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ABSTRACT

Recently, the use of transformers in offline reinforcement learning has become a
rapidly developing area. This is due to their ability to treat the agent’s trajectory
in the environment as a sequence, thereby reducing the policy learning problem
to sequence modeling. In environments where the agent’s decisions depend on
past events (POMDPs), it is essential to capture both the event itself and the
decision point in the context of the model. However, the quadratic complexity of
the attention mechanism limits the potential for context expansion. One solution
to this problem is to extend transformers with memory mechanisms. This paper
proposes a Recurrent Action Transformer with Memory (RATE), a novel model
architecture that incorporates a recurrent memory mechanism designed to regulate
information retention. To evaluate our model, we conducted extensive experiments
on memory-intensive environments (ViZDoom-Two-Colors, T-Maze, Memory
Maze, Minigrid-Memory), classic Atari games, and MuJoCo control environments.
The results show that using memory can significantly improve performance in
memory-intensive environments, while maintaining or improving results in classic
environments. We believe that our results will stimulate research on memory
mechanisms for transformers applicable to offline reinforcement learning. The code
is available at https://anonymous.4open.science/r/RATE-B01F/.

1 INTRODUCTION

Figure 1: Recurrent Action Transformer with Memory
(RATE). R – returns-to-go, o – observations, a – actions,
Mn – segment’s Sn memory embeddings.

Transformers (Vaswani et al., 2017),
originally developed for Natural
Language Processing (NLP), per-
form well in Reinforcement Learn-
ing (RL) (Agarwal et al., 2023; Li
et al., 2023): online RL (Parisotto
et al., 2020; Esslinger et al., 2022;
Melo, 2022; Team et al., 2023), offline
RL (Chen et al., 2021; Lee et al., 2022;
Jiang et al., 2023), and model-based
RL (Chen et al., 2022; Micheli et al.,
2023; Robine et al., 2023), including
solving the credit assignment prob-
lem and working in memory-intensive
environments (Chen et al., 2021; Ni
et al., 2023; Grigsby et al., 2024),
provided that the entire trajectory fits
within the model context. However,
transformers struggle with long se-
quences due to quadratic attention
complexity, limiting their use in long inference tasks. Several approaches attempt to increase
the context size (Dai et al., 2019; Bulatov et al., 2022; Ding et al., 2023), but such models may
become unstable when trained on long sequences (Zhang et al., 2022), or use a specific sparse
attention mechanism that is unsuitable for non-NLP tasks (Beltagy et al., 2020; Zaheer et al., 2020;
Ding et al., 2023). Memory mechanisms offer a promising solution to account for past information
without increasing context size. Our work explores memory in transformers for RL, inspired by NLP
results (Dai et al., 2019; Bulatov et al., 2022). The RL setting differs from NLP in the processing of
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input sequences, requiring specialized encoders for observations, rewards, and actions, and is also
characterized by significant sparsity in some tasks.

In RL memory has two senses. One is using past information within an episode to make de-
cisions (Lampinen et al., 2021; Ni et al., 2023). The other is transferring experience from one
environment to another (Melo, 2022; Kang et al., 2023; Team et al., 2023), improving generalizability,
sample efficiency, and solving Meta-RL (Duan et al., 2016; Wang et al., 2016) tasks. Our work
focuses on the first case (Ni et al., 2023): using past information to make decisions within the same
episode.

In this paper, we propose the Recurrent Action Transformer with Memory (RATE, Figure 1),
a model that uses several memory mechanisms: memory embeddings, caching of previous hidden
states of previous tokens, and Memory Retention Valve (MRV). We empirically show that memory
mechanisms effectively preserve information from previous steps, allowing the model to use past
information when making decisions in the present. MRV is designed to control the process of updating
memory embeddings and prevent the loss of important information when processing long sequences,
thus enabling the processing of highly sparse tasks. To evaluate the memory mechanisms, we perform
extensive experiments in memory-intensive environments: ViZDoom-Two-Colors (Sorokin et al.,
2022), Memory Maze (Pasukonis et al., 2022), Minigrid-Memory (Chevalier-Boisvert et al., 2023),
and Passive T-Maze (Ni et al., 2023), as well as on standard RL benchmarks: Atari (Bellemare et al.,
2013) and MuJoCo (Fu et al., 2021). We also study the impact of memory on the performance of the
proposed model.

The proposed model interpolates and extrapolates well outside the transformer context, is able to
retain important information for a long time when operating in highly sparse environments, and
allows to compensate the effect of bias in the training data.

Our contribution can be summarized as follows:

1. We propose the Recurrent Action Transformer with Memory (RATE), a transformer model
for offline RL that makes use of memory mechanisms: memory embeddings, caching of
hidden states of previous tokens, and the Memory Retention Valve (MRV). The proposed
MRV is based on the cross-attention architecture and is designed to prevent information
loss from memory embeddings and significantly improve the performance of RATE in
memory-intensive environments with sparse structure (see section 3).

2. We show that RATE significantly outperforms strong baselines with and without memory
mechanisms in memory-intensive environments, including ViZDoom Two-Colors, Memory
Maze, Minigrid-Memory, and T-Maze (see subsection 4.2).

3. We demonstrate that RATE achieves better or comparable results in classic Atari games and
MuJoCo control tasks, demonstrating that the proposed model is suitable for different types
of tasks and emphasizing its universality (see subsection 4.2).

2 BACKGROUND

2.1 OFFLINE REINFORCEMENT LEARNING

In RL (Sutton & Barto, 2018), we assume that the task can be described by a Markov Decision
Process (MDP) as a tuple ⟨S,A,P,R⟩. The process consists of states s ∈ S, actions a ∈ A, a
state transition function P(s′|s, a), and an immediate reward function r = R(s, a). The states are
assumed to have the Markov Property, that is P(st+1|st) = P(st+1|s1, . . . , st). Given a timestep t,
we use rt = R(st, at) to denote the immediate reward that the agent receives at state st performing
action at at that timestep. We describe trajectory τ of length T as a sequence of states si, actions
ai, and immediate rewards ri: τ = (s0, a0, r0, s1, a1, r1, . . . , sT−1, aT−1, rT−1). We denote return-
to-go (Chen et al., 2021) Rt of trajectory τ at the timestep t as a sum of future rewards from the
timestep t to the end of trajectory: Rt =

∑T−1
t′=t rt′ . The goal of a RL agent is to learn policy π that

maximizes the expected return. In online RL, the trajectories used to train an agent are obtained
iteratively as the agent interacts with the environment. In offline RL, the agent does not interact with
the environment during training. A fixed set of trajectories collected by an arbitrary policy is used for
training. Although such a setting is more difficult because it does not allow additional exploration of
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the environment or generation of new trajectories, it is preferable for tasks where interaction with the
environment is costly or risky, such as in robotics.

2.2 PARTIALLY OBSERVABLE MARKOV DECISION PROCESS

In the real world, there are frequent situations where the full state of the environment is not available
to the agent, so the Markov Property is violated, and the agent is said to receive observations instead
of state as input. In this case, observations are no longer sufficient statistics of the past to make
a decision in the current step. An example would be a robot navigating an environment based
on a camera image or a situation in which a decision must be made based on information from
the past that is not available in the current observation. A Partially Observable Markov Decision
Process (POMDP) is used in such cases. POMDP is a generalization of the MDP and is written as
⟨S,A,O,P,R,Z⟩, where o ∈ O – observations, s ∈ S – states, a ∈ A – actions, r = R(s, a) –
immediate reward function, P(s′|s, a) – state transition function and Z is an observation function
Za

s′o = P (O = ot+1|St+1 = s′, At = a). To work successfully in such environments, mechanisms
such as memory are needed to allow the use of information from the past (Parisotto et al., 2020;
Lampinen et al., 2021; Esslinger et al., 2022). In our work, we propose an approach of adding memory
to the agent in the form of memory embeddings, caching of hidden states of previous tokens, and
MRV. In this paper we consider the setting of an offline model-free RL, where learning is formulated
as a sequence modeling problem (Chen et al., 2021).

