
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ON STATISTICAL RATES OF CONDITIONAL DIFFUSION
TRANSFORMERS: APPROXIMATION AND ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We investigate the approximation and estimation rates of conditional diffusion
transformers (DiTs) with classifier-free guidance. We present a comprehensive
analysis for “in-context” conditional DiTs under four common data assumptions.
We show that both conditional DiTs and their latent variants lead to the minimax op-
timality of unconditional DiTs under identified settings. Specifically, we discretize
the input domains into infinitesimal grids and then perform a term-by-term Taylor
expansion on the conditional diffusion score function under Hölder smooth data
assumption. This enables fine-grained use of transformers’ universal approxima-
tion through a more detailed piecewise constant approximation and hence obtains
tighter bounds. Additionally, we extend our analysis to the latent setting under the
linear latent subspace assumption. We not only show that latent conditional DiTs
achieve lower bounds than conditional DiTs both in approximation and estimation,
but also show the minimax optimality of latent unconditional DiTs. Our findings es-
tablish statistical limits for conditional and unconditional DiTs, and offer practical
guidance toward developing more efficient and accurate DiT models.

1 INTRODUCTION

We investigate the approximation and estimation rates of conditional diffusion transformers (DiTs)
with classifier-free guidance. Specifically, we derive score approximation, score estimation, and
distribution estimation guarantees for both conditional DiTs and their latent variants. We provide
a comprehensive analysis under various data conditions. Moreover, we show that both conditional
DiTs and their latent variants lead to the minimax optimality of unconditional DiTs under identified
settings. This analysis is not only practical but also timely. Transformer-based conditional diffusion
models are at the forefront of generative AI due to their success as scalable and flexible backbones
for image (Wu et al., 2024a; Bao et al., 2023; Batzolis et al., 2021) and video generation (Liu et al.,
2024; Ni et al., 2023; Saharia et al., 2022; Voleti et al., 2022). However, the theoretical understanding
of conditional DiTs remains limited. On the one hand, while prior work by Hu et al. (2024) reports
approximation and estimation rates of DiTs using the established universality of transformers (Yun
et al., 2020), their results are not tight and are limited to unconditional diffusion. On the other
hand, existing theoretical works on conditional diffusion models only focus on ReLU networks (Fu
et al., 2024a; Yuan et al., 2023), model-free settings (Ye et al., 2024; Guo et al., 2024) or generative
sampling process (Dinh et al., 2023), without considering the transformer architectures. This work
addresses this gap by providing a timely analysis of the statistical limits of conditional DiTs.

In this work, we present a comprehensive analysis of conditional DiT and its latent setting under
four common data assumptions. We also establish the minimax optimality of unconditional DiT
and its latent version by deriving the tight distribution estimation error bounds. Our techniques
include two key parts: (i) Discretizing the input domains into infinitesimal grids. (ii) On each
grid, performing a term-by-term Taylor expansion on the conditional diffusion score function under
generic and stronger Hölder smooth data assumptions, motivated by the local diffused polynomial
analysis (Fu et al., 2024a; Oko et al., 2023). These techniques leverage the nice regularity of the
score function imposed by the Hölder smoothness data assumptions and hence enable fine-grained
use of transformers’ universal approximation (Kajitsuka and Sato, 2024; Yun et al., 2020) through a
more detailed piecewise constant approximation. Consequently, we obtain tighter bounds.

Contributions. We summarize the theoretical results in Table 1. Our contributions are threefold:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025
Table 1: Summary of Theoretical Results. The initial data is dx-dimensional, and the condition is dy-
dimensional. For latent DiT, the latent variable is d0-dimensional. σ2

t = 1− e−t is the denoising scheduler. The
sample size is n, and 0 < ϵ < 1 represents the score approximation error. While we report asymptotics for large
dx, d0, we reintroduce the n dependence in the estimation results to emphasize sample complexity convergence.

Assumption Score
Approximation

Score
Estimation

Dist. Estimation
(Total Variation Distance)

Minimax
Optimality

Generic Hölder Smooth Data
Dist. (Sections 3.1 and 3.3) O((log

(
1
ϵ

)
)dx/σ4

t) n−Θ(1/dx) · (log n)O(dx) n−Θ(1/dx) · (log n)O(dx) é

Stronger Hölder Smooth Data
Dist. (Sections 3.2 and 3.3) (log

(
1
ϵ

)
)O(1)/σ2

t n−Θ(1/d2
x) · (log n)O(1) n−Θ(1/dx) · (log n)O(1) Ë

Latent Subspace + Generic
Hölder Smooth Data Dist.
(Section 4)

O((log
(
1
ϵ

)
)d0/σ4

t) n−Θ(1/d0) · (log n)O(d0) n−Θ(1/d0) · (log n)O(d0) é

Latent Subspace + Stronger
Hölder Smooth Data Dist.
(Section 4)

(log
(
1
ϵ

)
)O(1)/σ2

t n−Θ(1/d2
0) · (log n)O(1) n−Θ(1/d0) · (log n)O(1) Ë

• Score Approximation. We characterize the approximation limit of matching the conditional DiT
score function with a transformer-based score estimator. The approximation results explain the
expressiveness of conditional DiT and its latent version, and guide the score network’s structural
configuration for practical implementations (Theorems 3.1, 3.2 and 4.1). The results also show
that the latent version achieves a better approximation for the score function.

• Score and Distribution Estimation. We study the score and distribution estimation of conditional
DiTs in practical training scenarios. Specifically, we provide a sample complexity bound for score
estimation (Theorems 3.3 and E.3), using norm-based covering number bound of transformer
architecture. Additionally, we show that the learned score estimator can recover the initial data
distribution in both conditional DiT and its latent setting (Theorems 3.4 and 4.2).

• Minimax Optimal Estimator. We extend our analysis to unconditional DiT and investigate
whether the generated data distribution achieves the minimax optimality in the total variation
distance. Specifically, we show that the upper bounds on the distribution estimation error match the
lower bounds under stronger Hölder smooth data distribution (Corollary 3.4.2 and Remark 4.3).

Organization. Section 2 presents preliminaries and the problem setup. Section 3 presents the results
of conditional DiTs. Section 4 presents the results of latent conditional DiTs. Appendix C.1 presents
related works’ discussions. The appendix contains an extended and improved version of (Hu et al.,
2024) on conditional DiTs (Appendix F), additional results, and detailed proofs.

Notations. The index set {1, ..., I} is denoted by [I], where I ∈ N+. We denote (column) vectors by
lower case letters, and matrices by upper case letters. Let a[i] denote the i-th component of vector
a. Let Aij denotes the (i, j)-th entry of matrix A. ∥x∥, ∥x∥1 and ∥x∥∞ denote the Euclidean norm,
1-norm, and infinite norm. ∥W∥2 and ∥W∥F denote the spectral norm and Frobenius norm, and
∥W∥p,q denotes the (p, q)-norm where p-norm is over columns and q-norm is over rows.

2 BACKGROUND AND PRELIMINARIES

In this section, we provide a high-level overview of the conditional diffusion model with classifier-free
guidance in Section 2.1 and conditional Diffusion Transformer (DiT) networks in Section 2.2.

2.1 CONDITIONAL DIFFUSION MODEL WITH CLASSIFIER-FREE GUIDANCE

Forward and Backward Conditional Diffusion Process. In the forward process, conditional
diffusion models gradually add noise to the original data x0 ∈ Rdx . Give a condition y ∈ Rdy ,
and x0 ∼ P0(·|y). Let xt denote the noisy data at the timestamp t, with marginal distribution and
density as Pt(·|y) and pt(·|y). The conditional distribution Pt(xt|y) follows N(αtx0, σ

2
t Idx), where

αt = e−t/2, σ2
t = 1 − e−t, and w(t) > 0 is a nondecreasing weighting function. In practice, the

forward process terminates at a large enough T such that PT is close to N(0, Idx
). In the backward

process, we obtain x←t by reversing the forward process. The generation of x←t depends on the score
function ∇ log pt(·|y). See Appendix G.1 for the details. In below, when the context is clear, we
suppress the notation dependence of xt on the time step t.

Classifier-Free Guidance. Classifier-free guidance (Ho and Salimans, 2022) is the standard
workhorse for training condition diffusion models. It approximates both conditional and unconditional
score functions using neural networks sW with parameters W . It uses the following loss function:

ℓ(x0, y; sW) =

∫ T

t0

1

T − t0
Eτ,xt∼N(αtx0,σ2

t Idx)

[
∥sW (xt, τy, t)−∇xt

log ϕt (xt|x0)∥22
]
dt,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

R(·)

Reshape Layer

Embed

Concat fT ∈ T h,s,r

Transformer Network

R−1(·)

Reversed
Reshape Layer

x ∈ Rdx

Label y
Timestep t

Rd×L

Rd×2
Rd×(L+2) RdxRd×(L+2) Rd×L

Figure 1: Conditional DiT Network Architecture. The architecture consists of a reshape layer R(·), a
reversed reshape layer R−1(·), and the embedding layers for label y and timestep t. The embeddings of y and t
are concatenated with input sequences and then processed by a transformer network fT ∈ T h,s,r .

where ∇xt
log ϕt (xt|x0) = −(xt − αtx0)/σ

2
t , t0 is a small cutoff to stabilize training 1. τ = ∅

denotes the unconditional version, τ = id denotes the conditional version, and P (τ = ∅) = P (τ =
id) = 0.5. To train sW , we select n i.i.d. samples {x0,i, yi}ni=1, where x0,i ∼ P0(·|yi). We use

L̂(sW) :=
1

n

n∑
i=1

ℓ(x0,i, yi; sW), (2.1)

as the empirical loss. In addition, we denote population loss as L(sW). See Appendix G.2 for details.
2.2 CONDITIONAL DIFFUSION TRANSFORMER NETWORKS

We use a transformer network as a score estimator sW . Our notation follows (Hu et al., 2024).

Transformer Block. Let f (SA) : Rd×L → Rd×L denote the self-attention layer. Let h and s denote
the number of heads and hidden dimension in the self-attention layer, and then we have

f (SA) (Z) := Z +

h∑
i=1

W i
O(W

i
V Z) Softmax

[
(W i

KZ)
⊤(W i

QZ)
]
, (2.2)

where W i
V ,W

i
K ,W

i
Q ∈ Rs×d, and W i

O ∈ Rd×s are the weight matrices. Next, we define the
feed-forward layer with MLP dimension r:

f (FF)(Z) := Z +W2ReLU(W1Z + b1) + b2, (2.3)

where W (1) ∈ Rr×d and W (2) ∈ Rd×r are weight matrices, and b(1) ∈ Rr, and b(2) ∈ Rd are bias.

Definition 2.1 (Transformer Block). We define a transformer block of h-head, s-hidden dimension,
r-MLP dimension, and with positional encoding E ∈ Rd×L as

fh,s,r (Z) := f (FF)
(
f (SA) (Z + E)

)
: Rd×L 7→ Rd×L.

Now, we define the transformer networks as compositions of transformer blocks.

Definition 2.2 (Transformer Network Function Class). Let T h,s,r denote the transformer network
function class where each function τ ∈ T h,s,r is a composition of transformer blocks fh,s,r, i.e.,

T h,s,r := {τ : Rd×L 7→ Rd×L | τ = fh,s,r ◦ · · · ◦ fh,s,r}.

Conditional Diffusion Transformer (DiT). Let f ∈ T h,s,r be a transformer network, and (x, y, t) ∈
Rdx × Rdy × [t0, T] be the input data. We follow the “in-context conditioning” conditional DiT
network in (Peebles and Xie, 2023) as in Figure 1. The following reshape layer converts a vector
input x ∈ Rdx into the sequential matrix input format Z ∈ Rd×L for transformer with dx = d · L.

Definition 2.3 (DiT Reshape LayerR(·)). LetR(·) : Rdx → Rd×L be a reshape layer that transforms
the dx-dimensional input into a d × L matrix. Specifically, for any dx = i × i image input, R(·)
converts it into a sequence representation with feature dimension d := p2 (where p ≥ 2) and
sequence length L := (i/p)

2. Besides, we define the corresponding reverse reshape (flatten) layer
R−1(·) : Rd×L → Rdx as the inverse of R(·). By dx = dL, R,R−1 are associative w.r.t. their input.

We define the following transformer network function class with the reshape layer.

Definition 2.4 (Transformer Network Function Class with Reshape Layer T h,s,r
R).

T h,s,r
R (CT , C

2,∞
Q , CQ, C

2,∞
K , CK , C

2,∞
V , CV , C

2,∞
O , CO, CE , C

2,∞
f1

, Cf1 , C
2,∞
f2

, Cf2 , LT) satisfies

• T h,s,r
R := {R−1 ◦ fT ◦R : Rdx 7→ Rdx | fT ∈ T h,s,r};

1t0 is the early stopping time to prevent the score function from blowing up (Fu et al., 2024a; Chen et al.,
2023c; Dhariwal and Nichol, 2021; Song et al., 2021).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

• Model output bound: supZ ∥fT (Z)∥2 ≤ CT ;
• Parameter bound in f (SA):

∥∥(WQ)
⊤
∥∥
2,∞ ≤ C2,∞

Q ,
∥∥(WQ)

⊤
∥∥
2
≤ CQ, ∥WK∥2,∞ ≤ C2,∞

K ,

∥WK∥2 ≤ CK , ∥WV ∥2,∞ ≤ C2,∞
V , ∥WV ∥2 ≤ CV , ∥WO∥2,∞ ≤ C2,∞

O , ∥WO∥2 ≤ CO,∥∥E⊤∥∥
2,∞ ≤ CE ;

• Parameter bound in f (FF): ∥W1∥2,∞ ≤ C2,∞
f1

, ∥W1∥2 ≤ Cf1 , ∥W2∥2,∞ ≤ C2,∞
f2

, ∥W2∥2 ≤ Cf2 ;
• Lipschitz of fT ∈ T h,s,r: ∥fT (Z1)− fT (Z2)∥F ≤ LT ∥Z1 − Z2∥F , for any Z1, Z2 ∈ Rd×L.

These norm bounds are critical to quantify the interplay between model, performance and data.

3 STATISTICAL LIMITS OF CONDITIONAL DITS
In this section, we present a refined decomposition scheme for the fine-grained analysis of score
approximation, score estimation, and distribution estimation in conditional DiT. Our analysis con-
siders two assumptions on initial data distributions: (i) a generic Hölder smooth data assumption
(Section 3.1 for approximation, and Section 3.3 for estimation), (ii) a stronger Hölder smooth data
assumption (Section 3.2 for approximation, and Section 3.3 for estimation). This new scheme leads
to tighter bounds, including the minimax optimality of the unconditional DiT score estimator.

3.1 SCORE APPROXIMATION: GENERIC HÖLDER SMOOTH DATA DISTRIBUTIONS

We present a fine-grained piecewise approximation using transformers to approximate the conditional
score function under the Hölder smoothness assumption on the initial data (Fu et al., 2024b). At its
core, we introduce a score function decomposition scheme with term-by-term tractability.

We first introduce the definition of Hölder space and Hölder ball following (Fu et al., 2024b).

Definition 3.1 (Hölder Space). Let α ∈ Zd
+, and let β = k1 + γ denote the smoothness parameter,

where k1 = ⌊β⌋ and γ ∈ [0, 1). For a function f : Rd → R, the Hölder space Hβ(Rd) is defined
as the set of α-differentiable functions satisfying: Hβ(Rd) :=

{
f : Rd → R | ∥f∥Hβ(Rd) <∞

}
,

where the Hölder norm ∥f∥Hβ(Rd) satisfies:

∥f∥Hβ(Rd) := max
α:∥α∥1<k1

sup
x

|∂αf(x)|+ max
α:∥α∥1=k1

sup
x ̸=x′

|∂αf(x)− ∂αf(x′)|
∥x− x′∥γ∞

.

We also define the Hölder ball of radius B: Hβ(Rd, B) :=
{
f : Rd → R | ∥f∥Hβ(Rd) < B

}
.

Let x0 ∈ Rdx denote the initial data, and y ∈ [0, 1]dy the conditional label. With Definition 3.1, we
state the first assumption on the conditional distribution of initial data x0.

Assumption 3.1 (Generic Hölder Smooth Data). The conditional density function p0(x0|y) is defined
on the domain Rdx × [0, 1]dy and belongs to Hölder ball of radius B > 0 for Hölder index β > 0,
denoted by p0(x0|y) ∈ Hβ(Rdx × [0, 1]dy , B) (see Definition 3.1 for precise definition.) Also, for
any y ∈ [0, 1]dy , there exist positive constants C1, C2 such that p0(x0|y) ≤ C1 exp

(
−C2∥x0∥22/2

)
.

Remark 3.1. The Hölder continuity assumption captures various smoothness levels in the conditional
density function. The light-tail condition relaxes the bounded support assumption in (Oko et al.,
2023). Moreover, Assumption 3.1 only applies to the initial conditional distribution and imposes no
constraints on the induced conditional score function. This is far less restrictive than the Lipschitz
score condition in prior works (Yuan et al., 2024; Lee et al., 2023; Chen et al., 2022).

In our work, we aim to approximate the conditional score function ∇ log pt(xt|y) using transformer
architectures. Hu et al. (2024) analyze the unconditional DiTs based on the established universality
of transformers (Yun et al., 2020). These theories discretize the input and output domains into in-
finitesimal grids and employ piecewise constant approximations to construct universal approximators
with controllable errors. However, such methods do not yield tight bounds for DiT architectures (Hu
et al., 2024). To combat this, we build on the key observation by Fu et al. (2024a)2:

pt(xt|y) =
∫
Rdx

dx0

σdx
t (2π)dx/2

· p0(x0|y)︸ ︷︷ ︸
≈k1-order Taylor polynomial

· exp

(
−∥αtx0 − xt∥2

2σ2
t

)
︸ ︷︷ ︸
≈k2-order Taylor polynomial

. (3.1)

2Recall that pt(xt|y) =
∫
Rdx

p(x0|y)pt(xt|x0) dx0 with Pt(·|y) ∼ N(αtx0, σtIdx). In below, when the
context is clear, we suppress the notation dependence of xt on the time step t.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

A term-by-term Taylor expansion of the above conditional distribution under Assumption 3.1 enables
a more fine-grained analysis (e.g., Lemma I.2). As a result, we propose a fine-grained version of
piecewise constant approximation for conditional DiTs, allowing transformers to approximate the
conditional score function with tighter error bounds. In particular, we utilize a refined transformer
universal approximation modified from (Kajitsuka and Sato, 2024) (see Appendix H.1 for details).

Our score approximation procedure has two stages: first, we approximate pt and ∇pt using a Taylor
expansion, then use transformers to approximate pt, ∇pt, and the required algebraic operators to
construct ∇ log pt(x|y) = ∇pt(x|y)

pt(x|y) . These lead to provably tight estimation results in Section 3.3.

We state our main result of score approximation using transformers under Assumption 3.1 as follows:

Theorem 3.1 (Conditional Score Approximation under Assumption 3.1). Assume Assumption 3.1
and dx = Ω(logN

log logN). For any precision parameter 0 < ϵ < 1 and smoothness parameter β > 0, let
ϵ ≤ O(N−β) for some N ∈ N. For some positive constants Cα, Cσ > 0, for any y ∈ [0, 1]dy and
t ∈ [N−Cσ , Cα logN], there exists a Tscore(x, y, t) ∈ T h,s,r

R such that∫
Rdx

∥Tscore(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y) dx = O
(
B2

σ4
t

·N−
β

dx+dy · (logN)dx+
β
2 +1

)
.

Notably, for ϵ = O(N−β), the approximation error has the upper bound O((log
(
1
ϵ

)
)dx/σ4

t).
The parameter bounds for the transformer network class are as follows:

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N

7β
dx+dy

+6Cσ

)
;

∥WO∥2, ∥WO∥2,∞ = O
(
N
− 3β

dx+dy
+6Cσ (logN)3(dx+β)

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d);

∥W1∥2, ∥W1∥2,∞ = O
(
N

2β
dx+dy

+4Cσ

)
;
∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N

3β
dx+dy

+2Cσ

)
;CT = O

(√
logN/σ2

t

)
.

Remark 3.2. N is the resolution of the input domain discretization (see Lemma I.2). We remark
that domain discretization is essential for utilizing the local smoothness of functions under Hölder
assumptions. Cσ and Cα control the stability cutoff and early stopping time, respectively.
Proof Sketch. Recall that ∇ log pt(x|y) = ∇pt(x|y)

pt(x|y) . We employ the following strategy: discretize
the domains, apply a term-by-term Taylor approximation to the decomposed conditional distribution
(3.1), decompose the conditional score function ∇ log pt(x|y) = ∇pt(x|y)

pt(x|y) into two fundamental
functions and a parsimonious set of algebraic operators, and then approximate the fundamental
functions and operators with transformer networks. The resulting joint error of this strategy is
controllable under Assumption 3.1. Our proof follows three steps:

Step 1. Input Domains Discretization. For any x ∈ Rdx , we construct a bounded domain Bx,N

to approximate polynomial functions evaluated at x on Rdx with the same functions on Bx,N to
arbitrary precision 1/N (Lemma I.1). Then, we discretize Bx,N × [0, 1]dy into Ndx+dy hypercubes
(Lemma I.2). This technique confines the approximation to a compact domain by controlling error
outside this domain under Assumption 3.1. Each hypercube is now compact and local, enabling a
well-behaved Taylor expansion at x. This confinement reduces approximation error in Step 2.

Step 2. Local, Term-by-Term Taylor Expansion for ∇ log pt. To approximate ∇ log pt, we
expand pt(x|y) and ∇pt(x|y) with Taylor polynomials on each local grid on Bx,N , following
the term-by-term expansion (3.1). Specifically, we approximate pt(x|y) with a scalar polynomial
function f1(x, y, t) ∈ R (Lemma I.3) and ∇pt(x|y) with a vector-valued polynomial function
f2(x, y, t) ∈ Rdx (Lemma I.4). Together with a parsimonious set of algebraic operators (inverse,
product), the obtained f1, f2 resemble ∇ log pt with a bounded error ErrorTaylor.

Step 3. Term-by-Term Approximations with Transformers. We utilize a refined universal
approximation theorem for transformers (Appendix H.1) to approximate all Taylor-expanded terms:
f1, f2, and the set of algebraic operators. Specifically, we approximate f1(x, y, t) and f2(x, y, t) with
transformer models Tf1 (Lemma I.5) and Tf2 (Lemma I.6). For the operators, we also approximate
each of them with a corresponding transformer Tµ with µ = {inverse, square . . .} (Lemmas I.8

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Tscore

entrywise min

square
Lemma I.8

inverse
Lemma I.9

σt

Lemma I.11

product
Lemma I.8

f2
Lemma I.6

inverse
Lemma I.9

max
f1

Lemma I.5

ϵlow

inverse
Lemma I.9

σt

Lemma I.11

RescaleLemma I.13

Figure 2: Approximate Score Function with Transformer Tscore under Assumption 3.1. The construction
consists of the transformers to approximate local polynomials f1 and f2, and the algebraic operators. We
highlight the overall term-by-term approximations and their corresponding lemmas to ensemble the transformers.

to I.9 and I.11). All approximations have precision guarantees. Finally, we combine the transformer
approximations Tf1 , Tf2 and Tµ for the set of algebraic operators, resulting in a joint approximation
for ∇ log pt (see Figure 2) with arbitrary small error ErrorT .

Error Matching. The overall error includes ErrorTaylor and ErrorT . Given a fixed discretization
resolution N , ErrorTaylor remains fixed. However, the approximation error bound of the transformer
can be an arbitrary value. We align ErrorT and ErrorTaylor to optimize the final results.

Please see Appendix I for a detailed proof.
Remark 3.3 (Approximation Rate). Given a fixed resolution N , the approximation error scales
inversely with the smoothness β. As the smoothness increases, we get a tighter approximation error.
Remark 3.4 (Comparing with Existing Works). Fu et al. (2024a) provide approximation rates for
conditional diffusion models using ReLU networks. We are the first to establish approximation error
bounds with transformer networks. Additionally, Oko et al. (2023) establish approximation rates
under a compactness condition on the input data. We mitigate this compactness requirement by
applying a Hölder smoothness assumption to control approximation error outside a compact domain.

3.2 SCORE APPROXIMATION: STRONGER HÖLDER SMOOTH DATA DISTRIBUTIONS

Next, we study the conditional DiT score approximation problem using our score decomposition
scheme under the stronger Hölder smoothness assumption from Fu et al. (2024b, Assumption 3.3).

Assumption 3.2 (Stronger Hölder Smooth Data). Let function f ∈ Hβ(Rdx × [0, 1]dy , B). Given
a constant radius B, positive constants C and C2, we assume the conditional density function
p(x0|y) = exp

(
−C2∥x0∥22/2

)
· f(x0, y) and f(x0, y) ≥ C for all (x0, y) ∈ Rdx × [0, 1]dy .

Assumption 3.2 imposes stronger assumption than Assumption 3.1 and induces a refined conditional
score function decomposition. Explicitly, by Lemma J.1, ∇ log pt(x|y) becomes:

∇ log pt(x|y) =
−C2x

α2
t + C2σ2

t

+
∇h(x, y, t)
h(x, y, t)

, (3.2)

where h(x, y, t) :=
∫
Rdx

f(x0,y)

σ̂dx
t (2π)dx/2

exp
(
−∥x0−α̂tx∥2

2σ̂2
t

)
dx0, σ̂t = σt√

α2
t+C2σ2

t

, and α̂t =
αt

α2
t+C2σ2

t
.

We highlight that (3.2) leads to a tighter approximation error compared with Theorem 3.1. Intuitively,
Assumption 3.2 imposes a lower bound on the conditional density function and hence implies in
better regularity of the score function. In contrast, under Assumption 3.1, the score function lacks
such regularity and may explode when pt is small. These low-density regions act as holes in the data
support. They cause the score function to diverge near the boundary of these holes. To combat this,
an implication of (3.2) is handy — h is bounded from zero, ensuring that the score function remains
well-behaved across the entire data domain. To elaborate more, two technical remarks are in order.
Remark 3.5 (Linearity). The first term on the RHS of (3.2) is linear in x. This makes part of
∇ log pt(x|y) a linear function of x, enabling easy approximation with a tighter bound.
Remark 3.6 (Tightened Approximation Induced by h’s Lower Bound). Moreover, the introduction
of h tightens the approximation error due to the lower bound imposed by Assumption 3.2 (i.e.,
f(x, y) ≥ C). The second term on the RHS of (3.2) mirrors the form ∇ log pt(x|y) = ∇pt(x|y)

pt(x|y) by
replacing p with h. In the analysis of Section 3.1, especially in Step 2 of the proof (resembling f1, f2
to approximate ∇pt(x|y)), we have to impose a threshold on the denominator of ∇pt(x|y)

pt(x|y) to prevent
score explosion under Assumption 3.1. This threshold introduces additional approximation error
(Lemma I.13). Assumption 3.2 remedies this by ensuring a lower bound on pt(x|y) through the
minimum values of f(x, y) and exp(−C2∥x∥22/2) within the compact domain after discretization.
Setting this lower bound eliminates the need for a threshold and improves the approximation.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Consequently, decomposition (3.2) improves our approximation result from Section 3.1. We state our
main result of score approximation using transformers under Assumption 3.2 as follows:

Theorem 3.2 (Conditional Score Approximation under Assumption 3.2 (Informal Version of The-
orem J.1)). Assume Assumption 3.2. For any precision parameter 0 < ϵ < 1 and smoothness
parameter β > 0, let ϵ ≤ O(N−β) for some N ∈ N. For some positive constants Cα, Cσ > 0, for
any y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN], there exists a Tscore(x, y, t) ∈ T h,s,r

R such that∫
Rdx

∥Tscore(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx = O
(
B2

σ2
t

·N−
2β

dx+dy · (logN)β+1

)
.

