100 with various OOD sets.
Training Post-processor Near-OOD Far-OOD ID ACC

CIFAR-10 TIN Avg. MNIST SVHN Textures Places365 Avg.

ConfBranch(DeVries & Taylor, 2018) ConfBranch 74.56 65.86 70.21 55.95 76.01 85.43 69.90 71.82 76.59
RotPred(Hendrycks et al., 2019b) RotPred 72.00 53.17 62.58 22.77 15.64 40.03 59.56 34.50 76.03
G-ODIN(Hsu et al., 2020) G-ODIN 78.82 56.34 67.58 27.19 42.68 35.83 65.03 42.68 74.46
CSI(Tack et al., 2020) MSP 72.62 67.90 70.26 80.54 67.21 90.51 69.41 76.92 61.60
ARPL(Chen et al., 2021) ARPL 64.84 58.27 61.56 59.12 59.76 71.66 62.01 63.14 70.70
MOS(Huang & Li, 2021) MOS 60.60 51.49 56.05 52.70 56.33 61.24 58.86 57.28 76.98
VOS(Du et al., 2022) EBO 59.23 51.89 55.56 48.56 47.23 62.55 56.44 53.70 77.20
LogitNorm(Wei et al., 2022) MSP 73.88 51.89 62.89 34.12 47.52 77.38 55.44 53.61 76.34
CIDER(Ming et al., 2023) KNN 82.71 61.33 72.02 75.32 17.82 54.43 69.30 54.22 -
NPOS(Tao et al., 2023) KNN 72.50 54.21 63.35 66.98 30.67 47.39 59.47 51.13 -
T2FNorm(Regmi et al., 2024a) T2FNorm 67.07 49.88 58.47 39.39 44.29 66.82 54.50 51.25 76.43
OE(Hendrycks et al., 2019a) MSP 61.26 0.21 30.73 53.31 51.84 55.83 58.30 54.82 76.84
MCD(Yu & Aizawa, 2019) MCD 62.65 49.10 55.88 62.78 43.71 56.89 54.17 54.39 75.83
UDG(Yang et al., 2021) MSP 66.40 56.43 61.42 45.14 59.67 71.33 59.85 59.00 71.54
MixOE(Zhang et al., 2023) MSP 61.12 49.32 55.22 59.49 73.09 66.04 56.93 63.88 75.13
RandAugment(Cubuk et al., 2020) MSP 59.24 50.86 55.05 66.73 60.50 59.04 57.22 60.87 78.16
AugMix(Hendrycks et al., 2020) MSP 59.27 53.33 56.30 61.94 51.89 61.35 58.24 58.36 76.45
PixMix(Hendrycks et al., 2022) MSP 62.16 51.50 56.83 70.32 30.76 37.47 55.13 48.42 77.63
RegMixup(Pinto et al., 2022) MSP 62.59 49.65 56.12 56.77 55.97 59.73 57.53 57.50 79.23
Ours MSP 50.36 45.63 48.00 30.31 35.93 39.66 46.31 38.05 78.95

samples from in-domain samples. In contrast, our method separates the class clusters further from
the origin, increasing the feature norms and improving the identification of OOD data. Unlike the
baseline CE method, where OOD samples tend to cluster around specific training sets, our method
achieves a more uniform circular distribution for the OOD samples. This enhances OOD detection
and results in a more balanced feature space representation.

4.2 EXPERIMENTS ON CIFAR-10 AND CIFAR-100
Following our MNIST experiments, we adhere to the OpenOOD benchmark (Yang et al., 2022). For
our backbone, we used ResNet18 (He et al., 2016), extracting 512-dimensional embeddings from the
layer preceding the classification head. When CIFAR-10 is the in-domain dataset, OpenOOD defines
CIFAR-100 and TinyImageNet (TIN) as near-OOD, and MNIST, SVHN, Textures, and Places365 as
far-OOD. For CIFAR-100 as the in-domain dataset, CIFAR-10 and TIN serve as near-OOD, while
MNIST, SVHN, Textures, and Places365 are considered far-OOD. For CIFAR-10, the hyperparam-
eters were set to α = 1.0 and δ = 1.0; for CIFAR-100, they were set to α = 0.1 and δ = 1.0.