3 RECURRENT ACTION TRANSFORMER WITH MEMORY

Algorithm 1 Recurrent Action Transformer with Memory
Input: R ∈ RT , o ∈ Rdo×T , a ∈ RT

Parameters: M ∈ Rm×d

1: R̃ ∈ RT×d ← EncoderR(R)
õ ∈ RT×d ← Encodero(o)
ã ∈ RT×d ← Encodera(a)

2: τ0:T−1 ← {(R̃0, õ0, ã0), . . . , (R̃T−1, õT−1, ãT−1)}
3: M ←M0 ∼ N (0, 1)
4: for n in range [0, T//K − 1] do
5: Sn ∈ R3K×d ← τn×K:(n+1)×K

6: S̃n ∈ R(3K+2m)×d ← concat(Mn, Sn,Mn)

7: ân,Mn+1 ← Transformer(S̃n)
8: Mn+1 ← MRV(Mn,Mn+1)

Output: ân → L(an, ân), Mn+1

9: end for

Algorithm 2 Memory Retention Valve
Input: Mn,Mn+1 ∈ Rm×d

Parameters: Wh
Q,W

h
K ,Wh

V ∈ Rdh×d,WM ∈ Rd×d

1: Qh ←MnW
h T
Q

2: Kh ←Mn+1W
h T
K

3: Vh ←Mn+1W
h T
V

4: Mh
n+1 ← softmax(QhK

T
h√

d
)Vh

5: Mn+1 ← concat(M0
n+1, . . . ,M

h
n+1)

6: Mn+1 ←Mn+1W
T
M

Output: Mn+1

In this paper, we introduce a new archi-
tecture, Recurrent Action Transformer
with Memory (RATE), in which we uti-
lized recurrently trained memory embed-
dings (Bulatov et al., 2022) and caching
of hidden states of previous tokens (Dai
et al., 2019) to add memory, and Mem-
ory Retention Valve (MRV) to control
information leakage from memory em-
beddings, allowing sparse sequences to
be processed. The architecture of RATE
is shown in Figure 1.

The RATE scheme is outlined in Algo-
rithm 1. In the initial phase, we obtain
embeddings R̃, õ and ã from the returns-
to-go R, observations o, and actions a,
respectively, using the corresponding en-
coders from Table 10. We then generate a
trajectory τ0:T−1 consisting of triplets of
these embeddings according to the tech-
nique described in the Decision Trans-
former (DT) (Chen et al., 2021) paper
(Algorithm 3).

Next, the trajectory τ0:T−1 is divided
into N = T//K segments Sn ∈
R3K×d, n ∈ [0, N − 1], each consist-
ing of K triplets, where K is the context
length and d is the model dimension. To
each segment Sn, memory embeddings
Mn ∈ Rm×d are concatenated at the beginning and at the end, forming a S̃n ∈ R(3K+2m)×d, where
m is the number of memory embeddings. These segments S̃n are then fed into the transformer and
the output is the predicted actions ân = ân×K:(n+1)×K , which are used to compute loss, and new
memory embeddings Mn+1, which are then processed by the MRV block and transmitted to the next
segment Sn+1.

3
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The MRV scheme is presented in Algorithm 2 and is based on the cross-attention basis. After the
transformer processes the segment Sn, the previous memory embeddings Mn and the new memory
embeddings Mn+1 obtained at the output of the transformer are fed to the input of the MRV block.
Next, Mn are multiplied by the query matrix Wh

Q, and Mn+1 are multiplied by the key Wh
K and

value Wh
V matrix for each of the attention heads h. Then the attention scores are calculated using

the softmax() function, the results for each of all attention heads are concatenated and after linear
transformation using the matrix WT

M the final memory tokens Mn+1 are obtained at the output,
which is passed to the next segment.

Unlike the DT learning process, where random fragments of length K are cut from trajectories,
we process segments of length K sequentially, which allows us to capture all information in the
processed trajectory. Thus, using memory mechanisms, we are able to process sequences of length
Keff = K ×N , where Keff is the effective context (Bulatov et al., 2022).

4 EXPERIMENTAL EVALUATION

We designed experiments to accomplish two primary objectives: (a) to demonstrate the advantage
of our RATE model in memory-intensive environments (T-Maze (Ni et al., 2023), ViZDoom-Two-
Colors (Sorokin et al., 2022), Memory Maze (Pasukonis et al., 2022), Minigrid-Memory (Chevalier-
Boisvert et al., 2023)), and (b) to investigate the effectiveness of the proposed model in classical
MDPs to demonstrate its versatility (Atari (Bellemare et al., 2013) and MuJoCo (Fu et al., 2021)).

For comparison with RATE, we chose DT (Chen et al., 2021) as the main baseline, and adapted the
memory-augmented architectures Recurrent Memory Transformer (RMT) (Bulatov et al., 2022) and
Transformer-XL (TrXL) (Dai et al., 2019) developed for NLP tasks to the RL domain. Information
about the environments used can be found in Table 7.

4.1 MEMORY-INTENSIVE ENVIRONMENTS

To test RATE memory mechanisms, we use memory-intensive environments Figure 2, i.e., envi-
ronments where the agent requires memory to operate successfully. A brief description of these
environments is presented below, and a full description and data collection methodology can be found
in the Appendix B.

1. ViZDoom-Two-Colors (Sorokin et al., 2022) – an agent in an acid-filled room observes a quickly
disappearing green or red pillar. To stay alive, the agent must recall the pillar’s color and gather
items of the same color.

2. T-Maze (Ni et al., 2023) – an agent navigates a T-shaped corridor, receiving a clue at the start
about which direction to turn at the end of the corridor. The task tests memory in a prolonged
sparse reward environment (the agent receives a reward only at the end).

3. Memory Maze (Pasukonis et al., 2022) – an agent navigates a maze, seeking objects matching
the color of its view frame. The frame color changes after each successful find. The goal is to
collect the most matching objects within a time limit.

4. Minigrid-Memory (Chevalier-Boisvert et al., 2023) – a similar task to T-Maze, but with different
observation spaces and reward functions (see Appendix B, Table 7). Another important difference
is that the agent appears at a random point at the beginning of the episode, not at the beginning
of the corridor. Thus, in the case of Minigrid-Memory, it is necessary to reach that clue first
(in T-Maze it is a memory problem, in Minigrid-Memory it is a memory and credit assignment
problem (Ni et al., 2023)).

In the experiments, the same hyperparameters presented in Table 8 were used for RATE, DT, RMT, and
TrXL to simplify the comparison. The context length K and the number of segments N were chosen
so that the effective context Keff = K ×N for RATE, RMT, and TrXL covers important events in
memory-intensive environments during training. In turn, since DT has no memory mechanisms, for it
K = Keff . Thus, the context length K for RATE, RMT and TrXL is less than the context length for
DT by a factor of N , but all models process the same parts of trajectories. More information about
the training procedure for each environment can be found in Appendix D.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Memory-intensive environments with different observation spaces and reward functions
used to test the performance of the memory mechanism in the RATE model.

Figure 3: Results for the ViZDoom-Two-Colors: with (a) and without (b) pillar in the first 45 steps of
the episode; calculated at environment steps 0 – 89 (c) and 90 – 179 (d); depending on the return-to-go
(e, f, g). Pillar disappears after first 45 steps, Keff = 90.

4.2 EXPERIMENTAL RESULTS

In this section, the main experimental results for each of the environments are presented in the corre-
sponding paragraphs. Additional results can be found in the Appendix F. For each of the experiments,
the same techniques were used for all models to obtain the results presented in the Appendix E.
Unless otherwise indicated, all baselines were trained from scratch.

ViZDoom-Two-Colors. The dataset for this environment was collected using a pre-trained Advan-
tage Actor Critic (A2C) (Beeching et al., 2019), which has a slight bias in favor of selecting green
items even if red items are required. However, the dataset is balanced by the pillars colors. Figure 3
(a) shows the inference results on all pillars, separately only on red pillars and separately only on
green pillars. As illustrated in the Figure 3 (a), for inference with the presence of a disappearing pillar
at the beginning of the episode, all baselines have an average total reward for inference on green
pillars greater than for inference on red pillars.

To prove that this is not due to the peculiarities of the algorithms, but to the presence of bias in
the data, we performed an additional inference without a pillar at the beginning of the episode,
demonstrating the ability of all baselines to collect exclusively green items. As can be seen from
Figure 3 (b), DT learns the distribution of training data and is unable to remember the pillar color.
In turn, baselines with memory mechanisms such as RATE, RMT and TrXL are successful in this
task. The poor performance of baselines with memory on red pillars without the pillar at the episode
beginning proves that it is the color of the pillar that they remember.

This conclusion of DT’s inability to use information out of context as opposed to RATE is supported
by the experimental results presented in Figure 3 (c, d), which illustrates the inference results for
the first 90 steps, where the pillar are entirely captured in the effective context, and the subsequent
90 steps, where the pillar color information begins to disappear from the effective context (the
context window moves as a sliding window). As a result, there is a drop in total reward for red-pillar
environments by almost a factor of two, indicating DT’s inability to memorize information to use it
out of context. In turn, for RATE, RMT, and TrXL, the values of total reward in the first and second
cases are almost unchanged, indicating their ability to utilize information outside of the current
context window.

Figure 3 (e, f, g) demonstrates the dependence of model performance on the return-to-go. In this paper,
we used an empirical estimate of the target reward as the average of the top-10 total rewards in the
training dataset. As can be seen, RATE not only significantly outperforms DT, but also outperforms
the memory-augmented models RMT and TrXL.