Notably, for ϵ = O(N−β), the approximation error has the upper bound (log
(
1
ϵ

)
)O(1)/σ2

t .

Proof Sketch. Our proof follows Theorem 3.1, but uses a different conditional score function decom-
position in the form of (3.2). We highlight key differences in each corresponding step:

Step 0: Score Decomposition and Bounds on h and ∇h. We decompose ∇pt to the form of (3.2)
by Lemma J.1. Different from Section 3.2, we derive a lower bound on h in Lemma J.2.

Step 1: Input Domains Discretization. This step remains the same as Section 3.1, except the
approximation target changes from p,∇p to h,∇h. We confine and discretize input domains Rdx ×
[0, 1]dy into Ndx+dy hypercubes (Lemma I.2), each supporting well-behaved Taylor expansions.

Step 2: Local, Term-by-Term Taylor Expansion for h and ∇h. Similar to Section 3.1, we utilize
Taylor polynomials f1 and f2 to approximate h and ∇h on obtained hypercubes. The approximation
on h and ∇h differs from approximation on pt and ∇pt, as their boundedness eliminates the need for
a threshold to prevent score function blow-up. This leads to a faster approximation rate.

Step 3: Transformer Network Approximation. Similar to Section 3.1, we approximate polynomial
functions f1, f2 and all necessary algebraic operators to construct an approximator f3 for ∇pt:

f3(x, y, t) = − C2x

α2
t + C2σ2

t

+
α̂t

σ̂t
· f2(x, y, t)
f1(x, y, t)

, (3.3)

following (3.2). Differed from Section 3.1, (3.2) requires transformers to approximate two additional
operators, σ̂t and α̂t. All approximations have precision guarantees. Finally, we combine all
transformer approximations required in (3.3) and obtain a joint approximation error for ∇ log pt (see
Figure 5) with arbitrary precision. We complete the proof by matching the approximation errors of
the Taylor polynomial and transformer. Importantly, second term on the RHS of (3.3) manifests a
tighter bound than that of ∇pt(x|y)

pt(x|y) . The first linear-in-x term achieves a even tighter bound due to its
linearity. Combined, we obtain a smaller overall joint approximation error than Theorem 3.1.

Please see Appendix J for a detailed proof, and see Theorem J.1 for the formal version.

Remark 3.7 (Comparing with Theorem 3.1). Let Õ(·) hide the terms about t0, log t0, log n. In The-

orem 3.2, the approximation rate Õ(N
− 2β

dx+dy) is faster than that of Theorem 3.1, i.e., Õ(N
− β

dx+dy).
3.3 SCORE ESTIMATION AND DISTRIBUTION ESTIMATION OF CONDITIONAL DITS

Next, we study score and distribution estimations based on the two score approximation results for
two different data assumptions: Theorems 3.1 and 3.2. Let ŝ denote the trained score estimator.

Score Estimation. Building on our approximation results from Sections 3.1 and 3.2, the next
objective is to evaluate the performance of the score estimator ŝ trained with a set of finite samples
by optimizing the empirical loss (2.1). To quantify this, we introduce the notion of score estimation
risk and characterize its upper bound.

Definition 3.2 (Conditional Score Risk). Given a score estimator ŝ, we define risk as the expectation
of the squared ℓ2 difference between the score estimator and the ground truth with respect to (xt, y, t):

R(ŝ) :=

∫ T

t0

1

T − t0
Ext,y∥ŝ(xt, y, t)−∇ log pt(xt|y)∥22dt.

Given a set of i.i.d sample {xi, yi}i∈[n], direct computation of E{xi,yi}i∈[n]
[R(ŝ)] is infeasible due to

the absence of access to the joint distribution P (xt, y). To address this, we: (i) Decompose the risk
into estimation and approximation errors, (ii) Bound the estimation error using the covering number
of transformers, and (iii) Bound the approximation error using Theorem 3.1 and Theorem 3.2.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Theorem 3.3 (Conditional Score Estimation with Transformer). Assume dx = Ω(logN
log logN).

• Under Assumption 3.1, by taking N = n
1
ν1
· dx+dy
β+dx+dy , t0 = N−Cσ < 1 and T = Cα log n, it holds

E{xi,yi}ni=1
[R(ŝ)] = O

(
1

t0
n
− 1

ν1
· β
dx+dy+β (log n)ν2+2

)
,

where ν1 = 68β
(dx+dy)

+ 104Cσ and ν2 = 12dx + 12β + 2.

• Under Assumption 3.2, by taking N = n
1
ν3
· dx+dy
2β+dx+dy , t0 = N−Cσ < 1 and T = Cα log n, it holds

E{xi,yi}ni=1
[R(ŝ)] = O

(
log

1

t0
n
− 1

ν3
· 2β
dx+dy+2β (log n)max(10,β+1)

)
,

where ν3 = 4(12βdx+31βd+6β)
d(dx+dy)

+ 12(12Cαdx+25Cα·d+6Cα)
d + 72Cσ .

Corollary 3.3.1 (Low-Dimensional Input Region). Assume dx = o
(

logN
log logN

)
, i.e., dx ≪ n. Under

Assumption 3.1, by setting N, t0, T as specified in Theorem 3.3, we have E{xi,yi}ni=1
[R(ŝ)] =

O
(

1
t0
n
− 1

ν4
· β
dx+dy+β

)
, where ν4 = 72β(2dx+5d+1)

d(dx+dy)
+ 48Cσ(2dx+5d+1)

d − 4β.

Proof. Please see Appendix K.2 and Appendix K.4 for detailed proofs.

Remark 3.8 (Sample Complexity Bounds). To obtain ϵ-error in terms of score estimation, we have
the sample complexity Õ

(
ϵ−ν1(dx+dy+β)/β

)
under Assumption 3.1 and Õ

(
ϵ−ν3(dx+dy+2β)/2β

)
under Assumption 3.2. Here Õ(·) ignores the terms about t0, log t0 and log n. The Hölder data
smoothness degree β affects the sample complexity. This indicates that the regularity of the initial
data distribution determines the complexity of score estimation.

Distribution Estimation. Next, we study the distributional estimation capability of the trained
conditional score network s(x, y, t) by analyzing the total variation distance between the estimated
and true distributions. Our strategy uses a three-part decomposition: (i) the total variation between
the true distributions at timestamps 0 and t0, (ii) the total variation between the true distribution at t0
and the reverse process distribution using the true score function, and (iii) the total variation between
the reverse process distributions using the true and estimated score functions at t0.

Theorem 3.4 (Conditional Distribution Estimation). Assume dx = Ω(logN
log logN). For y ∈ [0, 1]dy ,

let P̂t0(·|y) denote estimated conditional distributions at t0. Recall that P0(·|y) is the conditional
distribution of initial data x0 given y. Assume KL (P0(·|y) | N(0, I)) ≤ c for some constant c <∞.

• Under Assumption 3.1, by taking the early-stopping time t0 = n
− β

dx+dy+β and terminal time
T = 2β

dx+dy+2β log n, it holds

E{xi,yi}ni=1

[
Ey

[
TV

(
P̂t0(·|y), P0(·|y)

)]]
= O

(
n
− β

2(ν1−1)(dx+dy+β) (log n)
ν2
2 + 3

2

)
,

where ν1 = 68β
(dx+dy)

+ 104Cσ , ν2 = 12dx + 12β + 2 and Cσ = β
dx+dy+β .

• Under Assumption 3.2, by taking t0 = n
− 4β

dx+dy+2β−1, it holds

E{xi,yi}ni=1

[
Ey

[
TV

(
P̂t0(·|y), P0(·|y)

)]]
= O

(
n
− 1

2ν3

β
dx+dy+2β (log n)max(6, β2 + 3

2)
)
,

where ν3 = 4(12βdx+31βd+6β)
d(dx+dy)

+ 12(12Cαdx+25Cα·d+6Cα)
d + 72Cσ and Cα = 2β

dx+dy+2β .
We remark that the choice of t0, T (i.e., Cσ, Cα) leads to the tightest rates in our analysis.

Corollary 3.4.1 (Low-Dimensional Input Region). Assume dx = o
(

logN
log logN

)
, i.e., dx ≪ n. Under

Assumption 3.1, by setting t0, T as specified in Theorem 3.4, we have

E{xi,yi}ni=1

[
Ey

[
TV

(
P̂t0(·|y), P0(·|y)

)]]
= O

(
n
− β

2(ν4+1)(dx+dy+β)

)
,

where ν4 = 72β(2dx+5d+1)
d(dx+dy)

+ 48Cσ(2dx+5d+1)
d − 4β.

Proof. Please see Appendix K.6 for a detailed proof.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

W⊤U

Latent
Encoder

WU

Latent
Decoder

R̃(·)

Reshape Layer

Embed

Concat gT ∈ T h,s,r

Transformer Network

R̃−1(·)

Reversed
Reshape Layer

⊕
x ∈ Rdx x ∈ Rd0

Label y
Timestep t

Rd̃×L̃

Rd̃×2 Rd̃×(L̃+2) Rd0 RdxRd×(L̃+2) Rd̃×L̃

−1/σ2
t

sW

Figure 3: Network Architecture of Latent Conditional DiT. The overall architecture consists of linear layer
of encoder and decoder W⊤

U and WU that transform input x ∈ Rdx into linear latent space Rd0 , reshaping layer
R̃(·) and R̃−1(·), embedding layer for label y and timestep t. The embedding concatenates with input sequences
and processes by the adapted transformer network T h,s,r

R̃
= R̃−1 ◦ gT ◦ f (FF) ◦ R̃.

3.4 MINIMAX OPTIMAL ESTIMATION OF UNCONDITIONAL DITS

In this section, we show the minimax optimality of the unconditional DiT architecture under Assump-
tion 3.2. Specifically, we obtain the distribution estimation error of unconditional DiTs by removing
the condition y and let dy = 0 in Theorem 3.4. Then the distribution estimation error becomes

Õ(ϵ−
1

2ν3

β
dx+2β) under Assumption 3.2. Here Õ(·) ignores the term about log n. By setting 2ν3 = 1,

we show that the unconditional DiT is the minimax optimal distribution estimator.

Corollary 3.4.2 (Proposition 4.3 of Fu et al. (2024b)). For a fixed constant C2 and a Hölder index
β > 0. We consider the task of estimating a probability distribution P (x) with its density function
defined within the following function space

P =
{
p(x) = f(x) exp

(
−C2∥x∥22

)
: f(x) ∈ Hβ(Rdx , B), f(x) ≥ C ≥ 0

}
,

Given n i.i.d data {xi}ni=1, we have inf µ̂ supp∈P E{xi}ni=1
[TV(µ̂,P)] ≥ Ω(n−

β
dx+2β). Here, the

estimator µ̂ ranges over all possible estimators constructed from the data.

Remark 3.9 (Comparing with Existing Works). Oko et al. (2023) analyze the ReLU network and
provide the near minimax optimal estimation rates in both the total variation distance and Wasserstein
distance of order one. Fu et al. (2024b) also uses the ReLU network and provides the minimax
optimality for distribution in total variation. Our results offer the first and exact minimax optimal
guarantee for unconditional DiTs in distribution estimation.
4 LATENT CONDITIONAL DITS

In this section, we extend the results from Section 3 by considering the latent conditional DiTs.
Specifically, we assume the raw input x ∈ Rdx has an intrinsic lower-dimensional representation.

Assumption 4.1 (Low-Dimensional Linear Latent Space). Initial data x has a latent representation
via x = Uh, where U ∈ Rdx×d0 is an unknown matrix with orthonormal columns. The latent
variable h ∈ Rd0 follows the distribution Ph with a density function ph.

Remark 4.1. “Linear Latent Space” means that each entry of a given latent vector is a linear
combination of the corresponding input, i.e., x = Uh. This is also known as the “low-dimensional
data” assumption in literature (Hu et al., 2024; Chen et al., 2023c). This assumption is fundamental in
dimensionality reduction techniques for capturing the intrinsic lower-dimensional structure of data.

Score Decomposition and Model Architecture. To derive approximation and estimation results,
we extend the techniques and network architecture presented in Section 3 to latent diffusion by
considering the “low-dimensional linear subpace”. Under Assumption 4.1, we decompose the score:

∇ log pt(x|y) = U(σ2
t∇ log pht (U

⊤x|y) + U⊤x︸ ︷︷ ︸
:=q(U⊤x,y,t): Rd0×Rdy×[t0,T]→ Rd0

)/σ2
t − x/σ2

t︸ ︷︷ ︸
residual connection

, (4.1)

following Hu et al. (2024); Chen et al. (2023c) (see Lemma E.1). Based on this decomposition,
we construct the model architecture in Figure 3. The network detail for approximate (4.1) are
as follow: a transformer gT (W⊤U x, y, t) ∈ T h,s,r

R̃
to approximate q(U⊤x, y, t), a latent encoder

W⊤U ∈ Rd0×dx and decoder WU ∈ Rdx×d0 to approximate U⊤ ∈ Rd0×dx and U ∈ Rdx×d0 , and a
residual connection to approximate −x/σ2

t . Importantly, d0 is the latent dimension.

For latent diffusion, we follow the standard setting by Peebles and Xie (2023). For each input x ∈ Rdx

and corresponding label y ∈ Rdy , we use a transformer network to obtain a score estimator sW ∈ Rdx .
The key differences from Section 3 are as follows: First, we apply a latent encoder W⊤U ∈ Rd0×dx to
map the raw data x ∈ Rdx into a low-dimensional representation h :=W⊤U x ∈ Rd0 , where d0 ≤ dx.
Second, we reshape h ∈ Rd0 into a sequence H ∈ Rd̃×L̃ using a layer R̃(·) : Rd0 → Rd̃×L̃, with
d0 = d̃ · L̃. Note that, by d0 ≤ dx, d̃ ≤ d, and L̃ ≤ L. Third, we pass H ∈ Rd̃×L̃ through the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

transformer gT . Lastly, We then obtain the predicted score sW ∈ Rdx by applying the inverse reshape
layer R̃−1(·) : Rd̃×L̃ → Rd0 , followed by the latent decoder WU : Rd0 → Rdx .

For our analysis, we study the cases under both the generic and strong Hölder smoothness assumptions
on latent representation z ∈ Rd0 . Specifically, we assume the “latent” data is β0-Hölder smooth with
radius B0 following Assumptions 3.1 and 3.2. We extend both approximation and estimation results
from Section 3 to latent diffusion and establish the minimax optimality of latent conditional DiTs.

Score Approximation. We now present the approximation rates for latent score function under
both generic and stronger Hölder data assumptions. Let h :=W⊤U x ∈ Rd0 and h := U⊤x ∈ Rd0 be
the estimated and ground truth (according to Assumption 4.1) latent representations, respectively.

Theorem 4.1 (Score Approximation of Latent Conditional DiTs (Informal Version of Theorems E.1
and E.2)). Assume dx = Ω(logN

log logN). For any precision 0 < ϵ < 1 and smoothness β0 > 0, let
ϵ ≤ O(N−β0) for some N ∈ N. For some positive constants Cα, Cσ > 0, for any y ∈ [0, 1]dy and
t ∈ [N−Cσ , Cα logN], there exists a Tscore(x, y, t) ∈ T h,s,r

R̃
such that

• Under Assumption 3.1, we have∫
Rd0

∥∥Tscore(h, y, t)−∇ log pht (h|y)
∥∥2
2
· pht (h|y)dh = O

(
B2

0

σ4
t

·N−
β0

d0+dy · (logN)d0+
β0
2 +1

)
.

Notably, for ϵ = O(N−β0), the approximation error has the upper bound O((log
(
1
ϵ

)
)d0/σ4

t).
• Under Assumption 3.2, we have∫

Rd0

∥∥Tscore(x, y, t)(h, y, t)−∇ log pht (h|y)
∥∥2
2
· pht (h|y)dh = O

(
B2

0

σ2
t

·N−
2β0

d0+dy · (logN)β0+1

)
.

Notably, for ϵ = O(N−β0), the approximation error has the upper bound (log
(
1
ϵ

)
)O(1)/σ2

t .

Proof. See Theorems E.1 and E.2 for the formal versions and Appendices I and J for proofs.
Remark 4.2 (Comparing with Theorems 3.1 and 3.2). Recall dx ≥ d0, and the approximation error
bounds are Õ(ϵ1/(dx+dy)/σ2

t) in Theorem 3.1 and Õ(ϵ2/(dx+dy)/σ2
t) in Theorem 3.2. These results

show that the latent conditional DiT achieves better approximation and has the potential to bypass the
challenges associated with the high dimensionality of initial data.
Score and Distribution Estimation. Based on Theorem 4.1, we derive the score estimation bounds
in Theorem E.3, and report the results for distribution estimation in next theorem.

Theorem 4.2 (Distribution Estimation of Latent Conditional DiTs). Assume d0 = Ω(logN
log logN). For

y ∈ [0, 1]dy , let P̂t0(·|y) denote estimated conditional distributions at t0. Recall that P0(·|y) is the
conditional distribution of initial data x0 given y. Assume KL (P0(·|y) | N(0, I)) ≤ c for some
constant c <∞.
• Under Assumption 3.1, taking t0 = n

− β0
(d0+dy+β0) and T = 2β0

d0+dy+2β0
log n,it holds

E{xi,yi}ni=1

[
Ey

[
TV

(
P̂t0(·|y), P0(·|y)

)]]
= O

(
n
− β0

2(ν̃1−1)(d0+dy+β0) (log n)
ν̃2
2 + 3

2

)
,

where ν̃1 = 68β0

(d0+dy)
+ 104Cσ , ν̃2 = 12d0 + 12β0 + 2 and Cσ = β0

d0+dy+β0
.

• Under Assumption 3.2, taking t0 = n
− β0

4(d0+dy+β0) and T = 2β0

d0+dy+2β0
log n,it holds

E{xi,yi}ni=1

[
Ey

[
TV

(
P̂t0(·|y), P0(·|y)

)]]
= O

(
n
− 1

2ν̃3

β0
d0+dy+2β0 (log n)max(6,

β0
2 + 3

2)

)
,

where ν̃3 = 4(12β0d0+31β0d̃+6β0)

d̃(d0+dy)
+ 12(12Cαd0+25Cα·d̃+6Cα)

d̃
+ 72Cσ and Cα = 2β0

d0+dy+2β0
.

Proof. Please see Appendix K.6 for a detailed proof.
Remark 4.3 (Minimax Optimal Estimation). Following the same idea in Section 3.4, we show that
the estimation error bound in Theorem 4.2 is the optimal tight bound for the latent unconditional DiT.
Specifically, by applying Corollary 3.4.2 and substituting p(x|y) and dx by pht (h|y) and d0 respec-
tively in Assumption 3.2, we establish a distribution estimation lower bound of O(n−β0/(d0+2β0)).
Setting 2ν̃3 = 1, we obtain the minimax optimality of latent unconditional DiT.
Concluding Remarks. We defer the discussion of our results and concluding remarks to Appendix A.
We extend our analysis to the setting of (Hu et al., 2024) and improve their results in Appendix F.
Importantly, our bounds avoid the gigantic 2(1/ϵ)

2L

term reported by Hu et al. (2024).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Silas Alberti, Niclas Dern, Laura Thesing, and Gitta Kutyniok. Sumformer: Universal approximation
for efficient transformers. In Topological, Algebraic and Geometric Learning Workshops 2023,
pages 72–86. PMLR, 2023.

Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
words: A vit backbone for diffusion models. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 22669–22679, 2023.

Georgios Batzolis, Jan Stanczuk, Carola-Bibiane Schönlieb, and Christian Etmann. Conditional
image generation with score-based diffusion models. arXiv preprint arXiv:2111.13606, 2021.

Joe Benton, Valentin De Bortoli, Arnaud Doucet, and George Deligiannidis. Nearly d-linear con-
vergence bounds for diffusion models via stochastic localization. In The Twelfth International
Conference on Learning Representations, 2024.

Clément L Canonne. A short note on an inequality between kl and tv. arXiv preprint
arXiv:2202.07198, 2022.

Guangyi Chen, Weiran Yao, Xiangchen Song, Xinyue Li, Yongming Rao, and Kun Zhang. PLOT:
Prompt learning with optimal transport for vision-language models. In The Eleventh International
Conference on Learning Representations (ICLR), 2023a.

Hongrui Chen, Holden Lee, and Jianfeng Lu. Improved analysis of score-based generative modeling:
User-friendly bounds under minimal smoothness assumptions. In International Conference on
Machine Learning, pages 4735–4763. PMLR, 2023b.

Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score approximation, estimation and
distribution recovery of diffusion models on low-dimensional data. In International Conference on
Machine Learning, pages 4672–4712. PMLR, 2023c.

Minshuo Chen, Song Mei, Jianqing Fan, and Mengdi Wang. An overview of diffusion models: Ap-
plications, guided generation, statistical rates and optimization. arXiv preprint arXiv:2404.07771,
2024a.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as easy
as learning the score: theory for diffusion models with minimal data assumptions. arXiv preprint
arXiv:2209.11215, 2022.

Sitan Chen, Sinho Chewi, Holden Lee, Yuanzhi Li, Jianfeng Lu, and Adil Salim. The probability
flow ode is provably fast. Advances in Neural Information Processing Systems, 36, 2024b.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Anh-Dung Dinh, Daochang Liu, and Chang Xu. Rethinking conditional diffusion sampling with
progressive guidance. Advances in Neural Information Processing Systems, 36, 2023.

Zehao Dou, Minshuo Chen, Mengdi Wang, and Zhuoran Yang. Theory of consistency diffusion
models: Distribution estimation meets fast sampling. In Forty-first International Conference on
Machine Learning, 2024a.

Zehao Dou, Subhodh Kotekal, Zhehao Xu, and Harrison H Zhou. From optimal score matching to
optimal sampling. arXiv preprint arXiv:2409.07032, 2024b.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and variable
creation in self-attention mechanisms. In International Conference on Machine Learning (ICML),
pages 5793–5831. PMLR, 2022.

Hengyu Fu, Zehao Dou, Jiawei Guo, Mengdi Wang, and Minshuo Chen. Diffusion transformer
captures spatial-temporal dependencies: A theory for gaussian process data. arXiv preprint
arXiv:2407.16134, 2024a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hengyu Fu, Zhuoran Yang, Mengdi Wang, and Minshuo Chen. Unveil conditional diffusion models
with classifier-free guidance: A sharp statistical theory. arXiv preprint arXiv:2403.11968, 2024b.

Khashayar Gatmiry, Jonathan Kelner, and Holden Lee. Learning mixtures of gaussians using diffusion
models. arXiv preprint arXiv:2404.18869, 2024.

Jiuxiang Gu, Chenyang Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Exploring the frontiers
of softmax: Provable optimization, applications in diffusion model, and beyond. arXiv preprint
arXiv:2405.03251, 2024.

Hanzhong Guo, Cheng Lu, Fan Bao, Tianyu Pang, Shuicheng Yan, Chao Du, and Chongxuan Li.
Gaussian mixture solvers for diffusion models. Advances in Neural Information Processing
Systems (NeurIPS), 37, 2023.

Yingqing Guo, Hui Yuan, Yukang Yang, Minshuo Chen, and Mengdi Wang. Gradient guidance for
diffusion models: An optimization perspective. arXiv preprint arXiv:2404.14743, 2024.

Alexander Havrilla and Wenjing Liao. Understanding scaling laws with statistical and approximation
theory for transformer neural networks on intrinsically low-dimensional data. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems, 2024.

Satoshi Hayakawa and Taiji Suzuki. On the minimax optimality and superiority of deep neural
network learning over sparse parameter spaces. Neural Networks, 123:343–361, March 2020.
ISSN 0893-6080. doi: 10.1016/j.neunet.2019.12.014.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jerry Yao-Chieh Hu, Weimin Wu, Zhuoru Li, Sophia Pi, , Zhao Song, and Han Liu. On statistical rates
and provably efficient criteria of latent diffusion transformers (dits). In Thirty-eighth Conference
on Neural Information Processing Systems (NeurIPS), 2024.

Yuling Jiao, Lican Kang, Huazhen Lin, Jin Liu, and Heng Zuo. Latent schr {\" o} dinger bridge
diffusion model for generative learning. arXiv preprint arXiv:2404.13309, 2024a.

Yuling Jiao, Yanming Lai, Yang Wang, and Bokai Yan. Convergence analysis of flow matching in
latent space with transformers. arXiv preprint arXiv:2404.02538, 2024b.

Tokio Kajitsuka and Issei Sato. Are transformers with one layer self-attention using low-rank
weight matrices universal approximators? In The Twelfth International Conference on Learning
Representations (ICLR), 2024.

Junghwan Kim, Michelle Kim, and Barzan Mozafari. Provable memorization capacity of transformers.
In The Eleventh International Conference on Learning Representations, 2022.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence for score-based generative modeling with
polynomial complexity. Advances in Neural Information Processing Systems, 35:22870–22882,
2022.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence of score-based generative modeling for general
data distributions. In International Conference on Algorithmic Learning Theory, pages 946–985.
PMLR, 2023.

Gen Li, Yu Huang, Timofey Efimov, Yuting Wei, Yuejie Chi, and Yuxin Chen. Accelerating
convergence of score-based diffusion models, provably. arXiv preprint arXiv:2403.03852, 2024a.

Gen Li, Yuting Wei, Yuxin Chen, and Yuejie Chi. Towards non-asymptotic convergence for diffusion-
based generative models. In The Twelfth International Conference on Learning Representations,
2024b.

Gen Li, Yuting Wei, Yuejie Chi, and Yuxin Chen. A sharp convergence theory for the probability
flow odes of diffusion models. arXiv preprint arXiv:2408.02320, 2024c.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Unraveling the smoothness properties of
diffusion models: A gaussian mixture perspective. arXiv preprint arXiv:2405.16418, 2024a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yuchen Liang, Peizhong Ju, Yingbin Liang, and Ness Shroff. Non-asymptotic convergence of discrete-
time diffusion models: New approach and improved rate. arXiv preprint arXiv:2402.13901, 2024b.

Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing Yuan, Yue Huang,
Hanchi Sun, Jianfeng Gao, et al. Sora: A review on background, technology, limitations, and
opportunities of large vision models. arXiv preprint arXiv:2402.17177, 2024.

Haomiao Ni, Changhao Shi, Kai Li, Sharon X Huang, and Martin Renqiang Min. Conditional
image-to-video generation with latent flow diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 18444–18455, 2023.

Kazusato Oko, Shunta Akiyama, and Taiji Suzuki. Diffusion models are minimax optimal distribution
estimators. In International Conference on Machine Learning, pages 26517–26582. PMLR, 2023.

Sejun Park, Jaeho Lee, Chulhee Yun, and Jinwoo Shin. Provable memorization via deep neural
networks using sub-linear parameters. In Conference on Learning Theory (COLT), pages 3627–
3661. PMLR, 2021.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pages 4195–4205, 2023.

William S Peebles and Saining Xie. Scalable diffusion models with transformers. 2023 ieee. In CVF
International Conference on Computer Vision (ICCV), volume 4172, 2022.

Peter Potaptchik, Iskander Azangulov, and George Deligiannidis. Linear convergence of diffusion
models under the manifold hypothesis. arXiv preprint arXiv:2410.09046, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pages 10684–10695, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural information
processing systems, 35:36479–36494, 2022.

Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with relu activation
function. The Annals of Statistics, 2020, 2020.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pages 2256–2265. PMLR, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021.

Wenpin Tang and Hanyang Zhao. Score-based diffusion models via stochastic differential equations–a
technical tutorial. arXiv preprint arXiv:2402.07487, 2024.

Matus Telgarsky. Neural networks and rational functions. In International Conference on Machine
Learning, pages 3387–3393. PMLR, 2017.

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
Advances in neural information processing systems, 34:11287–11302, 2021.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computa-
tion, 23(7):1661–1674, 2011.