Since the compared methods train models directly, both OOD detection performance and classifica-
tion accuracy are important metrics. The OOD detection results, measured by FPR@95, AUROC,
and AUPR out, for CIFAR-10 as the in-domain dataset are presented in Tables 2, 3, and 4. Due to
space constraints, the values for the ”Training” and ”Post-processor” columns, as well as the classi-
fication accuracy (which are identical across metrics), are omitted in Table 3 and 4. Similar results
for CIFAR-100 as the in-domain dataset are provided in Tables 5, 6, and 7.

Our experimental results reveal significant performance variation across different OOD datasets,
underscoring the importance of robust average metrics. For the CIFAR-10 experiments, Table 2
shows that our proposed method achieves the second-best near-OOD average FPR@95 and the best
far-OOD average FPR@95. In Table 3, our method attains the second-best AUROC in the near-OOD
average and the best AUROC in the far-OOD average. Table 4 indicates that for AUPR out, our
method produces the best near-OOD average and the second-best far-OOD average performance.
For the CIFAR-100 experiments, Table 5 demonstrates that our approach yields the second-best
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Table 6: AUROC results on CIFAR-100 with OOD sets.
Alg. Near-OOD Far-OOD

CIFAR-10 TIN Avg. MNIST SVHN Textures Places365 Avg.

DeVries & Taylor (2018) 68.80 74.41 71.60 74.29 65.51 65.39 70.42 68.90
Hendrycks et al. (2019b) 71.11 81.75 76.43 93.10 95.39 88.16 76.95 88.40
Hsu et al. (2020) 73.04 81.26 77.15 91.15 83.74 89.62 78.17 85.67
Tack et al. (2020) 69.50 73.40 71.45 51.79 80.24 62.22 70.99 66.31
Chen et al. (2021) 73.38 76.50 74.94 73.77 76.45 69.93 74.62 73.69
Huang & Li (2021) 78.54 82.26 80.40 80.68 81.59 79.92 78.50 80.17
Du et al. (2022) 79.14 82.73 80.93 82.29 84.23 78.41 80.34 81.32
Wei et al. (2022) 74.57 82.37 78.47 90.69 82.80 72.37 80.25 81.53
Ming et al. (2023) 67.55 78.65 73.10 68.14 97.17 82.21 74.43 80.49
Tao et al. (2023) 75.37 81.32 78.35 73.26 92.43 85.55 77.92 82.29
Regmi et al. (2024a) 76.09 83.59 79.84 86.22 86.04 77.32 81.35 82.73
Hendrycks et al. (2019a) 76.70 99.89 88.30 80.68 84.37 82.18 78.39 81.41
Yu & Aizawa (2019) 75.40 78.75 77.07 68.25 75.92 77.07 77.65 74.72
Yang et al. (2021) 75.15 80.90 78.02 83.88 79.80 75.57 79.11 79.59
Zhang et al. (2023) 78.17 83.73 80.95 76.06 72.28 77.34 79.92 76.40
Cubuk et al. (2020) 78.64 81.90 80.27 69.52 76.06 78.08 78.97 75.66
Hendrycks et al. (2020) 77.80 80.91 79.36 72.75 81.16 76.32 78.51 77.18
Hendrycks et al. (2022) 76.56 83.16 79.86 69.56 93.43 91.81 81.44 84.06
Pinto et al. (2022) 78.40 83.25 80.83 78.75 79.47 78.13 79.79 79.04
Ours 78.96 83.82 81.39 90.98 87.63 86.38 85.26 87.56

Table 7: AUPR out results on CIFAR-100 with OOD sets.
Alg. Near-OOD Far-OOD

CIFAR-10 TIN Avg. MNIST SVHN Textures Places365 Avg.