Furthermore, Table 1 demonstrates that RATE outperforms not only transformer-based models (RMT,
TrXL), but also recurrent baselines, which forget the pillars color fairly quickly and start to collecting
green items like DT.

5
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T-Maze. The Figure 4 shows the inference results for the T-Maze. To validate an agent’s long-term
memory capabilities, we performed training on trajectories of length 90 and inference on corridors
of size 30 – 900, i.e. much larger than the effective context Keff = 90 of models. The Figure 4
demonstrates that DT’s ability to solve the task is limited by the length of the corridors in the training
data. Specifically, DT-3, trained on trajectories of length 3× 30 = 90 with K = Keff = 90, exhibits
a significant drop in performance (demonstrating the performance of the persistent agent, i.e. it
successfully reaches the junction, but at the junction it turns one way regardless of the clue) when
tasked with inference on corridors exceeding 90 in length.

Figure 4: Results for the T-Maze environment with
Keff = 30 × 3 = 90. The notations are repre-
sented as MODEL-N, where N is the number of
segments into which the trajectories are divided.
Persistent agent — an agent that always reaches
the end of the corridor but selects randomly the up
or down action at the turn.

In turn, RATE-3, RMT-3, and TrXL-3 (trained
on 3× 30 = 90 steps) perform significantly bet-
ter at inference corridor lengths longer than the
model saw during training. Moreover, RATE-
3 outperforms other memory-augmented base-
lines, indicating its ability to perform effectively
in sparse environments. This confirms the ability
of the RATE model to successfully memorize
important information and retain it through a
long time.

Additionally, Table 1 compares RATE with re-
current baselines. The results indicate that these
baselines, unlike RATE, cannot handle sparse
information, as shown by SR = 0.5.

Table 1: Comparison of Transformer (DT), RNN (Decision LSTM (DLSTM) (Siebenborn et al.,
2022), Decision GRU (DGRU)) and SSM (Decision Mamba (DMamba) (Ota, 2024)) models with
RATE in memory-intensive environments. The results indicate the inability of the RNN and SSM
models to train successfully on trajectories of length 90 × 3 = 270 tokens, unlike RATE. SR –
Success Rate. DGRU is obtained by replacing the LSTM block with the GRU block (Chung et al.,
2014) in DLSTM. † K = 90 (Keff = 3× 30 = 90 for RATE).

T-Maze
Random DLSTM DGRU DMamba DT RATE (ours)

SR (K = T = 9) 0.0 1.0 1.0 1.0 1.0 1.0
SR (K = T = 30) 0.0 0.6 1.0 1.0 1.0 1.0
SR (K = T = 90) 0.0 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

ViZDoom-Two-Colors†

Reward[Total] 4.82 13.1 ± 0.6 12.9 ± 0.2 26.9 ± 1.9 24.8 ± 1.4 41.5 ± 1.0
Reward[Reds] 4.66 8.8 ± 0.7 9.4 ± 0.5 6.9 ± 0.4 7.2 ± 0.4 38.2 ± 5.1
Reward[Greens] 4.98 17.5 ± 1.6 16.3 ± 0.8 46.9 ± 4.2 42.3 ± 3.3 44.7 ± 5.8

Figure 5: Results for the Minigrid-Memory envi-
ronment, Keff = 10× 3 = 30.

Minigrid-Memory. The Figure 5 shows the
results for the Minigrid-Memory. Training was
conducted on grids of size 31x31, inference was
conducted on grids of size 11x11 – 91x91. Un-
like the previously discussed T-Maze, the credit
assignment problem is also addressed here, since
the agent first has to reach the oracle and find
out which object to turn towards in the future.

The results show that TrXL performs better than
the other baselines on grids of size smaller or
equal to those used in training, and worse than
the other baselines on larger grids, that is, it interpolates well and extrapolates poorly. In turn, for
RMT we observe exactly the opposite situation: RMT interpolates poorly and extrapolates well.
RATE performs slightly worse than TrXL but better than RMT on small grid sizes, and slightly worse
than RMT but better than TrXL on large grid sizes, but on average has interpolation and extrapolation
abilities better than RMT and TrXL individually, as well as greater stability.

6
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Memory Maze. Table 2 shows the results of comparing RATE with other basic baselines with and
without memory. The results show that RATE is able to memorize the implicit information like maze
structure more efficiently, which is reflected in a higher average reward per episode.

Table 2: Results for the Memory Maze 9x9 environment.

DT (Chen et al., 2021) RMT (Bulatov et al., 2022) TrXL (Dai et al., 2019) RATE
Reward 6.83 ± 0.51 7.27 ± 0.21 7.12 ± 0.24 7.64 ± 0.41

Atari and MuJoCo. The results for Atari and MuJoCo are presented in Table 3 and Table 4. Results
for Decision Mamba (DMamba) (Ota, 2024) and Mamba as Decision Maker (MambaDM) (Cao et al.,
2024) are from the corresponding papers. A more detailed description of the results obtained can
be found in the Appendix D. The results demonstrate that RATE not only performs as well as the
algorithms specifically designed for offline RL, but in many cases outperforms them in classical
environments that do not require memory, which indicates the versatility of the model.
Table 3: Raw scores for Atari games. Green – top-1 result, light green – top-2 result within the
standard deviation.

Environment CQL (Kumar et al., 2020) DT (Chen et al., 2021) DMamba (Ota, 2024) MambaDM (Cao et al., 2024) RATE
Breakout 62.5 76.9 ± 27.3 70.6 ± 9.3 106.9 ± 5.8 111.0 ± 2.9
Qbert 14013.2 2215.8 ± 1523.7 5786.0 ± 1295.2 10052.5 ± 1116.5 12486.9 ± 280.4
SeaQuest 782.2 1129.3 ± 189.0 992.1 ± 57.7 1286.0 ± 42.0 1037.9 ± 53.7
Pong 18.8 17.1 ± 2.9 1.6 ± 15.3 18.4 ± 0.8 18.8 ± 0.3

Table 4: Scores normalized according to the protocol in Fu et al. (2021) for MuJoCo control tasks. ME
– Medium-Expert dataset, M – Medium dataset, MR – Medium-Replay dataset. RATE outperforms
DT in 9/9 of the cases. Green – top-1 result, light green – top-2 result within the standard deviation.

Dataset Environment CQL (Kumar et al., 2020) DT (Chen et al., 2021) TAP (Jiang et al., 2023) DMamba (Ota, 2024) MambaDM (Cao et al., 2024) RATE
ME HalfCheetah 91.6 86.8 ± 1.3 91.8 ± 0.8 91.9 ± 0.6 86.5 ± 1.2 87.4 ± 0.1
ME Hopper 105.4 107.6 ± 1.8 105.5 ± 1.7 111.1 ± 0.3 110.5 ± 0.3 112.5 ± 0.2
ME Walker2d 108.8 108.1 ± 0.2 107.4 ± 0.9 108.3 ± 0.5 108.8 ± 0.1 108.7 ± 0.5
M HalfCheetah 44.4 42.6 ± 0.1 45.0 ± 0.1 42.8 ± 0.1 42.8 ± 0.1 43.5 ± 0.3
M Hopper 58.0 67.6 ± 1.0 63.4 ± 1.4 83.5 ± 12.5 85.7 ± 7.8 77.4 ± 1.4
M Walker2d 72.5 74.0 ± 1.4 64.9 ± 2.1 78.2 ± 0.6 78.2 ± 0.6 80.7 ± 0.7
MR HalfCheetah 45.5 36.6 ± 0.8 40.8 ± 0.6 39.6 ± 0.1 39.1 ± 0.1 39.0 ± 0.6
MR Hopper 95.0 82.7 ± 7.0 87.3 ± 2.3 82.6 ± 4.6 86.1 ± 2.5 83.7 ± 8.2
MR Walker2d 77.2 66.6 ± 3.0 66.8 ± 3.1 70.9 ± 4.3 73.4 ± 2.6 73.7 ± 1.4

Mean 77.6 74.7 74.8 78.8 79.0 78.5

5 ABLATION STUDY

In this section, we answer the following research questions (RQs) to evaluate the impact of memory
on model performance:

1. "How do the different components of RATE affect model performance in memory-intensive
environments?"— RQ 1.

2. "What is the upper-bound estimate of the performance of the RATE model?"— RQ 2.

3. "Why do you need an MRV and what is its best configuration?"— RQ 3.

Figure 6: Results of replac-
ing RATE memory tokens
and cached hidden states with
white noise during inference
in ViZDoom-Two-Colors.

RQ 1. Investigating the impact of RATE components. To study
the influence of memory embeddings on RATE model performance,
we conducted the following experiment: for the RATE model trained
for T-Maze (with context K = 30 on N = 3 segments), we replaced
pre-trained memory embeddings M with random noise vectors dur-
ing inference (see Figure 7).