Vikram Voleti, Alexia Jolicoeur-Martineau, and Chris Pal. Mcvd-masked conditional video diffusion
for prediction, generation, and interpolation. Advances in neural information processing systems,
35:23371–23385, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Junde Wu, Wei Ji, Huazhu Fu, Min Xu, Yueming Jin, and Yanwu Xu. Medsegdiff-v2: Diffusion-based
medical image segmentation with transformer. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 6030–6038, 2024a.

Yuchen Wu, Minshuo Chen, Zihao Li, Mengdi Wang, and Yuting Wei. Theoretical insights for
diffusion guidance: A case study for gaussian mixture models. In Forty-first International
Conference on Machine Learning, 2024b.

Yuchen Wu, Yuxin Chen, and Yuting Wei. Stochastic runge-kutta methods: Provable acceleration of
diffusion models. arXiv preprint arXiv:2410.04760, 2024c.

Haotian Ye, Haowei Lin, Jiaqi Han, Minkai Xu, Sheng Liu, Yitao Liang, Jianzhu Ma, James Zou,
and Stefano Ermon. Tfg: Unified training-free guidance for diffusion models. arXiv preprint
arXiv:2409.15761, 2024.

Hui Yuan, Kaixuan Huang, Chengzhuo Ni, Minshuo Chen, and Mengdi Wang. Reward-directed
conditional diffusion: Provable distribution estimation and reward improvement. Advances in
Neural Information Processing Systems, 36, 2023.

Hui Yuan, Kaixuan Huang, Chengzhuo Ni, Minshuo Chen, and Mengdi Wang. Reward-directed
conditional diffusion: Provable distribution estimation and reward improvement. Advances in
Neural Information Processing Systems, 36, 2024.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Are trans-
formers universal approximators of sequence-to-sequence functions? In International Conference
on Learning Representations (ICLR), 2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Appendix

A Discussion and Conclusion 16

B Notation Table 17

C Related Works, Broader Impact and Limitations 18
C.1 Related Works . 18
C.2 Broader Impact . 19
C.3 Limitations . 19

D Proof-of-Concept Experiments 20
D.1 Experimental Results . 20

E Latent Conditional DiT with Hölder Assumption 22
E.1 Score Approximation . 24
E.2 Score Estimation . 26
E.3 Distribution Estimation . 27

F Latent Conditional DiT with Lipschitz Assumption 28
F.1 Score Approximation . 30
F.2 Score Estimation . 31
F.3 Distribution Estimation . 31
F.4 Proof of Score Approximation (Theorem F.1) . 32
F.5 Proof of Score Estimation (Theorem F.2) . 38
F.6 Proof of Distribution Estimation (Theorem F.3) 43

G Supplementary Theoretical Background 47
G.1 Conditional Diffusion Process . 47
G.2 Classifier-free Guidance . 48

H Universal Approximation of Transformers 49
H.1 Transformers as Universal Approximators . 49
H.2 Parameter Norm Bounds for Transformer Approximation 58

I Proof of Theorem 3.1 62
I.1 Auxiliary Lemmas . 62
I.2 Main Proof of Theorem 3.1 . 83

J Proof of Theorem 3.2 88
J.1 Auxiliary Lemmas . 88
J.2 Main Proof of Theorem 3.2 . 100

K Proof of the Estimation Results for Conditional DiTs 102
K.1 Auxiliary Lemmas for Theorem 3.3 . 102
K.2 Proof of Theorem 3.3 . 111
K.3 Dominance Transition between N and logN for All Norm Bounds under Assump-

tion 3.1 . 114
K.4 Proof of Corollary 3.3.1 . 119
K.5 Auxiliary Lemmas for Theorem 3.4. 123
K.6 Main Proof of Theorem 3.4 . 123
K.7 Proof of Corollary 3.4.1 . 125

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A DISCUSSION AND CONCLUSION

We investigate the approximation and estimation rates of conditional DiT and its latent setting. We
focus on the “in-context” conditional DiT setting presented by Peebles and Xie (2023), and conduct
a comprehensive analysis under various common data conditions (Section 3 for generic and strong
Hölder smooth data, Section 4 for data with intrinsic latent subspace).

Interestingly, we establish the minimax optimality of the unconditional DiTs’ estimation by reducing
our analysis of conditional DiTs to the unconditional setting (Section 3.4 and Remark 4.3). Our key
techniques include a well-designed score decomposition scheme (Section 3.1). These enable a finer
use of transformers’ universal approximation, compared to the prior statistical rates of DiTs derived
from the universal approximation results in (Yun et al., 2020) by Hu et al. (2024).

Consequently, we provide two extensions in the appendix:

• In Appendix E, we expand Section 4 and extend our well-designed score decomposition scheme
from Section 3 to the latent conditional DiT. Notably, we also obtain provably tight rate, i.e., for
distribution estimation under Assumption 3.2 (Remark 4.3).

• In Appendix F, we extend the analysis of (Hu et al., 2024) to the conditional DiT setting and
provide an improved version. In particular, we analyze conditional latent DiTs under the following
three assumptions from (Hu et al., 2024) and obtained sharper rates:

– Low-Dimensional Linear Latent Space Data (Assumption 4.1)

– Lipschitz Score Function (Assumption F.2)

– Light Tail Data Distribution (Assumption F.3)

In detail, we use a modified universal approximation of the single-layer self-attention transformers
(modified from (Kajitsuka and Sato, 2024)) to avoid the need for dense layers required in (Yun et al.,
2020). This refinement results in tighter error bounds for both score and distribution estimation.
Consequently, our sample complexity error bounds avoid the gigantic double exponential term
2(1/ϵ)

2L

reported by Hu et al. (2024), and obtain sharper rates than those of (Hu et al., 2024).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B NOTATION TABLE

We summarize our notations in the following table for easy reference.
Table 2: Mathematical Notations and Symbols

Symbol Description

[I] The index set {1, ..., I}, where I ∈ N+

a[i] The i-th component of vector a
Aij The (i, j)-th entry of matrix A
∥x∥ Euclidean norm of vector x
∥x∥1 1-norm of vector x
∥x∥2 2-norm of vector x
∥x∥∞ Infinite norm of vector x
∥W∥2 Spectral norm of matrix W
∥W∥F Frobenius norm of matrix W
∥W∥p,q (p, q)-norm of matrix W , where p-norm is over columns and q-norm is over rows
∥f(x)∥L2 L2-norm, where f is a function
∥f(x)∥L2(P) L2(P)-norm, where f is a function and P is a distribution
∥f(·)∥Lip Lipschitz-norm, where f is a function

dp(f, g) p-norm of the difference between functions f and g defined as dp(f, g) =
(∫

|f(x)− g(x)|p dx
)1/p

f♯P Pushforward measure, where f is a function and P is a distribution
KL(P,Q) Kullback-Leibler (KL) divergence between distributions P and Q
TV(P,Q) Total variation (TV) distance between distributions P and Q
N(µ, σ2) Normal distribution with mean µ and variance σ2

a ≲ b There exist constants C > 0 such that a ≤ Cb

n Sample size
x Data point in original data space, x ∈ Rdx

y Conditioning Label, x ∈ Rdy

h Latent variable in low-dimensional subspace, h ∈ Rd0

h h = U⊤x
ph The density function of h
U The matrix with orthonormal columns to transform h to x, where U ∈ Rd×d0

B Radius of Hölder ball for conditional density function p(x|y)
B0 Radius of Hölder ball for latent conditional density function p(h|y)
β Hölder index for conditional density function p(x|y)
β0 Hölder index for latent conditional density function p(h|y)
D Granularity in the construction of the transformer universal approximation
N Resolution of the discretization of the input domain
R Score risk (expectation of squared ℓ2 difference between score estimator and ground truth)
N (ϵ,F , ∥·∥) Covering number of collection F (see Definition K.5)

T Stopping time in the forward process of diffusion model
t0 Stopping time in the backward process of diffusion model
µ Discretized step size in backward process
pt(·) The density function of x at time t
pht (·) The density function of h at time t
ψ (Conditional) Gaussian density function

T h,s,r Transformer network function class (see Definition 2.2)
fh,s,r Transformer block of h-head, s-hidden size, r-MLP dimension (see Definition 2.1)
d Input dimension of each token in the transformer network of DiT
L Token length in the transformer network of DiT
d̃ Latent data input dimension of each token in the transformer network of DiT
L̃ Latent data token length in the transformer network of DiT
X Sequence input of transformer network in DiT, where X ∈ Rd×L

H Sequence latent data input of transformer network in DiT, where X ∈ Rd×L

E Position encoding, where E ∈ Rd×L

R(·) Reshape layer in DiT, R(·) : Rdx → Rd×L

R̃(·) Reshape layer in DiT, R̃(·) : Rd0 → Rd̃×L̃

R−1(·) Reverse reshape layer in DiT, R−1(·) : Rd×L → Rdx

R̃−1(·) Reverse reshape layer in DiT, R̃−1(·) : Rd̃×L̃ → Rd0

WU The orthonormal matrix to approximate U , where WU ∈ Rdx×d0

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C RELATED WORKS, BROADER IMPACT AND LIMITATIONS

C.1 RELATED WORKS

In the following, we discuss the recent success of the techniques used in our work. We first give
the universality (universal approximation) of the transformer. Then, we discuss recent theoretical
developments (approximation and estimation) in diffusion generative models.

Universality of Transformers. The universality of transformers refers to their ability to approx-
imate any sequence-to-sequence function with arbitrary precision. Yun et al. (2020) establish this
by showing that transformers is capable of universally approximate sequence-to-sequence func-
tions using deep stacks of feed-forward and self-attention layers. Additionally, Alberti et al. (2023)
demonstrate universal approximation for architectures employing non-standard attention mechanisms.
Recently, Kajitsuka and Sato (2024) show that even a single-layer transformer with self-attention
suffices for universal approximation assuming all attention weights are rank-1. Moreover, Hu et al.
(2024) leverage Yun et al. (2020) universality results to analyze the approximation and estimation
capabilities of DiT.

Our paper is motivated by and builds upon the works of Hu et al. (2024); Kajitsuka and Sato
(2024); Yun et al. (2020). Specifically, we utilize and extend the transformer universality result from
Kajitsuka and Sato (2024). We employ a relaxed contextual mapping property in Kajitsuka and Sato
(2024) (see Appendix H.1). This generalization allows us to avoid the “double exponential” sample
complexity bounds in previous DiT analyses (Hu et al., 2024, Remark 3.4) and establish transformer
approximation in the simplest configuration — a single-layer, single-head attention model.

Approximation and Estimation Theories of Diffusion Models. The theories of DiTs revolve
around two main frontiers: score function approximation and statistical estimation (Chen et al., 2024a;
Tang and Zhao, 2024). Score function approximation refers to the ability of the score network to
approximate the score function. It leverages the universal approximation ability of the neural network
in Lp norms (Hayakawa and Suzuki, 2020), the approximation characterized as Taylor polynomial
(Fu et al., 2024a) or B-Spline (Oko et al., 2023). Chen et al. (2023c) and Fu et al. (2024a) investigate
score approximation under specific conditions, such as low-dimensional linear subspaces and Hölder
smooth data assumptions, using ReLU-based models. Furthermore, Hu et al. (2024) presents the first
characterization of score approximation in diffusion transformers (DiTs).

The statistical estimation includes score function and distribution estimation (Wu et al., 2024b; Dou
et al., 2024a; Guo et al., 2024; Chen et al., 2023c). Under a L2 accurate score estimation, several
works have provided the convergence bounds under either smoothness assumptions (Benton et al.,
2024; Chen et al., 2022) or bounded second-order moment assumptions (Chen et al., 2023b; Lee
et al., 2023). Chen et al. (2023c) provide the first complete estimation theory using ReLU networks
without precise estimators. Oko et al. (2023) achieve nearly minimax optimal estimation rates for
total variation and Wasserstein distances. Meanwhile, Dou et al. (2024b) define exact minimax
optimality using kernel functions without characterizing the network architectures. In the realm of
diffusion transformers, Hu et al. (2024) introduces the first complete estimation theory. Jiao et al.
(2024a;b) demonstrate theoretical convergence for latent DiTs using ODE-based and Schrödinger
bridge diffusion models.3

Our paper advances the foundational works of Fu et al. (2024b); Oko et al. (2023); Hu et al. (2024).
We adopt the Hölder smooth data distribution assumption4, a more practical approach than the
bounded support assumption in Oko et al. (2023). Unlike the simple ReLU networks in Fu et al.
(2024b), we provide a complete approximation and estimation analysis for conditional DiTs and
establish their exact minimax optimality. Furthermore, while Hu et al. (2024) analyze DiTs, their
estimation upper bounds are suboptimal. We refine this by avoiding the substantial double exponential

3Of independent interest, many works investigate the convergence rates of diffusion models under various
score and data smoothness assumptions or with different samplers. Please see (Li et al., 2024a;b;c; Potaptchik
et al., 2024; Wu et al., 2024c; Liang et al., 2024b;a; Gatmiry et al., 2024; Gu et al., 2024; Guo et al., 2023; Chen
et al., 2024b; 2023b; 2022; Lee et al., 2023; 2022) and references therein.

4Recent work by Havrilla and Liao (2024) examines the generalization and approximation of transformers
under Hölder smoothness and low-dimensional subspace assumptions.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

term 2(1/ϵ)
2L

reported by Hu et al. (2024, Remark 3.4) and present a provably tight, minimax optimal
estimation.

C.2 BROADER IMPACT

This theoretical work aims to shed light on the foundations of generative diffusion models and is not
expected to have negative social impacts.

C.3 LIMITATIONS

Although our study provides a complete theoretical analysis of the conditional DiTs and establishes
the minimax optimality of the unconditional DiT, we acknowledge three main limitations:

• The minimax optimality of conditional DiT remains not clear.

• We did not explore other architectures such as “adaptive layer norm” and “cross-attention” DiT. A
potential direction is by establishing the universal approximation capacity of the transformer with
cross-attention mechanisms.

• Although we achieve a better bound for the latent conditional DiT under the Lipschitz assumption
than under the Hölder assumption, we do not show the minimax optimality under the Lipschitz
assumption.

We leave these for future work.

Furthermore, there are limitations regarding the Hölder smooth data assumptions in Assumption 3.1
and Assumption 3.2. Our results in Section 3 and Section 4 depend on the Hölder smooth data
assumptions. However, it is challenging to measure the smoothness of a given dataset (e.g., CIFAR10),
because it requires knowledge of the dataset’s exact distribution. Conversely, it is feasible to create a
dataset with a predefined level of smoothness. To illustrate this, we provide two examples.

• Diffusion Models in Image Generation: When modeling conditional distributions of images given
attributes (e.g., generating images based on class labels), these assumptions hold if the data
distribution around these attributes is smooth and decays. In diffusion-based generative models,
the data distribution often decays smoothly in high-dimensional space. The assumption that the
density function decays exponentially reflects the natural behavior of image data, where pixels or
features far from a central region or manifold are less likely. This is commonly observed in images
with blank boundaries.

• Physical Systems with Gaussian-Like Decay: This applies to cases where the spatial distribution
of a physical quantity, such as temperature, is smooth and governed by diffusion equations with
exponential decay. In physics-based diffusion models, like those simulating the spread of particles
or heat in a medium (e.g., stars in galaxies for astrophysics applications), the conditional density
typically decays exponentially with distance from a central region.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D PROOF-OF-CONCEPT EXPERIMENTS

Experimental Objectives. We train a conditional diffusion transformer model on the CIFAR10
dataset to validate the following three parts:

• Objective 1. Validating the influence of input data dimension dx on the testing loss (score
estimation error) in Theorem 3.3.

• Objective 2. Validating the influence of input data dimension dx on the parameter norm bounds
(∥WO∥2,∞ and ∥WV ∥2,∞) in Theorem 3.1.

• Objective 3. Validating the influence of backward timestamp t0 on the testing loss (score estimation
error) in Theorem 3.3.

Experimental Details. We train the model on the CIFAR10 training dataset for 10 epochs. The
dataset consists of 50,000 images across 10 classes. We set the forward process termination step to
T = 1000. Then, we evaluate the model’s performance using the CIFAR10 testing dataset of 10,000
images from 10 classes. We use the testing loss as the measurement.

• To validate objectives 1 and 2, we test various values of dx at backward timestamp t0 = 5,
including 32 · 32 = 1, 024, 48 · 48 = 2, 304, 64 · 64 = 4, 096, and 80 · 80 = 6, 400.

• To validate objective 3, we test different backward timestamps t0, including 5, 4, 3, 2 and 1 for
both dx = 32 · 32 = 1, 024 and dx = 48 · 48 = 2, 304.

Model Setup. The conditional diffusion transformer model has 12 transformer blocks. The number
of attention heads is h = 6, and the hidden dimension is s = 384. We set the MLP dimension to
r = 1536. We fix d = 4 in the DiT reshape layer (Definition 2.3).

Computational Resource. We conduct all experiments using 1 NVIDIA A100 GPU with 80GB of
memory. Our code is based on the PyTorch implementation of the diffusion transformer (Peebles and
Xie, 2023) at https://github.com/chuanyangjin/fast-DiT.

D.1 EXPERIMENTAL RESULTS

Results for Objectives 1 and 2. We report the numerical results of objectives 1 and 2 in Table 3.

We observe an increase in the loss value with increasing dx. This is consistent with the score
estimation result in Theorem 3.3.

Additionally, we note an increase in the parameter norm bounds (∥WO∥2,∞ and ∥WV ∥2,∞) with
increasing dx. These align with the parameter norm bound results in Theorem 3.1.

Table 3: Influence of Input Data Dimension dx on the Testing Loss and Parameter Norm
Bounds at Backward Timestamp t0 = 5: The testing loss and parameter norm bounds (∥WO∥2,∞
and ∥WV ∥2,∞) increase with an increasing dx. These results are consistent with the results in
Theorem 3.3 and Theorem 3.1.

Input Data Dim. dx 32 · 32 = 1, 024 48 · 48 = 2, 304 64 · 64 = 4, 096 80 · 80 = 6, 400

Testing loss 0.9321 0.9356 0.9364 0.9476
∥WO∥2,∞ 1.6074 1.6332 1.6789 1.6886
∥WV ∥2,∞ 2.1513 2.1767 2.1858 2.1994

Results for Objective 3. We report numerical results of objectives 3 for dx = 32 · 32 = 1, 024 and
dx = 48 · 48 = 2, 304 in Table 4. We observe an increase in the loss value as t0 decreases. This is
consistent with the score estimation result in Theorem 3.3.

20

https://github.com/chuanyangjin/fast-DiT

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 4: Influence of Backward Timestamp t0 on the Testing Loss: The testing loss increases with
increasing t0. This is consistent with the result in Theorem 3.3.

Testing loss t0 = 5 t0 = 4 t0 = 3 t0 = 2 t0 = 1

32 · 32 = 1, 024 0.9321 0.9329 0.9335 0.9350 0.9361
48 · 48 = 2, 304 0.9356 0.9357 0.9360 0.9363 0.9367

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

E LATENT CONDITIONAL DIT WITH HÖLDER ASSUMPTION

In this section, we extend the results on approximation and estimation of DiT from Section 3
by considering the latent conditional DiTs. Latent DiTs enables efficient data generation from
latent space and therefore scales better in terms of spatial dimensionality (Rombach et al., 2022).
Specifically, we assume the raw input x ∈ Rdx has an intrinsic lower-dimensional representation in a
d0-dimensional subspace, where d0 ≤ dx. This setting is common in both empirical (Peebles and
Xie, 2022; Rombach et al., 2022) and theoretical studies (Hu et al., 2024; Chen et al., 2023c).

Organization. We present the statistical results under Hölder data smooth Assumptions 3.1 and 3.2
and state the results in Theorem E.1, Theorem E.2, Theorem E.3, and Theorem E.4, respectively.
Appendix E.1 discusses score approximation. Appendix E.2 discusses score estimation. Appendix E.3
discusses distribution estimation. The proofs in this section primarily follow Appendices I and J.

Let d0 denote the latent dimension. We summarize the key points of this section as follows:

K1. Low-Dimensional Subspace Space Data Assumption. We consider the setting that latent
representation lives in a “Low-Dimensional Subspace” under Assumption 4.1, following (Hu
et al., 2024; Chen et al., 2023c).

Assumption E.1 (Low-Dimensional Linear Latent Space (Assumption 4.1 Restated)). Data
point x = Uh, where U ∈ Rdx×d0 is an unknown matrix with orthonormal columns. The latent
variable h ∈ Rd0 follows a distribution Ph with a density function ph.

For raw data x ∈ Rdx , we utilize linear encoder W⊤U ∈ Rd0×dx and decoder WU ∈ Rdx×d0 to
convert the raw x ∈ Rdx and latent h ∈ Rd0 data representations. Importantly, x = Uh with
U ∈ Rdx×d0 by Assumption 4.1.

For each input x ∈ Rdx and corresponding label y ∈ Rdy , we use a transformer network to
obtain a score estimator sW ∈ Rdx . To utilize the transformer network as the score estimator, we
introduce reshape layer to convert vector input h ∈ Rd0 to matrix (sequence) input H ∈ Rd̃×L̃.
Specifically, the reshape layer in the network Figure 3 is defined as R̃(·) : Rd0 → Rd̃×L̃ and its
reverse R̃−1(·) : Rd̃×L̃ → Rd0 , where d0 ≤ dx, d̃ ≤ d, and L̃ ≤ L.

We remark that the “low-dimensional data” assumption leads to tighter approximation rates than
those of Sections 3.1 and 3.2 and estimation errors due to d0 ≤ dx (Theorems E.1 and E.2).

K2. Hölder Smooth Assumption. For approximation and estimation results for latent conditional
DiTs (Theorems E.1 to E.4), we study the cases under both the generic and strong Hölder
smoothness assumptions on latent representation h ∈ Rd0 . Specifically, we assume the “latent”
data is β0-Hölder smooth with radius B0 following Assumptions 3.1 and 3.2. We extend both
approximation and estimation results from Section 3 to latent diffusion and establish the minimax
optimality of latent conditional DiTs.

Assumption E.2 (Generic Hölder Smooth Data (Assumption 3.1 Restated)). The conditional
density function ph0 (h0|y) is defined on the domain Rd0 × [0, 1]dy and belongs to Hölder ball of
radius B0 > 0 for Hölder index β0 > 0, denoted by ph0 (h0|y) ∈ Hβ0(Rd0 × [0, 1]dy , B0) (see
Definition 3.1 for precise definition.) Also, for any y ∈ [0, 1]dy , there exist positive constants
C1, C2 such that ph0 (h0|y) ≤ C1 exp

(
−C2∥h0∥22/2

)
.

Assumption E.3 (Stronger Hölder Smooth Data (Assumption 3.2 Restated)). Let function
f ∈ Hβ0(Rd0 × [0, 1]dy , B0). Given a constant radius B0, positive constants C and C2,
we assume the conditional density function p(h0|y) = exp

(
−C2∥h0∥22/2

)
· f(h0, y) and

f(h0, y) ≥ C for all (h0, y) ∈ Rd0 × [0, 1]dy .

K3. Latent Score Network. Under low-dimensional data assumption, we decompose the score
function following (Hu et al., 2024; Chen et al., 2023c) (see Lemma E.1):

∇ log pt(x|y) = U(σ2
t∇ log pht (U

⊤x|y) + U⊤x︸ ︷︷ ︸
:=q(U⊤x,y,t): Rd0×[t0,T]→ Rd0

)/σ2
t − x/σ2

t︸ ︷︷ ︸
residual connection

. (E.1)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Based on this decomposition, we construct the model architecture in Figure 3. The network detail
for approximate (E.1) are as follow: a transformer gT (W⊤U x, y, t) ∈ T h,s,r to approximate
q(U⊤x, y, t), a latent encoder W⊤U ∈ Rd0×dx and decoder WU ∈ Rdx×d0 to approximate
U⊤ ∈ Rd0×dx and U ∈ Rdx×d0 , and a residual connection to approximate −x/σ2

t .

We adopt the following transformer network class of one-layer single-head self-attention

T h,s,r

R̃
=

{
sW (x, y, t) =

1

σ2
t

WUgT
(
W⊤U x, y, t

)
− 1

σ2
t

x︸︷︷︸
residual connection

}
, (E.2)

where gT ∈ T h,s,r = {fFF
2 ◦ fh,s,r : Rd̃×L̃ → Rd̃×L̃}.

Let h := W⊤U x ∈ Rd0 and h := U⊤x ∈ Rd0 be the estimated and ground truth (according to
Assumption 4.1) latent representations, respectively. Here we construct a network sW (x, y, t) to
approximate the score function in (E.1) (see Figure 3 for network illustration).

In Section 3, we derive the approximation theory of conditional DiTs using a one-layer, single-
head self-attention transformer to approximate the score function ∇ log pt(x|y). Here, we use the
similar transformer architecture to approximate latent score function ∇ log pht (h|y), where pht (h|y) =∫
ψt(h|h)ph(h|y)dh, ψt(·|h) is the Gaussian density function of N(βth, σ

2
t Id0

), βt = e−t/2, and
σ2
t = 1− e−t.

Base on the latent network construction in (K3), we employ the same techniques presented in
Section 3 for score function approximation and estimation. We restate for completeness. First, we
decompose the conditional score function ∇ log pht (h|y) as following:

∇ log pht
(
h|y
)
=

∇pht
(
h|y
)

pht
(
h|y
) . (E.3)

By the definition of Gaussian kernel, we have

pht
(
h|y
)
=

∫
Rd0

(2πσ2
t)
−dx/2 ph (h|y)︸ ︷︷ ︸

≈k1-order Taylor polynomial

exp

(
−
∥∥βth− h

∥∥2
2

2σ2
t

)
︸ ︷︷ ︸
≈k2-order Taylor polynomial

dh.

Similar to Section 3, our strategy is to expand above term-by-term with k1- and k2-order Taylor
polynomials for fine-grained characterizations.

Remark E.1. Here in the latent density function, we have (2πσ2
t)
−dx/2 instead of (2πσ2

t)
−d0/2.

However, the additional (2πσ2
t)
−(dx−d0)/2 term does not affect the application of Section 3 into

latent diffusion approximation.

Based on the low-dimensional data structure assumption, we have the following score decomposition
terms: on-support score s+(U⊤x, y, t) and orthogonal score s−(x, y, t).

Lemma E.1 (Score Decomposition, Lemma 1 of (Chen et al., 2023c)). Let data x = Uh follow
Assumption 4.1. The decomposition of score function ∇ log pt(x) is

∇ log pt(x) = U∇ log pht (h|y)︸ ︷︷ ︸
s+(h,y,t)

−
(
ID − UU⊤

)
x/σ2

t︸ ︷︷ ︸
s−(x,t)

, h = U⊤x, (E.4)

where pht
(
h|y
)
:=
∫
ψt(h|h)ph (h|y) dh, ψt(·|h) is the Gaussian density function of N(βth, σ

2
t Id0

),
βt = e−t/2 and σ2

t = 1− e−t.

Following the proof strategy of conditional DiTs in Appendices I and J with differences highlighted in
(K1), (K2), and the latent network in (K3). To derive the approximation and estimation under generic

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

and stronger Hölder assumptions results in Theorems 3.1 to 3.4 for data under low-dimensional data
assumption, we just need to replace the input dimension d, L to d̃ and L̃, and the input dimension dx
with d0, and consider the β0-Hölder smoothness assumption on latent data.

To begin, we clarify the relation between initial data admits to p(x|y) ∈ Hβ(Rdx × [0, 1]dy , B), and
under linear transformed data Assumption 4.1 admits to p(h|y) ∈ Hβ0(Rd0 × [0, 1]dy , B0) where
β0 = β and B0 ≤ C̃B by Lemma E.2.