DeVries & Taylor (2018) 65.88 61.93 63.90 93.34 81.02 51.74 87.24 78.33
Hendrycks et al. (2019b) 66.57 70.53 68.55 98.38 97.60 78.09 89.86 90.98
Hsu et al. (2020) 71.57 71.28 71.42 98.20 91.05 82.72 91.41 90.84
Tack et al. (2020) 67.57 62.72 65.14 88.11 91.76 51.46 88.16 79.87
Chen et al. (2021) 70.67 65.05 67.86 94.24 87.95 53.85 89.49 81.38
Huang & Li (2021) 75.65 71.89 73.77 95.79 90.85 68.00 91.02 86.41
Du et al. (2022) 76.39 73.08 74.74 96.30 91.74 65.21 91.97 86.31
Wei et al. (2022) 72.74 72.59 72.66 98.36 90.93 57.83 91.96 84.77
Ming et al. (2023) 65.66 68.96 67.31 93.71 99.02 73.11 90.11 88.99
Tao et al. (2023) 73.56 71.12 72.34 94.93 96.92 77.12 90.92 89.97
Regmi et al. (2024a) 73.38 74.02 73.70 97.13 92.87 64.15 92.41 86.64
Hendrycks et al. (2019a) 72.95 99.86 86.40 95.92 93.03 73.84 91.31 88.53
Yu & Aizawa (2019) 70.54 62.49 66.51 90.61 82.73 58.31 89.24 80.22
Yang et al. (2021) 72.52 71.16 71.84 96.72 90.09 62.93 91.75 85.37
Zhang et al. (2023) 75.59 74.78 75.18 94.57 86.30 64.96 91.88 84.43
Cubuk et al. (2020) 76.54 72.27 74.40 93.05 87.50 64.20 91.51 84.06
Hendrycks et al. (2020) 75.29 70.64 72.96 93.84 90.21 61.26 91.26 84.14
Hendrycks et al. (2022) 73.91 75.02 74.47 92.86 97.43 88.76 93.08 93.03
Pinto et al. (2022) 76.36 74.11 75.24 95.76 89.03 63.73 91.92 85.11
Ours 78.37 75.25 76.81 98.92 93.52 81.34 91.91 91.42

performance for both the near-OOD and far-OOD averages. Comparable trends are observed in
Tables 6 and 7 for AUROC and AUPR out.

Overall, these results highlight that performance on individual OOD datasets can vary considerably.
For example, OE (Hendrycks et al., 2019a) exhibits considerable variation across different OOD
datasets (e.g., FPR@95 of 61 on CIFAR-10) but performs extremely well on others (e.g., 0.21 on
TIN). This large variation indicates that evaluating an algorithm’s robustness requires examining
the average metrics for near-OOD and far-OOD datasets. In this context, our method stands out
by consistently achieving the best or second-best average performance across all evaluated metrics
(FPR@95, AUROC, and AUPR out).

This robust performance is attributable to our dynamic, data-driven hyperparameter, which is deter-
mined solely by the threshold at which the numerical derivative of the softmax output with respect
to the feature norm exceeds a specified value (δ) and by the balance factor (α) between the ID and
OOD losses. Unlike other methods that rely on manually tuned hyperparameters or additional OOD
data, our approach automatically adapts to the distribution of the ID data, leading to more consistent
and robust OOD detection.