Using random noise instead of memory embeddings, SR = 50% in
the T-Maze, indicating the agent reaches the junction but turns in
only one direction regardless of the clue. Thus, we conclude that
clue information is in memory embeddings, while the rest of the
actions are shaped by transformer parameters.

During RATE inference in ViZDoom-Two-Colors environment with
replacement of different components of memory RATE mechanisms
(memory embeddings and cached hidden states) with noise (see Fig-
ure 6), it is found that for this environment the caching of hidden
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states of previous tokens has the largest contribution, because with its noise performance drop is the
largest. Thus, in sparse environments, memory embeddings contribute the most, while in continuous
environments, caching of hidden states of previous tokens is most impactful.

Figure 7: Results of replacing
RATE memory tokens with white
noise curing inference in T-Maze.

RQ 2. Performance upper-bound estimate. To evaluate
the maximum possible performance of the RATE model, we
conducted experiments with OracleDT – a DT model whose
context is augmented as a pre- and post-fix with a vector v of
dimension 1× d_model containing a priori 1-bit information
about the environment. Thus, in the T-Maze environment, this
information is represented by a clue at the beginning of the
episode (vi = 0 if clue = 0 else 1), and in the ViZDoom-Two-
Colors environment, it is represented by a column color (vi = 0

if column color = red else 1). A context S
′
= concat(v, S, v)

extended in this way can be interpreted as a context concat(M,S,M) with M memory embeddings
added, trained perfectly and containing 100% of the important information. Thus, in environments
where the a priori information about the environment needed for decision making can be extracted
into a given vector v, the condition R[OracleDT ] ≥ R[RATE] ≥ R[DT ] must be satisfied
(see Table 5). This a priori information cannot be extracted from the environment in general,
which further emphasizes the advantage of RATE, which is able to automatically extract important
information and record it in memory embeddings M .
Table 5: Comparison of OracleDT with RATE. OracleDT determines the upper-bound estimate for
the maximum reward that can be obtained using RATE in the environment. SR – Success Rate.

T-Maze
OracleDT
(K = 90)

DT (Chen et al., 2021)
(K = 90)

RATE
(Keff = 3× 30 = 90)

SR (T = 90) 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
SR (T = 480) 1.0 ± 0.0 0.5 ± 0.0 0.90 ± 0.07
SR (T = 900) 1.0 ± 0.0 0.5 ± 0.0 0.90 ± 0.07

ViZDoom-Two-Colors
Reward[Total] 56.5 ± 0.8 24.8 ± 1.4 41.5 ± 1.0
Reward[Reds] 55.3 ± 1.6 7.2 ± 0.4 38.2 ± 5.1
Reward[Greens] 57.2 ± 0.5 42.3 ± 3.3 44.7 ± 5.8

RQ 3. Memory Retention Valve architecture ablation. Without MRV in the T-Maze environment
at corridor lengths of L ≫ K, the performance of the RATE model decreased with each segment
processed at inference, resulting in almost SR = 50% on long trajectories (see Table 6). For example,
in the T-Maze task, the important information to be remembered goes into memory embeddings when
processing the first segment of the sequence, and then it must be retrieved when making decisions
on the last segment. At the same time, due to the recurrent structure of the architecture, memory
embeddings continue to be updated during the processing of intermediate segments when no new
information needs to be memorized, causing important information from memory embeddings to
leak out. To retain important information in memory embeddings, MRV mechanism was added to the
architecture. We considered the five different schemes detailed in subsection F.3 to implement MRV:

1. MRV-CA-1: cross-attention-based MRV which uses an attention mechanism to control
the updating of memory embeddings. The updated memory embeddings Mn+1 are fed to
Query, and the incoming Mn are fed to Key and Value.

2. MRV-CA-2: uses the same mechanism as MRV-CA-1 but the incoming memory embeddings
Mn are fed to Query, and the updated Mn+1 are fed to Key and Value.

3. MRV-G: gated MRV which uses a gating mechanism similar to the one used in
GTrXL (Parisotto et al., 2020).

4. MRV-GRU: uses a GRU (Chung et al., 2014) block to process updated Mn with hidden
states.

5. MRV-LSTM: uses a LSTM (Hochreiter & Schmidhuber, 1997) block to process updated
Mn with cached states.
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Table 6: Results of ablation study of MRV configuration on T-Maze environment. † – baseline.

Inference corridor length
Model (Keff = 30 × 5 = 150) 150 360 600 900

RATE w/o MRV† 1.00 ± 0.00 0.66 ± 0.08 0.65 ± 0.07 0.61 ± 0.07
RATE (MRV-CA-2) 1.00 ± 0.00 0.95 ± 0.05 0.90 ± 0.07 0.90 ± 0.07
RATE (MRV-G) 0.86 ± 0.07 0.77 ± 0.08 0.66 ± 0.07 0.65 ± 0.08
RATE (MRV-GRU) 0.99 ± 0.01 0.74 ± 0.07 0.56 ± 0.11 0.55 ± 0.12
RATE (MRV-LSTM) 0.85 ± 0.06 0.64 ± 0.10 0.51 ± 0.11 0.47 ± 0.11
RATE (MRV-CA-1) 0.51 ± 0.01 0.51 ± 0.01 0.49 ± 0.02 0.49 ± 0.01

The best results in Table 6 were obtained using cross-attention scheme (MRV-CA-2), in which we
fed Mn memory tokens from the transformer input to the query and Mn+1 memory tokens from
the transformer output to the key and value. This configuration is used throughout the work and is
denoted simply as MRV. This configuration acts as an effective gating mechanism to prevent the loss
of important information in prolonged sparse environments, which is reflected in significantly better
results for RATE in the T-Maze environment.

6 RELATED WORK

6.1 TRANSFORMERS FOR REINFORCEMENT LEARNING

Transformers have found application in various areas of RL (Agarwal et al., 2023; Li et al., 2023):
online RL (Parisotto et al., 2020; Lampinen et al., 2021; Esslinger et al., 2022; Melo, 2022; Zheng
et al., 2022; Pramanik et al., 2023; Team et al., 2023), offline RL (Chen et al., 2021; Janner et al.,
2021; Lee et al., 2022; Reed et al., 2022; Jiang et al., 2023), and model-based RL (Chen et al., 2022;
Micheli et al., 2023; Robine et al., 2023). The use of transformers as a general policy for many
environments is also being explored (Lee et al., 2022; Melo, 2022; Reed et al., 2022). In our work,
we consider the formulation of an offline model-free RL, where learning is formulated as a sequence
modeling problem (Chen et al., 2021). Prominent representatives of such models are (Chen et al.,
2021; Janner et al., 2021; Lee et al., 2022; Jiang et al., 2023), although planning in latent space (Jiang
et al., 2023) is considered, which can be seen as modeling of the environment. Moreover, (Janner
et al., 2021; Jiang et al., 2023) are specialized for control tasks with vector observations and do not
generalize to environments with observations in the form of images. Therefore, we consider the
Decision Transformer (Chen et al., 2021), which has no memory mechanism, as the main baseline for
comparison.

6.2 RECURRENT NEURAL NETWORKS FOR REINFORCEMENT LEARNING

For long input sequences, recurrent networks may have computational advantages over transformers.
The RNNs recurrent unit maintains a hidden state, which is essentially a form of memory that is
important for solving POMDPs. In Decision LSTM (DLSTM) (Siebenborn et al., 2022) in DT the
transformer is replaced by an LSTM unit (Hochreiter & Schmidhuber, 1997).

6.3 STATE SPACE MODELS FOR REINFORCEMENT LEARNING

Recently, State Space Models (SSMs) (Gu et al., 2021) have shown significant success in sequence
modeling, particularly in offline RL (Bar-David et al., 2023; Cao et al., 2024; Gu & Dao, 2023; Ota,
2024). In Decision S4 (DS4) (Bar-David et al., 2023), sequence modeling is executed using S4 (Gu
et al., 2021) layers within the framework of offline RL, whereas Decision Mamba (DMamba) (Ota,
2024) utilizes the most recent Mamba (Gu & Dao, 2023) sequence model instead of causal self-
attention. Mamba Decision Maker (MambaDM) (Cao et al., 2024) integrates the unique features of
SSMs to effectively combine local and global features with Global-local fusion Mamba (GLoMa)
module.