Lemma E.2 (Transformation of Stronger Hölder Smooth Data Distribution under Linear Mapping).
Let f ∈ Hβ(Rdx × [0, 1]dy , B) satisfy f(x, y) ≥ C > 0 for all (x, y) ∈ Rdx × [0, 1]dy . Consider
the conditional density function:

p(x|y) = f(x, y) exp

(
−C2

2
∥x∥22

)
.

Suppose the data undergo the linear transformation x = Uh, where U ∈ Rdx×d0 has orthonormal
columns (U⊤U = Id0) and f0(h|y) = f(Uh|y). The transformed density p(h|y) becomes:

p(h|y) = f(Uh, y) exp

(
−C2

2
∥h∥22

)
.

The following condition holds for Hölder smooth data undergo linear transformation: f0 ∈ Hβ(Rdx×
[0, 1]dy , B0) with B0 ≤ C̃B, where C̃ = max{C ′, C ′′}.

Proof. First, we compute the partial derivative of the transformed function f0(h|y) := f(Uh|y).
From the definition of Hölder space Definition 3.1, and let α = (αh, αy) where αh + αy ≤ k1. We
compute the partial derivative up to the order of k1 and show that it is bounded by some C ′, that is

∂αh

h ∂αy
y p(h|y) = ∂αh

h ∂αy
y

[
f(Uh, y) exp

(
−C2

2
∥h∥22

)]
=
∑
α≤ν

(
α

µ

)(
∂
αµ

h f(Uh, y)
)(

∂
(α−ν)
h exp

(
−C2

2
∥h∥22

))
.

(
By product rule

)
From the relation ∂αh

h f(Uh, y) = Uαh∂αh
x f(Uh, y) where Uαh is the product of U entries corre-

spond to αh. Therefore,
∥∥∂αh

h ∂
αy
y f0(h|y)

∥∥ ≤ C ′B for some C ′ depends on U and αh. Since f
satisfied Hölder condition and the mapping h 7→ Uh is linear, for Hölder condition |αh|+ |αy| = k1
there exist C ′′ such that ∣∣∂αh

h ∂
αy
y f0(h|y)− ∂αh

h ∂
αy
y f0(h

′|y′)
∣∣

∥(h, y)− (h′, y′)∥γ∞
≤ C ′′B.

The bounded partial derivate up to order k1 satisfied Hölder condition.

This completes the proof.

E.1 SCORE APPROXIMATION

We present the approximation rate of latent score function under generic Hölder and stronger Hölder
data assumption in Theorems E.1 and E.2, respectively.

Theorem E.1 (Latent Conditional DiT Score Approximation (Formal Version of Theorem 4.1)).
Assume Assumption 3.1 and Assume dx = Ω(logN

log logN). For any precision 0 < ϵ < 1 and smoothness
β0 > 0, let ϵ ≤ O(N−β0) for some N ∈ N. For some positive constants Cα, Cσ > 0, for any

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN], there exists a Tscore(x, y, t) ∈ T h,s,r

R̃
such that∫

Rd0

∥∥Tscore(h, y, t)−∇ log pht (h|y)
∥∥2
2
· pht (h|y)dh = O

(
B2

0

σ4
t

·N−
β0

d0+dy · (logN)d0+
β0
2 +1

)
.

Notably, for ϵ = O(N−β0), the approximation error has the upper bound O((log
(
1
ϵ

)
)d0/σ4

t).
The parameter bounds for the transformer network class are as follows:

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N

7β0
d0+dy

+6Cσ

)
;

∥WO∥2, ∥WO∥2,∞ = O
(
N
− 3β0

d0+dy
+6Cσ (logN)3(d0+β0)

)
;

∥WV ∥2 = O(
√
d̃); ∥WV ∥2,∞ = O(d̃);

∥W1∥2, ∥W1∥2,∞ = O
(
N

2β0
d0+dy

+4Cσ

)
;
∥∥E⊤∥∥

2,∞ = O
(
d̃

1
2 L̃

3
2

)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N

3β0
d0+dy

+2Cσ

)
;CT = O

(√
logN/σ2

t

)
.

Proof Sketch. The proof closely follows Theorem 3.1, with differences highlighted in (K1) and (K2).
By replacing the input dimension d, L to d̃ and L̃, and the input dimension dx with d0 in Theorem 3.1,
and under the the β0-Hölder smoothness assumption on latent data detailed in (K2), the proof is
complete. Please see Appendix I for a detailed proof.

Theorem E.2 (Latent Conditional DiT Score Approximation under Stronger Hölder Assumption
under Generic Hölder Assumption (Formal Version of Theorem 4.1)). Assume Assumption 3.2
and Assume dx = Ω(logN

log logN). For any precision 0 < ϵ < 1 and smoothness β0 > 0, let
ϵ ≤ O(N−β0) for some N ∈ N. For some positive constants Cα, Cσ > 0, for any y ∈ [0, 1]dy and
t ∈ [N−Cσ , Cα logN], there exists a Tscore(x, y, t) ∈ T h,s,r

R̃
such that∫

Rd0

∥∥Tscore(x, y, t)(h, y, t)−∇ log pht (h|y)
∥∥2
2
· pht (h|y)dh = O

(
B2

0

σ2
t

·N−
2β0

d0+dy · (logN)β0+1

)
.

Notably, for ϵ = O(N−β0), the approximation error has the upper bound (log
(
1
ϵ

)
)O(1)/σ2

t .
The parameter bounds in the transformer network class satisfy

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N

3β0(2d0+4d̃+1)

d̃(d0+dy)
+

9Cα(2d0+4d̃+1)

d̃

)
;

∥WV ∥2 = O(
√
d̃); ∥WV ∥2,∞ = O(d̃); ∥WO∥2, ∥WO∥2,∞ = O

(
N
− β0

d0+dy

)
;

∥W1∥2, ∥W1∥2,∞ = O
(
N

4β0
d0+dy

+9Cσ+
3Cα

2 · logN
)
;
∥∥E⊤∥∥

2,∞ = O
(
d̃

1
2 L̃

3
2

)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N

4β0
d0+dy

+9Cσ+
3Cα

2

)
;CT = O

(√
logN/σt

)
.

Proof Sketch. The proof closely follows Theorem J.1, with differences highlighted in (K1) and (K2).
By replacing the input dimension d, L to d̃ and L̃, and the input dimension dx with d0 in Theorem J.1,
and under the the β0-Hölder smoothness assumption on latent data detailed in (K2), the proof is
complete. Please see Appendix J for a detailed proof.

Remark E.2 (Score Approximation for Low-Dimensional Linear Latent Space). With the assumption
of low-dimensional latent space Assumption 4.1, Theorems E.1 and E.2 provide better approximation

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

rates than Theorems 3.1 and 3.2 under Hölder smooth assumptions in Assumptions 3.1 and 3.2,
respectively. Specifically, from Lemma E.2 we have β0 = β and B0 ≲ B. Therefore, Theorems E.1

and E.2 deliver O
(
N

2β
(

dx−d0
(d0+dy)(dx+dy)

))
better approximation error over Theorem 3.1, where

d0 ≤ dx.

E.2 SCORE ESTIMATION

In this section, we provide the extended results for Section 3.3 on score estimation with the estimator
Tscore. We state the main results under Hölder data assumptions in Theorem E.3.

Theorem E.3 (Conditional Score Estimation of Latent DiT). Assume dx = Ω(logN
log logN). Let ŝ

denote the score estimator trained with a set of finite samples {xi, yi}i∈[n] by optimizing the empirical
loss (2.1), and R denote the conditional score risk defined in Definition 3.2.

• Under Assumption 3.1, by taking N = n
1
ν̃1
· d0+dy
β0+d0+dy , t0 = N−Cσ < 1 and T = Cα log n, it holds

E{xi,yi}ni=1
[R(ŝ)] = O

(
1

t0
n
− β0

ν̃1(d0+dy+β0) (log n)ν̃2+2

)
,

where ν̃1 = 68β0/(d0 + dy) + 104Cσ and ν̃2 = 12d0 + 12β0 + 2.

• Under Assumption 3.2, by taking N = n
1
ν̃3
· d0+dy
2β0+d0+dy , t0 = N−Cσ < 1 and T = Cα log n, it

holds

E{xi,yi}ni=1
[R(ŝ)] = O

(
log

1

t0
n
− 1

ν̃3

2β0
d0+dy+2β0 (log n)max(10,β0+1)

)
,

where ν̃3 = 4(12β0d0+31β0d̃+6β0)

d̃(d0+dy)
+ 12(12Cαd0+25Cα·d̃+6Cα)

d̃
+ 72Cσ .

Proof Sketch. The proof closely follows Theorem 3.3, with differences highlighted in (K1) and (K2).
By replacing the input dimension d, L to d̃ and L̃, and the input dimension dx with d0 in Theorem 3.3,
and under the the β0-Hölder smoothness assumption on latent data detailed in (K2), the proof is
complete. Please see Appendix K.2 for a detailed proof.

Next, we present the score estimation result for low-dimensional input data.

Corollary E.3.1 (Low-Dimensional Input Region). Assume d0 = o
(

logN
log logN

)
, i.e., d0 ≪ n. Under

Assumption 3.1, by setting N, t0, T as specified in Theorem E.3, we have E{xi,yi}ni=1
[R(ŝ)] =

O
(

1
t0
n
− 1

ν̃4
· β0
d0+dy+β0

)
, where ν̃4 = 72β0(2d0+5d̃+1)

d̃(d0+dy)
+ 48Cσ(2d0+5d̃+1)

d̃
− 4β0.

Proof. The proof closely follows Corollary 3.3.1, with differences highlighted in (K1) and (K2). By
replacing the input dimension d, L to d̃ and L̃, and the input dimension dx with d0 in Corollary 3.3.1,
and under the the β0-Hölder smoothness assumption on latent data detailed in (K2), the proof is
complete. Please see Appendix K.2 and Appendix K.4 for detailed proofs.

Remark E.3 (Comparing Score Estimation in Theorems 3.3 and E.3). Under Hölder data assumption,
the sample complexity of L2 estimator for achieving ϵ-error are bound by Õ

(
ϵ−ν̃1(d0+dy+β0)/β0

)
and Õ

(
ϵ−ν̃3(d0+dy+2β0)/β0

)
where Õ ignores d̃, L̃, log L̃, log 1/t0, 1/t0, and log n. Invoking

Lemma E.2 where β0 = β and B0 ≲ B the sample complexity in Theorem E.3 improves
Theorem 3.3 by O

(
ϵ−ζ(dx−d0)

)
where ζ is a positive constant defined by ζ = 104Cσ/β −

68β(1/((dx + dy)(d0 + dy))) and d0 ≤ dx.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

E.3 DISTRIBUTION ESTIMATION

In this section, we provide the extended results for Section 3.3 on distribution estimation with the
estimator Tscore. We state the main results under Hölder data assumptions in Theorem E.3.

Theorem E.4 (Conditional Distribution Estimation of Latent DiT). Assume dx = Ω(logN
log logN). For

all y ∈ [0, 1]dy , let KL (P (·|y)|N(0, I)) ≤ c for some constant c < ∞. Taking the early-stopping

time t0 = n
− β0

(d0+dy+β0) and terminal time T = 2β0

d0+dy+2β0
log n.

• Under Assumption 3.1, we have

E{xi,yi}ni=1

[
Ey

[
TV

(
P̂t0(·|y), P (·|y)

)]]
= O

(
n
− β

2(ν̃1−1)(d0+dy+β0) (log n)
ν̃2
2 + 3

2

)
,

where ν̃1 = 68β0/(d0 + dy) + 104Cσ and ν̃2 = 12d0 + 12β0 + 2.

• Under Assumption 3.2. we have

E{xi,yi}ni=1

[
Ey

[
TV

(
P̂t0(·|y), P (·|y)

)]]
= O

(
n
− 1

2ν̃3

β0
d0+dy+2β0 (log n)max(6,

β0
2 + 3

2)

)
,

where ν̃3 = 4(12β0d0+31β0d̃+6β0)

d̃(d0+dy)
+ 12(12Cαd0+25Cα·d̃+6Cα)

d̃
+ 72Cσ .

Proof. The proof closely follows Theorem 3.4, with differences highlighted in (K1) and (K2). By
replacing the input dimension d, L to d̃ and L̃, and the input dimension dx with d0 in Theorem 3.4,
and under the the β0-Hölder smoothness assumption on latent data detailed in (K2), the proof is
complete. Please see Appendix K.6 for a detailed proof.

Next, we present the distribution estimation result for low-dimensional input data.

Corollary E.4.1 (Low-Dimensional Input Region). Assume d0 = o
(

logN
log logN

)
, i.e., d0 ≪ n. Under

Assumption 3.1, by setting t0, T as specified in Theorem E.4, we have

E{xi,yi}ni=1

[
Ey

[
TV

(
P̂t0(·|y), P0(·|y)

)]]
= O

(
n
− β0

2(ν̃4+1)(d0+dy+β0)

)
,

where ν̃4 = 144d̃β0(L̃+2)(d0+2d̃+1)
d0+dy

+ 96d̃Cσ(L̃+ 2)(d0 + 2d̃+ 1)− 4β0.

Proof. The proof closely follows Corollary 3.4.1, with differences highlighted in (K1) and (K2). By
replacing the input dimension d, L to d̃ and L̃, and the input dimension dx with d0 in Corollary 3.4.1,
and under the the β0-Hölder smoothness assumption on latent data detailed in (K2), the proof is
complete. Please see Appendix K.6 for a detailed proof.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

F LATENT CONDITIONAL DIT WITH LIPSCHITZ ASSUMPTION

In this section, we apply our techniques to the setting of (Hu et al., 2024) on DiT approximation and
estimation theory. Specifically, we extend their work by using the one-layer self-attention transformer
universal approximation framework introduced in Appendix H.1.

Compared to (Hu et al., 2024), we consider classifier-free conditional DiTs, providing a holistic
view of the theoretical guarantees under various assumptions. In particular, our sample complexity
bounds avoid the gigantic double exponential term 2(1/ϵ)

2L

reported in (Hu et al., 2024). We adopt
the following three assumptions considered by Hu et al. (2024):

(A1) Low-Dimensional Linear Latent Space Data Assumption.

Assumption F.1 (Low-Dimensional Linear Latent Space (Assumption 4.1 Restated)). Data
point x = Uh, where U ∈ Rdx×d0 is an unknown matrix with orthonormal columns. The
latent variable h ∈ Rd0 follows a distribution Ph with a density function ph.

Under this data assumption, Chen et al. (2023a) show that the latent score function endows a
neat decomposition into on-support s+ and orthogonal s− terms (see Lemma E.1).

Lemma F.1 (Score Decomposition, Lemma 1 of (Chen et al., 2023c) (Lemma E.1 Restated)).
Let data x = Uh follow Assumption 4.1. The decomposition of score function ∇ log pt(x) is

∇ log pt(x) = U∇ log pht (h|y)︸ ︷︷ ︸
s+(h,y,t)

−
(
ID − UU⊤

)
x/σ2

t︸ ︷︷ ︸
s−(x,t)

, h = U⊤x, (F.1)

where pht
(
h|y
)

:=
∫
ψt(h|h)ph (h|y) dh, ψt(·|h) is the Gaussian density function of

N(βth, σ
2
t Id0), βt = e−t/2 and σ2

t = 1− e−t.

(A2) Lipschitz Score Assumption. We assume the on-support score function s+(h, y, t) to be
Ls+ -Lipschitz for any h and y.

Assumption F.2 (Ls+-Lipschitz of s+(h, y, t)). The on-support score function s+(h, y, t) is
Ls+-Lipschitz with respect to any h ∈ Rd0 and y ∈ Rdy for any t ∈ [0, T]. i.e., there exist a
constant Ls+ , such that for any h, y and h

′
, y′:

∥s+(h, y, t)− s+(h
′
, y′, t)∥2 ≤ Ls+∥h− h

′∥2 + Ls+∥y − y′∥2.

(A3) Light Tail Data Assumption.

Assumption F.3 (Tail Behavior of Ph). The density function ph > 0 is twice continuously
differentiable. Moreover, there exist positive constants A0, A1, A2 such that when ∥h∥2 ≥ A0,
the density function ph (h|y) ≤ (2π)−d0/2A1exp(−A2∥h∥22/2).

We note that, the assumptions (A1) and (A3) are on data, and (A2) are on the score function. Notably,
(A2) on the smoothness of score function is stronger than Hölder data smoothness assumptions
considered in Sections 3 and 4.

Organization. We study latent conditional DiTs under low-dimensional data Assumption F.1,
Lipschitz smoothness Assumption F.2, and tail behavior of Ph Assumption F.3 and states the results
in Appendices F.1 to F.3, respectively. Appendix F.1 discusses score approximation. Appendix F.2
discusses score estimation. Appendix F.3 discusses distribution estimation. The proof in this section
provided in Appendices F.4 to F.6. The proof strategy in this section follows (Hu et al., 2024).

Here we summarize the key settings of this section:

S1. Lipschitz Smooth Assumption and Tail Behavior. Following (Hu et al., 2024), we introduce
two assumptions on Lipschitz smoothness for on-support score function s+ and tail behavior
of Ph in Assumptions F.2 and F.3, respectively. The on-support score function is defined as
s+(U

⊤x, y, t) = U∇ log pht
(
U⊤x|y

)
(see Lemma E.1 for score decomposition).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

S2. Low-Dimensional Space. We consider the setting of latent representation that is the data lives
in a “Low-Dimensional Subspace” under Assumption 4.1, following (Hu et al., 2024; Chen
et al., 2023c). The raw data x ∈ Rdx is supported by latent h ∈ Rd0 where d0 ≤ dx.

S3. Transformer Network. We follow the standard setting of “in-context” conditional DiTs by
Peebles and Xie (2023) on latent representation. The network settings refer to Section 4. Here we
apply transformer-block gT ∈ Rd0 for the approximation of on-support score function s+. For
each input x ∈ Rdx and corresponding label y ∈ Rdy , we use an adapted transformer network to
obtain a score estimator sW ∈ Rd0 . The adapted transformer network as the score estimator has
the following components. We utilize reshape layer to convert vector input h ∈ Rd0 to matrix
(sequence) input H ∈ Rd̃×L̃. Specifically, the reshape layer in the network Figure 3 is defined as
R̃(·) : Rd0 → Rd̃×L̃ and its reverse R̃−1(·) : Rd̃×L̃ → Rd0 , where d0 ≤ dx, d̃ ≤ d, and L̃ ≤ L.
For raw data x ∈ Rdx , we utilize linear encoder W⊤U ∈ Rd0×dx and decoder WU ∈ Rdx×d0

to convert the raw x ∈ Rdx to latent h ∈ Rd0 data representations. Importantly, x = Uh with
U ∈ Rdx×d0 by Assumption 4.1.

Under the Assumptions F.1 to F.3 with the network setting following (S3), the theoretical results in
Appendices F.1 to F.3 achieve tighter approximation rates and efficient recovery accuracy of latent
data detailed in (R1), (R2), and (R3).

We summarize the theoretical comparisons from Appendix E and Appendix F as follows:

R1. For score approximation (see Theorems E.1, E.2 and F.1):

– Under Hölder data assumption the approximation rates gives Õ
(
ϵ1/(d0+dy)

)
, where Õ ignores

B0, log ϵ, and log n.

– Under Lipschitz score assumption the approximation rate gives Õ
(
ϵ ·
√
d0 + dy

)
, where Õ

ignores B0, log ϵ, and log n.

– For any precision 0 < ϵ < 1, the Lipschitz score assumption provides a tighter approximate
rate for high dimension data d0 ≫ 1 compared with under Hölder data assumption.

R2. For score estimation (see Theorems E.3 and F.2):

– Under Hölder data assumption the score estimation error gives Õ
(
n
− 1

ν̃3
· β0
d0+dy+2β0

)
, where

Õ ignores B0, log ϵ, and log n.

– Under Lipschitz score assumption the score estimation error gives Õ
(
n

−3

2(1+3/d̃+4L̃)

)
, where

Õ ignores B0, log ϵ, and log n.

– Under minimax optimal condition (see Section 3.4) by setting ν̃3 = 1/2, Hölder data

assumption gives Õ
(
n
− β0

2(d0+dy+2β0)

)
. On the other hand, Lipschitz assumption gives

Õ
(
n
− d̃

(3/4)d0+(2/3)d̃+2

)
. Therefore, the Lipschitz assumption gives a better sample complex-

ity guarantee for high dimensional data d0 = d̃L̃≫ 1.

R3. For distribution estimation (see Theorems E.4 and F.3):

– Under Hölder data assumption: Õ
(
n
− 1

ν̃3

β0
2(d0+dy+2β0)

)
.

– Under Lipschitz score assumption: Õ
(
n

−3

2(1+3/d̃+4L̃)

)
.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

– Follow the arguments in (R2), Lipschitz assumption gives a better distribution estimation
guarantee for high dimensional data.

Note that d0, dy is the latent data dimension and conditioning label dimension and ν̃3 =
4(12β0d0+31β0d̃+6β0)

d̃(d0+dy)
+ 12(12Cαd0+25Cα·d̃+6Cα)

d̃
+ 72Cσ .

From (R1), (R2), and (R3), we conclude that stronger approximations yield sharper rates.

F.1 SCORE APPROXIMATION

For completeness, we follow the proofs from (Hu et al., 2024) for score approximation of the
conditional latent diffusion model.

Here we use stricter assumptions on the latent density function, instead of assuming Hölder smooth-
ness of the initial conditional data distribution as in Section 4. To be specific, we directly approximate
the on-support latent score function, instead of approximating the denominator and nominator sep-
arately. From the score decomposition in (4.1), we define the on-support score function s+ as
following:

s+(U
⊤x, y, t) = U

∫ ∇hψt(h|h)ph (h|y)∫
ψt(h|h′)ph′ (h′|y) dh′

dh

= U∇ log pht
(
U⊤x|y

)
. (F.2)

Here we require two assumptions following the proof of (Hu et al., 2024) on tail behavior of density
function and Lipschitz continuous for on-support score function. Assumption F.3 is the analogy
of Assumption 3.1 for assuming the tail behavior of the density function. On the other hand,
Assumption F.2 further assume the on-support score function s+ to be Ls+-Lipshitz. Note that this
assumption is stricter than Assumption 3.1 since we make the Lipschitz assumption directly on the
score function instead of on the latent density function.

Theorem F.1 (Latent Score Approximation of Conditional DiT, modified from Theorem 3.1 in Hu
et al. (2024)). For any approximation error ϵ > 0 and any data distribution P0 under Assumptions 4.1,
F.2 and F.3, there exists a DiT score network Tscore(h, y, t) ∈ T h,s,r

R̃
where W = {WU , Tscore}, such

that for any t ∈ [t0, T], we have:

∥Tscore(·, t)−∇ log pt(·)∥L2(Pt)
≤ ϵ ·

√
d0 + dy/σ

2
t ,

where σ2
t = 1− e−t and the parameter bounds in the transformer network class satisfy

∥WQ∥2 = ∥WK∥2 = O
(
d̃ · ϵ−(

1

d̃
+2L̃)(log L̃)

1
2

)
;

∥WQ∥2,∞ = ∥WK∥2,∞ = O
(
d̃

3
2 · ϵ−(

1

d̃
+2L̃)(log L̃)

1
2

)
;

∥WO∥2 = O
(
d̃

1
2 ϵ

1

d̃

)
; ∥WO∥2,∞ = O

(
ϵ

1

d̃

)
;

∥WV ∥2 = O(d̃
1
2); ∥WV ∥2,∞ = O(d̃);

∥W1∥2 = O
(
d̃ϵ−

1

d̃

)
, ∥W1∥2,∞ = O

(
d̃

1
2 ϵ−

1

d̃

)
;

∥W2∥2 = O
(
d̃ϵ−

1

d̃

)
; ∥W2∥2,∞ = O

(
d̃

1
2 ϵ−

1

d̃

)
;∥∥E⊤∥∥

2,∞ = O
(
d̃

1
2 L̃

3
2

)
.

Proof. Please see Appendix F.4 for a detailed proof.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Remark F.1 (Comparing with Hölder Assumption Results in Low-Dimensional Data). Under
Assumptions 3.1 and 3.2, the score approximation give us Õ

(
ϵ

1
dx+dy /σ4

t

)
and Õ

(
ϵ

1
dx+dy /σ2

t

)
in

Theorems E.1 and E.2, respectively. On the other hand, the direct approximation of the Lipschitz
smooth on-support score function gives us the approximation error of O

(
ϵ ·
√
d0 + dy/σ

2
t

)
. For

(d0 + dy) ≫ 1, Theorem F.1 delivers superior approximation error compare with Theorems E.1
and E.2.

F.2 SCORE ESTIMATION

Theorem F.2 (Score Estimation of Latent DiT). Under the Assumptions F.1 to F.3, we choose the
score network Tscore(x, y, t) ∈ T h,s,r

R̃
from Theorem F.1 using ϵ ∈ (0, 1) and L̃ > 1. With probability

1− 1/poly(n), we have

1

T − t0

∫ T

t0

∥Tscore(·, t)−∇ log pt(·)∥L2(Pt)
dt = Õ

(
1

t20
n

−3

2(1+3/d̃+4L̃) log3 L̃ log3 n

)
,

where Õ hides the factor about dx, dy, d0, d̃, Ls+ and δ(n) is negligible for sufficiently large n.

Proof. Please see Appendix F.5 for a detailed proof.

Remark F.2 (Comparing Score Estimation in Theorems E.3 and F.2). Under Hölder data assumption,
the sample complexity of L2 estimator for achieving ϵ-error are bound by Õ

(
ϵ−ν̃1(d0+dy+β0)/β0

)
and Õ

(
ϵ−ν̃3(d0+dy+2β0)/β0

)
. In contrast, Theorem F.2 has the sample complexity bound of

Õ
(
ϵ−2(1+3/d̃+4L̃)/3

)
. Therefore, a direct approximation of the Lipschitz smooth score function

offers a better sample complexity bound than Hölder data assumption.

F.3 DISTRIBUTION ESTIMATION

In practice, DiTs generate data using the discretized version with step size µ. Let P̂t0 be the
distribution generated by Tscore(x, y, t) in Theorem F.2. Let Ph

t0 and pht0 be the distribution and
density function of on-support latent variable h at t0. We have the following results for distribution
estimation.

Theorem F.3 (Distribution Estimation of DiT, Modified From Theorem 3 of (Chen et al., 2023c)).
Let T = O(log n), t0 = O(min{c0, 1/Ls+}), where c0 is the minimum eigenvalue of EPh

[hh⊤].
With the estimated DiT score network Tscore(x, y, t) in Theorem F.2, we have the following with
probability 1− 1/poly(n).

(i) The accuracy to recover the subspace U is

∥∥WUW
⊤
U − UU⊤

∥∥2
F
= Õ

(
1

c0
n

−3

2(1+3/d̃+4L̃) · log3 n
)
. (F.3)

(ii) (WBU)⊤♯ P̂t0 denotes the pushforward distribution. With the conditions KL(Ph||N(0, Id0)) <

∞, and step size µ ≤ ξ(n, t0, L) ·t20/(d0
√
log d0). There exists an orthogonal matrix U ∈ Rd×d

such that we have the following upper bound for the total variation distance

TV(Ph
t0 , (WBU)⊤♯ P̂t0) = Õ

(
1

t0
√
c0
n

−3

4(1+3/d̃+4L̃) · log4 n
)
, (F.4)

where Õ hides the factor about dx, d0, d, and Ls+ .

(iii) For the generated data distribution P̂t0 , the orthogonal pushforward (I − WBW
⊤
B)♯P̂t0 is

N(0,Σ), where Σ ⪯ at0I for a constant a > 0.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Proof. Please see Appendix F.6 for a detailed proof.

