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ABSTRACT

Psychiatry research aims at understanding manifestations of psychopathology in
behavior, in terms of a small number of latent constructs. These are usually in-
ferred from questionnaire data using factor analysis. The resulting factors and
relationship to the original questions are not necessarily interpretable. Further-
more, this approach does not provide a way to separate the effect of confounds
from those of constructs, and requires explicit imputation for missing data. Fi-
nally, there is no clear way to integrate multiple sets of constructs estimated from
different questionnaires. An important question is whether there is a universal,
compact set of constructs that would span all the psychopathology issues listed
across those questionnaires. We propose a new matrix factorization method de-
signed for questionnaires aimed at promoting interpretability, through bound and
sparsity constraints. We provide an optimization procedure with theoretical con-
vergence guarantees, and validate automated methods to detect latent dimension-
ality on synthetic data. We first demonstrate the method on a commonly used
general-purpose questionnaire. We then show it can be used to extract a broad set
of 15 psychopathology factors spanning 21 questionnaires from the Healthy Brain
Network study. We show that our method preserves diagnostic information against
competing methods, even as it imposes more constraints. Finally, we demonstrate
that it can be used for defining a short, general questionnaire that allows recovery
of those 15 meta-factors, using data more efficiently than other methods.

1 INTRODUCTION

Standardized questionnaires are a common tool in psychiatric practice and research, for purposes
ranging from screening to diagnosis or quantification of severity. A typical questionnaire comprises
questions – usually referred to as items – reflecting the degree to which particular symptoms or
behavioural issues are present in study participants. Items are chosen as evidence for the presence
of latent constructs giving rise to the psychiatric problems observed. For many common disorders,
there is a practical consensus on constructs. If so, a questionnaire may be organized so that subsets
of the items can be added up to yield a subscale score quantifying the presence of their respective
construct. Otherwise, the goal may be to discover constructs through factor analysis.

The factor analysis of a questionnaire matrix (#participants×#items) expresses it as the product
of a factor matrix (#participants×#factors) and a loading matrix (#factors×#items). The
method assumes that answers to items may be correlated, and can therefore be explained in terms of
a smaller number of factors. The method yields two real-valued matrices, with uncorrelated columns
in the factor matrix. The number of factors needs to be specified a priori, or estimated from data.
This solution is often subjected to rotation so that, after transformation, each factor has non-zero
loadings on few variables, and each variable has a high-loading on a single factor, if possible. The
values of the factors for each participant can then be viewed as a succinct representation of them.

Interpreting what construct a factor may represent is done by considering its loadings over all the
items. Ideally, if very few items have a non-zero loading, it will be easy to associate the factor with
them. However, in practice, the loadings could be an arbitrary linear combination of items, with
positive and negative weights. Factors are real-valued, and neither their magnitude nor their sign are
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intrinsically meaningful. Beyond this, any missing data will have to be imputed, or the respective
items ommitted, before factor analysis can be used. Finally, patterns in answers that are driven by
other characteristics of participants (e.g. age or sex) are absorbed into factors themselves, acting as
confounders, instead of being represented separately or controlled for.

Over time, many different questionnaires have been developed. Some focus on constructs relevant to
particular disorders or behavioral issues; others aim at screening for a wide range of problems. One
important question for psychiatry researchers is how many constructs would suffice to explain most
manifestations of psychopathology. In addition to its scientific interest, an answer to this question
would also be of clinical use, informing design of light-weight questionnaires designed to estimate
all key constructs from a minimal number of items. The availability of datasets such as Healthy
Brain Network (Alexander et al., 2017), where tens of questionnaires are collected for thousands of
children and adolescent participants, makes it possible to address this question in a data-driven way.
However, a joint factor analysis of many questionnaires faces additional obstacles, e.g. their having
different response scales, very disparate numbers of items, or patterns of missing entries.

In this paper, we propose to address all of the issues above with a novel matrix factorization method
specifically designed for use with questionnaire data, through the following contributions.

Contribution #1: We introduce Interpretability-Constrained Questionnaire Factorization
(ICQF), a new matrix factorization method for questionnaire data. Our method was designed
to incorporate characteristics that increased interpretability of the resulting factors, based on several
desiderata from active clinical researchers in psychiatry. First, factor values are constrained to be in
the range [0, 1], so as to represent a degree of presence of the factor. Second, the loadings across
items for each factor have to be in the same range as answers in the original questionnaire (typically,
[0, max]). This makes it possible to examine them as a pattern of answers associated with the factor.
Third, the reconstructed matrix obtained by multiplying factors by factor loadings is constrained, so
that no entry exceeds the range – or observed maximum value – of the original questionnaire. Fourth,
the method handles missing data directly, so no imputation is required. Finally, the method supports
pre-specifying some factors to model known variables, such as age or sex, to capture the answer
patterns correlated with them (e.g. drinking problems appearing as age increases). We demonstrate
ICQF in the Childhood Behavior Checklist (CBCL), a widely used questionnaire, and show that it
preserves all diagnostic information in various questionnaires, even with additional regularization.

Contribution #2: We provide theoretical guarantees on the convergence and performance of
the optimization procedure. We introduce an optimization procedure for ICQF, using alternating
minimization with ADMM. We demonstrate that this procedure converges to a local minimum of the
optimization problem. We implement blockwise-cross-validation (BCV) to determine the number
of factors. If this number of factors is close to that underlying the data, the solution will be close to a
global minimum. Finally, we show that our procedure detects the number of factors more precisely
than competing methods, as evaluated in synthetic data with different noise density.

Contribution #3: We use a two-level meta-factorization of 21 questionnaires to identify 15 gen-
eral factors of psychopathology in children and adolescents. We apply ICQF individually to 21
Healthy Brain Network questionnaires (first-level), and then again to a concatenation of the resulting
21 factor matrices (second-level), yielding a meta-factorization with 15 interpretable meta-factors.
We show that these meta-factors can outperform individual questionnaires in diagnostic prediction.
We also show that the meta-factorization can be used to produce a short, general questionnaire, with
little loss of diagnostic information, using data much more efficiently than competing methods.

2 RELATED WORK

The extraction of latent variables (a.k.a. factors) from matrix data is often done through low rank
matrix factorizations, such as singular value decomposition (SVD), principal component analysis
(PCA) and exploratory Factor Analysis (hereafter, just FA) (Golub & Van Loan, 2013; Bishop &
Nasrabadi, 2006). While SVD and PCA aim at reconstructing the data, FA aims at explaining cor-
relations between (questions) items through latent factors (Bandalos & Boehm-Kaufman, 2010).
Factor rotation (Browne, 2001; Sass & Schmitt, 2010; Schmitt & Sass, 2011) is then performed
to obtain a sparser solution which is easier to interpret and analyze. For a comprehensive review
of FA, see Thompson (2004); Gaskin & Happell (2014); Gorsuch (2014); Goretzko et al. (2021).
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Non-negative matrix factorization (NMF) was proposed as a way of identifying sparser, more in-
terpretable latent variables, which can be added to reconstruct the data matrix. It was introduced
in Paatero & Tapper (1994) and was further developed in Lee & Seung (2000). Different varieties
of NMF-based models have been proposed for various applications, such as the sparsity-controlled
(Eggert & Korner, 2004; Qian et al., 2011), manifold-regularized (Lu et al., 2012), orthogonal Ding
et al. (2006); Choi (2008), convex/semi-convex (Ding et al., 2008), or archetypal regularized NMF
(Javadi & Montanari, 2020). Recently, the Deep-NMF (Trigeorgis et al., 2016; Zhao et al., 2017)
and Deep-MF (Xue et al., 2017; Fan & Cheng, 2018; Arora et al., 2019) have been introduced that
can model non-linearities on top of (non-negative) factors, when the sample is large (Fan, 2021).
These methods do not directly model either the interpretability characteristics or the constraints that
we view as desirable. If the goal is to identify latent variables relevant for multiple matrices, the
standard approach is multi-view learning (Sun et al., 2019), or variants that can handle only partial
overlap in participants across matrices (Ding et al., 2014; Gunasekar et al., 2015; Gaynanova &
Li, 2019). Finally, non-negative matrix tri-factorization (NMTF) (Li et al., 2009; Pei et al., 2015),
supports an additional matrix mapping between latent representations for different matrices.

Obtaining a factorization with these methods requires both specifying the number of latent variables,
and solving an optimization problem. In SVD/PCA, the number of variables is often selected based
on the percentage of variance explained, or determined via techniques such as spectral analysis, the
Laplace-PCA method, or Velicer’s MAP test (Velicer, 1976; Velicer et al., 2000; Minka, 2000). For
FA, several methods have been proposed: Bartlett’s test (Bartlett, 1950), parallel analysis (Horn,
1965; Hayton et al., 2004), MAP test and comparison data (Ruscio & Roche, 2012). For NMF,
iterative detection algorithms are recommended, e.g. the Bayesian information criterion (BIC) (Sto-
ica & Selen, 2004), cophenetic correlation coefficient (CCC) (Fogel et al., 2007) and the dispersion
(Brunet et al., 2004). More recent proposals for NMF are Bi-cross-validation (BiCV) (Owen &
Perry, 2009) and its generalization, the blockwise-cross-validation (BCV) (Kanagal & Sindhwani,
2010), which we use in this paper. The optimization problem for NMF is non-convex, and different
algorithms for solving it have been proposed. Multiplicative update (MU) (Lee & Seung, 2000) is
the simplest and mostly used. Projected gradient algorithms such as the block coordinate descent
(Cichocki & Phan, 2009; Xu & Yin, 2013; Kim et al., 2014) and the alternating optimization (Kim
& Park, 2008; Mairal et al., 2010) aim at scalability and efficiency in larger matrices. Given that our
optimization problem has various constraints, we use a combination of alternative optimization and
Alternating Direction Method of Multipliers (ADMM) (Boyd et al., 2011; Huang et al., 2016).