6.4 MEMORY IN TRANSFORMERS

There are many ways to implement the memory mechanism for transformers (Bulatov et al., 2022;
Dai et al., 2019; Ding et al., 2020; Lei et al., 2020; Rae et al., 2019; Wu et al., 2020; 2022). In
Transformer-XL (TrXL) (Dai et al., 2019), it is proposed to split a long data sequence into segments
and to access past segments at the expense of memory, but to ignore very distant segments. This
increases the effective length of the context. The Compressive Transformer (Rae et al., 2019) uses
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compressed memory, allowing previous versions of memory to be compressed rather than discarded
as in TrXL. ERNIE-Doc (Ding et al., 2020) suggests using the retrospective feed mechanism and the
enhanced recurrence mechanism. Memformer (Wu et al., 2020) uses external dynamic memory to
encode and retrieve past information. MART (Lei et al., 2020) extends this idea by adding a memory
update mechanism similar to a recurrent neural network (Cho et al., 2014; Hochreiter & Schmidhuber,
1997). The Memorizing Transformer (Wu et al., 2022) proposes to store the internal representations
of past inputs. The Recurrent Memory Transformer (RMT) (Bulatov et al., 2022) includes additional
read and write memory tokens at each segment’s beginning and end. This method allows the effective
context to be expanded to over 1 million tokens (Zhu et al., 2020).

An Adaptive Agent (AdA) (Bauer et al., 2023) uses memory architectures to store and employ infor-
mation previously acquired by the agent. The default memory architecture is TrXL with normalization
before each layer (Parisotto et al., 2020), and the use of gating on the feedforward layers (Shazeer,
2020) to stabilize training. We also use TrXL in our work but refrain from using additional modifica-
tions to stabilize training. Another distinctive feature of using a transformer in AdA, as opposed to
DT, is that pixel observations, past actions, past rewards, and additional information are not tokenized
separately but are combined into a single vector that feeds the transformer. The transformer itself
predicts not only actions but also value function values.

7 CONCLUSION

In this paper, we propose Recurrent Action Transformer with Memory (RATE), a transformer
model for offline RL that exploits memory mechanisms in the form of memory embeddings and
caching of hidden states of previous tokens, and the Memory Retention Valve (MRV), which
controls memory updating and prevents the loss of important information in sparse tasks. In extensive
experiments in memory-intensive environments such as ViZDoom-Two-Colors, Memory Maze,
Minigrid-Memory, and T-Maze, we have shown that RATE outperforms recurrent and transformer
baselines. The proposed model interpolates and extrapolates well outside the transformer context, is
able to retain important information for a long time when operating in highly sparse environments,
and allows to compensate for the effect of bias in the training data.

We also show that the proposed model achieves better or comparable results to state-of-the-art
Mamba-based models in Atari and MuJoCo environments, indicating that RATE is suitable for all
tasks: both memory-intensive and not. We have thoroughly investigated the influence of memory
mechanisms on the performance of the model and have clearly shown that the model uses them in
decision making. This method shows great potential for tackling complex tasks with long sequences,
especially in robotics, where training agents on pre-collected data sets is highly advantageous.

Limitations. Limitations of the proposed model include its inability to design K and N in memory-
intensive environments so that all important events fall into the efficient context of Keff = K ×N .
In addition, the approach based on dividing trajectories into segments during inference does not allow
for memory updates effectively at each step using a sliding window. Also, there are currently no
studies of the memory capacity of the proposed model, so the practical amount of information that
can be stored remains unknown.

Reproducibility Statement. The model description is presented in section 3 (Algorithm 1 and Al-
gorithm 2), the training procedure is presented in Appendix D, the description of the used benchmarks
is presented in Appendix B, the hyperparameters are presented in Table 8, and the configurations
for displaying the experimental results are presented in Table 9. The results of the hyperparameters
tuning for recurrent baselines are presented in Appendix G.
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A DECISION TRANSFORMER

Algorithm 3 Decision Transformer
Input: R ∈ R1×T , o ∈ Rdo×T , a ∈ R1×T

1: R̃ ∈ RT×d ← EncoderR(R)
õ ∈ RT×d ← Encodero(o)
ã ∈ RT×d ← Encodera(a)

2: τ0..T ← {(R̃0, õ0, ã0), . . . , (R̃T , õT , ãT )}
3: n = random(0, T −K)
4: ân ← Transformer(τn..n+K)

Output: ân → L(an, ân)

Decision Transformer (DT) (Chen et al., 2021)
is an algorithm for offline RL that reduces the
RL task to a sequence modeling task. In DT, the
scheme of which is presented in Algorithm 3,
the trajectory τ is not divided into segments as
in RATE. Instead, random fragments of length
K are sampled from the trajectory, since origi-
nally this architecture was designed to work only
with MDP. The predicted actions â are sampled
autoregressively.

B ENVIRONMENTS

B.1 MEMORY-INTENSIVE ENVIRONMENTS

In this section, we provide an extended description of the environments used in this paper, as well as
the methodology used to collect the trajectories. Table 7 summarizes the observations type, rewards
type, and actions type for each of the environments considered in this paper.

ViZDoom-Two-Colors. We used a modified ViZDoom-Two-Colors environment from (Sorokin
et al., 2022) to assess the model’s memory abilities. The agent initially having 100 hit points (HP) is
placed in a room without inner walls filled with acid. At each step in the environment, the agent loses
a fixed amount of health (10/32 HP per step). In the center of the environment, there is a pillar of
either green or red color, which disappears after 45 environment steps. Throughout the environment,
objects of two colors (green and red) are generated. When the agent interacts with an object of the
same color as the pillar, it gains an increase in health of +25 and a reward of +1. When the agent
interacts with an object of the opposite color, it loses a similar amount of health. The agent receives
an additional reward of +0.02 for each step it survives. The episode ends when the agent has zero
health. Thus, the agent needs to remember the color of the pillar to select items of the correct color,
even if the pillar is out of sight or has disappeared. The agent does not receive information about its
current health or rewards, as these observations essentially convey the same information as the color
of the pillar but persist beyond step 45.

We collected a dataset of 5000 trajectories of 90 steps in length using a trained A2C (Beeching et al.,
2019) agent (an agent trained with a non-disappearing pillar). The average reward for these 90 steps
is 4.46. When collecting trajectories, to ensure that the agent saw the pillar before it disappeared,
the agent always appeared facing the pillar in the same place – midway between the pillar and the
nearest wall. In order to successfully complete this task, the agent needs to remember the color
of the pillar. This environment tests the long-term memory mechanism, since the agent needs to
retain information about the pillar for a time much longer than the pillar has been in the environment.
Using only short-term memory and, for example, collecting the next item of the same color as the
previous collected item, it will not be possible for the agent to survive for a long time, as this policy
is extremely unstable. This is due to the fact that in the training dataset the agent occasionally makes
a mistake and picks up an object of the opposite color. Thus, irrelevant information about the desired
color may enter the transformer context and the agent will start collecting items of an opposite color,
which will quickly lead to a failure.

T-Maze. To investigate agent’s long-term memory on very long environments (the inference
trajectory length is much longer than the effective context length Keff ) we used a modified version of
the T-Maze environment (Ni et al., 2023). The agent’s objective in this environment is to navigate from
the beginning of the T-shaped maze to the junction and choose the correct direction, based on a signal
given at the beginning of the trajectory using four possible actions a ∈ {left, up, right, down}. This
signal, represented as the clue variable and equals to zero everywhere except the first observation,
dictates whether the agent should turn up (clue = 1) or down (clue = −1). Additionally, a constraint
on the episode duration T = L+ 2, where the maximum duration is determined by the length of the
corridor L to the junction, adds complexity to the problem. To address this, a binary flag, represented

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

as the flag variable, which is equal to 1 one step before the junction and 0 otherwise, indicating
the arrival of the agent at the junction, is included in the observation vector. Additionally, a noise
channel is added to the observation vector, with random integer values from the set {−1, 0,+1}.
The observation vector is thus defined as o = [y, clue, flag, noise], where y represents the vertical
coordinate. The reward r is given only at the end of the episode and depends on the correctness of
the agent’s turn at the junction, being 1 for a correct turn and 0 otherwise. This formulation deviates
from the traditional Passive T-Maze environment (Ni et al., 2023) (different observations and reward
functions) and presents a more intricate set of conditions for the agent to navigate and learn within
the given time constraint.

The dataset consists of 2000 of trajectories for each segment of length 30 (i.e. 6000 trajectories for
the Keff = 3× 30 = 90) and consists only of successful episodes. An artificial oracle with a priori
information about the environment was used to generate the dataset.

Table 7: Description of observations and reward functions for the considered environments.