Remark F.3 (Compare with Existing Work). In (Chen et al., 2023c, Theorem 3), the upper bound
for total variation distance with ReLU network is Õ

(√
1/(c0t0)n

−1/(d+5) log2 n
)

. Therefore, for

n≫ 1, Theorem F.3 gives tighter accuracy if 3d+ 11 > 12/d̃+ 16L̃ where d̃ ≤ d and L̃ ≤ L. On
the other hand, under similar conditions for d and L, Theorem F.3 suggest to achieve similar total
variation distance we only require

√
t0 early stopping time which is beneficial for empirical setting.

F.4 PROOF OF SCORE APPROXIMATION (THEOREM F.1)

To begin the proof of the approximate theorem, we first restate some auxiliary lemmas and their
proofs here from (Chen et al., 2023c) for later convenience. Note that some of the proofs extend to
the latent density function.

Lemma F.2 (Modified from Lemma 16 in (Chen et al., 2023c)). Consider a probability density
function ph (h|y) = exp

(
−C∥h∥22/2

)
for h ∈ Rd0 and constant C > 0. Let rh > 0 be a fixed

radius. Then it holds∫
∥h∥2>rh

ph (h|y) dh ≤ 2d0π
d0/2

CΓ(d0/2 + 1)
rd0−2
h exp

(
−Cr2h/2

)
,∫

∥h∥2>rh

∥h∥22ph (h|y) dh ≤ 2d0π
d0/2

CΓ(d0/2 + 1)
rd0

h exp
(
−Cr2h/2

)
.

Lemma F.3 (Modified from Lemma 2 in (Chen et al., 2023c)). Suppose Assumption Assumption F.3
holds and q is defined as:

q
(
h, y, t

)
=

∫
hψt

(
h|h
)
ph (h|y)∫

ψt

(
h|h
)
ph (h|y) dh

dh, h = B⊤x.

Given ϵ > 0, with rh = c
(√

d0 log(d0/t0) + log(1/ϵ)
)

for an absolute constant c, it holds

∥∥q (h, y, t)1{∥∥h∥∥
2
≥ rh}

∥∥
L2(Pt)

≤ ϵ, for t ∈ [t0, T].

Lemma F.4 (Modified from Theorem 1 in (Chen et al., 2023c)). We denote

τ(rh) = sup
t∈[t0,T]

sup
h∈[0,rh]d0

sup
y∈[0,1]dy

∥∥∥∥ ∂∂tq(h, y, t)
∥∥∥∥
2

.

With q(h, y, t) =
∫
hψt(h|h)ph(h|y)/(

∫
ψt(h|h)ph(h|y)dh)dh and ph satisfies Assumption F.3,

we have a coarse upper bound for τ(rh)

τ(rh) = O
(
1 + β2

t

βt

(
Ls+ +

1

σ2
t

)√
d0rh

)
= O

(
eT/2Ls+rh

√
d0

)
.

Proof of Lemma F.4.

∂

∂t
q(h, y, t) = U

∫
h ∂
∂tψt(h|h)ph(h|y)∫
ψt(h|h)ph(h|y)dh

dh− U

∫
hψt(h|h)ph(h|y)

∫
∂
∂tψt(h|h)ph(h|y)dh(∫

ψt(h|h)ph(h|y)dh
)2 dh

= U

∫ h βt

σ2
t

(
∥h∥22 − (1 + β2

t)h
⊤h+ βt

∥∥h∥∥2
2

)
ψt(h|h)ph(h|y)∫

ψt(h|h)ph(h|y)dh
dh

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

− U

∫ hψt(h|h)ph(h|y)
∫

βt

σ2
t

(
∥h∥22 − (1 + β2

t)h
⊤h+ βt

∥∥h∥∥2
2

)
ψt(h|h)ph(h|y)dh(∫

ψt(h|h)ph(h|y)dh
)2 dh

(i)
=
βt
σ2
t

U
[
EPh

[
h∥h∥22

]
− (1 + β2

t) Cov
[
h|h
]
h
]
,

where we plug in ∂ψt(h|h)/∂t = βt

(
∥h∥22 − (1 + β2

t)h
⊤h+ βt

∥∥h∥∥2
2

)
ψt(h|h)/σ2

t and collect
terms in (i). Since Ph has a Gaussian tail, its third moment is bounded.

Then we bound
∥∥Cov[h|h]∥∥

op
by taking derivative of s+(h, y, t) with respect to h, here

s+(h, y, t) = U
βt
σ2
t

∫
h · ψt(h|h)ph(h|y)∫
ψt(h|h)ph(h|y)dh

dh− U
h

σ2
t

.

Then we have

∂

∂h
s+(h, y, t) =

(
βt
σ2
t

)2

U

[∫
hh⊤φ(h, y)dh−

∫
hφ(h, y)dh

∫
h⊤φ(h, y)dh

]
− 1

σ2
t

U

=

(
βt
σ2
t

)2

U

[
Cov(h|h)− 1

σ2
t

Id0

]
,

where

φ(h, y) =
ψt(h|h)ph(h|y)∫
ψt(h|h)ph(h|y)dh

.

Along with the Ls+ -Lipschitz property of s+, we obtain

∥∥Cov(h|h)∥∥
op

≤ σ4
t

β2
t

(
Ls+ +

1

σ2
t

)
.

Therefore, we deduce

τ(rh) = O
(
1 + β2

t

βt

(
Ls+ +

1

σ2
t

)√
d0rh

)
= O

(
eT/2Ls+rh

√
d0

)
,

as Ph having sub-Gaussian tail implies EPh

[
h∥h∥22

]
is bounded.

Lemma F.5 (Modified from Lemma 10 in (Chen et al., 2023c)). For any given ϵ > 0, and L-Lipschitz
function g defined on [0, 1]d0 × [0, 1]dy , there exists a continuous function f constructed by trapezoid
function that ∥∥g − f

∥∥
∞ ≤ ϵ.

Moreover, the Lipschitz continuity of f is bounded by∣∣f(x, y)− f(x′, y′)
∣∣ ≤ 10d0L∥x− x′∥2 + 10dyL∥y − y′∥2,

for any x, x′ ∈ [0, 1]d0 and y, y′ ∈ [0, 1]dy

Proof of Lemma F.5. This proof closely follows Lemma 10 in (Chen et al., 2023c). We divide the
proof into two parts: First, we use a collection of Trapezoid function f to approximate the function g
defined on [0, 1]d0 × [0, 1]dy . Then we establish the Lipschitz continuity of the function f to facilitate
the approximation with a transformer.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

1. Approximation by Trapezoid Function. Given an integer N > 0, we choose (N + 1)d0 points
in the hypercube [0, 1]d0 and (N + 1)dy points in the hypercube [0, 1]dy . We denote the index
of the hypercubes as m = [m1,m2, · · · ,md0

]
⊤ ∈ {0, · · · , N} and n =

[
n1, n2, · · · , ndy

]⊤ ∈
{0, · · · , N}. Next, we define a univariate trapezoid function (see Figure 4) as follow

ϕ(a) =

1, |a| < 1

2− |a|, |a| ∈ [1, 2]

0, |a| > 2

. (F.5)

ϕ
(
3N
(
xk − mk

N

))

mk/N xk

Figure 4: Trapezoid function.

For any x ∈ [0, 1]d0 and y ∈ [0, 1]dy , we define a partition of unity based on a product of trapezoid
functions indexed by m and n,

ξm,n(x, y) = 1

{
y ∈

(
n− 1

N
,
n

N

]} d0∏
k=1

ϕ
(
3N
(
xk − m

N

))
. (F.6)

For example, the product of trapezoid function ξm,n(x, y) ̸= 0 only if y ∈
(
n−1
N , n

N

]
and

x ∈
[
m−2·1·3

N , m+2·1·3
N

]
. For any target L-Lipschitz function g with respect to x and y, it is more

convenient to write its Lipschitz continuity with respect to the ℓ∞ norm, i.e.,

|g(x, y)− g(x′, y′)| ≤ L∥x− x′∥2 + L∥y − y′∥2
≤ L

√
d0∥x− x′∥∞ + L

√
dy∥y − y′∥∞. (F.7)

We now define a collection of piecewise-constant functions as

Pm,n(x, y) = g(m,n) for m ∈ {0, . . . , N}d0 and n ∈ {0, . . . , N}dy .

We claim that f(x, y) =
∑

m,n ξm,n(x, y)Pm,n(x, y) is an approximation of g, with an approxi-
mation error evaluated as

sup
x∈[0,1]d0

sup
y∈[0,1]dy

∣∣f(x, y)− g(x, y)
∣∣

= sup
x∈[0,1]d0

sup
y∈[0,1]dy

∣∣∣∣∣∑
m,n

ξm,n(x, y) (Pm,n(x, y)− g(x, y))

∣∣∣∣∣
≤ sup

x∈[0,1]d0
sup

y∈[0,1]dy

∑
m:|xk−mk/N |≤ 2

3N

n:|yj−nj/N |∈(− 1
2N , 1

2N]

|Pm,n(x, y)− g(x, y)|

= sup
x∈[0,1]d0

sup
y∈[0,1]dy

∑
m:|xk−mk/N |≤ 2

3N

n:|yj−nj/N |∈(− 1
2N , 1

2N]

|g(m,n)− g(x, y)|

≤ L
√
d02

d0+1 1

3N
+ L

√
dy1

dy
1

2N

(
By Lipschitz continuity in (F.7)

)
34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

=
L

N

(√
d02

d0+1

3
+

√
dy

2

)
,

where the last inequality follows the Lipschitz continuity in (F.7) and using the fact that there
are at most 2d0 terms in the summation of m and at most 1dy terms in the summation of n. By
choosing N = ⌈L

(√
d02

d0+1/3 +
√
dy/2

)
/ϵ⌉, we have

∥∥g − f
∥∥
∞ ≤ ϵ.

2. Lipschitz Continuity. Next we compute the Lipschitz of the function f with respect to x and y.
Suppose the approximation error ϵ > 0 is small enough, then we have∣∣f(x, y)− f(x′, y′)

∣∣
≤
∣∣f(x, y)− g(x, y)

∣∣+ |g(x, y)− g(x′, y′)|+
∣∣g(x′, y′)− f(x′, y′)

∣∣
≤ 2ϵ+ L

√
d0∥x− x′∥∞ + L

√
dy∥y − y′∥∞

≤ 10L
√
d0∥x− x′∥∞ + 10L

√
dy∥y − y′∥∞

≤ 10Ld0∥x− x′∥2 + 10Ldy∥y − y′∥2.

This completes the proof.

Main Proof of Theorem F.1. Now we are ready to state the main proof.

Proof of Theorem F.1. From low-dimensional data assumption, the score function log pt(x|y) de-
composes as the on-support and orthogonal component (see Lemma E.1). Recall the on-support
score function is given by ∇ log pht

(
h|y
)
= U⊤s+(h, y, t) from (F.7). We use a latent score network

to approximate the score function (see (K3)). Specifically, the latent score network includes a latent
encoder and a latent decoder. The encoder approximates U⊤ ∈ Rd0×dx ,and decoder approximates
U ∈ Rdx×d0 . At its core, we use the transformer gT (W⊤U x, y, t) ∈ T h,s,r to approximate q

(
h, y, t

)
as defined in (E.1). The expression for q

(
h, y, t

)
is given by:

q(h, y, t) = σ2
t∇ log pht (U

⊤x|y) + U⊤x = σ2
tU
⊤(s+(h, y, t) + x/σ2

t). (F.8)

We proceed as follows:

• Step 1. Approximate q(h, y, t) with a compact-supported continuous function f(h, y, t).

• Step 2. Approximate f(h, y, t) with a one-layer single-head transformer network.

Step 1. Approximate q(h, y, t) with a Compact-Supported Continuous Function f(h, y, t). First,
we partition Rd0 into a compact subset H1 := {h |

∥∥h∥∥
2
≤ rh} and its complement H2, where the

choice of rh comes from Lemma F.3. Next, we approximate q(h, y, t) on the two subsets by using
the compact-supported continuous function f(h, y, t). Finally, calculating the continuity of f gives
an estimation error of

√
d0 + dyϵ between q(h, y, t) and f(h, y, t). We present the main proof as

follows.

• Approximation onH2×[0, 1]×[t0, T]. For any ϵ > 0, by taking rh = c(
√
d0 log(d0/t0)− log ϵ),

we obtain from Lemma F.3 that∥∥q(h, y, t)1{∥∥h∥∥
2
≥ rh}

∥∥
L2(Pt)

≤ ϵ for t ∈ [t0, T] and y ∈ [0, 1].

So we set f(h, y, t) = 0 on H2 × [0, 1]× [t0, T].

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

• Approximation on H1 × [0, 1]× [t0, T]. On H1 × [0, 1]× [t0, T], we approximate

q(h, y, t) = [q1(h, y, t), q2(h, y, t), · · · , qd0
(h, y, t)],

by approximating each coordinate qk(h, y, t) separately.

We firstly rescale the input by h′ = (h+ rh1)/2rh and t′ = t/T , so that the transformed input
space is [0, 1]d0 × [0, 1]dy × [t0/T, 1]. Here we do not need to rescale y, since it is already in [0, 1]
by definition. We implement such transformation by a single feed-forward layer.

By Assumption F.2, the on-support score s+(h, y, t) is Ls+ -Lipschitz with respect to any h ∈ Rd0

and y ∈ Rdy . This implies q(h, y, t) is (1 + Ls+)-Lipschitz in h and y. When taking the
transformed inputs, g(h′, y, t′) = q(2rhh

′ − rh1, T t
′) becomes 2rh(1 + Ls+)-Lipschitz in h′;

each coordinate gk(h′, y, t) is also 2rh(1 + Ls+)-Lipschitz in h′. Here we denote L∗ = 1 + Ls+ .

Besides, g(h′, y, t′) is Tτ(rh)-Lipsichitz with respect to t, where

τ(rh) = sup
t∈[t0,T]

sup
h∈[0,rh]d

sup
y∈[0,1]dy

∥∥∥∥ ∂∂tq(h, y, t)
∥∥∥∥
2

.

We have a coarse upper bound for τ(rh) in Lemma F.4. We restate it as follows:

τ(rh) = O
(
1 + β2

t

βt

(
Ls+ +

1

σ2
t

)√
d0rh

)
= O

(
eT/2Ls+rh

√
d0

)
.

Since each gk(h′, y, t) is Lipsichitz continuous, we apply Lemma F.5 to construct a collection of
coordinate-wise functions, denoted as fk(h′, y, t). We concatenate fk’s together and construct
f = [f1, . . . , fd0

]⊤. According to the construction of trapezoid function in Lemma F.5, for any
given ϵ, we have the following relations:

sup
h′,y,t′∈[0,1]d0×[0,1]

dy×[t0/T,1]

∥∥f(h′, y, t′)− g(h′, y, t′)
∥∥
∞ ≤ ϵ.

Considering the input rescaling (i.e., h→ h′, y → y and t→ t′), we obtain:

– The constructed function is Lipschitz continuous in h and y, i.e., for any h1, h2 ∈ H1, y1, y2 ∈
[0, 1] and t ∈ [t0, T], it holds∥∥f(h1, y1, t)− f(h2, y2, t)

∥∥
∞ ≤ 10d0L∗

∥∥h1 − h2
∥∥
2
+ 10dyL∗∥y1 − y2∥2. (F.9)

– The function is also Lipschitz in t, i.e., for any t1, t2 ∈ [t0, T] and
∥∥h∥∥

2
≤ rh, it holds∥∥f(h, y, t1)− f(h, y, t2)

∥∥
∞ ≤ 10τ(rh)∥t1 − t2∥2.

To conclude, the construction of f
(
h, y, t

)
uses a collection of trapezoid functions, as described

in Lemma F.5. This ensures that f(h, y, t) = 0 for
∥∥h∥∥

2
> rh, for all t ∈ [t0, T] and y ∈ [0, 1].

Consequently, the Lipschitz continuity of f
(
h, y, t

)
with respect to h extends over the entire space

Rd0 .

• Approximation Error Analysis under L2 Norm. We first decompose the L2 approximation
error of f into two terms (

∥∥h∥∥
2
< rh and

∥∥h∥∥
2
< rh):∥∥q(h, y, t)− f

(
h, y, t

)∥∥
L2(Ph

t)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

=
∥∥(q(h, y, t)− f

(
h, y, t

))
1
{∥∥h∥∥

2
< rh

}∥∥
L2(Ph

t)
+
∥∥q(h, y, t)1{∥∥h∥∥

2
> rh

}∥∥
L2(Ph

t)
.

By selecting rh = O
(√

d0 log(d0/t0) + log(1/ϵ)
)

(see Lemma F.3), we bound the second term
on the RHS of above expression as:∥∥g(h, y, t)1{∥∥h∥∥

2
> rh}

∥∥
L2(Ph

t)
≤ ϵ.

For the first term, we bound∥∥(q(h, y, t)− f
(
h, y, t

))
1
{∥∥h∥∥

2
< rh

}∥∥
L2(Ph

t)

≤
√
d0 + dy sup

h′,y,t′∈[0,1]d0×[0,1]dy×[t0/T,1]

∥∥f(h′, y, t′)− g(h′, y, t′)
∥∥
∞

≤
√
d0 + dyϵ.

So we obtain ∥∥q(h, y, t)− f
(
h, y, t

)∥∥
L2(Ph

t)
≤
(√

d0 + dy + 1
)
ϵ.

Substituting ϵ with ϵ/2 gives an approximation error for f(h, y, t) of
√
d0 + dyϵ.

Step 2. Approximate f(h, y, t) with One-Layer Self-Attention. This step is based on the universal
approximation of single-layer single-head transformers for compact-supported continuous function
in Theorem H.2.

Recall the reshape layer R̃(·) from Definition 2.3. We use f(·) := R̃−1 ◦ ĝT ◦ R̃(·) to approximate
f t(·) := f(·, t), where ĝT (·) ∈ T h,s,r = {f (FF)

2 ◦ f (SA) ◦ f (FF)
1 : Rd̃×L̃ → Rd̃×L̃}.

We first use f̂t(·) := R̃−1 ◦ ĝT ◦ R̃(·) to approximate the function f t(·) constructed at Step 1 and
denote H = R(h). Using Theorem H.2, we have:

∥∥∥f t(h, y)− f̂(h, y)
∥∥∥
L2(Ph

t)
=

(∫
Ph

t

∥∥∥f t(h, y)− f̂(h, y)
∥∥∥2
2
dh

)1/2

(F.10)

=

(∫
Ph

t

∥∥∥R̃ ◦ f t ◦ R̃−1(H)− R̃ ◦ ĝT ◦ R̃−1(H)
∥∥∥2
F
dh

)1/2

=

(∫
Ph

t

∥∥∥R̃ ◦ f t ◦ R̃−1(H)− ĝT (H)
∥∥∥2
F
dh

)1/2

≤ ϵ. (F.11)

Along with Step 1, we obtain∥∥∥q(h, y, t)− f̂(h, y)
∥∥∥
L2(Ph

t)
≤
∥∥q(h, y, t)− f(h, y, t)

∥∥
L2(Ph

t)
+
∥∥f(h, y, t)− ĝT (h, y)

∥∥
L2(Ph

t)

≤
(
1 +

√
d0 + dy

)
ϵ.

The approximator s
Ŵ

for the score function ∇ log pt(h|y) is define in (E.2) where s
Ŵ

=

(WU f̂(U
⊤x, y, t)− x)/σ2

t . The approximation error for such an approximator is

∥∥∇ log pt(·)− s
Ŵ
(·, t)

∥∥
L2(Pt)

≤
1 +

√
d0 + dy

σ2
t

ϵ, for all t ∈ [t0, T].

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Finally, the parameter bounds in the transformer network class satisfy

∥WQ∥2 = ∥WK∥2 = O
(
d̃ · ϵ−(

1

d̃
+2L̃)(log L̃)

1
2

)
;

∥WQ∥2,∞ = ∥WK∥2,∞ = O
(
d̃

3
2 · ϵ−(

1

d̃
+2L̃)(log L̃)

1
2

)
;

∥WO∥2 = O
(
d̃

1
2 ϵ

1

d̃

)
; ∥WO∥2,∞ = O

(
ϵ

1

d̃

)
;

∥WV ∥2 = O(d̃
1
2); ∥WV ∥2,∞ = O(d̃);

∥W1∥2 = O
(
d̃ϵ−

1

d̃

)
, ∥W1∥2,∞ = O

(
d̃

1
2 ϵ−

1

d̃

)
;

∥W2∥2 = O
(
d̃ϵ−

1

d̃

)
; ∥W2∥2,∞ = O

(
d̃

1
2 ϵ−

1

d̃

)
;∥∥E⊤∥∥

2,∞ = O
(
d̃

1
2 L̃

3
2

)
.

We refer to Appendix H.2 for the calculation of the hyperparameters configuration of this network.

This completes the proof.

F.5 PROOF OF SCORE ESTIMATION (THEOREM F.2)

Lemma F.6 (Lemma 15 of (Chen et al., 2023c)). Let G be a bounded function class, i.e., there exists
a constant b such that any function g ∈ G : Rd0 7→ [0, b]. Let z1, z2, · · · , zn ∈ Rd0 be i.i.d. random
variables. For any δ ∈ (0, 1), a ≤ 1, and c > 0, we have

P

(
sup
g∈G

1

n

n∑
i=1

g(zi)− (1 + a)E [g(z)] >
(1 + 3/a)B

3n
log

N (c,G, ∥·∥∞)

δ
+ (2 + a)c

)
≤ δ,

P

(
sup
g∈G

E [g(z)]− 1 + a

n

n∑
i=1

g(zi) >
(1 + 6/a)B

3n
log

N (c,G, ∥·∥∞)

δ
+ (2 + a)c

)
≤ δ.

Main Proof of Theorem F.2. Now we are ready to state the main proof.

Proof of Theorem F.2. Our proof is built on (Chen et al., 2023c, Appendix B.2).

Recall that the empirical score-matching loss is

L(s
Ŵ
) =

1

n

n∑
i=1

ℓ(xi, yi; sŴ), (F.12)

with the loss function ℓ for a data sample (x, y) is defined as

ℓ(x, y, s
Ŵ
) =

∫ T

t0

1

T − t0
E(xt|x0=x,τ)

[
∥s(xt, τy, t)−∇ log ϕt(xt|x0)∥22

]
dt.

We organize the proof into the following three steps:

• Step 1. Decomposing L
(
s
Ŵ

)
: We first decompose L into three terms (A), (B), and (C).

• Step 2. Bounding Each Term: We then bound three terms separately using some helper from
Lemma F.2 and Lemma F.6.

• Step 3. Putting All Together: Finally, we combine the above bounds and substitute the covering
number of S (Cx) from Lemma K.3.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

• Step 1. Decomposing L
(
s
Ŵ

)
:

Following (Chen et al., 2023c, Appendix B.2), for any a ∈ (0, 1), we have:

L(s
Ŵ
)

≤ Ltrunc(s
Ŵ
)− (1 + a)L̂trunc(s

Ŵ
)︸ ︷︷ ︸

(A)

+L(s
Ŵ
)− Ltrunc(s

Ŵ
)︸ ︷︷ ︸

(B)

+(1 + a) inf
sW∈T h,s,r

R̃

L̂(sW)︸ ︷︷ ︸
(C)

.

where

Ltrunc(s
Ŵ
) := Ex∼P0

[
ℓ(x, τy, s

Ŵ
)1{∥x∥2 ≤ rx}

]
, rx > B,

We denote

η := 4CT (CT + rx)(rx/dx)
dx−2 · exp

(
−r2x/σ2

t

)
/t0(T − t0),

rx := O
(√

d0 log d0 + logCT + log
(
n/δ

))
.

• Step 2. Bounding Each Term: We bound (A), (B), and (C) term separately using some helper
from Lemma F.2 and Lemma F.6.

Bounding term (A). For any δ > 0, following (Chen et al., 2023c, Appendix B.2) and applying
Lemma F.6, we have the following for term (A) with probability 1− δ,

(A) = O

 (1 + 3/a)(C2
T + r2x)

nt0(T − t0)
log

N
(

(T−t0)(ϵc−η)
(CT +rx) log(T/t0)

, T h,s,r, ∥·∥2
)

δ
+ (2 + a)c

 ,

where c ≤ 0 is a constant, and ϵc > 0 is another constant to be determined later.

By setting ϵc = log(2/(nt0(T − t0))), then we have

(A) = O

 (1 + 3/a)
(
C2
T + r2x

)
nt0(T − t0)

log
N
(
(n(CT + rx)t0 log (T/t0))

−1
, T h,s,r, ∥·∥2

)
δ

+
1

n

,
(F.13)

with probability 1− δ.

Bounding term (B). Following (Chen et al., 2023c, Appendix B.2) and applying Lemma F.2, we
has the following bound for term (B):

(B) = O
(

1

t0(T − t0)
C2
T r

d0
x

2−2/d0+2d0
Γ(d0/2 + 1)

exp
(
−C2r

2
x/2
))

. (F.14)

Bounding term (C). In Theorem F.1, we approximate the score function with the network ŝW for
any ϵ > 0. We decompose the term (C) into statistical error (C1) and approximation error (C2):

(C) ≤ L̂(ŝW)− (1 + a)Ltrunc(ŝW)︸ ︷︷ ︸
(C1)

+(1 + a)Ltrunc(ŝW)︸ ︷︷ ︸
(C2)

.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Following (Chen et al., 2023c, Appendix B.2) and applying Lemma F.2 and Lemma F.6, we have
the following bound for term (C1):

(C1) = L̂trunc(ŝW)− (1 + a)Ltrunc(ŝW) = O
(
(1 + 6/a)(C2

T + r2x)

nt0(T − t0)
log

1

δ

)
,

with probability 1− δ.

Finally, for the term (C2) we use Theorem F.1 for score function approximation of L(ŝW):

(C2) = O
(

d0 + dy
t0(T − t0)

ϵ2
)
+ (const.).

This give us the bound for term (C) ≤ (C1) + (1 + a)(C2) as

(C) ≤ O
(
(1 + 6/a)(C2

T + r2x)

nt0(T − t0)
log

1

δ
+

d0 + dy
t0(T − t0)

ϵ2
)
+ (const.). (F.15)

• Step 3. Putting All Together: In the final steps, we combine three terms and substitute the
covering number to get the score estimation bound for latent DiT.

Combining (A), (B) and (C). Following (Chen et al., 2023c, Appendix B.2), we set a = ϵ2 and
get the overall bound:

1

T − t0

∫ T

t0

∥∥s
Ŵ
(·, t)−∇ log pt(·)

∥∥2
L2(Pt)

dt

= O

((
C2
T + r2x

)
ϵ2nt0(T − t0)

log
N
(
(n(CT + rx)t0 log(T/t0))

−1,ST h,s,r , ∥·∥2
)

δ
+

1

n
+

d0 + dy
t0(T − t0)

ϵ2

)
,

(F.16)

with probability 1− 3δ.

Before we move on to the covering number of T h,s,r

R̃
, we first compute the Lipschitz upper bound

LT and model output bound CT .

Lipschitz Upper Bound LT and Model Output Bound CT . We then compute the Lipschitz
upper bound LT for the transformer. We denote f t,R(·) = R̃ ◦ ĝt ◦ R̃−1(·) and H =

(
R̃(h), y

)
.

We get the Lipschitz upper bound for f̂T ∈ T h,s,r

R̃
:∥∥∥f̂T (H1)− f̂T (H2)

∥∥∥
F
≤
∥∥∥f̂T (H1)− f t,R̃ (H1)

∥∥∥
F
+
∥∥∥f t,R̃ (H1)− f t,R̃ (H2)

∥∥∥
F

+
∥∥∥f t,R̃ (H2)− f̂T (H2)

∥∥∥
F

≤ 2ϵ+
∥∥∥f t,R̃ (H1)− f t,R̃ (H2)

∥∥∥
F

(
By (F.10)

)
≤ 2ϵ+ 10(d0 + dy)Ls+∥H1 −H2∥F .