5 CONCLUSION
We introduced a method for OOD detection that directly optimizes the feature space. Our approach
leverages feature norm optimization to ensure that ID and OOD samples are well-separated in the
embedding space. By defining two key thresholds, we derive a scaling ratio that guides the augmen-
tation of OOD samples. These augmented OOD samples, generated by random sampling within a
controlled, low-output region, effectively approximate the unknown domain. Our theoretical analy-
sis demonstrates that the risk difference between the true data distribution (i.e., the overall distribu-
tion containing both known and unknown samples) and the auxiliary domain constructed using these
augmented OOD samples is bounded. This result validates our approach of minimizing risks in the
auxiliary domain as an effective surrogate for minimizing risks in the original domain. Extensive
experiments confirm that our method significantly outperforms the baseline cross-entropy method.
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A PROOF OF THEOREM 1

Risk Difference Decomposition: Since by assumption RP,k(h) = RQ,k(h), the overall risk differ-
ence is determined solely by the unknown risk:∣∣∣Rα

P (h)−Rα
Q(h)

∣∣ = ∣∣∣(1− α)RP,k(h) + αRP,u(h)−
[
(1− α)RP,k(h) + αRQ,u(h)

]∣∣∣
= α

∣∣∣RP,u(h)−RQ,u(h)
∣∣∣. (A.1)

We now focus on bounding ∆ := |RP,u(h)−RQ,u(h)|.

Expressing the Difference in Unknown Risks: By definition,

RP,u(h) =

∫
X
ℓ
(
h(g(x)), ȳ

)
dPX|Y ∈Yu

(x) (A.2)

and
RQ,u(h) =

∫
X
ℓ
(
h(g(x)), ȳ

)
dQX|Y ∈Yu

(x). (A.3)

Define the signed measure

µ(x) =
(
PX|Y ∈Yu

−QX|Y ∈Yu

)
(x). (A.4)

Then,

RP,u(h)−RQ,u(h) =

∫
X
ℓ
(
h(g(x)), ȳ

)
dµ(x). (A.5)

Taking the absolute value,

|RP,u(h)−RQ,u(h)| =
∣∣∣∣∫

X
ℓ
(
h(g(x)), ȳ

)
dµ(x)

∣∣∣∣ . (A.6)

Decomposing the Integral via an Intermediate Function: Let h′ ∈ H be arbitrary. Then, add and
subtract ℓ

(
h′(g(x)), ȳ

)
inside the integral:

RP,u(h)−RQ,u(h) =

∫
X

[
ℓ
(
h(g(x)), ȳ

)
− ℓ

(
h′(g(x)), ȳ

)]
dµ(x)

+

∫
X
ℓ
(
h′(g(x)), ȳ

)
dµ(x).

(A.7)

Taking absolute values and applying the triangle inequality for integrals, we obtain

|RP,u(h)−RQ,u(h)| ≤ I1 + I2, (A.8)

where

I1 :=

∣∣∣∣∫
X

[
ℓ
(
h(g(x)), ȳ

)
− ℓ

(
h′(g(x)), ȳ

)]
dµ(x)

∣∣∣∣ (A.9)

and

I2 :=

∣∣∣∣∫
X
ℓ
(
h′(g(x)), ȳ

)
dµ(x)

∣∣∣∣ . (A.10)

Bounding I1 Using the Triangle Inequality: By the triangle inequality for the loss ℓ (which satis-
fies the triangle inequality), for any x we have∣∣∣ℓ(h(g(x)), ȳ)− ℓ

(
h′(g(x)), ȳ

)∣∣∣ ≤ ℓ
(
h(g(x)), h′(g(x))

)
. (A.11)

Therefore,

I1 ≤
∫
X
ℓ
(
h(g(x)), h′(g(x))

)
d|µ|(x), (A.12)
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where d|µ|(x) denotes the total variation measure of µ.

Relating the First Term to Λ: We now wish to bound∫
X
ℓ
(
h(g(x)), h′(g(x))

)
d|µ|(x). (A.13)

There are h′ that satisfies

ℓ
(
h(g(x)), h′(g(x))

)
≤ ℓ

(
h′(g(x)), ȳ

)
. (A.14)

Let us define the hypothesis space H′ for h′ such that it satisfies equation A.14. Then, for any
h′ ∈ H′, integrating both sides with respect to the positive measure PX|Y ∈Yu

+ QX|Y ∈Yu
, we

obtain∫
X
ℓ
(
h(g(x)), h′(g(x))

)
d
(
PX|Y ∈Yu

+QX|Y ∈Yu

)
(x) ≤

∫
X
ℓ
(
h′(g(x)), ȳ

)
d
(
PX|Y ∈Yu

+QX|Y ∈Yu

)
(x).