3 METHODS

3.1 INTERPRETABLE CONSTRAINED QUESTIONNAIRE FACTORIZATION (ICQF)

Inputs Our method operates on a questionnaire data matrix M ∈ Rn×m
≥0 with n participants

and m questions, where entry (i, j) is the answer given by participant i to question j. Given that
questionnaires often have missing data, we also have a mask matrixM∈ {0, 1}n×m of the same di-
mensionality as M , indicating whether each entry is available (=1) or not (=0). Optionally, we may
have a confounder matrix C ∈ Rn×c

≥0 , encoding c known variables for each participant that could
account for correlations across questions (e.g. age or sex). If the jth confound C[:,j] is categorical,
we convert it to indicator columns for each value. If it is continuous, we first rescale it into [0, 1]
(range in the dataset), and replace it with two new columns, C[:,j] and 1 − C[:,j]. This mirroring
procedure ensures that both directions of the confounding variables are under consideration (e.g.
answer patterns more common the younger or the older the participants are).

Optimization problem We seek to factorize the questionnaire matrix M as the product of a n×k
factor matrix W ∈ [0, 1], with the confound matrix C ∈ [0, 1] as optional additional columns, and
a m × (k + c) loading matrix Q := [RQ,CQ], with a loading pattern RQ over m questions for
each of the k factors (and CQ for optional confounds). Denoting the Hadamard product as ⊙, our
optimization problem minimizes the squared error of this factorization

minimize
W∈W,Q∈Q,Z∈Z

1/2 ∥M⊙ (M −Z)∥2F + β ·R(W ,Q)

such that [W ,C]QT = Z, Z = {Z| min(M) ≤ Zij ≤ max(M)} ,
Q = {Q| 0 ≤ Qij} andW = {W | 0 ≤Wij ≤ 1}

(ICQF)
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subject to entries of Q being in the same value range as question answers, so loadings are inter-
pretable, and bounding the reconstruction by the range of values in the questionnaire matrix M . We
further regularize W and Q through R(W ,Q) := ∥W ∥p,q + γ∥Q∥p,q , γ = n

m max(M), where
∥A∥p,q := (

∑m
i=1(

∑n
j=1 |Aij |p)q/p)1/q . Here, we use p = q = 1 for sparsity control. γ is a

heuristic to balance the sparsity control between W and Q. With a slight abuse of notation, γ is
absorbed into β of Q if no ambiguity results.

Choice of number of factors For each β, we choose the number of factors k using blockwise-
cross-validation (BCV). Given a matrix M , for each k, we shuffle the rows and columns of M and
subdivide it into br × bc blocks. These blocks are split into 10 folds and we repeatedly omit blocks
in a fold, factorize the remainder, impute the omitted blocks via matrix completion and compute the
error1 of that imputation. We choose k with the lowest average error. This procedure can adapt to
the distribution of confounds C by stratified splitting. We compared this with other approaches for
choosing k, for ICQF and other methods, over synthetic data, and report the results in Appendix F.

3.2 SOLVING THE OPTIMIZATION PROBLEM

Optimization procedure The ICQF problem is non-convex and requires satisfying multiple con-
straints. We solve it through an ADMM optimization procedure. The Lagrangian Lρ is:

Lρ(W ,Q,Z, αZ) =1/2∥M⊙ (M −Z)∥2F + IW(W ) + β∥W ∥1,1 + IQ(Q) + β∥Q∥1,1
+
〈
αZ ,Z − [W ,C]QT

〉
+ ρ/2

∥∥Z − [W ,C]QT
∥∥2
F
+ IZ(Z)

(1)

where ρ is the penalty parameter, αZ is the vector of Lagrangian multipliers and IX (X) = 0
if X ∈ X and ∞ otherwise. We alternatingly update primal variables W ,Q and the auxiliary
variable Z by solving the following sub-problems:

W (i+1) = argmin
W∈W

ρ/2∥Z(i) − [W ,C]Q(i),T + ρ−1α
(i)
Z ∥

2
F + β∥W ∥1,1 (2)

Q(i+1) = argmin
Q∈Q

ρ/2∥Z(i) − [W (i+1),C]QT + ρ−1α
(i)
Z ∥

2
F + β∥Q∥1,1 (3)

Z(i+1) = argmin
Z∈Z

∥M⊙ (M −Z)∥2F + ρ∥Z − [W (i+1),C]Q(i+1),T + ρ−1α
(i)
Z ∥

2
F (4)

for some penalty parameter ρ. Lastly, αZ is updated via

α
(i+1)
Z ← α

(i)
Z + ρ(Z(i+1) − [W (i+1),C](Q(i+1))T ) (5)

Equations 2 and 3 can be further split into row-wise constrained Lasso problems and there is a closed
form solution for equation 4. The optimization details are further discussed in Appendix A. Given
the flexibility of ADMM, a similar procedure can also be used with other regularizations.

Convergence of the optimization procedure In Appendix B, we provide a proof that the con-
straint ρ ≥

√
2 on the penalty parameter ρ guarantees monotonicity of the optimization procedure,

and that it will converge to a local minimum. Integrating this constraint with the adaptive selection of
ρ (Xu et al., 2017), we obtain an efficient optimization for ICQF. Furthermore, Bjorck et al. (2021)
showed that, if k = k∗ of a ground-truth solution (W ∗,Q∗) in non-negative matrix factorizations,
the error ∥M −WQT ∥2F is star-convex towards (W ∗,Q∗), and the solution is close to a global
minimum. In Appendix C, we show that, if k ̸= k∗, the relative error between W ∗ and W increases
with |

√
k/k∗ − 1|. Inaccurate estimation of k∗ thus affects both the interpretability of (W , Q) and

the convergence to global minima. As reported in Appendix F, BCV is more robust to noise when
estimating k than other alternatives, and this is why we use it.

3.3 META-FACTORIZATION

ICQF produces interpretable factors for individual questionnaires. As discussed earlier, our second
goal is to obtain interpretable factors that explain psychopathology across a range of questionnaires.
ICQF can also be used to obtain these meta-factors, through a two level-factorization: factorize each

1Appropriate weighting is multiplied to the error if number of blocks in the last fold is less than others.
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individual questionnaire, concatenate their respective factor matrices, and then factorize this matrix.
The main obstacle is that each participant may only have answered a subset of the questionnaires
available. This is the second reason for including a mask matrixM in our problem formulation.

In describing our meta-factorization procedure, we suppress C and the regularization terms R to
simplify the discussion. Let {Mi}Si=1 to be the data matrices of S questionnaires with dimensions
{(ni,mi)}Si=1. Note that {Mi}Si=1 can be fully, partially or non-overlapped with each other. For di-
mension consistency, we extend Mi (so as Wi,Mi) into n rows by padding rows of zeros for miss-
ing participants, where n ≥ ni ∀i = 1, . . . , S denotes the number of unique participants from the S
questionnaires. We then introduce mask matrices Ei ∈ {0, 1}n×mi := Di ·Mi, which is composed
of the extendedMi and a diagonal mask matrixDi ∈ {0, 1}n×n indicating the availability of partic-
ipants. Performing matrix factorization for each questionnaire, we obtain Ei⊙Mi ≈ Ei⊙ (WiQ

T
i )

for i = 1, . . . , S. We then concatenate {Wi}Si=1 and perform a second level factorization:

[D1 ·W1, · · · ,DS ·WS ] ≈ [D1 · 11, . . . ,DS · 1S ]⊙WQT , (6)

where 1i is a 1-matrix of dimension n × ki with ki denoting the number of factors in Wi, for
i = 1, . . . , S. The columns ofW are the meta-factors.

There are alternative approaches for factorizing multiple questionnaires. The most obvious would
be to factorize the concatenation of all {Mi}Si=1 as [E1⊙M1, . . . , ES ⊙MS ] ≈WQT . It requires
a wider detection range for the best k ({1, . . . ,

∑S
i mi}). This is used for competing methods in

our experiments. Moreover, any low-rank matrix completion algorithms could be used for meta-
factorization. However, constraining W and Z from each questionnaire is crucial; as discussed
in Maisog et al. (2021), and witnessed by us in practice, simple normalization before estimating
k for meta-factor W may induce unpredictable effects. We could also optimize a meta-objective
function: 1

2

(∑S
i=1 αi∥Ei ⊙ (Mi −WQT

i )∥2F
)

. This has a smaller range of k in practice, but extra
hyper-parameters αi (relative importance of data matrix Mi ) are introduced. Finally, we could use
tri-factorization: [E1 ⊙M1, . . . , ES ⊙MS ] ≈WGQT . This did not work well in our case.