Environment Obs. type Rewards Actions Obs. info
ViZDoom-Two-Colors Image Continuous Discrete First-person view

T-Maze Vector Sparse
& Discrete Discrete Vector

Memory Maze Image Sparse
& Discrete Discrete First-person view

Minigrid-Memory Image Sparse Discrete Observes the 3× 3
part of the grid

Action Associative Retrieval Vector Sparse
& Discrete Discrete Vector

Atari Image Sparse
& Discrete Discrete Observes the

full game screen
MuJoCo Vector Continuous Continuous Vector

Memory Maze. In this first-person view 3D environment (Pasukonis et al., 2022), the agent appears
in a randomly generated maze containing several objects of different colors at random locations. The
agent’s task is to find an object of the same color in the maze as the outline around its observation
image. After the agent finds an object of the desired color and steps on it, the color of the outline
changes and the agent must find another object. The agent receives a +1 reward for stepping on the
correct object. Otherwise, it receives no reward. The duration of an episode is a fixed number and
is equal to 1000. Thus, the agent’s task is to find as many objects of the desired color as possible
in a limited time. The agent’s effectiveness in this environment depends on its ability to memorize
the structure of the maze and the location of objects in it in order to find the desired objects faster.
Using the Dreamer model (Hafner et al., 2019) to collect dataset of 5000 trajectories only achieved
an average award of 4.7 per episode, i.e., a rather sparse dataset.

Minigrid-Memory. Minigrid-Memory (Chevalier-Boisvert et al., 2023) is a 2D grid environment
designed to test an agent’s long-term memory and credit-assignment (Ni et al., 2023). The envi-
ronment map is a T-shaped maze with a small room with an object inside it at the beginning of the
corridor. The agent appears at a random coordinate in the corridor. The agent’s task is to reach the
room with the object and memorize it, then reach the junction at the end of the maze and make a turn
in the direction where the same object is located as in the room at the beginning of the maze. A reward
r = 1− 0.9× t

T is given for success, and 0 for failure. The episode ends after any agent turns at a
junction or after a limited amount of time (95 steps) has elapsed. The agent’s observations are limited
to a 3× 3 size frame. 10000 trajectories with grid size 31x31 were collected using PPO (Schulman
et al., 2017) with TransformerXL (Pleines et al., 2023) with a context length equal to the maximum
episode duration.

B.2 STANDARD BENCHMARKS

Atari games. For the Atari game environments (Bellemare et al., 2013), we used the same dataset
as in DT, namely the DQN replay dataset with grayscale state images (Agarwal et al., 2020). This

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

dataset contains 500 thousand of the 50 million steps of an online DQN (Mnih, 2013) agent for each
game. We use the following set of games: SeaQuest, Breakout, Pong and Qbert.

MuJoCo. Despite the fact that memory is not required in decision making in control environments
like MuJoCo (Fu et al., 2021), we conducted additional experiments in this environment to compare
with DT. For the continuous control tasks, we selected a standard MuJoCo locomotion environment
and a set of trajectories from the D4RL benchmark (Fu et al., 2021). Since we chose DT and TAP
as the main models for comparison on this data, we focused on the environments used in both
works (HalfCheetah, Hopper, and Walker). We used three different dataset settings: 1) Medium –
1 million timesteps generated by a “medium” policy that achieves about a third of the score of an
expert policy; 2) Medium-Replay – the replay buffer of an agent trained with the performance of a
medium policy (about 200k–400k timesteps in our environments); 3) Medium-Expert – 1 million
timesteps generated by the medium policy concatenated with 1 million timesteps generated by an
expert policy. The scores for the MuJoCo experiments are normalized such that 100 represents an
expert policy, following the benchmark protocol outlined in (Fu et al., 2021). The performance
metrics for Conservative Q-Learning (CQL) and Trajectory Autoencoding Planner (TAP) are reported
from the TAP paper (Jiang et al., 2023), and for DT from the DT paper (Chen et al., 2021), as they
use the same dataset and evaluation protocol.

C ACTION ASSOCIATIVE RETRIEVAL

Figure 8: Action Associative Retrieval.

As shown in section 4.2, DT has a SR = 50% for inference
at corridor lengths longer than the transformer context
length. This is due to the fact that even a DT trained on
balanced data has a slight bias in the predicted probability
towards one of the two required actions, which leads to the
fact that when t > K the agent constantly produces only
one action: up or down. In turn, the presence of memory
in the agent allows us to combat this problem.

To check how the agent’s performance changes during training, we design an Action Associative
Retrieval (AAR) Figure 8 environment.

There are two states in this environment: S0 and S1. The agent appears in state S0 and by performing
the action a0 ∈ {0, 1} moves to state S1. Next, the agent must take N − 2 steps to move from state
S1 to state S1 by performing action a = 2 (no op.). At the end of the episode, the agent must perform
the same action that moved it from state S0 to state S1 in order to move from state S1 to state S0.
Thus, the action a ∈ {0, 1, 2}. Agent observations o = [state, flag, noise], where state ∈ {0, 1}
is the index of the current state, flag ∈ {0, 1} is a flag equal to 1 in case the next step requires
returning to the initial state and equal to 0 otherwise, noise ∈ {−1, 0,+1} is the noise channel. The
agent receives a +1 reward if it returns to the initial state S0 by performing the action that took it out
from the S0 to the S1, and −1 in other cases. The training dataset consists of oracle-generated 6000
trajectories with positive reward.

More formally, we can talk about the presence of memory in an agent when solving AAR (T-Maze-
like) tasks under the condition that:

∀t > K :
1

N0

N0∑
i=1

pi(at = a0|a0 = a0) +
1

N1

N1∑
i=1

pi(at = a1|a0 = a1) > 1 (1)

This condition means that if the agent has memory, the sum of the average conditional probabilities
over all experiments will be greater than one, i.e., these probabilities are independent of each other.
Provided that the sum of these probabilities is less than or equal to one, the agent will choose at best
the same target action in most experiments, even if another action is required.

where a0, a1 ∈ A – two mutually exclusive actions leading to a reward; t is the step at which the
final action is required; N0, N1 are the number of experiments in environments where target action
at = a0 and at = a1, respectively.

In the results Figure 9, the first 1% of training steps was removed because it corresponds to the
beginning of the training and is unrepresentative. Blue dots correspond to the beginning of training,
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Figure 9: Experimental results with RATE and DT in the AAR environment. The graphs show the
10-runs average results of training on trajectories of length T = 90 and validation on trajectories of
length T = 180, for RATE with Keff = 3× 30 = 90 and for DT with K = 90.

red dots to the end of training. As can be seen from Figure 9, during training, the probabilities
pi(at = a0|a0 = a0) and pi(at = a1|a0 = a1) on the training trajectories have a strong positive
correlation (RDT

train = 1.00 and RRATE
train = 0.97), where R – correlation coefficient. This indicates

that within-context (effective context) DT and RATE models are able to predict both a0 and a1 actions
equally well.

At the same time, during validation, for the RATE model this pattern is preserved – the red points
corresponding to the probabilities of choosing actions a0 and a1 are in the upper right part of the
graph, positive correlation persists (RRATE

val = 0.80). On the other hand, in the DT case, the cluster
of red dots is skewed toward choosing action a1 and action a0 with equal probabilities equal to 0.5.
Thus, in sum, these probabilities are less or equal to one, as evidenced by a strong negative correlation
(RDT

val = −0.97). The results confirm the inability of DT to generalize on trajectories whose lengths
exceed the context length and the ability of RATE to handle such tasks.

D TRAINING

This section provides additional details on the training process of the baselines considered in the paper.
It is important to note that when training RATE in the transformer decoder the feed-forward network
block was disabled, because without it on some environments the training results are slightly better.
However, other transformer-based baselines were trained with the standard transformer decoder.

ViZDoom-Two-Colors. Since the pillar disappears at time t = 45, all trajectories start at time
t = 0 and end at time t = 90 so that the information about the color of the pillar is guaranteed to
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be used in training. In this experiment, we compared DT with context length K = 90 to RATE,
RMT, and TrXL models with context length K = 30 and partitioning the trajectory into N = 3
segments. Thus, when trained, RATE also handles sequences of length 90, since its effective context
is Keff = N ×K = 90, but only processed subsequences of length K = 30.

T-Maze. The model names are written in the format MODEL-N, where N is the number of
segments of length K = 30 into which the training trajectories can be partitioned. Thus, DT-3
was trained on trajectories of length T ≤ 3 × 30 = 90 with context length. RATE-3 was trained
on similar trajectories as DT-3, but with each trajectory divided into 3 segments, during training,
enabling the training of a model with a context length of K = 30 on trajectories of length T = 90.
All the trajectories used in training start from t = 0, i.e., from the moment of receiving a clue.

Memory Maze. To train RATE, DT, RMT, and TrXL on Memory Maze, the same approach was
used as for ViZDoom-Two-Colors environment, except that trajectories were sampled not from t = 0

but from t :
∑t+90

t′=t rt′ ≥ 2.

As in the ViZDoom-Two-Colors case, training for DT was performed with a context length of K = 90
and for RATE, RMT, and TrXL with a context length of K = 30 and number of segments N = 3,
i.e., effective context length Keff = N ×K = 3× 30 = 90.