(A.15)
The right-hand side is equal to RP,u(h

′) + RQ,u(h
′). Since this inequality holds for any h′ ∈ H′,

we define the residual term as

Λ′ := min
h′∈H′

(
RP,u(h

′) +RQ,u(h
′)
)
. (A.16)

Under our training assumption for unknown samples, the model is encouraged to produce low-
confidence predictions. As a result, for unknown x, we expect that h(g(x)) ≈ ȳ.

As h(g(x)) approaches ȳ, the hypothesis space H′ expands. When h(g(x)) exactly matches ȳ, the
spaceH′ coincides withH. Consequently, we obtain

min
h′∈H′

(
RP,u(h

′) +RQ,u(h
′)
)
≈ min

h′∈H

(
RP,u(h

′) +RQ,u(h
′)
)
:= Λ.

Thus, we conclude that I1 ≤ Λ.

Bounding I2 by the Disparity Discrepancy Metric: The second term,

I2 =

∣∣∣∣∫
X
ℓ
(
h′(g(x)), ȳ

)
dµ(x)

∣∣∣∣ , (A.17)

is bounded by definition of the disparity discrepancy metric:

I2 ≤ sup
h′∈H

∣∣∣∣∫
X
ℓ
(
h′(g(x)), ȳ

)
d
(
PX|Y ∈Yu

−QX|Y ∈Yu

)
(x)

∣∣∣∣ = dlh,H

(
PX|Y ∈Yu

, QX|Y ∈Yu

)
.

(A.18)

Final Bound: Combining the bounds for I1 and I2, we obtain

|RP,u(h)−RQ,u(h)| ≤ Λ + dlh,H

(
PX|Y ∈Yu

, QX|Y ∈Yu

)
. (A.19)

Finally, since ∣∣Rα
P (h)−Rα

Q(h)
∣∣ = α |RP,u(h)−RQ,u(h)| , (A.20)

it follows that ∣∣Rα
P (h)−Rα

Q(h)
∣∣ ≤ αdlh,H

(
PX|Y ∈Yu

, QX|Y ∈Yu

)
+ αΛ. (A.21)

Although we have established that
∣∣Rα

P (h) − Rα
Q(h)

∣∣ is bounded, we must further demonstrate the
relationship between the minimizers of the two risks. Specifically, we prove that

min
h∈H

Rα
Q(h) = min

h∈H
Rα

P (h) (A.22)

and
argmin

h∈H
Rα

Q(h) ⊂ argmin
h∈H

Rα
P (h). (A.23)
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Assumption: Following Assumption 1 in Fang et al. (2021), we assume that there exists a hypoth-
esis h̃ ∈ H and a distribution P̃ defined over X , with supp(P̃ ) = X , such that∫

X×Y
l
(
ϕ ◦ h̃(g(x)), ϕ(y)

)
dPY |X(y|x)dP̃ (x) = 0, (A.24)

where ϕ is a function on Y defined by

ϕ(y) =

{
ȳ, if y ∈ Yu,
y1, otherwise.

In other words, the hypothesis space H is sufficiently expressive so that

there exist hypotheses that can perfectly classify the unknown classes.