4 DATA

The Healthy Brain Network (HBN) (Alexander et al., 2017) is an ongoing project to create a biobank
from New York City area children and adolescents. Data are publicly available, and include psychi-
atric, behavioral, cognitive, multimodal brain imaging, and genetics. In this work, we use a subset
of 21 psychiatric questionnaires about behavioral and emotional problems. They were selected by
domain experts by their focus on psychopathology, frequency of use in clinical research, and com-
pleteness in the HBN dataset. This subset contains general-purpose questionnaires covering different
domains of psychopathology (e.g. CBCL, SDQ and SympChck) and others focusing on specific dis-
orders (e.g. ASSQ for autism screening, SWAN for ADHD, and SCARED for anxiety). The full list
of 21 questionnaires is reported in Table 4 in Appendix G. Across all questionnaires, we have 978
questions and 3572 unique participants. Finally, we have the age and sex at birth of each participant,
which will be used as confounds, and diagnostic labels for 11 conditions, if applicable.

5 EXPERIMENTS AND RESULTS

5.1 ICQF FACTORIZATION OF THE CHILD BEHAVIOR CHECKLIST

We begin with a qualitative assessment of ICQF applied to the 2001 Child Behavior Checklist
(CBCL), which is designed to detect behavioral issues. The checklist includes 113 questions,
grouped into 8 syndrome subscales: Aggressive, Anxiety/Depressed, Attention, Rule Break, Social,
Somatic, Thought, Withdrawn problems. Answers are scored on a three-point Likert scale (0=absent,
1=occurs sometimes, 2=occurs often) and the time frame for the responses is the past 6 months.

We estimated the latent dimensionality k = 8 using BCV to compute a test error for ICQF at each
possible k. The regularization parameter β = 0.5 was set the same way (See bottom-left-panel of
Figure 1). The top-panel shows the heat map of Q := [RQ,CQ], the loadings over questions RQ for
the latent factors W , and the loadings CQ for the confounds C. Questions are grouped by syndrome
subscale. While there were factors that loaded primarily in questions from one subscale, as expected,
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Figure 1: Top: Heat map of factor and confound loadings Q := [RQ,CQ]. Note that questions are
grouped by syndrome subscale; some factors are syndrome specific, while others bridge syndromes.
Bottom left: Detection of (k, β) by BCV. Bottom right: Top 10 questions of Q[:,1], loading mostly
on the Aggressive subscale. Top 10 questions for all factors are shown in Appendix H.

we were surprised to find others that grouped questions from multiple subscales. These were deemed
sensible co-occurrences by our clinical collaborators. We show the top 10 questions, ranked by
magnitude of loading, for the first factor Q[:,1] from RQ, as a demonstration of how one might
interpret the factor (bottom-right-panel of Figure 1). As a further, sanity check, we inspected the
loadings of confound Old (increasing age) and observe that they covered issues such as “Argues”,
“Act Young”, “Swears” and “Alcohol”. The loadings of Q also reveal the relative importance
among questions in each estimated factor; subscales deem all questions equally important.

5.2 META-ICQF FOR META-FACTORIZATION OF THE HBN QUESTIONNAIRES

This section provides a qualitative evaluation of meta-ICQF, analogous to that of ICQF in Sec-
tion 5.1. As described earlier, the meta-factorization requires a first-level ICQF of each question-
naire in HBN, yielding factor matrix Wi and loading matrix Qi. On the second level factorization,
we concatenate {Wi}Si=1 and use ICQF to get meta-factorsW and respective loadings Q over first
level factors as described in equation 6 (note the change in font for these). Figure 2 (left) shows
the lower triangular part of the correlation matrix of QT . The first level factors from all question-
naires are grouped through agglomerative clustering – as many clusters as meta-factors k – on their
meta-factor loadings. The sparse, block-diagonal pattern and the diversified factor-origins within
each block demonstrate how meta-factorization can combine related latent factors from multiple
questionnaires. Figure 2 (bottom-right) shows the trend of validation errors with different (k, β)
using the BCV detection scheme. The optimal inflection point is k = 15 and β = 0.1. Finally, we
can back-propagate Q from factor- to question-level2 by multiplying diag [Q1, . . . ,QS ] ·Q =: Q.
These loadings retrieve the question’s latent representation in the meta-factor space; the magnitude
of each question’s entry in each column of Q reveals its influence of the corresponding meta-factor.
Figure 2 (top-right) shows the top 10 questions of the first column of Q ranked by their magnitude,

2For multi-questionnaire setting, we abuse the notation Q to denote the latent representation of questions,
either by direct factorization, or the meta-factorization followed by back-propagation.
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Figure 2: Left: Correlation matrix of Q, showing clusters of similar ICQF factors for all question-
naires on the left (format questionnaire−#), and the meta-factors (1-15) those clusters correspond
to at the bottom. Bottom-right: Detection of (k, β) by BCV. Top-right: The top 10 questions as-
sociated with meta-factor 1, their loading value, and their questionnaire of origin. This meta-factor
reflects attention issues. A similar plot for every meta-factor is reported in Appendix I.

with their questionnaire of origin. This meta-factor reflects attention issues. Similar plots for all 15
meta-factors are reported in Appendix I. There is strong topic coherence among the top ranked ques-
tions in each meta-factor. The meta-factors have been deemed interpretable and clinically plausible
presentations by our psychiatry collaborators.

5.3 DIAGNOSTIC CLASSIFICATION

Given the absence of ground-truth factorizations for participants in the HBN study, it is challeng-
ing to carry out a quantitative evaluation of ICQF versus other factorization methods, or subscales.
In this section, we report on two different experiments based on predicting diagnostic labels for
each participant, from factor scores. The first tests whether factor matrices W preserve the nec-
essary information for this, when applied to general-purposed questionnaires or a combination of
every HBN questionnaire. The second tests whether the question ranking induced by Q, across all
questionnaires in HBN, selects the most informative questions for each factor.

5.3.1 EXPERIMENTAL SETUP

Baseline methods Our first baseline method is ℓ1- regularized NMF (ℓ1-NMF) (Cichocki & Phan,
2009), as it also imposes non-negativity and sparsity constraints. As constructs (or questions) can be
correlated, we rule out other NMF methods with orthogonality constraints. FA with promax rotation
(FA-promax) (Hendrickson & White, 1964) using minimum residual as estimation method is in-
cluded because it is commonly used in analyzing questionnaires. Syndrome subscales are included
if available for a questionnaire, since they are often used for diagnoses. Finally, we include raw
questionnaire answers, as they have all the information available. To estimate the number of factors
k, we use BCV for ℓ1-NMF and ICQF, and parallel analysis for FA. The choice was driven by the
experiments on synthetic questionnaire data reported in Appendix F.
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Table 1: Averaged ROC-AUC scores of the diagnostic prediction under different factorizations.

Factorization
Questionnaire meta-ICQF ICQF ℓ1-NMF FA-promax subscales raw

CBCL – 0.768 0.762 0.763 0.740 0.763
SDQ – 0.762 0.755 0.757 0.752 0.739

SympChck – 0.753 0.761 0.756 NaN 0.747
HBN 0.792 0.782 0.777 0.778 0.766 0.788

Questionnaires The two experiments are motivated by the routine use of general-purpose ques-
tionnaires in our dataset – CBCL, SDQ (Symptoms and Difficulties), and SympChck (Symptom
check) – to screen and refer patients to pediatric psychiatry clinics, for a variety of diagnoses
(Heflinger et al., 2000; Biederman et al., 2005; 2020). The referral is based either on raw answers
on the questionnaire or syndrome-specific subscales derived from them. Beyond this, and given that
we have 21 questionnaires from HBN, we carried out experiments on W derived from them. The
factors are obtained using the meta-factorization described in Section 3.3 (meta-ICQF), or by con-
catenating the questionnaires and factorizing the result (ℓ1-NMF, FA-promax), or simply using the
concatenation (raw), possibly aggregated (by subscales, if defined, or all added otherwise).

Dataset splits We use a similar evaluation procedure in both experiments. We group the 21 HBN
questionnaires, and split participants into train, validation, and test sets with ratio 70/15/15, based
on participant availability across questionnaires and the distribution of confounds and diagnostic
labels. This ensures a similar data distribution in the three sets, as shown in Figure 5 in Appendix E,
where more details are provided. We resample 50 dataset splits using different seeds, and carry out
both experiments in each split. The results reported are the average across results in all splits.

Model training and inference Let W set
i denote the participant factor matrix in ICQF or NMF, or

the factor score in FA. The subscript i is the questionnaire index, and is dropped if considering only
one. The superscript denotes the set. Similarly, let Qi denote the question loadings for each method.
Model training will yield a (W train, Q) for participants in the training set. Inference with the model
will produce W validate and W test in validation and test sets, using the trained Q and confounds
Cvalidate,Ctest (if applicable). See Figure 4 in Appendix D for a diagram. A sans serif font
(e.g. W) indicates a second-level factorization result. In meta-factorization, both model training and
inference are performed on individual questionnaires to obtain {W train

i ,W validate
i ,W test

i ,Qi}Si=1

at the first level. At the second level, we concatenate {W train
i }Si=1 and do model training to get

meta-factorWtrain and Q, followed by model inference on the concatenated {W validate
i }Si=1 and

{W test
i }Si=1. This then givesWvalidate andWtest. While meta-factorization is possible for NMF

or FA, we do not use it, as results were same or worse than factorizing concatenated questionnaires.