(
By (F.9)

)
Then we get the upper bound of Lipschitzness of T h,s,r

R̃
:

LT = O
(
(d0 + dy)Ls+

)
. (F.17)

Next, we compute the model output bound for T h,s,r

R̃
. For the output of the constructed transformer

f̂T ∈ T h,s,r, according to (H.20), the output of the network is lower bounded by O(1). Thus with
the Lipschitz upper bound LT = O((d0 + dy)Ls+), we have ∥f̂T (H)∥F = O((d0 + dy)Ls+rh),

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

where ∥H∥F ≤ rh. With rh = c(
√
d0 log(d0/t0) + log(1/ϵ)), we obtain

CT = O
(
(d0 + dy)Ls+ ·

√
d0 log(d0/t0) + log(1/ϵ)

)
. (F.18)

Covering Number of T h,s,r

R̃
. The next step is to calculate the covering number of T h,s,r

R̃
. In

particular, T h,s,r

R̃
consists of two components: (i) Matrix WU with orthonormal columns; (ii)

Network function gT . Suppose we have WU1,WU2 and g1, g2 such that ∥WU1 −WU2∥F ≤ δ1
and sup∥x∥2≤3rx+

√
dx log dx,y∈[0,1],t∈[t0,T] ∥g1(x, y, t)− g2(x, y, t)∥2 ≤ δ2, where g1 = R̃−1 ◦

gT 1 ◦ R̃ and g2 = R̃−1 ◦ gT 2 ◦ R̃. Then we evaluate

sup
∥x∥2≤3rx+

√
dx log dx,y∈[0,1],t∈[t0,T]

∥sWU1,gT 1
(x, y, t)− sWU2,gT 2

(x, y, t)∥2

=
1

σ2
t

sup
∥x∥2≤3rx+

√
dx log dx,y∈[0,1],t∈[t0,T]

∥∥WU1g1(W
⊤
U1x, y, t)−WU2g2(W

⊤
U2x, y, t)

∥∥
2

≤ 1

σ2
t

sup
∥x∥2≤3rx+

√
dx log dx,y∈[0,1],t∈[t0,T]

(∥∥WU1g1(W
⊤
U1x, y, t)−WU1g1(W

⊤
U2x, y, t)

∥∥
2︸ ︷︷ ︸

1st term

+
∥∥WU1g1(W

⊤
U2x, y, t)−WU1g2(W

⊤
U2x, y, t)

∥∥
2︸ ︷︷ ︸

2nd term

+
∥∥WU1g2(W

⊤
U2x, y, t)−WU2g2(W

⊤
U2x, y, t)

∥∥
2︸ ︷︷ ︸

3rd term

)

≤ 1

σ2
t

LT δ1√d0(3rx +
√
dx log dx)︸ ︷︷ ︸

1st term

+ δ2︸︷︷︸
2ndterm

+ δ1︸︷︷︸
3rd term

 , (F.19)

where LT upper bounds the Lipschitz constant of gT (see (F.17)).

For the set {WB ∈ Rdx×d0 : ∥WB∥2 ≤ 1}, its δ1-covering number is
(
1 + 2

√
d0/δ1

)dxd0 (Chen
et al., 2023c, Lemma 8). The δ2-covering number of f needs further discussion as there is a
reshaping process in our network. For the input reshaped from h ∈ Rd0 to H ∈ Rd̃×L̃, we have∥∥h∥∥

2
≤ rx ⇐⇒ ∥H∥F ≤ rx,

Thus we have

sup
∥h∥

2
≤3rx+

√
D logD,y∈[0,1],t∈[t0,T]

∥∥g1(h, y, t)− g2(h, y, t)
∥∥
2
≤ δ2,

⇐⇒ sup
∥H∥F≤3rx+

√
D logD,y∈[0,1],t∈[t0,T]

∥gT 1(H)− gT 2(H)∥2 ≤ δ2.

Next we follow the covering number property for sequence-to-sequence transformer T h,s,r

R̃
, i.e.,

Lemma K.2 and get the following δ2-covering number

logN
(
ϵc, T h,s,r

R̃
, ∥·∥2

)
(F.20)

≤ log(nL)

ϵ2c
· α2

(
(CF)

2C2,∞
OV

) 2
3︸ ︷︷ ︸

1st term

+(d+ dy)
2
3
(
C2,∞

F

) 4
3︸ ︷︷ ︸

2nd term

+(d+ dy)
2
3
(
2(CF)

2COV C2,∞
KQ

) 2
3︸ ︷︷ ︸

3rd term

3

,

(F.21)

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

where

α :=
∏
j<i

(CF)
2COV (1 + 4CKQ)(CX + CE).

Recall that from the network configuration in Theorem F.1, we have the following bound:

∥WQ∥2 = ∥WK∥2 = O
(
d̃ · ϵ−(

1

d̃
+2L̃)(log L̃)

1
2

)
;

∥WQ∥2,∞ = ∥WK∥2,∞ = O
(
d̃

3
2 · ϵ−(

1

d̃
+2L̃)(log L̃)

1
2

)
;

∥WO∥2 = O
(
d̃

1
2 ϵ

1

d̃

)
; ∥WO∥2,∞ = O

(
ϵ

1

d̃

)
;

∥WV ∥2 = O(d̃
1
2); ∥WV ∥2,∞ = O(d̃);

∥W1∥2 = O
(
d̃ϵ−

1

d̃

)
, ∥W1∥2,∞ = O

(
d̃

1
2 ϵ−

1

d̃

)
;

∥W2∥2 = O
(
d̃ϵ−

1

d̃

)
; ∥W2∥2,∞ = O

(
d̃

1
2 ϵ−

1

d̃

)
;∥∥E⊤∥∥

2,∞ = O
(
d̃

1
2 L̃

3
2

)
.

Note that WK,Q =WQW
⊤
K and WO,V =WOW

⊤
V . Combining every component and substitute

into (F.20), we have three respective terms bounded as

1st term = O
(
d̃2ϵ−2/(3d̃)

)
,

2nd term = O
(
(d0 + dy)

2/3
d̃2/3ϵ−4/(3d̃)

)
,

3rd term = O
(
(d0 + dy)

2/3 ·
(
log L̃

)2/3
· d̃4 · ϵ(−2/3)(3/d̃+4L̃)

)
.

Apparently the 3rd term dominates the other two. For the α2 term, we write

α2 = O
(
d̃10ϵ−2(3/d̃+4L̃)

(
log L̃

)
C ′x

)
,

where C ′x =
(
Cx + (d0 + dy)

3/2
)2

.

Combining the above bound we get the log-covering number of T2 as

logN
(
ϵc, T h,s,r

R̃
, ∥·∥2

)
≲ O

(
log (nL̃) log3 (L̃)

ϵ2c
d̃22(d0 + dy)

2ϵ−4(3/d̃+4L̃)C2
x

)
. (F.22)

Substituting the log-covering number of T h,s,r

R̃
into (F.16), we have

1

T − t0

∫ T

t0

∥∥s
Ŵ
(·, t)−∇ log pt(·)

∥∥2
L2(Pt)

dt

= O

((
C2
T + log

(
n/δ

))
ϵ2nt0(T − t0)

(
log (nL̃) log3 (L̃)

(T − t0)n2
d̃22(d0 + dy)

2ϵ−4(3/d̃+4L̃)C2
x

)
+

1

n
+

d0 + dy
t0(T − t0)

ϵ2

)
(
By (F.16)

)

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

= O

(
((d̃+ d0)

2L2
s+(d0 log(d0/t0) + log(1/ϵ)) + log

(
n/δ

)
)

ϵ2nt0(T − t0)

(
log (nL̃) log3 (L̃)

(T − t0)n2
d̃22(d̃+ dy)

2ϵ−4(3/d̃+4L̃)C2
x

)

+
d0 + dy
t0(T − t0)

ϵ2

)
.

(
By (F.17) and (F.18)

)

Balancing Error Terms. To balance the error term, we set ϵ = n−3/4(1+3/d̃+4L̃). Also setting
δ = 1/3n then we have

1

T − t0

∫ T

t0

∥∥s
Ŵ
(·, t)−∇ log pt(·)

∥∥2
L2(Pt)

dt = O

(
d̃22(d̃+ d0)

2(d̃+ dy)
2

t20
n

−3

2(1+3/d̃+4L̃) log3 L̃ log3 n

)
(F.23)

with probability of 1− 1
n .

This completes the proof.

F.6 PROOF OF DISTRIBUTION ESTIMATION (THEOREM F.3)

Our proof is built on Chen et al. (2023c, Appendix C). The main difference between our work and
Chen et al. (2023c) is our score estimation error from Theorem F.2. This is based on our universal
approximation of transformers in Corollary H.2.1. Consequently, only the subspace error and the
total variation distance differ from Chen et al. (2023c, Theorem 3).

Proof Sketch of (i). We show that if the orthogonal score increases significantly, the mismatch
between the column span of U and WU will be greatly amplified. Therefore, an accurate score
network estimator forces U and WU to align with each other.

Proof Sketch of (ii). We conduct the proof via 2 steps:

• Step 1: Total Variation Distance Bound. We obtain the discrete result from the continuous-time
generated distribution P̂t0 by adding discretization error (Chen et al., 2023c, Lemma 4). It suffices
to bound the divergence between the following two stochastic processes:

– For the ground-truth backward process, consider h←t = B⊤yt and the following SDE:

dh←t =

[
1

2
h←t +∇ log phT − t(h←t)

]
dt+ dUh

t .

Denote the marginal distribution of the ground-truth process as Ph
t0 .

– For the learned process, consider h̃←,r
t and the following SDE:

dh̃
←,r

t =

[
1

2
h̃←,r
t + s̃hf,M (h̃←,r

t , T − t)

]
dt+ dU

h

t ,

where s̃hf,M (z, t) := [M⊤f(Mz, t) − z]/σ2
t and M is an orthogonal matrix. Following the

notation in (Chen et al., 2023c), we use (WUM)⊤♯ P̂t0 to denote the marginal distribution of
P̂t0 . We first calculate the latent score matching error, i.e., the error between ∇ log pht (h, y) and
s̃hM,f (h, y, t). Then, we adopt Girsanov’s Theorem (Chen et al., 2022) and bound the difference
in the KL divergence of the above two processes to derive the score-matching error bound.

Proof Sketch of (iii). We derive item (iii) by solving the orthogonal backward process of the
diffusion model.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Definition F.1. For later convenience, let us define ξ(n, t0, d̃, L̃) := 1
t20
n

−3

2(1+3/d̃+4L̃) log3 n.

Here we include a few auxiliary lemmas from Chen et al. (2023c) without proofs. Recall the definition
of Lipschitz norm: for a given function f , ∥f(·)∥Lip = supx̸=y(∥f(x)− f(y)∥2/∥x− y∥2).

Lemma F.7 (Lemma 3 of Chen et al. (2023c)). Assume that the following holds

Eh∼Ph
∥∇ log ph(h|y)∥22 ≤ Csh, λminEh∼Ph

[hh⊤] ≥ c0, Eh∼Ph
∥h∥22 ≤ Ch,

where λmin denotes the smallest eigenvalue. We denote

E[ϕ(·, t)] =
∫ T

t0

1

σ4
t

Ex∼Pt
[ϕ(·, t)]dt.

We set t0 ≤ min{2 log(d0/Csh), 1, 2 log(c0), c0} and T ≥ max{2 log(Ch/d0), 1}. Suppose we
have

E
∥∥WBf(W

⊤
B x, y, t)− Uq(B⊤x, y, t)

∥∥2
2
≤ ϵ.

Then we have ∥∥WUW
⊤
U − UU⊤

∥∥2
F
= O(ϵt0/c0),

and there exists an orthogonal matrix M ∈ Rd0×d0 , such that:

E
∥∥M⊤f(Mh, y, t)− q(h, y, t)

∥∥2
2

= ϵ · O

(
1 +

t0
c0

[
(T − log t0)d0 ·max

t
∥f(·, t)∥2Lip + Csh

]
+

maxt ∥f(·, t)∥2Lip · Ch

c0

)
.

Lemma F.8 (Lemma 4 of Chen et al. (2023c)). Assume that Ph is sub-Gaussian, f(h, y, t) and
∇ log pht (h|y) are Lipschitz in both h, y and t. Assume we have the latent score matching error-bound∫ T

t0

Eh∼Ph
t

∥∥s̃hM,f (ht, y, t)−∇ log pht (ht|y)
∥∥2
2
dt ≤ ϵlatent (T − t0).

Then we have the following latent distribution estimation error for the undiscretized backward SDE

TV
(
Ph
t0 , P̂

h
t0

)
≲
√
ϵlatent (T − t0) +

√
KL (Ph∥N (0, Id0

)) · exp(−T).

Furthermore, we have the following latent distribution estimation error for the discretized backward
SDE

TV
(
Ph
t0 , P̂

h,dis
t0

)
≲
√
ϵlatent(T − t0) +

√
KL (Ph∥N (0, Id0

)) · exp(−T) +
√
ϵdis(T − t0),

where

ϵdis =

(
maxh ∥f(h, y, ·)∥Lip

σ (t0)
+

maxh,t ∥f(h, y, t)∥2
t20

)2

η2

+

(
maxt ∥f(·, y, t)∥Lip

σ (t0)

)2

η2 max
{
E ∥h0∥2 , d0

}
+ ηd0,

and η is the step size in the backward process.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

Lemma F.9 (Lemma 6 of Chen et al. (2023c)). Consider the following discretized SDE with step
size µ satisfying T − t0 = KTµ

dyt =

[
1

2
− 1

σ(T − kµ)

]
ykµdt+ dUt, for t ∈ [kµ, (k + 1)µ),

where Y0 ∼ N(0, I). Then when T > 1 and t0 + µ ≤ 1, we have YT−t0 ∼ N
(
0, σ2I

)
with

σ2 ≤ e (t0 + µ).

Lemma F.10 (Lemma 10 in Chen et al. (2023c)). Assume that ∇ log ph(h|y) is Lh-Lipschitz. Then
we have Eh∼Ph

∥∇ log ph(h|y)∥22 ≤ d0Lh.

Main Proof of Theorem F.3. Now we are ready to state the main proof.

Proof of Theorem F.3. Recall that in (F.23), we have

ξ(n, t0, d̃, L̃) :=
1

t20
n

−3

2(1+3/d̃+4L̃) log3 L log3 n.

• Proof of (i). With Lemma F.7, we replace ϵ to be ϵ(T − t0)
2 and we set Csh = Lhd0 by

Lemma F.10, we have

∥∥WUW
⊤
U − UU⊤

∥∥2
F
= O

(
t20ξ(n, t0, d̃, L̃)

c0

)
.

We substitute the score estimation error in Theorem F.2 and T = O(log n) into the bound above,
we deduce ∥∥WUW

⊤
U − UU⊤

∥∥2
F
= Õ

(
1

c0
n

−3

2(1+3/d̃+4L̃) · log3 n
)
.

We note that log n is great enough to make T satisfies T ≥ max{log(Ch/d0 + 1), 1} where
Ch ≥ Eh∼Ph

∥h∥22.

• Proof of (ii). Lemma F.7 and Lemma F.10 imply that

E
∥∥M⊤f(Mh, y, t)− q(h, y, t)

∥∥2
2
= O(ϵlatent(T − t0)),

where

ϵlatent = ϵ · O

(
t0
c0

[
(T − log t0)d0 · L2

s+ + d0Lh

]
+
L2
s+ · Ch

c0

)
.

Through the algebra calculation, we get

E
∥∥M⊤f(Mh, y, t)− q(h, y, t)

∥∥2
2
=

∫ T

t0

Eh∼Ph
t

∥∥∥∥U⊤f(Uh, y, t)− h

σ2
t

−∇ log pht (h|y)
∥∥∥∥2
2

dt

≤ ϵlatent(T − t0).

With ϵlatent and Lemma F.8, we obtain

TV(Ph
t0 , (WUM)⊤♯ P̂

dis
t0)

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

≲
√
ϵlatent (T − t0) +

√
KL (Ph∥N (0, Id0

)) exp(−T) +
√
ϵdis (T − t0)

= Õ

(
1

t0
√
c0
n

−3

2(1+3/d̃+4L̃) · log3 n+
1

n
+ µ

√
d20 log d0
t20

+
√
µ
√
d0

)
.

As we choose time step µ = O
(
t20/d0

√
log d0n

−3

4(1+3/d̃+4L̃)

)
, we obtain

TV(Ph
t0 , (WUM)⊤♯ P̂

dis
t0) = Õ

(
1

t0
√
c0
n

−3

2(1+3/d̃+4L̃) · log3 n
)
.

By definition, P̂h,dis
t0 = (UWB)

⊤
♯ P̂

dis
t0 . This completes the proof of the total variation distance.

• Proof of (iii). We apply Lemma F.9 due to our score decomposition. With the marginal distribution
at time T − t0 and observing µ≪ t0, we obtain the last property.

This completes the proof.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

G SUPPLEMENTARY THEORETICAL BACKGROUND

In this section, we provide an overview of the conditional diffusion model and classifier guidance in
Appendix G.1 and classifier-free guidance in Appendix G.2.

G.1 CONDITIONAL DIFFUSION PROCESS

Conditional diffusion models use the conditional information (guidance) y to generate samples from
conditional data distribution P (·|y = guidance). Depending on the model’s objective, the guidance
is either a label for generating categorical images, a text prompt for generating images from input
sentences, or an image region for tasks like image editing and restoration. Throughout this paper, we
coin diffusion models with label guidance y as conditional diffusion models (CDMs). Practically,
implement a conditional diffusion model characterized as classifier and classifier-free guidance. The
classifier guidance diffusion model combines the unconditional score function with the gradient of an
external classifier trained on corrupted data. On the other hand, classifier-free guidance integrates the
conditional and unconditional score function by randomly ignoring y with mask signal (see (G.6)).
In this paper, we focus on the latter approach.

Specifically, we consider data x ∈ Rdx and label y ∈ Rdy with initial conditional distribution P (x|y).
The diffusion process (forward Ornstein–Uhlenbeck process) is characterized by:

dXt = −1

2
Xtdt+ dWt with X0 ∼ P (x|y), (G.1)

where Wt is a Wiener process. The distribution at any finite time t is denoted by Pt(x|y), and X∞
follows standard Gaussian distribution. Up to a sufficiently large terminating time T, we generate
samples by the reverse process:

dX←t =

[
1

2
X←t +∇ log pT−t(X

←
t |y)

]
dt+ dW t with X←0 ∼ PT (x|y), (G.2)

where the term ∇ log pT−t(X
←
t |y) represents the conditional score function. We have Xt|X0 ∼

N(αtX0, σ
2
t I) with αt = e−t/2 and σ2

t = 1− e−t.

We use a score network ŝ to estimate the conditional score function ∇ log pt(x|y), and the quadratic
loss of the conditional diffusion model is given by

ŝ := argmin
s∈T h,s,r

R

Et

[
E(x0,y)

[
E(x′∼x′|x0)

[
∥s(x′, y, t)−∇x′ log pt(x

′|x0)∥
2
2

]]]
, (G.3)

where t ∼ Unif(t0, T).

With the estimate score network ŝ in (G.3), we generates the conditional sample in the backward
process as follows:

dX̃←t =

[
1

2
X̃←t + ŝ

(
X̃←t , y, T − t

)]
dt+ dW t with X̃←0 ∼ N(0, Id). (G.4)

Classifier guidance (Song et al., 2021; Dhariwal and Nichol, 2021) and classifier-free guidance (Ho
and Salimans, 2022) are piratical implementations for conditional score estimation. For classifier
guidance (Song et al., 2021; Dhariwal and Nichol, 2021), it use the gradient of the classifier to improve
the conditional sample quality of the diffusion model. According to Bayes rule, the conditional score
function has the relation:

∇x log pt(xt|y) = ∇ log pt(xt)︸ ︷︷ ︸
Approximate by ŝ

+ ∇x log pt(y|xt)︸ ︷︷ ︸
Guidance from classifier

. (G.5)

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

It uses the neural network to approximate the unconditional score function ∇ log p̂t(xt) along with
external classifier to approximate p̂t(y|xt) and compute the gradient of the classifier logits as the
guidance ∇ log p̂t(y|xt).

G.2 CLASSIFIER-FREE GUIDANCE

Classifier-free guidance (Ho and Salimans, 2022) provides a widely used approach for training
condition diffusion models. It not only simplifies the training pipeline but also improves performance
and removes the need for an external classifier. Classifier-free guidance diffusion model approximates
both conditional and unconditional score functions by neural networks sW , where W is the network
parameters.

Our primary goal is to establish the theoretical guarantee for selecting conditional score estimator
ŝ(x, y, t) chosen from the transformer architecture class and bound the error for such estimation.
Based on previous work by Dhariwal and Nichol (2021); Fu et al. (2024b); Sohl-Dickstein et al.
(2015); Ho and Salimans (2022), we adopt the unified setting for the conditional diffusion model.
First we define the mask signal as τ := {∅, id}, where ∅ denotes the the absence of guidance y and id
denotes otherwise. Unites the learning of conditional and unconditional scores by randomly ignoring
the guidance y. Therefore we write the function class of the score estimator as

s(x, y, t) =

{
s1(x, y, t), if y ∈ Rdy

s2(x, t), if y = ∅.
(G.6)

Both s1(x, y, t) and s2(x, t) belong to the transformer function class with slight adaption. Following
Fu et al. (2024b), we consider P (τ = id) = P (τ = ∅) = 1

2 without loss of generality, and we have
the following objective function for score matching:

ŝ := argmin
sW∈T h,s,r

R

Et

[
E(x0,y)

[
E(τ,x′∼x′|x0)

[
∥sW (x′, τy, t)−∇x′ log pt(x

′|x0)∥
2
2

]]]
.

In practice, the loss function is given by

ℓ(x0, y; sW) =

∫ T

T0

1

T − T0
Eτ,xt|x0∼N(αtx0,σ2

t Idx)

[
∥sW (xt, τy, t)−∇xt

log pt (xt|x0)∥22
]
dt,

(G.7)

where T0 is a small value for stabilize training (Vahdat et al., 2021). To train sW , we select n i.i.d.
training samples {x0,i, yi}ni=1, where x0,i ∼ P0(·|yi). We utilize the following empirical loss:

L̂(sW) =
1

n

n∑
i=1

ℓ(x0,i, yi; sW). (G.8)

With the estimate score function sW (x, y, t) from minimizing the empirical loss in (G.8), we use
sW (x, y, t) to generate new samples. In the classifier-free guidance setting, we generate a new
conditional sample by replacing the approximation sW in (G.4) with s̃W , defined as:

s̃W (x, y, t) = (1 + η) · sW (x, y, t)− η · sW (x, ∅, t), (G.9)

where the strength of guidance η > 0. The proper choice of η is crucial for balancing trade-offs
between conditional guidance and unconditional ones. The choice directly impacts the performance
of the generation process. Wu et al. (2024b) theoretically study the effect of guidance η on Gaussian
mixture model. They demonstrate that strong guidance improves classification confidence but reduces
sample diversity. For more detailed related work, refer to Appendix C.1.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

H UNIVERSAL APPROXIMATION OF TRANSFORMERS

H.1 TRANSFORMERS AS UNIVERSAL APPROXIMATORS

Background: Contextual Mapping. Let X,Y ∈ Rd×L be the input and output label sequences,
respectively. Let X:,i ∈ Rd be the i-th token (column) of each X sequence.

Definition H.1 (Vocabulary). We define the i-th vocabulary set for i ∈ [N] by V(i) =
⋃

k∈[L]X
(i)
:,k ⊂

Rd, and the whole vocabulary set V is defined by V =
⋃

i∈[N] V(i) ⊂ Rd.

To facilitate our analysis, we introduce the idea of input token separation following (Kajitsuka and
Sato, 2024; Kim et al., 2022; Yun et al., 2020).

Definition H.2 (Tokenwise Separateness). Let Z(1), . . . , Z(N) ∈ Rd×L be input sequences. Then,
Z(1), . . . , Z(N) are called tokenwise (γmin, γmax, δ)-separated if the following three conditions hold.

(i) For any i ∈ [N] and k ∈ [n], ∥Z(i)
:,k∥ > γmin holds.

(ii) For any i ∈ [N] and k ∈ [n], ∥Z(i)
:,k∥ < γmax holds.

(iii) For any i, j ∈ [N] and k, l ∈ [n] if Z(i)
:,k ̸= Z

(j)
:,l , then ∥Z(i)

:,k − Z
(j)
:,l ∥ > δ holds.

Note that when only conditions (ii) and (iii) hold, we denote this as (γ, δ)-separateness. Moreover, if
only condition (iii) holds, we denote it as (δ)-separateness.

To clarify condition (iii), we consider cases where there are repeated tokens between different input
sequences. Next, we define contextual mapping. Contextual mapping describes a function’s ability to
capture the context of each input sequence as a whole and assign a unique ID to each input sequence.

Definition H.3 (Contextual Mapping). Let X(1), . . . , X(N) ∈ Rd×L be input sequences. Then, a
map q : Rd×L → Rd×L is called an (γ, δ)-contextual mapping if the following two conditions hold:

1. For any i ∈ [N] and k ∈ [L], ∥q(X(i)):,k∥ < γ holds.

2. For any i, j ∈ [N] and k, l ∈ [L] such that V(i) ̸= V(j) or X(i)
:,k ̸= X

(j)
:,l , ∥q(X(i)):,k −

q(X(j)):,l∥ > δ holds.

Note that q
(
X(i)

)
for i ∈ [N] is called a context ID of X(i).

Helper Lemmas. To prove that 1-layer single-head attention is a contextual mapping, we first
introduce some useful lemmas.

Lemma H.1 (Boltz Preserves Distance, Lemma 1 of (Kajitsuka and Sato, 2024)). Given (γ, δ)-
tokenwise separated vectors z(1), . . . , z(N) ∈ Rn with no duplicate entries in each vector, that
is

z(i)s ̸= z
(i)
t ,

where i ∈ [N] and s, t ∈ [L], s ̸= t. Also, let

δ ≥ 4 lnn.

Then, the outputs of the Boltzmann operator has the following property:∣∣∣Boltz(z(i))∣∣∣ ≤ γ, (H.1)∣∣∣Boltz(z(i))− Boltz
(
z(j)
)∣∣∣ > δ′ = ln2(n) · e−2γ (H.2)

for all i, j ∈ [N], i ̸= j.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

Lemma H.2 (Lemma 13 of (Park et al., 2021)). For any finite subset X ⊂ Rd, there exists at least
one unit vector u ∈ Rd such that

1

|X |2

√
8

πd
∥x− x′∥ ≤

∣∣u⊤ (x− x′)
∣∣ ≤ ∥x− x′∥

for any x, x′ ∈ X .

With Lemma H.2, we present a configuration for weight matrices of a self-attention layer.

Lemma H.3 (Construction of Weight Matrices). Given a dataset with a (γmin, γmax, ϵ)-separated
finite vocabulary V ⊂ Rd. There exists rank-ρ weight matrices WK ,WQ ∈ Rs×d such that∣∣∣(WKva)

⊤
(WQvc)− (WKvb)

⊤
(WQvc)

∣∣∣ > δ,

for any δ > 0, any min (d, s) ≥ ρ ≥ 1 and any va, vb, vc ∈ V with va ̸= vb. In addition, the matrices
are constructed as

WK =

ρ∑
i=1

piq
⊤
i ∈ Rs×d, WQ =

ρ∑
j=1

p′jq
′⊤
j ∈ Rs×d,

where for at least one i, qi, q′i ∈ Rd are unit vectors that satisfy Lemma H.2, and pi, p′i ∈ Rs satisfies

∣∣p⊤i p′i∣∣ = 5 (|V|+ 1)
4
d

δ

ϵγmin
.