Consistency of Minimum α-Risk: By the above assumption, there exists some h ∈ H such that
RP,u(h) = 0; similarly, there exists some h ∈ H such that RQ,u(h) = 0. Hence, we have

min
h∈H

Rα
P (h) (A.25)

= min
h∈H

(1− α)

∫
X×Yk

l(h(g(x)), y)dPX|Y ∈Yk
(x, y) + α

∫
X
l(h(g(x)), ȳ)dPX|Y ∈Yu

(x) (A.26)

= (1− α)min
h∈H

RP,k(h), (A.27)

Then similar to Rα
P , Rα

Q follows,

min
h∈H

Rα
Q(h) = (1− α)min

h∈H
RQ,k(h). (A.28)

Moreover, since PX|Y ∈Yk = QX|Y ∈Yk, it follows that

min
h∈H

Rα
P,k(h) = min

h∈H
Rα

Q,k(h), (A.29)

and thus,

min
h∈H

Rα
P (h) = (1− α)min

h∈H
Rα

P,k(h) = (1− α)min
h∈H

Rα
Q,k(h) = min

h∈H
Rα

Q(h). (A.30)

This shows that the minimum value of the α-risk for distribution P is equal to the minimum value of
the α-risk for distribution Q .

Optimal Hypothesis Consistency Between Q and P : Let hQ ∈ argminh∈H Rα
Q(h) be any opti-

mal hypothesis for Rα
Q. Since RQ,u(hQ) = 0, we have

Rα
Q(hQ) = (1− α)RQ,k(hQ) = (1− α)RP,k(hQ). (A.31)

Moreover, since PX ≪ QX , it follows that PX|Y ∈Yu ≪ QX|Y ∈Yu.

Therefore,∫
X
l
(
hQ(g(x)), ȳ

)
dQX|Y ∈Yu(x) =

∫
X
l
(
hQ(g(x)), ȳ

)
dPX|Y ∈Yu(x) = 0, (A.32)

which implies that

Rα
Q(hQ) = (1− α)RQ,k(hQ) = (1− α)RP,k(hQ) = Rα

P (hQ). (A.33)

Furthermore, by the consistency of the minimum α-risk,

Rα
Q(hQ) = min

h∈H
Rα

Q(h) = min
h∈H

Rα
P (h). (A.34)

Thus, any hypothesis that minimizes Rα
Q(h) also minimizes Rα

P (h). This implies that

argmin
h∈H

Rα
Q(h) ⊂ argmin

h∈H
Rα

P (h). (A.35)
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Algorithm 1 Feature Norm-based OOD Augmentation
Require: Network g(·), ID dataset DID, class centers C = {c1, . . . , cK}, derivative threshold δ,

batch size B, OOD loss weight λ
Ensure: Trained network parameters

1: for each training iteration do
2: Sample mini-batch {(xi, yi)}Bi=1∼DID

3: Compute embeddings and norms: zi←g(xi), ni←∥zi∥
4: Compute baseline norm

N0 ← argmin
n

∥∥∥softmax
(
C⊤(zi

n
ni
)
)
− 1

K1
∥∥∥

5: Compute saturation bound

Ncap ← min
{
n > N0 : d

dn max
k

[
softmax(C⊤(zi

n
ni
))
]
k
> δ

}
6: Compute scaling ratio and mean norm: τ ← N0

Ncap
, µID ← 1

B

∑B
i=1 ni

7: Generate OOD embeddings {z̃i} s.t. ∥z̃i∥ ≤ τ µID

8: Compute losses:

LID ← 1
B

B∑
i=1

CE
(
softmax(Wzi), yi

)
, LOOD ← 1

B

B∑
i=1

max
k

[
softmax(Wz̃i)

]
k

9: Total loss and update: L ← LID + λLOOD

10: Update parameters via ∇L
11: end for

B ALGORITHMIC DESCRIPTION

Algorithm 1 describes the whole pipeline of the proposed feature-Norm-based OOD augmentation.

C INTERPRETABLE HYPERPARAMETER TUNING

Our central hypothesis—that aligning feature norm with confidence enhances OOD detection—also
drives interpretable hyperparameter tuning: We selected δ based on the separability of feature norms
between ID and OOD samples (Fig.1, left). For α, which balances ID and OOD loss, we prioritized
maintaining ID classification accuracy, as very small α can excessively lower ID confidence and hurt
accuracy. We believe that this interpretability-driven hyperparameter selection, based OOD metrics,
feature norm distributions, and ID accuracy, makes our method more robust and explainable.