5.3.2 DIAGNOSTIC PREDICTION FROM FACTORS

For each one of 11 diagnostic labels, we train a logistic regression model with ℓ2 regularization, and
balanced class weights, on W train (Wtrain). The regularization strength is tuned using W validate

(Wvalidate). Prediction assessment is conducted on W test (Wtest) using the ROC-AUC metric
(Krzanowski & Hand, 2009). The ROC-AUC of each setting is then averaged across all random
dataset splits. As results were obtained over the same datasets, for 11 different classification prob-
lems, we use a Friedman test with significance level α = 0.05 (followed by a posthoc Nemenyi test
if the null hypothesis of the Friedman test is rejected), following Demšar (2006).

Table 1 shows the summary of AUCs obtained on the various questionnaires using different fac-
torizations, averaged across all 11 diagnostic labels. HBN corresponds to the use of all 21 ques-
tionnaires, as described earlier. Results for each problem are provided in Table 5 in Appendix J.
In CBCL, the null hypothesis is rejected and the post-hoc Nemenyi test indicates that subscales is
significantly worse than all other factorizations. The null is not rejected for SDQ or SympChck. In
the HBN setting, the null hypothesis is rejected and the Nemenyi test indicates a significant differ-
ence between the group (meta-ICQF, raw) and the group (ℓ1-NMF, subscales). Overall, we conclude
that ICQF and meta-ICQF preserve diagnostic information, in spite of additional regularization and
constraints versus other methods. Human-defined subscales are slightly but significantly worse. A
parallel experiment on another CBCL dataset from different population is reported in Appendix K.
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Figure 3: ROC-AUC trend of prediction performance for Depression using the t-questionnaire, for
increasing t. The methods are ICQF (estimated k = 22), meta-ICQF (estimated k = 15), ℓ1-NMF
and FA-promax (with k = 15 or estimated), and metafactor (meta-ICQF with all questions in HBN)

5.3.3 DIAGNOSTIC PREDICTION FROM SYNTHESIZED QUESTIONNAIRES

Our goal is to assess the degree to which the process of extracting factors from all of the HBN
questionnaires yields a Q where loadings identify informative questions for every domain of psy-
chopathology. If so, we should be able to parlay those loadings into general-purpose questionnaires
defined in a purely data-driven way, using the most informative question subset. We operational-
ize this as follows. We first perform factorization in the training set, as described for the previous
prediction problem. For each column Q[:,i], we rank questions according to the absolute magnitude
of their loadings. By grouping top t questions from each of the k (meta-) factors, we can derive a
new questionnaire, which we call the t-questionnaire. The t-questionnaire inherits the ranking of
questions and ideally, preserves the key information for diagnostic prediction.

The experimental setup parallels Section 5.3.2, but using either the 21 components of the t-
questionnaire, for meta-ICQF, or their concatenation, otherwise. For the latter we trained ℓ1-NMF
and FA-promax, either selecting the number of factors from data as before, or setting it to that of
meta-ICQF (k = 15). We also trained ICQF directly on the concatenation (estimated k = 22). We
then trained a ℓ2 regularized logistic regression, with regularization parameter set over validation
data, and evaluated its performance on the test set. This procedure was carried out for t up 40 (or
#questions if < t). Figure 3 shows the trend of prediction performance for Depression for increasing
t. The red dotted line is the average performance without eliminating any questions (same as HBN
in Table 5). The trends for the other 10 diagnostic predictions are reported in Appendix L. They are
broadly similar in relative terms across the methods (except for suspected ASD). Across the range of
t, meta-ICQF and ICQF had substantially higher AUCs than other methods, especially when t was
small. This suggests that meta-ICQF is effective at determining the relative importance of ∼ 1000
questions from 21 questionnaires, as well as grouping them into interpretable meta-factors.

6 DISCUSSION

In this paper, we have introduced ICQF, a method for non-negative matrix factorization with ad-
ditional constraints to further enhance the interpretability of factors, and the capability to directly
handle confounds. We have demonstrated ICQF in a widely used questionnaire, and showed that in-
terpretability does not affect our ability to make diagnostic predictions from factors. We also showed
that ICQF can be used for two-level meta-factorizations of sets of questionnaires. This allowed us
to identify 15 meta-factors of psychopathology that coherently group questions from many ques-
tionnaires, and correspond to clinical presentations of patients. Furthermore, we showed that the
resulting meta-factorization induces a ranking of the most informative questions for each question-
naire. This makes it possible to generate a minimal general-purpose questionnaire for estimating the
15 meta-factors, while maintaining a specified level of diagnostic prediction performance. In the fu-
ture, we plan to use the 15 meta-factors as latent variables for studying the structural and functional
brain imaging data available in HBN. We also plan on releasing the ICQF code for community use,
and carrying out clinical validations of the t-questionnaires generated from the meta-factorization.
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A OPTIMIZATION PROCEDURE OF ICQF

Recall that the Lagrangian Lρ of ICQF is:

Lρ(W ,Q,Z, αZ) =
1

2
∥M⊙ (M −Z)∥2F + IW(W ) + β∥W ∥1,1 + IQ(Q) + β∥Q∥1,1

+
〈
αZ ,Z − [W ,C]QT

〉
+

ρ

2

∥∥Z − [W ,C]QT
∥∥2
F
+ IZ(Z)

Following the ADMM approach, we alternatingly update primal variables W ,Q and the auxiliary
variable Z, instead of updating them jointly. In particular, we iteratively solve the following sub-
problems:

W (i+1) = argmin
W∈W

ρ

2

∥∥∥∥Z(i) − [W ,C]Q(i),T +
1

ρ
α
(i)
Z

∥∥∥∥2
F

+ β∥W ∥1,1 (Sub-problem 1)

Q(i+1) = argmin
Q∈Q

ρ

2

∥∥∥∥Z(i) − [W (i+1),C]QT +
1

ρ
α
(i)
Z

∥∥∥∥2
F

+ β∥Q∥1,1 (Sub-problem 2)

Z(i+1) = argmin
Z∈Z

1

2
∥M⊙ (M −Z)∥2F +

ρ

2

∥∥∥∥Z − [W (i+1),C]Q(i+1),T +
1

ρ
α
(i)
Z

∥∥∥∥2
F

(Sub-problem 3)

for some penalty parameter ρ. We denote the Hadamard product as ⊙. The vector of Lagrangian
multipliers αZ is updated via

α
(i+1)
Z ← α

(i)
Z + ρ(Z(i+1) − [W (i+1),C](Q(i+1))T ) (7)

SUB-PROBLEMS 1 AND 2 (EQUATIONS 2 AND 3)

Note that equation 2 (and similarly equation 3 by taking the transpose) can be split into row-wise
constrained Lasso problem. Specifically, the rth row problem can be simplified into:
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x∗ = argmin
0≤xi≤1

ρ

2
∥b−Ax∥2F + β∥x∥1, A = Q(i), b =

[
Z(i) −CQ(i),T +

1

ρ
α
(i)
Z

]
[r,:]

(8)

Here we use the Matlab matrix notation
[
·
]
[r,:]

to represent row extraction operation. As suggested
in Gaines et al. (2018) one can also use ADMM to solve equation 8:

x(i+1) = argmin
x

ρ

2
∥b−Ax∥22 +

τ

2
∥x− y(i) +

1

τ
µ(i)∥22 + β∥x∥1 (9)

y(i+1) = Proj[0,1](x
(i+1) +

1

τ
µ(i)) (10)

µ(i+1) ← µ(i) + τ(x(i+1) − y(i+1)) (11)

Similarly, µ is the vector of Lagrangian multipliers and τ is the penalty parameter. Proj[0,1] refers
to the orthogonal projection into [0, 1] (inherited from the box-constraints of W ). Equation 9 can be
solved via the well-established FISTA algorithm (Beck & Teboulle, 2009). Consider the following
optimization problem

argmin
x

λ∥x∥1 +
1

2
f(x) (12)

The FISTA algorithm for solving 12 is summarized as follows:

Algorithm 1: FISTA for equation 12
Initialize: δ = 1e−6; x−1 = 0,x0 = t0 = 1
Input: L, Lipschitz constant of∇f
Result: Solution x of equation 12
while ∥xi − xi−1∥2 > δ do

x̃i+1 = argminz
{

λ
L∥z∥1 +

1
2

∥∥z − (xi − 1
L∇f(xi)

)∥∥};

ti+1 =
1+
√

1+4t2i
2 ;

xi+1 = x̃i+1 +
ti−1
ti+1

(x̃i+1 − xi);
end

To solve equation 9 with FISTA algorithm, using the notation as introduced in equation 8, we have

f(x) = ρ∥b−Ax∥22 + τ∥x− y(i) +
1

τ
µ(i)∥22 (13)

To compute L, the Lipschitz constant of∇f , we have

∇f(x) = 2ρ
(
ATA(x− b) + τ(x− c)

)
= 2(ρATA+ τI)x− 2(ρATAb+ τc) (14)

where c = y(i) − 1
τ µ

(i). Thus, L is just equal to the largest eigenvalue of 2(ρATA+ τI).