Minigrid-Memory. To train RATE, DT, RMT, and TrXL in this environment, trajectories were
sampled in the same manner as for T-Maze. An environment configuration with a maze of size 31x31
was used as a training configuration. Since the maximum episode duration is 95, training proceeded
in the following setting: for DT the context length K = 30, for RATE, RMT, and TrXL the context
length K = 10 and the number of segments N = 3. All trajectories, as in T-Maze, are sampled from
time t = 0.

Atari and MuJoCo. When training RATE on Atari games and MuJoCo control tasks, sequences of
length T = 90 (Atari) and T = 60 (MuJoCo) were sampled randomly from the original trajectories in
the dataset. These trajectories were then divided into N = 3 segments of length K = 30 (Atari) and
K = 20 (MuJoCo), forming an effective context of length Keff = N ×K = 90 (60 for MuJoCo).

For Atari, we used the identical experimental design described in the DT paper (Chen et al., 2021).
It is worth noting that we presented raw scores for Atari, rather than gamer-normalized scores as
described in the DT paper. Table 3 shows the results for Atari environments. RATE outperforms
DT significantly in environments like Breakout and Qbert. We attribute this to the observation that,
although these environments do not explicitly demand memory, intricate dynamics from the past exert
a greater influence on agent behavior than in environments such as SeaQuest. Actions executed in the
past notably alter the present state of the environment in Breakout and Qbert, whereas in SeaQuest,
such actions hold little significance. For instance, the emergence of enemies and divers in SeaQuest
is entirely independent of the agent’s prior actions.

For MuJoCo, our findings suggest that the conventional strategy of utilizing return is not suitable
for our segment-based scheme. The issue arises during the trajectory, where the agent’s return
persistently diminishes. However, the true value of the agent’s state at the onset and conclusion of the
episode could remain unchanged, provided the agent’s policy performs consistently well. To rectify
this discrepancy, we propose a novel evaluation strategy for MuJoCo tasks. In this approach, each
segment commences with the maximum return, simulating the scenario where the agent initiates the
trajectory anew. This method effectively mitigates the aforementioned issue, enhancing the accuracy
of our evaluation process. Our MuJoCo experiments in Table 4 show that this benefits performance
significantly for some environments. Thus, using RATE allowed us to obtain the best metrics for
MuJoCo in 4/9 cases compared to the other baselines. RATE also outperforms DT in 9/9 tasks.

E RESULTS PRESENTATION

This section provides information on how the presented experimental results were obtained. Nruns

denotes the number of model runs; Nseeds denotes the number of inference episodes with different
seeds; sem denotes standard error of the mean, and std denotes standard deviation.
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Table 8: RATE hyperparameters for different experiments. ‡ – Leaky ReLU in the Atari.Pong case.

Hyperparameter ViZDoom2C /
Memory Maze

T-Maze /
Minigrid-Memory Atari MuJoCo

Number of layers 6 8 6 3
Number of attention heads 8 10 8 1
Embedding dimension 128 / 64 64 128 128
Context length K 30 30 / 10 30 20
Number of segments 3 3 3 3
Hidden dropout 0.2 / 0.5 0.05 / 0.2 0.2 0.2
Attention dropout 0.05 / 0.2 0 / 0.05 0.05 0.05
Number of memory tokens 5 / 15 5 / 15 15 15
Number of cached tokens (mem_len) 300 / 360 0 / 180 360 2
Max epochs 100 / 80 50 / 250 10 10
Batch size 64 64 128 4096
Weight decay 0.1 0.1 0.1 0.1
Loss function CE CE CE MSE
Optimizer AdamW AdamW AdamW AdamW
MRV activation ReLU ReLU ReLU‡ ReLU
MRV number of attention heads 2 / 4 4 / 1 2 2
Learning rate 3e-4 3e-4 3e-4 1e-4
AdamW (β1, β2) (0.9, 0.95) (0.9, 0.95) (0.9, 0.95) (0.9, 0.95)

Table 9: Experimental parameters used to present the final results.

Environment Nruns Nseeds Metric Notation
ViZDoom-Two-Colors 6 100 Total reward mean ± sem
T-Maze 10 100 Success Rate mean ± sem
Memory Maze 3 100 Total reward mean ± sem
Minigrid-Memory 3 100 Total reward mean ± sem
Action Associative Retrieval 10 — Success Rate mean ± sem
Atari 3 100 Total reward mean ± std
MuJoCo 3 100 Total reward mean ± std

F ADDITIONAL ABLATION STUDIES

To determine the optimal hyperparameters associated with memory mechanisms, additional ablation
studies were performed in ViZDoom-Two-Colors and T-Maze environments, and the results are
presented in Figure 11 and Figure 10 (right). From the ablation studies results, it was found that for
environments like ViZDoom-Two-Colors with continuous reward signal and image observations, the
best results can be obtained using number of cached memory tokens mem_len = (K × 3 + 2 ×
num_mem_tokens)×N , where K – context length and N – number of segments.

On the other hand, for environments with sparse events like T-Maze, it has been found that using
caching of hidden states of previous tokens (mem_len > 0) prevents remembering important
information. In this case, gating with n_head_ca = 4 and moderate number of memory tokens
num_mem_tokens = 5 gives the best results (see Figure 10 (right)).

F.1 ADDITIONAL VIZDOOM-TWO-COLORS ABLATION

The effect of combining of memory tokens with noise is shown in Figure 10 (left). The noise was
applied as a convex combination: memory_tokens = (1−α)×memory_tokens+α×noise.
With unchanged caching of hidden states of previous tokens at growth of the noise parameter α, at
first there is a decrease of performance at inference on green pillars (up to α = 0.5), and only then a
decrease of performance at inference on red pillars. This phenomenon can be explained by the fact
that memory embeddings is trained to record mostly information about red pillars, which helps to
combat bias in the training data.
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Figure 10: (left) Investigating the RATE memory tokens noise effect in the ViZDoom-Two-Colors.
(right) Results of RATE-3 (trained on corridor lengths ≤ 90) ablation studies in the T-Maze environ-
ment. n_head_ca – number of MRV attention heads, num_mem_tokens – number of memory
tokens.

Figure 11: Results of RATE ablation studies in the ViZDoom-Two-Colors environment.

F.2 CURRICULUM LEARNING

Since in the T-Maze environment, the number of actions at the junction relates to the number of actions
when moving straight along the corridor as 1

L and tends to 0 as L increases, there is a significant
imbalance in the agent’s action distribution, which can cause problems when performing rare class
(turning actions) prediction. Theoretically, this situation can be remedied through curriculum learning.

Curriculum learning (CL) is a technique in which a model is trained on examples of increasing
difficulty. In this approach, the model is first trained on the set of trajectories Q1 = q1 of length
K × 1, then the trained model is re-trained on the set of trajectories Q2 = q1 ∪ q2, where the set
q2 is formed by trajectories of length K × 2, and so on (in order of increasing complexity of the
trajectories). Thus, for the N segments considered during training, the set QN =

⋃N
i=1 qi is used.

In the T-Maze environment, DT, RATE, RMT, and TrXL were trained with and without curriculum
learning because this approach theoretically produces better results. However, it is important to note
that the T-Maze task is successfully solved by the RATE model without using curriculum learning,
and even vice versa – its use slightly degraded performance on long corridors. However, with respect
to TrXL, the use of CL yielded slightly better results. The work showed that using CL does not
achieve significantly better performance on the T-Maze task. The results of using the CL on the
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Table 10: RATE encoders for each part of (R, o, a) triplets. We use Embedding layer for encoding
discrete actions and Linear for continuous ones. ‡ – channels / kernel sizes / padding.

Env. R O Conv. configuration‡ A
ViZDoom-Two-Colors Linear Conv2D × 3 (32, 64, 64) / (8, 4, 3) / 0 Embedding
T-Maze Linear Linear – Embedding
Memory Maze Linear Conv2D × 3 (32, 64, 64) / (8, 4, 3) / 2 Embedding
Minigrid-Memory Linear Conv2D × 3 (32, 64, 64) / (8, 4, 3) / 0 Embedding
Atari Linear Conv2D × 3 (32, 64, 64) / (8, 4, 3) / 0 Embedding
MuJoCo Linear Linear – Linear

Figure 12: Memory Retention Valve configurations used in the ablation study. MRV-CA-2: cross-
attention-based MRV which uses an attention mechanism to control the updating of memory embed-
dings and which is used in the work as the main mechanism. MRV-CA-1: uses the same mechanism
as MRV-CA-2 but the updated memory embeddings Mn+1 are fed to Query, and the incoming
memory embeddings Mn are fed to Key and Value. MRV-G: gated MRV which uses a gating
mechanism similar to the one used in Gated Transformer-XL (Parisotto et al., 2020). MRV-GRU:
uses a GRU (Chung et al., 2014) block to process updated memory embeddings with hidden states.
MRV-LSTM: uses a LSTM (Hochreiter & Schmidhuber, 1997) block to process updated memory
embeddings with cached states.