Proof of Lemma H.3. We build our proof upon (Kajitsuka and Sato, 2024). We start the proof by
applying Lemma H.2 to V ∪ {0}. We obtain at least one unit vector q ∈ Rd such that for any
va, vb ∈ V ∪ {0} and va ̸= vb, we have

1

(|V|+ 1)
2
d0.5

∥va − vb∥ ≤
∣∣q⊤ (va − vb)

∣∣ ≤ ∥va − vb∥.

By choosing vb = 0, we have that for any vc ∈ V

1

(|V|+ 1)
2
d0.5

∥vc∥ ≤
∣∣q⊤vc∣∣ ≤ ∥vc∥. (H.3)

For convenience, we denote the set of all unit vector q that satisfies (H.3) as Q. Next, we choose
some arbitrary vector pairs pi, p′i ∈ Rs that satisfy

∣∣p⊤i p′i∣∣ = (|V|+ 1)
4
d

δ

ϵγmin
. (H.4)

We construct the weight matrices by setting

WK =

ρ∑
i=1

piq
⊤
i ∈ Rs×d,

WQ =

ρ∑
j=1

p′jq
′⊤
j ∈ Rs×d,

where for at least one i, pi, p′i satisfies (H.4) and qi, q′j ∈ Q. Here, Q = {q ∈ Rn : ∥q∥ = 1} denotes
the set of all unit vectors in Rn. We arrive at

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

∣∣∣(WKva)
⊤
(WQvc)− (WKvb)

⊤
(WQvc)

∣∣∣
=
∣∣∣(va − vb)

⊤
(WK)

⊤
(WQvc)

∣∣∣
=

∣∣∣∣∣∣(va − vb)
⊤

(
ρ∑

i=1

qip
⊤
i

) ρ∑
j=1

p′jq
′⊤
j vc

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(

ρ∑
i=1

(va − vb)
⊤
qip
⊤
i

) ρ∑
j=1

p′jq
′⊤
j vc

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ρ∑

i=1

ρ∑
j=1

(va − vb)
⊤
qip
⊤
i p
′
jq
′⊤
j vc

∣∣∣∣∣∣
=

ρ∑
i=1

ρ∑
j=1

∣∣∣(va − vb)
⊤
qi

∣∣∣ · ∣∣p⊤i p′j∣∣ · ∣∣q′⊤j vc
∣∣

≥ 1

(|V|+ 1)
2
d0.5

∥va − vb∥ · (|V|+ 1)
4
d

δ

ϵγmin
· 1

(|V|+ 1)
2
d0.5

∥vc∥
(
By (H.3) and (H.4)

)
> δ.

(
By (γmin, γmax, ϵ)-separateness of V

)
This completes the proof.

Any-Rank Attention is Contextual Mapping. Now we present the result showing that a softmax-
based 1-head, 1-layer attention block with any-rank weight matrices is a contextual mapping.

Theorem H.1 (Any-Rank Attention is (γ, δ)-Contextual Mapping, Modified from Theorem 2 of (Ka-
jitsuka and Sato, 2024)). Given input sequences X(1), . . . , X(N) ∈ Rd×L which are (γmin, γmax, ϵ)-
tokenwise separated and vocabulary set V =

⋃
i∈[N] V(i) ⊂ Rd. Also, let X(1), . . . , X(N) ∈ Rd×L

be sequences with no duplicate word token in each sequence, that is,X(i)
:,k ̸= X

(i)
:,l , for any i ∈ [N] and

k, l ∈ [L]. Then, there exists a 1-layer single head attention with weight matrices WO ∈ Rd×s and
WV ,WK ,WQ ∈ Rs×d, that is a (γ, δ)-contextual mapping for the input sequences X(1), . . . , X(N)

with γ = γmax + ϵ/4, δ = exp
(
−5ϵ−1|V|4dκγmax logL

)
where κ = γmax/γmin.

Theorem H.1 indicates that any-rank self-attention function distinguishes input tokens X(i)
:,k = X

(j)
:,l

such that V(i) ̸= V(j). In other words, it distinguishes two identical tokens within a different context.

Remark H.1 (Comparing with Existing Works). In comparison with (Kajitsuka and Sato, 2024),
they provide a proof for the case where all self-attention weight matrices WV ,WK ,WQ ∈ Rs×d are
strictly rank-1. However, this is almost impossible in practice for any pre-trained transformer-based
models. Here, by considering self-attention weight matrices of rank ρ where 1 ≤ ρ ≤ min(d, s), we
show that single-head, single-layer self-attention with matrices of any rank is a contextual mapping,
pushing the universality of (prompt tuning) transformers towards more practical scenarios.

Remark H.2. In (Kajitsuka and Sato, 2024), γ and δ are chosen as follows:

γ = γmax +
ϵ

4
, δ =

2(lnL)2ϵ2γmin

γ2max(|V|+ 1)4(2 lnL+ 3)πd
exp

(
−(|V|+ 1)4

(2 lnL+ 3)πdγ2max

4ϵγmin

)
.

Since the exponential term dominates the polynomial terms, in Lemma H.1, we simplify δ to
exp
(
−Θ(ϵ−1|V|4dκγmax lnL)

)
.

Proof Sketch. We generalize the results of (Kajitsuka and Sato, 2024, Theorem 2) where all weight
matrices have to be rank-1. We eliminate the rank-1 requirement, and extend the lemma for weights

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

of any rank ρ . This is achieved by constructing the weight matrices as a outer product sum
∑ρ

i uiv
⊤
i ,

where ui ∈ Rs, vi ∈ Rd. Specifically, we divide the proof into two parts:

• We first construct a softmax-based self-attention that maps different input tokens to unique contex-
tual embeddings, by configuring weight matrices according to Lemma H.3.

• Secondly, for the identical tokens within a different context, we utilize the tokenwise separateness
guaranteed by Lemma H.3 and Lemma H.1 which shows Boltz preserves some separateness.

As a result, we prove that the self-attention function distinguishes input tokens X(i)
:,k = X

(j)
:,l such

that V(i) ̸= V(j). This completes the proof.

Proof of Theorem H.1. We build our proof upon (Kajitsuka and Sato, 2024). We construct a self-
attention layer that is a contextual mapping. There are mainly two things to prove. We first show that
the attention later we constructed maps different tokens to unique ids. Secondly, we prove that the
self-attention function distinguishes duplicate input tokens within different context. For the first part,
we show that our self-attention layer satisfies:

∥Ψ∥ =

∥∥∥∥WO

(
WVX

(i)
)
Softmax

[(
WKX

(i)
)⊤ (

WQX
(i)
:,k

)]∥∥∥∥ < ϵ

4
, (H.5)

for i ∈ [N] and k ∈ [L]. Since with (H.5), it is easy to show that∥∥∥∥f (SA)
(
X(i)

)
:,k

− f (SA)
(
X(j)

)
:,l

∥∥∥∥ =
∥∥∥X(i)

:,k −X
(j)
:,l +

(
Ψ(i) −Ψ(j)

)∥∥∥ (H.6)

≥
∥∥∥X(i)

:,k −X
(j)
:,l

∥∥∥− ∥∥∥Ψ(i) −Ψ(j)
∥∥∥

≥
∥∥∥X(i)

:,k −X
(j)
:,l

∥∥∥− ∥∥∥Ψ(i)
∥∥∥− ∥∥∥Ψ(j)

∥∥∥
> ϵ− ϵ

4
− ϵ

4
=
ϵ

2
,

(
By ϵ-separatedness of X and H.5

)
for any i, j ∈ [N] and k, l ∈ [L] such thatX(i)

:,k ̸= X
(j)
:,l . Now, we prove (H.5) by utilizing Lemma H.3.

We define the weight matrices as

WK =

ρ∑
i=1

piq
⊤
i ∈ Rs×d,

WQ =

ρ∑
j=1

p′jq
′⊤
j ∈ Rs×d,

where pi, p′j ∈ Rs and qi, q′j ∈ Rd. In addition, let δ = 4 lnn and p1, p′1 ∈ Rs be an arbitrary vector
pair that satisfies

∣∣p⊤1 p′1∣∣ = (|V|+ 1)
4
d

δ

ϵγmin
. (H.7)

Then by Lemma H.3, there are some unit vectors q1, q′1 such that we have,∣∣∣(WKva)
⊤
(WQvc)− (WKvb)

⊤
(WQvc)

∣∣∣ > δ, (H.8)

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

for any va, vb, vc ∈ V with va ̸= vb. In addition, for the other two weight matrices WO ∈ Rd×s and
WV ∈ Rs×d, we set

WV =

ρ∑
i=1

p′′i q
′′⊤
i ∈ Rs×d, (H.9)

where q′′ ∈ Rd, q′′1 = q1 and p′′i ∈ Rs is some nonzero vector that satisfies

∥WOp
′′
i ∥ =

ϵ

4ργmax
, (H.10)

This can be accomplished, e.g., WO =
∑ρ

i=1 p
′′′
i p
′′
i
⊤ for any vector p′′′i which satisfies ∥p′′′i ∥ =

ϵ/(4ρ2γmax∥p′′i ∥
2
) for any i ∈ [ρ]. As a result, we now bound Ψ as:

∥Ψ∥ =

∥∥∥∥WO

(
WVX

(i)
)
Softmax

[(
WKX

(i)
)⊤ (

WQX
(i)
:,k

)]∥∥∥∥
=

∥∥∥∥∥
L∑

k′=1

skk′WO

(
WVX

(i)
)
:,k′

∥∥∥∥∥ (
Denote skk′ = Softmax

[(
WKX(i)

)⊤ (
WQX

(i)
:,k

)]
k′

)

=

L∑
k′=1

skk′

∥∥∥∥WO

(
WVX

(i)
)
:,k′

∥∥∥∥
≤ max

k′∈[L]

∥∥∥∥WO

(
WVX

(i)
)
:,k′

∥∥∥∥ (∑n
k′=1 s

k
k′ = 1

)
= max

k′∈[L]

∥∥∥∥∥WO

(
ρ∑

i=1

p′′i q
′′⊤
i

)
X

(i)
:,k′

∥∥∥∥∥ (
By Lemma H.3

)
=

ρ∑
i=1

∥WOp
′′
i ∥ · max

k′∈[L]

∣∣∣q′′⊤i X
(i)
:,k′

∣∣∣ (
By (H.10)

)
=

ϵ

4γmax
· max
k′∈[L]

∥∥∥X(i)
:,k′

∥∥∥ (
By (H.10) and ∥q′′i ∥ = 1

)
<
ϵ

4
.

Next, for the second part, we prove that with the weight matrices WO,WV ,WK ,WQ configured
above, the attention layer distinguishes duplicate input tokens with different context, X(i)

:,k = X
(j)
:,l

with V(i) ̸= V(j). We choose any i, j ∈ [N] and k, l ∈ [L] such that X(i)
:,k = X

(j)
:,l and V(i) ̸= V(j).

In addition, we define a(i), a(j) as

a(i) =
(
WKX

(i)
)⊤ (

WQX
(i)
:,k

)
∈ Rn, a(j) =

(
WKX

(j)
)⊤ (

WQX
(j)
:,l

)
∈ Rn.

From (H.8) we have that a(i) and a(j) are tokenwise (γ, δ)-separated where γ is computed by∣∣∣a(i)k′

∣∣∣ = ∣∣∣∣(WKX
(i)
:,k′

)⊤ (
WQX

(i)
:,k

)∣∣∣∣
=

∣∣∣∣∣∣
(

ρ∑
i=1

piq
⊤
i X

(i)
:,k′

)⊤ ρ∑
j=1

p′jq
′⊤
j X

(i)
:,k

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(

ρ∑
i=1

X
(i)⊤
:,k′ qip

⊤
i

) ρ∑
j=1

p′jq
′⊤
j X

(i)
:,k

∣∣∣∣∣∣
53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

=

∣∣∣∣∣∣
ρ∑

i=1

ρ∑
j=1

X
(i)⊤
:,k′ qip

⊤
i p
′
jq
′⊤
j X

(i)
:,k

∣∣∣∣∣∣
=

ρ∑
i=1

ρ∑
j=1

∣∣∣X(i)⊤
:,k′ qi

∣∣∣∣∣p⊤i p′j∣∣∣∣∣q′⊤j X
(i)
:,k

∣∣∣
≤ | (|V|+ 1)

4
d

δ

ϵγmin
γ2max.

(
By (H.7) and ∥qi∥ =

∥∥q′j∥∥ = 1
)

Therefore,

γ = (|V|+ 1)
4
d
δγ2max

ϵγmin
.

Now, since V(i) ̸= V(j) and there is no duplicate token in X(i) and X(j) respectively, we use
Lemma H.1 and obtain that∣∣∣Boltz(a(i))− Boltz

(
a(j)
)∣∣∣ = ∣∣∣∣(a(i))⊤ Softmax

[
a(i)
]
−
(
a(j)
)⊤

Softmax
[
a(j)
]∣∣∣∣ (H.11)

> δ′

= (lnn)2e−2γ .

As we assumed X(i)
:,k = X

(j)
:,l , we have∣∣∣∣(a(i))⊤ Softmax

[
a(i)
]
−
(
a(j)
)⊤

Softmax
[
a(j)
]∣∣∣∣ (H.12)

=

∣∣∣∣(X(i)
:,k

)⊤
(WQ)

⊤
WK

(
X(i) Softmax

[
a(i)
]
−X(j) Softmax

[
a(j)
])∣∣∣∣

=

∣∣∣∣∣∣
(
X

(i)
:,k

)⊤ ρ∑
j=1

q′jp
′⊤
j

(ρ∑
i=1

piq
⊤
i

)(
X(i) Softmax

[
a(i)
]
−X(j) Softmax

[
a(j)
])∣∣∣∣∣∣(

By Lemma H.3
)

=

ρ∑
i=1

ρ∑
j=1

∣∣∣q′⊤j X
(i)
:,k

∣∣∣ · ∣∣p′⊤j pi
∣∣ · ∣∣∣(q⊤i X(i)

)
Softmax

[
a(i)
]
−
(
q⊤i X

(j)
)
Softmax

[
a(j)
]∣∣∣

≤
ρ∑

i=1

γmax · (|V|+ 1)4
πd

8

δ

ϵγmin
·
∣∣∣(q⊤i X(i)

)
Softmax

[
a(i)
]
−
(
q⊤i X

(j)
)
Softmax

[
a(j)
]∣∣∣.(

By (H.7)
)

By combining (H.11) and (H.12), we have

ρ∑
i=1

∣∣∣(q⊤i X(i)
)
Softmax

[
a(i)
]
−
(
q⊤i X

(j)
)
Softmax

[
a(j)
]∣∣∣ > δ′

(|V|+ 1)
4

ϵγmin

dδγmax
. (H.13)

Now we arrive at the lower bound of the difference between the self-attention outputs of X(i), X(j)

as: ∥∥∥∥f (SA)
S

(
X(i)

)
:,k

− f
(SA)
S

(
X(j)

)
:,l

∥∥∥∥ (H.14)

=
∥∥∥WO

(
WVX

(i)
)
Softmax

[
a(i)
]
−WO

(
WVX

(j)
)
Softmax

[
a(j)
]∥∥∥

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

=

ρ∑
i=1

∥WOp
′′
i ∥ ·

∣∣∣(q′′⊤i X(i)
)
Softmax

[
a(i)
]
−
(
q′′⊤i X(j)

)
Softmax

[
a(j)
]∣∣∣(

WV =
∑ρ

i=1 p
′′
i q

′′⊤
i

)
>

ϵ

4γmax

δ′

(|V|+ 1)
4

ϵγmin

dδγmax
.

(
By (H.10) and (H.13)

)
where δ = 4 lnL and δ′ = ln2(L)e−2γ with γ = (|V|+ 1)

4
dδγ2max/(ϵγmin). Note that we are able

to use (H.13) in the last inequality of (H.14) because (H.13) is guaranteed by q1, and we set q′′1 = q1
when constructing WV in (H.9).

Theorem H.2 (Transformers with 1-Layer Self-Attention are Universal Approximators, Modified
from Proposition 1 of (Kajitsuka and Sato, 2024)). Let 0 ≤ p <∞ and f (FF), f (SA) be feed-forward
neural network layers and a single-head self-attention layer with softmax function respectively. Then,
for any permutation equivariant, continuous function f with compact support and ϵ > 0, there exists
f ′ ∈ T h,s,r

R such that dp(f, f ′) < ϵ holds

Proof of Theorem H.2. We restate the proof from (Kajitsuka and Sato, 2024) for completeness.

The proof consists of the following steps:

1. Approximate by Step Function: Given a permutation equivariant continuous function f on a
compact set, there exists a Transformer f ′ ∈ T h,s,r

R with one self-attention layer to approximate
f by step function with arbitrary precision in terms of p-norm.

2. Quantization via fFF
1 : The first feed-forward network fFF

1 quantize the input domain, reducing the
problem to memorization of finite samples.

3. Contextual Mapping f (SA) and Memorization fFF
2 : According to Theorem H.1, we construct

any-rank attention f (SA) to be contextual mapping. Then use the second feed-forward fFF
2 to

memorize the context ID with its corresponding label.

The details for the three steps are below.

1. Since f is a continuous function on a compact set, f has maximum and minimum values on the
domain. By scaling with fFF

1 and fFF
2 , f is assumed to be normalized without loss of generality:

That is for any Z ∈ Rd×L \ [0, 1]d×L, we have f(Z) = 0. For any X ∈ [−1, 1]d×L, the function
f(X) satisfies −1 ≤ f(X) ≤ 1.

Let D ∈ N be the granularity of a grid

GD = {1/D, 2/D, . . . , 1}d×L ⊂ Rd×L

such that a piece-wise constant approximation

f(X) =
∑

L∈GD

f (L) 1Z∈L+[−1/D,0)d×L

satisfies

dp(f, f) < ϵ/3. (H.15)

Such a D always exists because of uniform continuity of f .

2. We use fFF
1 to quantize the input domain into GD.

We first define the following two terms for first feed-forward neural network to approximate.

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

• The quantize term (quantd×LD : Rd×L → Rd×L): Quantize [0, 1] into {1/D, . . . , 1}, while it
projects R \ [0, 1] to 0 by shifting and stacking step function.

D−1∑
t=0

ReLU [x/δ − t/δD]− ReLU [x/δ − 1− t/δD]

D

≈ quantD(x) =

0 x < 0

1/D 0 ≤ x < 1/D
...

...
1 1− 1/D ≤ x

. (H.16)

• The penalty term (penalty): Identify whether an input sequence is in [0, 1]d×L. This is defined
by

ReLU [(x− 1)/δ]− ReLU [(x− 1)/δ − 1]− ReLU [−x/δ]− ReLU [−x/δ − 1]

≈ penalty(x) =

−1 x ≤ 0

0 0 < x ≤ 1

−1 1 < x

. (H.17)

Combining these components together, the first feed-forward neural network layer fFF
1 approxi-

mates the following function:

f
(FF)
1 (X) = quantd×LD (X) +

d∑
t=1

L∑
k=1

penalty(Xt,k) (H.18)

Note that this function quantizes inputs in [0, 1]d×L with granularity D, while every element of
the output is non-positive for inputs outside [0, 1]d×L. In particular, the norm of the output is
upper-bounded by

max
X∈Rd×L

∥∥fFF
1 (X):,k

∥∥ = dL︸︷︷︸
Total number of elements in X

×
√
d︸︷︷︸

Maximum Euclidean norm in d-dimensional space

(H.19)

for any k ∈ [L].

3. Let G̃D ⊂ GD be a sub-grid

G̃D = {G ∈ GD | ∀k, l ∈ [L], G:,k ̸= G:,l} ,

and consider memorization of G̃D with its labels given by f(G) for each G ∈ G̃D. Using our
modified any-rank attention is contextual mapping in Theorem H.1 allows us to construct a
self-attention f (SA) to be a contextual mapping for such input sequences, because G̃D can be
regarded as tokenwise (1/D,

√
d, 1/D)-separated input sequences. By taking sufficiently large

granularity D of GD, the number of cells with duplicate tokens, that is, |GD \ G̃D| is negligible.

From the way the self-attention f (SA) is constructed, we have∥∥∥f (SA)(X):,k −X:,k

∥∥∥ < 1

4
√
dD

max
k′∈[L]

∥X:,k′∥

for any k ∈ [L] and X ∈ Rd×L.

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

If we take large enoughD, every element of the output forX ∈ Rd×L\[0, 1]d×L is upper-bounded
by

f (SA) ◦ fFF
1 (X)t,k <

1

4D
(∀t ∈ [d], k ∈ [L]),

while the output for X ∈ [0, 1]d×L is lower-bounded by

f (SA) ◦ fFF
1 (X)t,k >

3

4D
(∀t ∈ [d], k ∈ [L]).

Finally, we construct bump function of scale R > 0 to map each input sequence L ∈ G̃D to
its labels f(L) and for input sequence outside the range X ∈ (−∞, 1/4D)d×L to 0 using the
second feed-forward fFF

2 . Precisely, bump function of scale R > 0 is given by

bumpR(x) =
f(L)

dL

d∑
t=1

L∑
k=1

(ReLU [R(Xt,k −Gt,k)− 1]− ReLU [R(Zt,k −Gt,k)]

+ ReLU [R(Zt,k −Gt,k) + 1]) + ReLU[R(Gt,k − Zt,k)]
(H.20)

for each input sequence G ∈ G̃D and add up these functions to implement fFF
2 .

In addition, the value of f (FF)
2 is always bounded: 0 ≤ f

(FF)
2 ≤ 1. Thus, by taking sufficiently

small δ > 0 to quantize the step function, we have

dp

(
f
(FF)
2 ◦ f (SA) ◦ f (FF)

1 , f
(FF)
2 ◦ f (SA) ◦ f (FF)

1

)
<
ϵ

3
. (H.21)

Taking large enough D to make duplicate tokens negligible, we have

dp

(
f
(FF)
2 ◦ f (SA) ◦ f (FF)

1 , f
)
<
ϵ

3
. (H.22)

Combining estimation of step function (H.15), estimation of quantization (H.21) and estimatation
of duplicate tokens (H.22) together, we get the approximation error of the any-rank Transformer
as

dp

(
f
(FF)
2 ◦ f (SA) ◦ f (FF)

1 , f
)
< ϵ. (H.23)

This completes the proof.

Lastly, we provide the next corollary stating that the required transformer configuration (h, r, s) for
universal approximation.

Corollary H.2.1 (Universal Approximation of Transformers). From Theorem H.2, for any permu-
tation equivariant, continuous function f with compact support and ϵ > 0, a transformer network
f ′ ∈ T 1,1,4

R with MLP dimension (width) r = 4 and = O((1/ϵ)dL) FFN layers is sufficient to
approximate f such that dp(f, f ′) < ϵ.

Remark H.3. We remark that T 1,1,4
R belongs to the considered transformer network function class

Definition 2.2.

We establish in Corollary H.2.1 the minimal transformer configuration required to achieve universal
approximation for compactly supported functions. We remark that this configuration is minimally
sufficient but not necessary. More complex configurations can also achieve transformer universality,
as reported in (Hu et al., 2024; Kajitsuka and Sato, 2024; Yun et al., 2020).

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2025

Throughout this paper, unless otherwise specified, we use the transformer class T 1,1,4
R to construct

score function approximations.

H.2 PARAMETER NORM BOUNDS FOR TRANSFORMER APPROXIMATION

In the analysis of the approximation ability of transformers in (Kajitsuka and Sato, 2024), universal
approximation is ensured by using a sufficiently large granularity D, a sufficiently small δ in f (FF)

1 ,
and an appropriate scaling factor R in f (FF)

2 . Here, we provide a detailed discussion on parameter
bounds for matrices in T h,r,s

R , focusing on the choice of granularity and scaling factor.

Lemma H.4 (Order of Granularity and Scaling Factor). Consider the universal approximation
theorem for transformers in Theorem H.2. The order for the granularity and the scaling factor follows
D = O(ϵ−1/d) and R = O(D), and the parameter δ for the first feed-forward layer in (H.16) follows
δ = o(D−1).

Proof. We investigate the more precise choice of D, R, and δ respectively.

• Bound on Scaling Factor in f (FF)
2 .

First, we need to ensure that R > 0 is large enough such that it maps input Z ∈ (−∞, 1
4D)d×L to

zero.

Because we have Zt,k − Lt,k ≤ − 3
4D , we obtain the desired result from (H.20) by taking

R = O(D) such that three ReLU(·) output zero.

Second, we need to ensure that R > 0 is large enough such that it maps L ∈ G̃ ⊂ (3
4D ,∞)d×L to

the corresponding label f(L).

From (H.20), we achieve this by selecting proper R such that

d∑
t=1

L∑
k=1

ReLU [RS − 1]− ReLU [RS] + ReLU [RS + 1]ReLU[−RS] = dL,

where S := Zt,k − Lt,k = O(D−1).

For any S ∈ R, we take R = O(D) such that |RS| ≤ 1.

• Bound on Granularity D.
In (Kajitsuka and Sato, 2024), there are O(D−d|GD|) omitted duplicated input. Clearly, by taking
sufficiently large granularity

∣∣∣GD \ G̃D

∣∣∣ becomes negligible, but here we aim to evaluate the
corresponding order of D.

First, by the extreme value theorem, the continuous function f on [0, 1]d×L here is bounded by
some constant, denoted by B.

Second, the total omitted points are O(Dd(L−1)).

Third, the probability for each point in GD is 1/DdL.

Therefore, the corresponding error is bounded by O(D−d/p). Since we require error to be bounded
ϵ/3, setting D = O(ϵ−p/d) for some constant p > 0 guarantees the result. We provide the detailed
derivations as follows.

We follow (Kajitsuka and Sato, 2024) considering Lipschitz (under p-norm) function class of
continuous sequence-to-sequence. This consideration is practical as realistic input of transformer
blocks are vector embedding in Euclidean space. Let f(·) : [0, 1]d×L → [0, 1]d×L be the target
function and f(·) be the piece-wise constant approximation of regularity D. Recall the p-norm

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2025

difference between two function f(·) and f(·). (H.15) gives

dp(f, f) = (

∫
∥f(x)− f(x)∥pdx)1/p

= O(DdL−d) · (Bp(1/D)dL)1/p

= O(D(dL−d)/p) · O(D−dL/p)

= O(D−d/p).

Here, O(D−d/p) = ϵ implies D = O(ϵ−p/d) for some constant p > 0. For simplicity, we use
D = O(ϵ−1/d) in our analysis without loss of generality.

• Bound on Parameter δ in f (FF)
1 .

In the quantization operation realized by the network, we need to ensure the error within region
(i/D, i/D + δ) does not affect the desired interval (i/D, (i+ 1)/D) for i ∈ [D].

Thus, we need δ = o(1/D).

This completes the proof.

Building upon Lemma H.4, we extend the results to derive explicit parameter bounds for matrices
regarding the transformer-based universal approximation framework. That is, we ensure a more
precise quantification of parameter constraints across the architecture.

Lemma H.5 (Transformer Matrices Bounds). Consider an input sequence Z ∈ [0, 1]d×L. Let f(Z) :
[0, 1]d×L → Rd×L be any permutation equivariant and continuous sequence-to-sequence function
on compact support [0, 1]d×L. For the transformer network f ′ ∈ T r,h,s

R defined in Definition 2.4 to
approximate f within ϵ precision, i.e., dp(f, f ′) < ϵ, the following parameter bounds must hold for
d ≥ 1 and L ≥ 2:

∥WQ∥2 = ∥WK∥2 = O(d · ϵ−(
2dL+1

d))(logL)
1
2);

∥WQ∥2,∞ = ∥WK∥2,∞ = O(d
3
2 · ϵ−(

2dL+1
d)(logL)

1
2);

∥WO∥2 = O
(√

dϵ
1
d

)
; ∥WO∥2,∞ = O

(
ϵ

1
d

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d);

∥W1∥2 = O
(
dϵ−

1
d

)
, ∥W1∥2,∞ = O

(√
dϵ−

1
d

)
;

∥W2∥2 = O
(
dϵ−

1
d

)
; ∥W2∥2,∞ = O

(√
dϵ−

1
d

)
;∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
.