As recommended in Huang et al. (2016), ADMM provides flexibility to use various types of loss
functions and regularizations without changing the procedure. For example, we can simply change
to L2,1 norm and equation 8 becomes a constrained ridge-regression problem, which can be ef-
ficiently solved by non-negative quadratic programming algorithms. For most clinical usage, the
size of questionnaire data is manageable on a single machine. However, if optimal computational
and memory efficiency is required, various stochastic optimization approaches such as Mairal et al.
(2010) can replace the ADMM procedure. Yet, an unbiased sampling scheme for generating ran-
dom batches that handles missing responses is also needed. Such a scheme is non-trivial to obtain,
especially under the multi-questionnaires scenario.
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SUB-PROBLEM 3 (EQUATION 4)

Since both terms in equation 4 are in Frobenius-norm, Z can be optimized entry-wise. In particular,
we have the following closed-form solution for Z(i+1):

Z(i+1) = Proj
[min(M),max(M)]

(
M⊙M + ρ[W (i+1),C](Q(i+1))T − α

(i)
Z

)
⊘ (ρ1+M) (15)

where 1 is a 1-matrix with appropriate dimension and ⊘ is the Hadamard division.

B NON-INCREASING PROPERTY OF THE OPTIMIZATION ALGORITHM

In the following, we provide a self-contained convergence proof and show that, under an appropriate
choice of the penalty parameter ρ, the ADMM optimization scheme discussed in Section 3.2 con-
verges to a local minimum. To simplify notation, we denote V(i,j,k) = {W (i),Q(j),Z(k)} to be
the tuple of variables W ,Q and Z during iteration (i), (j) and (k) respectively. If i = j = k, we
abbreviate it as V(i). We also denote R(i) = [W (i),C](Q(i))T and for any matrices A,B with
appropriate dimensions, ⟨A,B⟩ = Trace(ATB). In the following, we are going to show that the
Lagrangian is decreasing across iterations. Particularly, we consider the difference of Lagrangian
between consecutive iterations:

Lρ(V
(i+1), α

(i+1)
Z )− Lρ(V

(i), α
(i)
Z )

=Lρ(V
(i+1), α

(i+1)
Z )− Lρ(V

(i+1), α
(i)
Z )︸ ︷︷ ︸

(I)

+Lρ(V
(i+1), α

(i)
Z )− Lρ(V

(i), α
(i)
Z )︸ ︷︷ ︸

(II)

(16)

Expanding term (I), we have

Lρ(V
(i+1), α

(i+1)
Z )− Lρ(V

(i+1), α
(i)
Z ) =

〈
α
(i+1)
Z − α

(i)
Z ,Z(i+1) −R(i+1)

〉
=

1

ρ
∥α(i+1)

Z − α
(i)
Z ∥

2
F

(17)

Expanding term (II), we have

Lρ(V
(i+1), α

(i)
Z )− Lρ(V

(i), α
(i)
Z )

=

(A)︷ ︸︸ ︷
Lρ(V

(i+1), α
(i)
Z )− Lρ(V

(i+1,i+1,i), α
(i)
Z )+

(B)︷ ︸︸ ︷
Lρ(V

(i+1,i+1,i), α
(i)
Z )− Lρ(V

(i+1,i,i), α
(i)
Z )

+ Lρ(V
(i+1,i,i), α

(i)
Z )− L(S(k), α

(i)
Z )︸ ︷︷ ︸

(C)

(18)

Expanding (A) by the definition, we have

1

2
∥M⊙ (M −Z(i+1))∥2F −

1

2
∥M⊙ (M −Z(i))∥2F +

〈
α
(i)
Z ,Z(i+1) −R(i+1)

〉
−
〈
α
(i)
Z ,Z(i) −R(i+1)

〉
+

ρ

2

∥∥∥Z(i+1) −R(i+1)
∥∥∥2
F
− ρ

2

∥∥∥Z(i) −R(i+1)
∥∥∥2
F

=
〈
M⊙ (Z(i+1) −M),M⊙ (Z(i+1) −Z(i))

〉
− ∥M⊙ (Z(i+1) −Z(i))∥2F

+ ⟨α(i)
Z ,Z(i+1) −Z(i)⟩+ ρ

〈
Z(i+1) −R(i+1),Z(i+1) −Z(i)

〉
− ρ∥Z(i+1) −Z(i)∥2F

=
〈
M⊙ (Z(i+1) −M) + ρ ·Z(i+1) + α

(i)
Z − ρR(i+1),Z(i+1) −Z(i)

〉
− ∥M⊙ (Z(i+1) −Z(i))∥2F − ρ∥(Z(i+1) −Z(i))∥2F
−
〈
M⊙ (Z(i+1) −M), (1−M)⊙ (Z(i+1) −Z(i))

〉
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Since Z(i+1) is the minimizer of equation 4, we have∥∥∥M⊙ (M −Z(i+1))
∥∥∥2
F
+ ρ

∥∥∥∥Z(i+1) −R(i+1) +
1

ρ
α
(i)
Z

∥∥∥∥2
F

≤
∥∥∥M⊙ (M −Z(i))

∥∥∥2
F
+ ρ

∥∥∥∥Z(i) −R(i+1) +
1

ρ
α
(i)
Z

∥∥∥∥2
F

which gives

2
〈
M⊙ (Z(i+1) −M),M⊙ (Z(i+1) −Z(i))

〉
− ∥M⊙ (Z(i+1) −Z(i))∥2F

≤− 2
〈
ρ ·Z(i+1) + α

(i)
Z − ρR(i+1),Z(i+1) −Z(i)

〉
+ ρ∥Z(i+1) −Z(i)∥2F

It further implies〈
ρ ·Z(i+1) + α

(i)
Z − ρR(i+1),Z(i+1) −Z(i)

〉
≤−

〈
M⊙ (Z(i+1) −M),M⊙ (Z(i+1) −Z(i))

〉
+

1

2
∥M⊙ (Z(i+1) −Z(i))∥2F

+
ρ

2
∥Z(i+1) −Z(i)∥2F

By direct substitution, we have

(A) ≤
〈
M⊙ (Z(i+1) −M),Z(i+1) −Z(i)

〉
−
〈
M⊙ (Z(i+1) −M),M⊙ (Z(i+1) −Z(i))

〉
+

1

2
∥M⊙ (Z(i+1) −Z(i)∥2F +

ρ

2
∥Z(i+1) −Z(i)∥2F − ∥M⊙ (Z(i+1) −Z(i))∥2F

− ρ∥(Z(i+1) −Z(i))∥2F −
〈
M⊙ (Z(i+1) −M), (1−M)⊙ (Z(i+1) −Z(i))

〉
=− 1

2
∥M⊙ (Z(i+1) −Z(i))∥2F −

ρ

2
∥(Z(i+1) −Z(i))∥2F ≤ −

ρ

2
∥(Z(i+1) −Z(i))∥2F (19)

For the second term (B), by definition, we have,

(B) =ρ

2

∥∥∥∥Z(i) −R(i+1) +
1

ρ
α
(i)
Z

∥∥∥∥2
F

− ρ

2

∥∥∥∥Z(i) − [W (i+1),C]Q(i),T +
1

ρ
α
(i)
Z

∥∥∥∥2
F

+ β∥Q(i+1)∥1,1 − β∥Q(i)∥1,1

=ρ

〈
R(i+1) −Z(i) − 1

ρ
α
(i)
Z , [W (i+1),C](Q(i+1),T −Q(i),T )

〉
− ρ

2

∥∥∥[W (i+1),C](Q(i+1),T −Q(i),T )
∥∥∥2
F
+ β(∥Q(i+1)∥1,1 − ∥Q(i)∥1,1)

We recall that Q is updated via solving constrained Lasso problems for every row Q
(i+1)
[r,:] :

y = argmin
x,0≤x

β∥x∥1 +
ρ

2
∥b−Ax∥22, where A = [W (i+1),C], b =

[
Z(i) +

1

ρ
α
(i)
Z

]
[r,:]

(20)

One obtains y if and only if there exists g ∈ ∂∥y∥1, the sub-differential of ∥ · ∥1 such that

ρAT (Ay − b) + βg = 0. (21)

As ∥ · ∥1 is convex, we have
∥x∥1 ≥ ∥y∥1 + ⟨x− y, g⟩ (22)

which gives

∥y∥1 − ∥x∥1 ≤
〈
y − x,

ρ

β
AT (Ay − b)

〉
=

〈
A(y − x),

ρ

β
(Ay − b)

〉
(23)
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Re-substituting x = Q
(i),T
[r,:] , y = Q

(i+1),T
[r,:] , A = [W (i+1),C], b =

[
Z(i) + 1

ρα
(i)
Z

]
[r,:]

and sum

over r, we have

β∥Q(i+1)∥1,1 − β∥Q(i)∥1,1 ≤ −ρ
〈
R(i+1) −Z(i) − 1

ρ
α
(i)
Z , [W (i+1),C](Q(i+1),T −Q(i),T )

〉
(24)