D EXPERIMENTAL RESULTS ON IMAGENET-200

We also conducted OOD detection experiments on ImageNet-200. As shown in Tables A.1–A.3,
our method achieved consistently strong performance across both near- and far-OOD settings, rank-
ing 3rd/2nd/3rd on FPR@95 (near/far/ID), 2nd on AUROC (near/far), and 1st/2nd on AUPR-out
(near/far). This contrasts with many methods that excel on only one type of OOD.
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Table A.1: FPR@95 results on ImageNet-200 with various OODs. Please refer to the main text
for references.

Alg. Near-OOD Far-OOD ID ACC
SSB-hard NINCO Avg. iNaturalist Textures OpenImage-O Avg.

ConfBranch(DeVries & Taylor, 2018) 72.24 50.63 61.44 23.84 42.42 37.99 34.75 85.92
CRotPred(Hendrycks et al., 2019b) 72.00 48.84 60.42 20.51 26.44 31.51 26.16 86.37
G-ODIN(Hsu et al., 2020) 78.23 61.52 69.87 26.13 28.98 35.43 30.18 84.56
ARPL(Chen et al., 2021) 65.73 45.75 55.74 29.32 42.87 37.20 36.46 83.95
MOS(Huang & Li, 2021) 74.35 68.85 71.60 49.55 51.27 53.86 51.56 85.60
VOS(Du et al., 2022) 69.93 49.85 59.89 25.53 39.74 36.77 34.01 86.23
LogitNorm(Wei et al., 2022) 67.46 45.46 56.46 15.70 32.13 30.49 26.11 86.04
CIDER(Ming et al., 2023) 75.50 44.69 60.10 26.54 31.51 32.47 30.17 /
NPOS(Tao et al., 2023) 74.29 49.89 62.09 20.01 16.87 28.40 21.76 /
T2FNorm(Regmi et al., 2024a) 65.94 44.09 55.01 13.47 33.46 29.17 25.37 86.87
OE(Hendrycks et al., 2019a) 64.67 39.93 52.30 27.03 41.92 33.56 34.17 85.82
MCD(Yu & Aizawa, 2019) 65.69 43.74 54.71 21.74 38.11 29.93 29.93 86.12
UDG(Yang et al., 2021) 75.84 61.94 68.89 49.26 71.94 64.92 62.04 68.11
MixOE(Zhang et al., 2023) 68.26 47.69 57.97 30.84 51.44 40.51 40.93 85.71
RandAugment(Cubuk et al., 2020) 65.97 44.39 55.18 25.82 44.16 35.41 35.13 86.58
AugMix(Hendrycks et al., 2020) 65.91 44.02 54.97 25.08 41.49 33.70 33.42 87.01
PixMix(Hendrycks et al., 2022) 67.81 46.27 57.04 27.29 44.42 37.07 36.26 85.79
RegMixup(Pinto et al., 2022) 65.70 41.85 53.78 24.70 42.20 34.73 33.88 87.25
Ours 65.56 43.95 54.76 14.02 29.63 22.16 21.94 86.98

Table A.2: AUROC results on ImageNet-200 with various OODs.

Alg. Near-OOD Far-OOD

SSB-hard NINCO Avg. iNaturalist Textures OpenImage-O Avg.