T-Maze environment are presented in Figure 13 (left), and the results of applying noise to memory
embeddings to assess its importance are presented in Figure 13 (right).

F.3 SUPPLEMENTAL MRV ABLATION

One of the options for implementing the memory tokenization gating mechanism was an approach
similar to the one proposed in Gated Transforer-XL (GTrXL) (Parisotto et al., 2020) work. Thus, the
MRV-G scheme was inspired by the gating mechanism from GTrXL and implemented as follows:

r = σ(MnWr +Mn+1Ur) (2)
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Figure 13: (left). Results with and without the use of curriculum learning and (right) results of
replacing RATE memory tokens with white noise at inference in T-Maze.

Figure 14: Results of RATE inference with different MRV configurations on the T-Maze environment.
Training was performed with the number of segments N = 5 and context length K = 30, i.e. on
trajectories of length ≤ 150. MRV-CA-2 is the final MRV configuration that is used throughout the
work and is designated as MRV.

z = σ(MnWz +Mn+1Uz − bias) (3)

h = tanh(MnWg + (Mn+1 × r)Ur) (4)

M̃n+1 = σ(Mn(1− z) + z × h) (5)

The results of the RATE (trained on corridor lengths of ≤ 150) inference on the T-Maze environment
with these MRV configurations are shown in Figure 14 and in Table 6. The results presented
in Figure 14 confirm the high stability of RATE when using cross-attention-based MRV (MRV-CA-2),
as well as the model’s ability to hold important information in memory embeddings when inference
on long tasks.

F.4 ABLATION ON NUMBER OF SEGMENTS AND SEGMENT LENGTH

Partitioning the trajectories into fixed-length segments allows the RATE model to train on long
trajectories without increasing the context size, which makes the parameters N (the number of
segments into which the training trajectories are divided) and K (the context length, i.e., the size of a
single segment) critical because they determine the length of the effective context Keff = K ×N .
The Figure 15 presents the results of ablation studies for parameters N and K at fixed Keff = 90.
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Figure 15: Results of ablation of segments size (context length K) and number of segments (N )
when the effective context length (Keff ) is fixed: Keff = K ↑ ×N ↓= 90.

G RECURRENT BASELINES

To prove that all baselines were properly trained and that the results obtained indicate exactly the
inability of the considered RNN and SSM baselines to learn on long corridors, we conducted a
hyperparameters sweep (see Figure 16).

Results demonstrates that recurrent baselines can solve the T-Maze task when trained on data with
moderate corridor lengths (approximately 30 steps, or 90 corresponding tokens) but fail to retain the
clue information for longer lengths, unlike a transformer. This is because the transformer’s attention
mechanism can effectively capture dependencies in highly sparse data, which recurrent models cannot.
DT achieves SR= 0.5 for T > K for any K, while recurrent networks can achieve SR> 0.5 in this
setting. RATE combines the strengths of transformers (direct access to information in context) and
recurrent networks (hidden states for information retrieval).

DLSTM, T = K = 9 DLSTM, T = K = 30 DLSTM, T = K = 90

DGRU, T = K = 9 DGRU, T = K = 30 DGRU, T = K = 90

DMamba, T = K = 9 DMamba, T = K = 30 DMamba, T = K = 90

Figure 16: Results of tuning DLSTM, DGRU and DMamba hyperparameters for the T-Maze environ-
ment. Validation is performed on corridors of the same length used in training. At each step of the
environment, a triplet (R, o, a), i.e., three tokens, is processed.
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H TRANSFORMER ABLATION STUDIES

Transformer core hyperparameters. This section presents the results of ablation studies on the
main hyperparameters of the RATE transformer. The RATE configuration for the T-Maze environment
specified in Table 8 was chosen for the ablation studies. The ablation studies focus on understanding
the impact of key hyperparameters by systematically varying one parameter while keeping others
constant. The results are shown in Figure 17, Figure 18, and Figure 19.

Figure 17: Results of ablation by the number of layers of the RATE model in T-Maze environment.

Figure 18: Results of ablation by the number of attention heads of the RATE model in T-Maze
environment.

Feed-Forward Network. In our experiments, we found that when the feed-forward network (FFN)
is disabled in the transformer decoder, RATE performs slightly better then with FFN enabled. To
evaluate the contribution from FFN on the considered baselines, we performed an ablation study on
this parameter. The results presented in Figure 20 demonstrate that for RATE alone, disabling FFN
gives a performance gain, while the other models’ Succes Rate in the T-Maze environment drops.

I RECOMMENDATIONS FOR HYPERPARAMETERS SETTINGS

Transformer architectures have many parameters that need to be selected correctly. The use of
memory mechanisms in RATE adds a few more hyperparameters. Nevertheless, tuning RATE is
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Figure 19: Results of ablation by the features sizes of the RATE model in T-Maze environment.

Figure 20: Results of ablation study on use/non-use of feed-forward network in transformer decoder.

practically no different from tuning a regular Transformer. Based on our experience with RATE on
different tasks, in this section we provide practical guidelines that aim to simplify the hyperparameters
selection process.

To configure the RATE, we recommend performing the setup in the following order:

1. Set the number of segments N into which the trajectory is divided equal to three: N = 3.
Next, if the length of the trajectories is T , set the context length K = T//3.

2. Set the default hyperparameters for core transformer and set the following initial parameters
related to memory mechanisms:
(a) Number of memory tokens: num_mem_tokens = 5

(b) Number of MRV attention heads: n_head_ca = 2

(c) MRV activation function mrv_act = ‘relu‘

(d) Number of cached hidden states of previous tokens: mem_len = (3 × K + 2 ×
num_mem_tokens×N for environments with dense reward function (like ViZDoom-
Two-Colors or Minigrid-Memory) or mem_len = 0 for environments with sparse
reward function (like T-Maze).

3. Tune the hyperparameters of the core transformer (number of layers, number of heads, etc.).
4. Adjust the hyperparameters related to the RATE memory mechanisms.

The configuration of the RATE memory mechanisms specified in item (2) of this instruction worked
well on all the tasks we considered.
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J TECHNICAL DETAILS

The Table 11 shows the technical parameters of the training models. Note that the difference between
the number of DT and RATE parameters is small and equal to δp = d_model× num_mem_tokens
∼ 103. Training RATE with trajectory splitting into N segments allows ∼ N smaller GPU memory
size usage than for DT. The training was conducted using a single NVIDIA A100 80 Gb graphics
card.

Table 11: Technical configurations of model training. The values in the table are for single run. The
training was conducted on a single NVIDIA A100 GPU.

Env. Model GPU mem. Train time # params.

ViZDoom-Two-Colors RATE
DT

24Gb
37Gb 4h 6.0M

T-Maze RATE
DT

5Gb
15Gb 2h 2.4M

Memory Maze RATE
DT

24Gb
37Gb 12h 6.0M

Minigrid-Memory RATE
DT

6Gb
15Gb 10h 6.0M

Atari RATE
DT

21Gb
32Gb 9h 4.7M

MuJoCo RATE
DT

15Gb
45Gb 10h 0.6M

K ATTENTION MAPS

In this section, we present attention maps for DT and RATE models in the T-Maze environment in
two configurations: T = K = 15 (Figure 21, Figure 22) and T = K = 90 (Figure 23 and Figure 24).
As can be seen from the presented attention maps, DT have attention heads that explicitly define
dependencies between the action at the junction and the cue at the beginning of the episode (Head
0, Head 1 in Figure 22). RATE, on the other hand, does not show such dependencies explicitly, but
some heads clearly show heavy use of memory tokens (Head 2, Head 4, Head 7 in Figure 21).
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RATE, Head 0 RATE, Head 1

RATE, Head 2 RATE, Head 3

RATE, Head 4 RATE, Head 5

RATE, Head 6 RATE, Head 7

RATE, Head 8 RATE, Head 9

Figure 21: RATE attention maps in the T-Maze environment, T = Keff = 3× 5 = 15.
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DT, Head 0 DT, Head 1

DT, Head 2 DT, Head 3

DT, Head 4 DT, Head 5

DT, Head 6 DT, Head 7

DT, Head 8 DT, Head 9

Figure 22: DT attention maps in the T-Maze environment, T = K = 15.
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RATE, Head 0 RATE, Head 1

RATE, Head 2 RATE, Head 3

RATE, Head 4 RATE, Head 5

RATE, Head 6 RATE, Head 7

RATE, Head 8 RATE, Head 9

Figure 23: RATE attention maps in the T-Maze environment, T = Keff = 3× 30 = 90.
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DT, Head 0 DT, Head 1

DT, Head 2 DT, Head 3

DT, Head 4 DT, Head 5

DT, Head 6 DT, Head 7

DT, Head 8 DT, Head 9

Figure 24: DT attention maps in the T-Maze environment, T = K = 90.
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