Therefore, we have

(B) ≤ −ρ

2

∥∥∥[W (i+1),C](Q(i+1),T −Q(i),T )
∥∥∥2
F

(25)

With similar argument, we can bound (C) by

(C) ≤ −ρ

2

∥∥∥[(W (i+1) −W (i)),C]Q(i),T
∥∥∥2
F

(26)

To get an upper bound of ∥α(i+1)
Z − α

(i)
Z ∥2F , we have

∥α(i+1)
Z − α

(i)
Z ∥

2
F

≤∥Z(i+1) −Z(i)∥2F + ∥R(i+1) −R(i)∥2F
≤∥Z(i+1) −Z(i)∥2F + ∥[W (i+1),C]Q(i+1),T − [W (i+1),C]Q(i),T ∥2F

+ ∥[W (i+1),C]Q(i),T − [W (i),C]Q(i),T ∥2F
≤∥Z(i+1) −Z(i)∥2F + ∥[W (i+1),C](Q(i+1),T −Q(i),T )∥2F + ∥[(W (i+1) −W (i)),C]Q(i),T ∥2F

(27)

Combining equation 17, 27, 18, 19, 25 and 26 with equation 16, we have

Lρ(V
(i+1), α

(i+1)
Z )− Lρ(V

(i), α
(i)
Z )

≤1

ρ

∥∥∥α(i+1)
Z − α

(i)
Z

∥∥∥2
F
− ρ

2

∥∥∥Z(i+1) −Z(i)
∥∥∥2
F
− ρ

2

∥∥∥[W (i+1),C](Q(i+1),T −Q(i),T )
∥∥∥2
F

− ρ

2

∥∥∥[(W (i+1) −W (i)),C]Q(i),T
∥∥∥2
F

≤
(
1

ρ
− ρ

2

)
·
(
∥Z(i+1) −Z(i)∥2F + ∥[W (i+1),C](Q(i+1),T −Q(i),T )∥2F

+ ∥[(W (i+1) −W (i)),C]Q(i),T ∥2F
)

(28)

This is summarized into the following theorem:
Theorem B.1 (Non-increasing property). Assume ρ ≥

√
2, for all i, we have

Lρ(W
(i+1),Q(i+1),Z(i+1), α

(i+1)
Z ) ≤ Lρ(W

(i),Q(i),Z(i), α
(i)
Z ). (29)

We set ρ = 3 in all experiments for sufficiency.

C ERROR ANALYSIS WHEN k ̸= k∗

Assume that there is a ground-truth factorization (W∗,Q∗) of the given M = W∗(Q∗)T , with
latent dimension k∗, where W∗ and Q∗ are matrix-valued random variables with entries sampled
from some bounded distributions. With high probability, the error ∥M−WQT ∥2F we are minimiz-
ing is star-convex towards (W∗,Q∗) whenever k = k∗ (Bjorck et al., 2021). To demonstrate the
importance of the choice of k, we consider the scenario when k ̸= k∗ below.

First, a more precise assumption for ICQF is to model W as row-independent bounded random
matrices. Recall that W is generated by arranging n participants’ latent representation as rows of
n × k matrix, where the n participants are assumed to be independent from each other and their
corresponding latent representations follow a high-dimensional bounded distribution.
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Second, let (W1,Q1) and (W2,Q2) be two factorizations with dimensions k1 and k2 respectively.
Assume both factorizations achieve (a): equivalent mismatching loss in expectation, and (b): equiv-
alent expectation approximation to data matrix M:

(a) : E
[
∥M−W1Q

T
1 ∥2F

]
= E

[
∥M−W2Q

T
2 ∥2F

]
and (b) : E[W1Q

T
1 ] = E[W2Q

T
2 ]

We also assume (c): E
[∑n

j=1(Wi)
2
jκ

]
:= σ2

Wi
and E

[∑m
j=1(Qi)

2
jκ

]
:= σ2

Qi
for all κ = ki,

i = 1, 2.

Expanding (a), we have

E
[
Trace

(
(M−W1Q

T
1 )

T (M−W1Q
T
1 )
)]

= E
[
Trace

(
(M−W2Q

T
2 )

T (M−W2Q
T
2 )
)]

This gives

E
[
Trace

(
WT

1 W1Q
T
1 Q1 − 2MTW1Q

T
1

)]
= E

[
Trace

(
WT

2 W2Q
T
2 Q2 − 2MTW2Q

T
2

)]
DenoteE[Wi] = µWi

,E[Qi] = µQi
for i = 1, 2, we have Wi = W̄i+µWi

and Qi = Q̄i+µQi
,

where W̄i and Q̄i denote the corresponding centered variables. Note that by the independence of
Wi and Qi and linearity of trace and expectation operator,

E
[
Trace

(
MTW1Q

T
1

)]
=E

[
Trace

(
MTW̄1Q̄

T
1 +MTW̄1µ

T
Q1

+MTµW1
Q̄T

1 +MTµW1
µT
Q1

)]
=Trace(MT

E[W1]E[Q
T
1 ]) = Trace(MT

E[W2]E[Q
T
2 ]) = E

[
Trace

(
MTW2Q

T
2

)]
(30)

which yields
E
[
Trace

(
WT

1 W1Q
T
1 Q1

)]
= E

[
Trace

(
WT

2 W2Q
T
2 Q2

)]
(31)

Consider E
[
Trace

(
WT

1 W1Q
T
1 Q1

)]
via definition, we have

E
[
Trace

(
WT

1 W1Q
T
1 Q1

)]
=Trace

(
E
[
WT

1 W1

]
E
[
QT

1 Q1

])
=Trace

E

(∑n

j=1(W1)
2
j1

)
∗

. . .

∗
(∑n

j=1(W1)
2
jk1

)


× E


(∑m

j=1(Q1)
2
j1

)
0

. . .

0
(∑m

j=1(Q1)
2
jk1

)



=

k1∑
κ=1

E

 n∑
j=1

(W1)
2
jκ

E
 m∑
j=1

(Q1)
2
jκ

 (32)

Incorporating assumption (c), we have

E
[
Trace

(
WT

1 W1Q
T
1 Q1

)]
= k1σ

2
W1

σ2
Q1

(33)

Consider equation 31 with k1 > k2. For W1,Q1, W.L.O.G. we pad k2 − k1 columns of zeros.
Moreover, let P be an optimal k2 × k2 permutation matrix, we also have

E
[
Trace

(
(W2P)TW2P(Q2P)TQ2P

)]
= E

[
Trace

(
WT

2 W2Q
T
2 Q2

)]
= k2σ

2
W2

σ2
Q2

(34)

Combining with equation 31, it is equivalent to

k1σ
2
W1

σ2
Q1

= k2σ
2
W2

σ2
Q2

(35)

which gives

E
[
∥W1∥2F

]
=

σ2
Q2

σ2
Q1

E
[
∥W2∥2F

]
=

σ2
Q2

σ2
Q1

E
[
∥W2P∥2F

]
(36)
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To evaluate the impact of interpretability of latent representation under different latent dimension,
we consider E

[
∥W1 −W2P∥2F

]
:

E
[
∥W1 −W2P∥2F

]
= E

[
Trace

(
(W1 −W2P)T (W1 −W2P)

)]
= E

[
∥W1∥2F

]
+

σ2
Q1

σ2
Q2

E
[
∥W1∥2F

]
− 2E

[
Trace(WT

1 W2P)
]

(37)

As Trace(WT
1 W2P ) ≤ ∥W1∥F ∥W2P∥F , we also have

E
[
Trace(WT

1 W2P)
]
≤ E [∥W1∥F ] ·E [∥W2P∥F ]

≤
√
E [∥W1∥2F ] ·E [∥W2∥2F ] =

√
σ2
Q1

σ2
Q2

E
[
∥W1∥2F

]
(38)

which implies

E
[
∥W1 −W2P∥2F

]
≥

(
1− 2

√
σ2
Q1

σ2
Q2

+
σ2
Q1

σ2
Q2

)
E
[
∥W1∥2F

]
=

(
1−

√
σ2
Q1

σ2
Q2

)2

E
[
∥W1∥2F

]
(39)

Since Wi is generated from row-wise independent bounded distribution, if we add a mild assump-
tion that σ2

Wi
:= σ2

W for all i through re-scaling, Equation 35 implies k1σ2
Q1

= k2σ
2
Q2

and therefore

E
[
∥W1 −W2∥2F

]
≥

(
1− 2

√
k2
k1

+
k2
k1

)
E
[
∥W1∥2F

]
=

(√
k2
k1
− 1

)2

E
[
∥W1∥2F

]
(40)

If we substitute k1 = k∗, (W1,Q1) = (W∗,Q∗), we have

E
[
∥W∗ −W2∥2F

]
≥

(√
k2
k∗
− 1

)2

E
[
∥W∗∥2F

]
(41)

which means the relative expected difference between W∗ and W2 is bounded below by(√
k2

k∗ − 1

)2

.