ConfBranch(DeVries & Taylor, 2018) 75.01 83.19 79.10 93.40 89.64 88.26 90.43
CRotPred(Hendrycks et al., 2019b) 77.04 86.15 81.59 93.47 93.81 90.41 92.56
G-ODIN(Hsu et al., 2020) 72.94 81.63 77.28 93.12 93.67 90.18 92.33
ARPL(Chen et al., 2021) 79.24 84.81 82.02 91.54 88.11 88.04 89.23
MOS(Huang & Li, 2021) 66.54 73.14 69.84 79.69 81.38 80.29 80.46
VOS(Du et al., 2022) 79.68 85.35 82.51 92.77 90.95 89.28 91.00
LogitNorm(Wei et al., 2022) 78.42 86.90 82.66 96.26 91.85 91.01 93.04
CIDER(Ming et al., 2023) 76.04 85.13 80.58 90.69 92.38 88.92 90.66
NPOS(Tao et al., 2023) 74.29 84.50 79.40 94.81 96.97 91.69 94.49
T2FNorm(Regmi et al., 2024a) 79.00 86.99 83.00 96.87 91.95 91.81 93.55
OE(Hendrycks et al., 2019a) 82.34 87.35 84.84 90.30 87.76 89.01 89.02
MCD(Yu & Aizawa, 2019) 81.51 85.74 83.62 90.83 86.87 89.12 88.94
UDG(Yang et al., 2021) 70.73 77.88 74.30 85.95 81.79 78.54 82.09
MixOE(Zhang et al., 2023) 80.23 85.01 82.62 90.64 86.80 87.36 88.27
RandAugment(Cubuk et al., 2020) 80.18 86.16 83.17 93.07 88.81 89.12 90.34
AugMix(Hendrycks et al., 2020) 80.43 86.55 83.49 93.17 89.28 89.61 90.68
PixMix(Hendrycks et al., 2022) 78.79 85.51 82.15 92.48 89.81 88.41 90.23
RegMixup(Pinto et al., 2022) 80.85 87.41 84.13 93.28 89.59 89.56 90.81
Ours 81.23 87.36 84.30 96.23 92.22 91.98 94.02

Table A.3: AUPR out results on ImageNet-200 with various OODs.

Alg. Near-OOD Far-OOD

SSB-hard NINCO Avg. iNaturalist Textures OpenImage-O Avg.

ConfBranch(DeVries & Taylor, 2018) 92.94 71.27 82.11 92.18 83.05 90.80 88.67
CRotPred(Hendrycks et al., 2019b) 93.23 76.51 84.87 90.85 87.33 92.11 90.10
G-ODIN(Hsu et al., 2020) 92.42 73.12 82.77 92.81 90.23 93.07 92.04
ARPL(Chen et al., 2021) 94.36 74.33 84.35 90.97 80.84 91.09 87.63
MOS(Huang & Li, 2021) 89.15 57.62 73.38 73.75 61.76 82.86 72.79
VOS(Du et al., 2022) 94.72 76.47 85.59 91.69 86.42 92.24 90.11
LogitNorm(Wei et al., 2022) 94.05 78.76 86.41 96.16 87.10 93.48 92.25
CIDER(Ming et al., 2023) 93.22 73.41 83.32 88.09 88.15 91.26 89.16
NPOS(Tao et al., 2023) 92.88 75.86 84.37 94.66 95.63 94.21 94.83
T2FNorm(Regmi et al., 2024a) 94.26 79.03 86.64 96.82 87.57 94.21 92.87
OE(Hendrycks et al., 2019a) 95.59 78.12 86.86 86.42 77.91 91.11 85.15
MCD(Yu & Aizawa, 2019) 95.13 73.75 84.44 87.01 71.21 90.47 82.90
UDG(Yang et al., 2021) 91.35 64.82 78.09 85.54 74.60 84.74 81.63
MixOE(Zhang et al., 2023) 94.83 74.72 84.78 88.94 78.66 90.43 86.01
RandAugment(Cubuk et al., 2020) 94.74 76.67 85.71 92.44 82.74 91.95 89.04
AugMix(Hendrycks et al., 2020) 94.79 76.94 85.86 92.28 83.14 92.20 89.21
PixMix(Hendrycks et al., 2022) 94.19 75.62 84.90 91.62 85.39 91.50 89.50
RegMixup(Pinto et al., 2022) 94.90 78.69 86.80 92.57 83.77 92.28 89.54
Ours 94.89 78.95 86.92 96.12 93.28 94.85 94.75
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