To prove that equation 41 holds in general, we consider the matrix concentration inequalities and
show that large deviations from their means are exponentially unlikely. Benefitting from the model
constraints, we can further assume that W is generated from some high dimensional bounded dis-
tribution. In the following, we make use of the main theorem proposed in Meckes & Szarek (2012)
on concentration of non-commutative random matrices polynomials. As Wi are generated from
bounded distributions, ∥Wi − E[Wi]∥F is uniformly bounded. Therefore, it satisfies the convex
concentration properties. The theorem achieves the following results:

P
{
∥W∥2F −E

[
∥W∥2F

]
> tkn2

}
≤ C1 exp

(
−C2 min(t2, t1/2)n

)
(42)

Recall thatE
[
∥W1 −W2P∥2F

]
= E

[
∥W1∥2F

]
+

σ2
Q1

σ2
Q2

E
[
∥W1∥2F

]
−2E

[
Trace(WT

1 W2P)
]
. By

padding W1 and W2 with zeros columns, we assume that Wi are all n × n matrices. Then the
probability that the any one of the terms is deviating from their mean by a relative factor ϵ is less
than C1 exp(−C2ϵ

2n) for some small ϵ. By the union bound, the probability that the either of them
does is less than or equal to C3 exp(−C4ϵ

2n).

20



Under review as a conference paper at ICLR 2023

D VISUALIZATION OF THE EXPERIMENTAL SETUP FOR DIAGNOSTIC
PREDICTION EVALUATION

Figure 4: Setup for diagnostic prediction experiments.
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E VISUALIZATION OF TRAIN, VALIDATION AND TEST SETS IN MULTIPLE
QUESTIONNAIRES SETTING

Figure 5: Train, validation and test split of one data re-sampling.

Table 2: Number of positive diagnostic labels in HBN dataset

Diagnosis
number of

positive cases
Depression 211

GenAnxiety 262
ADHD 506

Suspected ASD 222
Panic, Agoraphobia, Separation Anxiety, Social Anxiety 327

BPD 299
Specific phobia 234

OCD 64
Eating Disorder 97

PTSD Trauma 27
Sleep problems 118

F DETAILS OF THE SYNTHETIC QUESTIONNAIRE EXPERIMENT

This experiment aimed at comparing the effectiveness of BCV and other procedures for estimat-
ing the number of latent factors in a synthetic example, for ICQF and two baseline methods. We
generated the synthetic questionnaire with k∗ = 10 factors ([0, 1] bounded), where each factor was
present in isolation for 200 participants and in tandem with another factor for others. Each factor
had an associated loading over 100 questions. The answers to questions are bounded between 0 and
100.
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To generate the answer matrix M ∈ R200×100
≥0 , we design the underlying matrices W and Q di-

rectly. We first create a matrix D of size 200× 10, shown in Figure 6 (left). The 10 columns of D
are correlated with a step-like pattern, where each “step” is of length 20 and entries on the “step”
have weight 1. Every consecutive pair of steps is overlapped by 10 units to synthesize correlation
between latent factors. An entry W [i, j] is then defined to be

W [i, j] := D[i, j] ∗ a ∗ b, a ∼ U(0.5, 1), b ∼ B(1, p = 0.9) (43)

where U(0.5, 1) is the uniform distribution between [0.5, 1] and B(1, p = 0.9) is the Bernoulli
distribution with probability p = 0.9. The matrix Q of size 100× 10, shown in Figure 6 (center) is
defined to be

Q[i, j] := c ∗ d, c ∼ U(0, 100), d ∼ B(1, 0.3) (44)
Having W and Q, we obtain a noiseless data matrix Mclean := min(0,max(WQT , 100)). To
introduce additive noise, we modify Mclean by

M := min (0,max(Mclean + e ∗ f, 100)) , f ∼ U(−100, 100) (45)

where e follows a discrete probability distribution with P (e = 1) = δ, P (e = 0) = 1 − δ. This
yields a data matrix M , shown in Figure 6 (right) for δ = 0.3. If δ is high, more entries in the
Mclean will be contaminated by the additive noise f .

Figure 6: Synthetic example of W , Q and M with noise density δ = 0.3.

We compared ICQF against ℓ1-regularized NMF (ℓ1-NMF) (Cichocki & Phan, 2009) and fac-
tor analysis with promax rotation (FA-promax) (Hendrickson & White, 1964), as factors can be
correlated. Both ICQF and ℓ1-NMF were initialized with NNDSVD (Boutsidis & Gallopoulos,
2008), and the sparsity (β = 1e−1) and stopping criterion (relative iteration convergence tolerance
ϵ < 1e−3) for fairness. The estimation method for FA was minimum residual.

Table 3 shows the mean error ϵ̄ and the standard error sE of the detected k versus ground-truth
k∗ = 10, across different generated datasets. Statistics are marked with asterisk if they contain runs
where no inflection point was detected using the kneed algorithm (Satopaa et al., 2011). We tested
five popular detection algorithms: BCV (Kanagal & Sindhwani, 2010), {BIC1, BIC2} (Stoica &
Selen, 2004)3, CCC (Fogel et al., 2007) and Dispersion (Brunet et al., 2004). For ICQF, BCV is the
best overall detection scheme at all noise levels; BIC2 performs well for low noise only. Within the
three common schemes for FA, Horn’s PA (Horn, 1965) and MAP (Velicer, 1976) are superior to
BIC3 (Preacher et al., 2013). PA achieves the best performance when the noise density is high. This
result aligns with the conclusions in Velicer et al. (2000); Watkins (2018); Goretzko et al. (2021).

3The two BIC versions are respectively BIC1(k) := log
(
∥M −WQT ∥2F

)
+ km+n

mn
log

(
mn
m+n

)
and

BIC2(k) := log
(
∥M −WQT ∥2F

)
+ km+n

mn
log

(
min(

√
m,

√
n)2

)
. There are other similar versions of

BIC but their performances are indistinguishable, thus we only include two representatives in the manuscript.
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Table 3: Experiment of k estimation for synthetic questionnaires. The average error (ϵ̄) and the
standard error of estimated k (sE) are reported. Statistics with asterisk (*) ignore undetectable
inflection points.

Noise
density δ

Detection schemes for NMF
Methods BCV BIC1 BIC2 CCC Dispersion

ICQF
0.1 (0.10,0.06) (0.13, 0.08) (0.10,0.06) (1.33, 0.24) (0.23, 0.09)
0.2 (0.11,0.06) (1.23, 0.34)∗ (0.67, 0.23)∗ (1.14, 0.21) (0.93, 0.16)
0.3 (0.77,0.15) NaN∗ (2.40, 0.48)∗ (0.96, 0.18) (2.60, 0.26)

ℓ1-NMF
0.1 (0.17, 0.07) (1.20, 0.21)∗ (0.90, 0.23)∗ NaN∗ NaN∗

0.2 (2.37, 0.33) NaN∗ (1.10, 0.30)∗ NaN∗ NaN∗

0.3 (2.40, 0.31) NaN∗ (2.47, 0.54)∗ NaN∗ NaN∗

Detection schemes for FA
PA MAP BIC3

FA-promax
0.1 (0.17, 0.07) (0.11,0.06) (0.30, 0.03)
0.2 (0.53, 0.10) (0.13,0.06) (0.93, 0.11)
0.3 (0.87,0.14) (1.27, 0.20) NaN∗

G TABLE SUMMARIZING THE OPTIMAL (k, β) OF THE 21 QUESTIONNAIRES

Table 4: Optimal (k, β) of all 21 questionnaires.

Questionnaire Abbreviation n questions Subscales k β
Affective Reactivity Index (Parent-Report) ARI P 7 nan 2 0.01
Affective Reactivity Index (Self-Report) ARI S 7 nan 2 0.01
Autism Spectrum Screening Questionnaire ASSQ 27 nan 2 0.01
Conners 3 (Self-Report) C3SR 9 4 0.05
Child Behavior Checklist CBCL 119 9 8 0.5
Extended Strengths and Weaknesses Assess-
ment of Normal Behavior

ESWAN 65 nan 13 0.2

Inventory of Callous-Unemotional Traits
(Parent-Report)

ICU P 24 3 4 0.1

Inventory of Callous-Unemotional Traits
(Self-Report)

ICU SR 24 3 3 0.1

Mood and Feelings Questionnaire
(Parent-Report)

MFQ P 34 nan 2 0.1

Mood and Feelings Questionnaire (Self-Report) MFQ SR 33 nan 2 0.1
The Positive and Negative Affect Schedule PANAS 20 2 2 0.05
Repetitive Behaviors Scale RBS 43 5 3 0.1
Screen for Child Anxiety Related Disorders
(Parent-Report)

SCARED P 41 5 3 0.1

Screen for Child Anxiety Related Disorders
(Self-Report)

SCARED SR 41 5 3 0.3

Social Communication Questionnaire SCQ 40 nan 4 0.02
Strength and Difficulties Questionnaire SDQ 33 9 6 0.05
Social Responsiveness Scale (School Age) SRS 65 7 3 0.5
The Strengths and Weaknesses Assessment of
Normal Behavior Rating Scale for ADHD

SWAN 18 2 3 0.02

Symptom Checklist (Parent-Report) SympChck 63 nan 3 0.1
Teacher Report Form (School Age) TRF 116 19 8 0.5
Youth Self Report YSR 119 11 3 0.2
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H FULL LIST OF TOP 10 QUESTIONS FROM FACTORIZING CBCL
QUESTIONNAIRE

Figure 7: Top 10 questions ranked by Q in CBCL using Q obtained from ICQF (Factor 1-3).
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Figure 8: Top 10 questions ranked by Q in CBCL using Q obtained from ICQF (Factor 4-6).
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Figure 9: Top 10 questions ranked by Q in CBCL using Q obtained from ICQF (Factor 7-8).
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I FULL LIST OF TOP 10 QUESTIONS FROM META-FACTORIZATION

Figure 10: Top 10 questions ranked by Q in meta-ICQF (Factor 1-3).
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Figure 11: Top 10 questions ranked by Q in meta-ICQF (Factor 4-6).
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Figure 12: Top 10 questions ranked by Q in meta-ICQF (Factor 7-9).
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Figure 13: Top 10 questions ranked by Q in meta-ICQF (Factor 10-12).
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Figure 14: Top 10 questions ranked by Q in meta-ICQF (Factor 13-15).
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J ROC-AUC SCORES FOR EACH DIAGNOSTIC PREDICTION ACHIEVED BY
DIFFERENT FACTORIZATIONS (EXPANSION OF TABLE 1

Table 5: ROC-AUC scores of the diagnostic prediction under different data inputs and factorizations.

Factorization
Diagnosis Questionnaire meta-ICQF ICQF ℓ1-NMF FA-promax subscales raw

Depression

CBCL – 0.812 0.802 0.809 0.782 0.803
SDQ – 0.814 0.810 0.808 0.809 0.799

SympChck – 0.806 0.805 0.803 NaN 0.784
HBN 0.829 0.823 0.806 0.813 0.813 0.818

GenAnxiety ′′

– 0.823 0.825 0.825 0.798 0.816
– 0.825 0.817 0.830 0.815 0.817
– 0.759 0.798 0.794 NaN 0.778

0.840 0.833 0.832 0.836 0.832 0.840

ADHD ′′

– 0.803 0.806 0.809 0.791 0.806
– 0.806 0.804 0.805 0.799 0.798
– 0.809 0.812 0.811 NaN 0.805

0.831 0.828 0.827 0.833 0.798 0.826

Suspected
ASD

′′

– 0.834 0.837 0.842 0.783 0.849
– 0.800 0.801 0.814 0.807 0.808
– 0.793 0.836 0.831 NaN 0.849

0.891 0.898 0.891 0.903 0.873 0.903

Panic, Agoraphobia,
Separation Anxiety,

Social Anxiety

′′

– 0.766 0.755 0.751 0.742 0.767
– 0.742 0.737 0.738 0.746 0.739
– 0.750 0.754 0.760 NaN 0.753

0.802 0.786 0.785 0.790 0.770 0.789

BPD ′′

– 0.776 0.769 0.785 0.780 0.780
– 0.767 0.769 0.767 0.759 0.777
– 0.750 0.749 0.756 NaN 0.754

0.786 0.777 0.775 0.775 0.777 0.784

Specific
Phobia

′′

– 0.623 0.614 0.632 0.621 0.647
– 0.663 0.654 0.663 0.657 0.737
– 0.658 0.662 0.648 NaN 0.656

0.654 0.669 0.650 0.628 0.643 0.661

OCD ′′

– 0.790 0.767 0.775 0.778 0.755
– 0.740 0.744 0.742 0.728 0.657
– 0.765 0.786 0.801 NaN 0.818

0.782 0.722 0.764 0.738 0.722 0.783

Eating
Disorder

′′

– 0.635 0.626 0.599 0.586 0.602
– 0.651 0.631 0.620 0.610 0.737
– 0.633 0.637 0.606 NaN 0.610

0.665 0.637 0.665 0.697 0.645 0.694

PTSD
Trauma

′′

– 0.799 0.767 0.749 0.710 0.767
– 0.770 0.735 0.741 0.745 0.633
– 0.768 0.746 0.727 NaN 0.645

0.778 0.784 0.715 0.717 0.732 0.734

Sleep
problems

′′

– 0.787 0.787 0.825 0.770 0.803
– 0.805 0.800 0.802 0.796 0.782
– 0.797 0.789 0.787 NaN 0.761

0.850 0.841 0.832 0.828 0.826 0.839
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K EVALUATION AND MODEL INFERENCE IN CBCL–ABCD DATASET

K.1 DATA

Data from the Adolescent Brain Cognitive DevelopmentSM (ABCD) study (https://abcdstudy.org),
held in the NIMH Data Archive (NDA), consists of over 11,000 youth age 9–10. They are re-
cruited from 21 sites across the US, aiming to provide a socio-demographically-diverse sample.
Psychopathology was examined in the children using the parent-reported Child Behavior Checklist
(CBCL). Similarly, we have the age and sex at birth of each participants as confounds and diagnostic
labels (Table 6) for 11 conditions used for the model evaluation. By eliminating subjects with in-
complete age and sex information, we obtain 11,681 unique subjects in CBCL–ABCD questionnaire.

Table 6: Number of positive diagnostic labels in ABCD dataset

Diagnosis
number of

positive cases
Depression 743

GenAnxiety 715
ADHD 2550

Suspected ASD 3244
Panic, Agoraphobia, Separation Anxiety, Social Anxiety 2031

BPD 802
Specific phobia 3131

OCD 1258
Eating Disorder 1205

PTSD Trauma 550
Sleep problems 1129

K.2 DIAGNOSTIC PREDICTION (PARALLEL TO SECTION 5.3.2)

We perform the same diagnostic prediction evaluation on CBCL–ABCD dataset as reported in Sec-
tion 5.3.2. We split participants into train, validation and test sets with ratio 70/15/15, based on the
distribution of confounds and diagnostic labels. We resample 50 dataset splits using different seeds
and carry out prediction experiment in each split. Table 7 reports the summary of averaged AUCs
achieved by different factorization methods.

Table 7: Averaged ROC-AUC scores of the diagnostic prediction in CBCL–ABCD dataset

Factorization
Diagnosis ICQF ℓ1-NMF FA-promax subscales raw

ADHD 0.914 0.913 0.912 0.907 0.915
BPD 0.781 0.776 0.781 0.775 0.783

Depression 0.787 0.785 0.786 0.794 0.791
Eating Disorder 0.546 0.551 0.543 0.555 0.567

GenAnxiety 0.867 0.830 0.872 0.868 0.884
OCD 0.789 0.748 0.788 0.781 0.805

PTSD Trauma 0.804 0.803 0.812 0.798 0.814
Panic, Agoraphobia, Separation Anxiety,

Social Anxiety 0.767 0.727 0.769 0.765 0.777
Sleep problems 0.825 0.726 0.762 0.743 0.833
Specific Phobia 0.684 0.654 0.680 0.681 0.695
Suspected ASD 0.777 0.755 0.774 0.769 0.782

Average 0.776 0.752 0.771 0.767 0.786

The null hypothesis is rejected and the post-hoc Nemenyi test indicates that subscales and ℓ1-NMF
are slightly but significantly worse than the raw setting, while other differences are inconclusive.
Similarly, we conclude that ICQF preserves diagnostic information even though we introduce addi-
tional regularization and constraints versus other methods.

34

https://abcdstudy.org


Under review as a conference paper at ICLR 2023

K.3 STABILITY OF MODEL

In Section 5.3.3, we demonstrated that the additional regularization and constraints in ICQF improve
the interpretability of the factorization. Coherently, we should expect to obtain a more consistent
factorization result from ICQF if it is applied on dataset from another population. Using CBCL–
ABCD dataset, we extend our evaluation via studying the stability of factor loadings (matrix Q) in a
cross-population scenario.

Figure 15: Sorted Pearson correlation of best-matched pair of factor loadings Q obtained from
CBCL–ABCD and CBCL–HBN questionnaire.

For each method (ICQF, ℓ1-NMF and FA-promax), we factorize CBCL–HBN (care-seeking pop-
ulation) and CBCL–ABCD dataset (general-diversified population) separately to obtain the factor
loadings QHBN and QABCD respectively. In this experiment, for fairness sake, we set the number of
factors k = 8 for all methods. Considering QHBN as the reference, we perform the greedy-matching
algorithm to re-order factors in QABCD and compute the Pearson correlation coefficient for every
best-matched pair of factors from (QHBN,QABCD).

Figure 15 shows the trend of the 8 Pearson correlation coefficients achieved by ICQF, ℓ1-NMF and
FA-promax factorizations. Since there is a sign ambiguity of FA-promax, we take an absolute to all
correlation coefficients achieved from FA-promax. The first 5 correlation coefficients are close to 1
for all three methods, suggesting that all methods capture similar factors in two different populations.
However, starting at the 6th pair of factors, correlation coefficient achieved by ICQF is superior to
those from ℓ1-NMF and FA-promax. This indicates that the extra constraints help stabilize the
factorization outcomes and are potentially advantageous to transfer learning or model interpretation.
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L ROC-AUC TREND OF OTHER DIAGNOSES IN I -META-QUESTIONNAIRE

Figure 16: ROC-AUC trend of GenAnxiety, ADHD, Suspected ASD and {Panic, Agoraphobia,
SeparationAnx, SocialAnx}.
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Figure 17: ROC-AUC trend of BPD, Specific Phobia, OCD and Eating Disorder.
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Figure 18: ROC-AUC trend of PTSD Trauma and Sleep Problems
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