For the case L = 1, the parameter bounds remain valid with the substitution of logL with 1.

Proof. For the self-attention layer, we denote the separatedness of the input tokens by (γmin, γmax, ϵs)
and the separatedness of the output tokens by (γ, δs). Moreover, in (H.16) we denote the parameter
taken in fFF

1 corresponding to the granularity by δf1 .

• Bounds for WQ and WK in f (SA).
From the universal approximation theorem of transformer Theorem H.2, with pi, p′i ∈ Rs and
qi, q

′
i, being any unit vectors in Rd, we construct rank ρ matrix WQ and WK as

WK =

ρ∑
i=1

piq
⊤
i ∈ Rs×d,

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2025

WQ =

ρ∑
i=1

p′iq
′⊤
i ∈ Rs×d,

with the identity p⊤i p
′
i = (|V|+ 1)4dδs/(ϵsγmin). With this, we have the bound for pi, p′i:

∥pi∥ = O

(
|V|2

√
d

δs
ϵsγmin

)
, ∥p′i∥ = O

(
|V|2

√
d

δs
ϵsγmin

)
. (H.24)

Summing over the set of p⊤i p
′
i for i = 1, . . . , ρ, we obtain the bound for rank ρ matrix WQ and

WK

∥WQ∥2 = sup
∥x∥2=1

∥WQx∥2 ≤ CQ = O

(
√
ρ|V|2

√
d

δc
ϵcγmin

)
,

∥WQ∥2,∞ = max
1≤i≤d

∥(WQ)(i,:)∥2 ≤ C2,∞
Q = O

(
ρ|V|2

√
d

δs
ϵsγmin

)
,

∥WK∥2 = sup
∥x∥2=1

∥WKx∥2 ≤ CK = O

(
√
ρ|V|2

√
d

δs
ϵsγmin

)
,

∥WK∥2,∞ = max
1≤i≤d

∥(WK)(i,:)∥2 ≤ C2,∞
K = O

(
ρ|V|2

√
d

δs
ϵsγmin

)
,

where ρ ≤ s and the head size s ≤ d.

After the first step quantization, we obtain vocabulary bounds |V| = O(DdL) and output sequences
with (1/D,

√
d, 1/D) tokenwise separatedness. Also, in Theorem H.2 we take δs = 4 logL so

that f (SA) is a contextual mapping.

Next, by Lemma H.4, we need D = O(ϵ1/(dL)) for Theorem H.2 to hold.

Combining all the components, we have the bounds for WQ and WK

∥WQ∥2, ∥WK∥2 = O
(
dD2dL+1(logL)

1
2

)
= O(dϵ

2dL+1
dL (logL)

1
2),

∥WQ∥2,∞, ∥WK∥2,∞ = O
(
d

3
2D2dL+1(logL)

1
2

)
= O(d

3
2 ϵ

2dL+1
dL (logL)

1
2)

• Bounds for WO and WV in f (SA).
Following the construction of WQ and WK in Theorem H.2, we have the relation for WV and WO

as

WV =

ρ∑
i=1

p′′i q
′′⊤
i ∈ Rs×d,

WO =

ρ∑
i=1

p′′′i p
′′
i
⊤ ∈ Rd×s,

with the identity ∥p′′′i ∥ ≲ ϵs/(4ργmax∥p′′i ∥) from (H.10), and p′′i ∈ Rs is any nonzero vector.

Along with the (γmin = 1/D, γmax =
√
d, ϵs = 1/D) separateness and taking D = O(ϵ1/(dL)),

we have the following bounds for WV and WO:

∥WV ∥2 = sup
∥x∥2=1

∥WV x∥2 ≤ CV = O (
√
ρ) ,

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2025

∥WV ∥2,∞ = max
1≤i≤d

∥(WV)(i,:)∥2 ≤ C2,∞
V = O (ρ) ,

∥WO∥2 = sup
∥x∥2=1

∥WOx∥2 ≤ CO = O
(√
ρ · ρ−1 · γ−1max · ϵs

)
= O

(
d−1ϵ−

1
dL

)
∥WO∥2,∞ = max

1≤i≤s
∥(WO)(i,:)∥2 ≤ C2,∞

O = O
(
ρ · ρ−1 · γ−1max · ϵs

)
= O

(
d−

1
2 ϵ−

1
dL

)
.

Note that we use the fact max ρ = d in the last two lines.

• Bounds for W1 in fFF
1 .

In order to approximate the quantization in Theorem H.2, we set up fFF
1 as in (H.16) where every

entry of W1 in the layer is bounded by O(1/δ). Therefore we have

∥W1∥2,∞ ≤ C2,∞
F1

= O

(√
d

δ

)
, (H.25)

∥W1∥2 ≤ ∥W1∥F ≤ CF1
= O

(
d

δ

)
, (H.26)

where the bound for δ is given from Lemma H.4. We set δ = νD−1 for some ν ∈ (0, 1) such that
we have the bounds O(

√
dϵ1/(dL)) and O(dϵ1/(dL)) respectively.

• Bounds on W2 in fFF.
The bounds for ∥W2∥2, ∥W2∥2,∞ in (H.20) follow the same argument as for W1, with the replace-
ment of the largest element with the scaling factor R. So we have

∥W2∥2,∞ ≤ C2,∞
F2

= O
(√

dR
)
, (H.27)

∥W2∥2 ≤ CF2
= O (dR) . (H.28)

Again, by Lemma H.4, we take R = O(D) = O(ϵ1/(dL)) such that we have the bounds
O(

√
dϵ1/(dL)) and O(dϵ1/(dL)) respectively.

• Bounds on Positional Encoding Matrix E.
For

∥∥E⊤∥∥
2
,
∥∥E⊤∥∥

2,∞, following (Kajitsuka and Sato, 2024), it suffices to set the positional
encoding:

E =

2γmax 4γmax · · · 2Lγmax
...

...
. . .

...
2γmax 4γmax · · · 2Lγmax

 .

Since the ℓ2 norm over every row is identical, it suffices to derive

∥∥E⊤∥∥
2,∞ =

(
L∑

i=1

(2iγmax)
2

) 1
2

=

(
4γ2max

L(L+ 1)(2L+ 1)

6

)2

= O
(
γmaxL

3
2

)
.

Recall that we have the relation γmax =
√
d in the self-attention layer. Therefore, we have the

following bound for encoding matrix E:∥∥E⊤∥∥
2,∞ ≤ CE = O(d1/2L3/2). (H.29)

This completes the proof.

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2025

I PROOF OF THEOREM 3.1

Our proof builds on the local smoothness properties of functions within Hölder spaces and the
universal approximation of transformers. While the universal approximation theory of transformers
in Appendix G ensures arbitrarily small errors, it does not account for the smoothness of functions in
the result. To incorporate the smoothness assumptions of interest, we propose the following three
steps to integrate function smoothness into approximation theory of transformer architectures.

• Step 1. Consider the integral form of pt(xt|y) in (3.1). We clip the input domain Rdx into closed
and bounded region Bx,N in (I.2). This facilitates the error analysis for the Taylor expansion
approximation in the next step. The clipping error arises from the integral over the region outside
Bx,N . We specify the clipping error in Lemma I.1.

• Step 2. We employ k1-order and k2-order Taylor expansion for p(x0|y) and exp(·) in (3.1).
We construct the diffused local polynomial in Lemma I.2 based on the Taylor expansion. We
approximate pt and ∇pt with the diffused local polynomial f1(x, y, t) ∈ R and f2(x, y, t) ∈ Rdx

in Lemma I.3 and Lemma I.4.

• Step 3. We approximate f1(x, y, t), f2(x, y, t) with transformers in Lemmas I.5 and I.6. To
construct the final score approximator with the transformer, we approximate necessary algebraic
operators in Lemmas I.7 to I.11. We provide the output bound of our transformer model in
Lemma I.12. We combine all components into Lemma I.13, and complete the proof of Theorem 3.1.

Organization. Appendix I.1 includes details regarding the three steps with auxiliary lemmas for
supporting our proof. Appendix I.2 includes the main proof of Theorem 3.1.

I.1 AUXILIARY LEMMAS

Step 1: Clip Rdx × [0, 1]dy for pt(x|y). We introduce a helper lemma on the clipping integral.

Lemma I.1 (Approximating Clipped Multi-Index Gaussian Integral, Lemma A.8 of (Fu et al., 2024b)).
Assume Assumption 3.1. Consider any integer vector κ ∈ Zdx

+ with ∥κ∥1 ≤ n. There exists a constant
C(n, dx) ≥ 1, such that for any x ∈ Rdx and 0 < ϵ ≤ 1/e, it holds∫

Rdx\Bx

∣∣∣∣(αtx0 − x

σt

)κ∣∣∣∣ · p(x0|y) · 1

σd
t (2π)

d/2
exp

(
−∥αtx0 − x∥2

2σ2
t

)
dx0 ≤ ϵ, (I.1)

where
(

αtx0−x
σt

)κ
:= ((αtx0[1]1−x[1]

σt
)κ[1], (αtx0[2]−x[2]

σt
)κ[2], . . . , (αtx0[dx]−x[dx]

σt
)κ[dx]) is a multi-

indexed vector and

Bx :=
[x− σtC(n, dx)

√
log (1/ϵ)

αt
,
x+ σtC(n, dx)

√
log (1/ϵ)

αt

]
⋂[

− C(n, dx)
√

log (1/ϵ), C(n, dx)
√
log (1/ϵ)

]dx

.

Remark I.1. Bx is a bounded domain. Lemma I.1 provides the difference between integrals of the
form (I.1) on Rdx and on Bx. The difference becomes arbitrarily small with precision ϵ = 1/N .

Based on Lemma I.1, we have the following considerations:

• For each x ∈ Rdx , consider a bounded domain

Bx,N (I.2)

:=

[
x− σtC(0, dx)

√
β logN

αt
,
x+ σtC(0, dx)

√
β logN

αt

]
︸ ︷︷ ︸

(I)

⋂[
−C(0, dx)

√
β logN,C(0, dx)

√
β logN

]dx

︸ ︷︷ ︸
(II)

,

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2025

where C(0, dx) is some positive constant depending on dx and N . Here, we pick n = 0 for
C(n, dx) to reduce (I.1) to

pt(x|y) =
∫
Rdx\Bx,N

p(x0|y) ·
1

σd
t (2π)

d/2
exp

(
−∥αtx0 − x∥2

2σ2
t

)
dx0 ≤ ϵ = 1/N.

This motivates a polynomial expansion of (3.1) on Bx,N with precision 1/N .

• Uniformly discretize each dimension of Bx,N into N segments. Note that while not necessary, it
is possible to pick a C(0, dx) such that grids in Bx,N are non-overlapping.

• Uniformly discretize each dimension of [0, 1]dy into N segments of length 1/N .

This discretization of domains leads to Ndx+dy hypercubes on bounded domain Bx,N × [0, 1]dy .

Remark I.2. For any x ∈ Rdx , we shorthand (I.2) with

Bx,N =
[
−Cx

√
logN,Cx

√
logN

]dx

, (I.3)

where Cx summarize all factors except
√
logN in all dimensions of x ∈ Rdx . Moreover, when

content is clear, we suppress the notation dependence on dx for (I.3). Namely, we use the notation
Bx,N =

[
−Cx

√
logN,Cx

√
logN

]
and Bx,N =

[
−Cx

√
logN,Cx

√
logN

]dx interchangeably.

Remark I.3. Lemma I.1 ensures that we can approximate the Gaussian integral of any polynomial
function of the form (I.1) on Rdx with the same integral on Bx to an arbitrary precision 0 < ϵ < 1/e.
This motivate us to approximate functions on Rdx with polynomials evaluated at x ∈ Rdx on Bx,N .
A natural choice is through Taylor expansion around x ∈ Rdx , as the Hölder class assumption
guarantees local smoothing behavior for our error analysis.

Step 2: Approximate pt(x|y) and ∇pt(x|y) with Taylor Expansion. We begin with the definition.

Definition I.1 (Normalization of Bx,N). Consider the clipping in Lemma I.1 and the initial con-
ditional distribution p(x0|y) with closed and bounded support Bx,N × [0, 1]dy . We define RB :=
(2C(0, d)

√
β logN) and x′0 := x0/RB+1/2. Moreover, we defineM(x′0, y) := p(RB(x

′
0−1/2)|y).

Remark I.4. The purpose of Definition I.1 is to simplify the process of discretizing Bx,N × [0, 1]dy

into Ndx+dy hypercubes. In particular, M(x′0, y) has compact support on [0, 1]dx+dy , where RB

denotes the length of each coordinate of Bx,N , and x′0 ∈ [0, 1]dx represents x0 normalized on Bx,N .

Remark I.5. The only difference between M(x′0, y) and p(x0|y) lies in their respective domains,
leading to the difference in the size of the Hölder ball radius. Recall that under Assumption 3.1,
we have p(x0|y) ∈ Hβ(Rdx × [0, 1]dy , B). Here we have M(x′0, y) ∈ H([0, 1]dx+dy , BRk1

B). This
follows from the fact that p(·|y) is k1-time differentiable so that the radius scale by a factor of Rk1

B .

Lemma I.2 (Diffused Local Polynomial, Modified from (Fu et al., 2024a)). Assume Assumption 3.1.
We write pt(x|y) into the product of p(x0|y) and exp(·):

pt(x|y) =
∫
Rdx

p(x0|y)pt(x|x0)dx0 =

∫
Rdx

1

σdx
t (2π)dx/2

p(x0|y)exp

(
−∥αtx0 − x∥2

2σ2
t

)
dx0.

Then we approximate p(x0|y) and exp
(
−∥αtx0−x∥2

2σ2
t

)
with k1-order Taylor polynomial and k2-order

Taylor polynomial within Bx,N respectively. Altogether, we approximate pt(x|y) with the following

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2025

diffused local polynomial with the bounded domain Bx,N around x in (I.3):

f1(x, y, t) =
∑

v∈[N]d,w∈[N]dy

∑
∥nx∥1+∥ny∥1≤k1

R
∥nx∥
B

nx!ny!

∂nx+nyp

∂xnx∂yny

∣∣∣∣∣
x=RB(v

N−
1
2),y=

w
N

Φnx,ny,v,w(x, y, t),

(I.4)

where
• ϕ(·) is the trapezoid function.

• g(x, nx, v, k2) := 1
σt

√
2π

∫ (
x0

R + 1
2 − v

N

)nx 1
k2!

(
−|x−σtx

2
0|

2σ2
t

)k2

dx0.

• Φnx,ny,v,w(x, y, t) :=
(
y − w

N

)ny ∏dy

j=1 ϕ
(
3N(y[j]− w

N)
)∏dx

i=1

∑
k2<p g(x[i], nx[i], v[i], k2).

Remark I.6. The form of the diffused local polynomial arises from the Taylor expansion approxi-
mation applied on each grid point within [0, 1]dx+dy , with v ∈ [N]dx and w ∈ [N]dy denoting the
specific grid point undergoing approximation.

Remark I.7. The Hölder space assumption in Assumption 3.1 establishes an upper bound on the
error arising from the remainder term in the Taylor expansion. This ensures the approximation
accuracy is well-controlled.

Proof Sketch. We provide the proof overview of Lemma I.2. with the following three steps.

Step A: Clip Rdx × [0, 1]dy .
We clip the domain Rdx × [0, 1]dy into closed and bounded region Bx,N .

Step B: Replace p(x0|y) with k1-order Taylor Polynomials.
We discretize [0, 1]dx+dy into Ndx+dy hypercubes. We apply Taylor expansion to each grid point.
For areas not located on any grid point, we construct a trapezoid function and an indicator function to
control the approximation error.

Step C: Replace exp(·) with k2-order Taylor Polynomials.
We apply Taylor expansion to approximate regions within Bx,N for exp(·). Note that we leverage
the explicit form of the exponential function to achieve accurate approximation without additional
discretization as in previous step.

Step D: Altogether, the Diffused Local Polynomials.
We combine these 4 steps and construct the diffused local polynomial (I.4).

Proof of Lemma I.2. We demonstrate details regarding the three steps.

• Step A: Clip Rdx × [0, 1]dy .
We take κ[i] = 0 for i = [dx] and set ϵ = N−β in Lemma I.1. This gives closed and bounded
domain Bx,N specified in (I.3) and clipping-induced error:∣∣∣∣∣pt(x|y)−

∫
Bx,N

p(x0|y) ·
1

σd
t (2π)

d/2
exp

(
−∥αtx0 − x∥2

2σ2
t

)
dx0

∣∣∣∣∣ ≤ N−β . (I.5)

• Step B: Replace p0(x0|y) with k1-order Taylor Expansion.
We construct a approximator Q(x′0, y) for M(x′0, y) with domain [0, 1]dx+dy .5 At the end of this
step, we reset x′0 = x0/RB + 1/2 in Q(x′0, y) as the final approximator of p(x0|y).

5Recall RB := (2C(0, d)
√
β logN), x′

0 := x0/RB + 1/2, and M(x′
0, y) := p(RB(x

′
0 − 1/2)|y) from

Definition I.1.

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2025

– Step B.1: Discretize [0, 1]dx+dy .
We uniformly discretize [0, 1]dx+dy into grid points [0, 1/N, 2/N, . . . , (N − 1)/N, 1]dx+dy .

– Step B.2: Implement Taylor Expansion.
We construct the k1-order Taylor polynomial Pv,w(x, y) at point (v/N,w/N) for M(x′0, y):

6

Pv,w(x
′
0, y) :=

∑
∥nx∥1+∥ny∥1≤k1

1

nx!ny!

∂nx+nyM

∂xnx∂yny

∣∣∣∣∣
x′
0=

v
N ,y= w

N

(
x′0 −

v

N

)nx
(
y − w

N

)ny

.

(I.6)

For x′0 and y not located on any grid point, we construct an indicator function that ensures
∥x′0 − v/N∥∞ < 1/N and ∥y − w/N∥∞ < 1/N in the next step. For now, we assume these
conditions hold.

To analyze the error, we expand the target function M(x′0, y). By Taylor’s theorem, there exist
θx ∈ [0, 1]dx and θy ∈ [0, 1]dy such that

M(x′0, y) =
∑

∥nx∥1+∥ny∥1<k1

1

nx!ny!
· ∂

nx+nyM

∂x′nx
0 ∂yny

∣∣∣∣∣
x′
0=

v
N ,y= w

N

(
x′0 −

v

N

)nx
(
y − w

N

)ny

+
∑

∥nx∥1+∥ny∥1=k1

1

nx!ny!
· ∂

nx+nyM

∂x′nx
0 ∂yny

∣∣∣∣∣
x′
0=x1,y=y1

(
x′0 −

v

N

)nx
(
y − w

N

)ny

,

where x1 = (1− θx)v/N + θxx
′
0 and y1 = (1− θy)w/N + θyy. This ensures x1 lies between

x′0 and v/N , and y1 lies between y and w/N .

Note that the difference between Pv,w(x
′
0, y) and M(x′0, y) stems from the different value taken

in ∂nx+nyM/(∂x′nx
0 ∂yny) for all terms in the series with ∥nx∥1 + ∥ny∥1 = k1.

To study the error, let z = (x′0, y) and recall from the definition of Hölder norm (Definition 3.1):

max
α:∥α∥1=k1

sup
z ̸=z′

∣∣∂k1M(z)− ∂k1M(z′)
∣∣

∥z − z′∥γ∞
< ∥M(x′0, y)∥Hβ([0,1]dx+dy) < Rk1

B B. (I.7)

We rewrite the error as

|Pv,w(x
′
0, y)−M(x′0, y)|

≤
∑

∥nx∥1+∥ny∥1=k1

1

nx!ny!

(
x′0 −

v

N

)nx
(
y − w

N

)ny

∣∣∣∣∣∣∣∣∣∣∣
 ∂nx+nyM

∂x′nx
0 ∂yny

∣∣∣∣∣
x′
0=x1,y=y1

− ∂nx+nyM

∂x′nx
0 ∂yny

∣∣∣∣∣
x′
0=

v
N ,y= w

N

︸ ︷︷ ︸

Apply Hölder Regularity

∣∣∣∣∣∣∣∣∣∣∣
≤

∑
∥nx∥1+∥ny∥1=k1

1

nx!ny!

(
x′0 −

v

N

)nx
(
y − w

N

)ny

∥M(x′0, y)∥Hβ([0,1]dx+dy)︸ ︷︷ ︸
(I.7)

∥∥∥∥[θxx′0, θyy]− 1

N
[θxv, θyw]

∥∥∥∥γ
∞︸ ︷︷ ︸

Controlled by indicator function (I.8)

≤
∑

∥nx∥1+∥ny∥1=k1

BRk1

B

nx!ny!N
∥nx∥1+∥ny∥1+γ

=
BRk1

B (dx + dy)
k1

Nβk1!
.

– B.3: Control Error for the Off-Grid Regions.

6Please see Remarks I.4 and I.5 for details.

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2025

For regions not located on any grid point (v/N,w/N), we construct an indicator function
ψ(x′0, y) to ensure that our Taylor approximation at (v/N,w/N) does not deviate from (x′0, y)
by more than 1/N in ℓ∞ distance.

Specifically, we define

ψv,w(x
′
0, y) := 1

{
x′0 ∈

(
v − 1

N
,
v

N

]} dy∏
j=1

ϕ
(
3N
(
y[j]− w

N

))
, (I.8)

where ϕ(·) is the trapezoid function:

ϕ(τ) =

1, |τ | < 1

2− |τ |, |τ | ∈ [1, 2]

0, |τ | > 2.

Note that, ψv,w is nonzero if and only if x′0 ∈ [(v − 1)/N, v/N] and y[j] ∈ [(w[j] −
2/3)/N, (w[j] − 2/3)/N)] for j ∈ [dy]. This guarantees ∥x′0 − v/N∥∞ ≤ 1/N and
∥y − w/N∥∞ ≤ 1/N .

– Step B.4: Construct the Final Approximator for p(x0|y).
Combining (I.6) and (I.8), we obtain an approximator of the form:

Q(x′0, y) =
∑
v,w

ψv,w(x, y)Pv,w(x
′
0, y).

Since for all x ∈ (0, 1]dx and y ∈ [0, 1]dy the indicator function ψv,w(x
′
0, y) sums to 1, it holds:

|M(x′0, y)−Q(x′0, y)| ≤
BRk1(dx + dy)

k1

k1!Nβ
. (I.9)

We conclude this step with the approximator Q(x′0, y) = Q(x0/RB + 1/2, y) for p(x0|y).

• Step C: Replace exp(·) with k2-order Taylor Expansion.
Recall that we set Bx,N as

Bx,N =

[
x− σtC(0, dx)

√
β logN

αt
,
x+ σtC(0, dx)

√
β logN

αt

]
⋂[

−C(0, dx)
√
β logN,C(0, dx)

√
β logN

]dx

.

This gives |(x[i]− αtx0[i])/σt| ≤ C(0, dx)
√
β logN for any i ∈ [dx] and x0 ∈ Bx,N .

Furthermore, we have

∥(x− αtx0)/σt∥2 =

dx∑
i=1

|(x[i]− αtx0[i])/σt|2 ≤ dx ·
(
C(0, dx)

√
β logN

)2
. (I.10)

From this fact, we implement the k2-order Taylor expansion to exp
(
−∥(x− αtx0)/σt∥2/2

)
:∣∣∣∣∣∣exp

(
−∥x− αtx0∥2

2σ2
t

)
−
∑
k2<u

1

k2!

(
−∥x− αtx0∥2

2σ2
t

)k2

∣∣∣∣∣∣ (
By Taylor theorem

)

66

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2025

≤ 1

u!2u

(∥∥∥∥x− αtx0
σt

∥∥∥∥2
)u

=
1

u!2u

(
dx∑
i=1

|(x[i]− αtx0[i])/σt|2
)u

≤ 1

u!2u

(
dx ·

(
C(0, d)

√
β logN

)2)u

.

for all x0 ∈ Bx,N , and u is a positive real number.

Following the choice of u from (Fu et al., 2024b), by utilizing the inequality u! ≥ (u/3)u for
u ≥ 3 and setting

u := max

(
2

3
C2(0, d)β2e logN, β logN + log dx

)
,

we further write the bound as:∣∣∣∣∣∣exp
(
−∥x− αtx0∥2

2σ2
t

)
−
∑
k2<u

1

k2!

(
−∥x− αtx0∥2

2σ2
t

)k2

∣∣∣∣∣∣ ≲ N−β . (I.11)

• Step D: The Diffused Local Polynomial.
Substituting p(x0|y) and exp(·) with their respective approximator in (I.9) and (I.11), we obtain
the following expression:

f1(x, y, t) =
1

σdx
t (2π)

dx
2

∫
Bx,N

Q

(
x0
RB

+
1

2
, y

) ∑
k2<u

1

k2!

(
−∥x− αtx0∥2

2σ2
t

)k2

dx0. (I.12)

We term f1 as diffused local polynomial, following (Fu et al., 2024a).
7Rearranging (I.12), we obtain the form

f1(x, y, t) =
∑

v∈[N]d,w∈[N]dy

∑
∥nx∥1+∥ny∥1≤k1

R
∥nx∥
B

nx!ny!

∂nx+nyf

∂xnx∂yny

∣∣∣∣∣
x= v

N ,y= w
N

Φnx,ny,v,w(x, y, t),

(I.13)

where

– g(x, nx, v, k2) :=
1

σt

√
2π

∫ (
x0

R + 1
2 − v

N

)nx 1
k2!

(
−∥x−σtx

2
0∥

2σ2
t

)k2

dx0.

– Φnx,ny,v,w(x, y, t) :=
(
y − w

N

)ny ∏dy

j=1 ϕ
(
3N(y[j]− w

N)
)∏dx

i=1

∑
k2<p g(x[i], nx[i], v[i], k2).

This completes the proof.

We specifies the error from the approximation of pt and ∇pt with f1 and f2 in Lemmas I.3 and I.4.

Lemma I.3 (Approximation of pt(x|y) by Polynomials, Lemma A.4 of (Fu et al., 2024b)). Assume
Assumption 3.1. For any x ∈ Rdx , y ∈ [0, 1]dy , t > 0, and a sufficiently larger N > 0, there exists a

7Further details regarding the derivation are in (Fu et al., 2024b, Appendix A.4).

67

3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2025

diffused local polynomial f1(x, y, t) with at most Ndx+dy (dx + dy)
k1 monomials such that

|f1(x, y, t)− pt(x|y)| ≲ BN−β log
dx+k1

2 N.

Lemma I.4 (Approximation of ∇ log pt(x|y) by Polynomials, Lemma A.6 of (Fu et al., 2024b)).
Assume Assumption 3.1. For any x ∈ Rdx , y ∈ [0, 1]dy , t > 0, and a sufficiently larger N > 0, there
exists f2 := (f2[1], . . . , f2[dx])

⊤ ∈ Rdx with local diffused polynomial f2[i] such that

|f2(x, y, t)[i]− σt∇pt(x|y)[i]| ≲ BN−β log
dx+k1+1

2 N,

where each f2[i] contains at most Ndx+dy (dx + dy)
k1 monomials.

We have finished the approximation of pt and ∇pt with diffused local polynomial f1 and f2.

Step 3. Approximate Diffused Local Polynomials and Algebraic Operators with Transformers.
First, we utilize universal approximation capabilities of transformers to deal with f1, f2 established
in previous step. Second, we employ similar scheme to approximate several algebraic operators
necessary in final score approximation. Lastly, we present the incorporation of these components in
Lemma I.13 with a unified transformer architecture and corresponding parameter configuration.

• Step 3.1: Approximate the Diffused Local Polynomials f1 and f2.
We invoke the universal approximation theorem of transformer (Theorem H.2). We utilize network
consisting of one transformer block and one feed-forward layer (see Figure 1 and Definition 2.2).

Lemma I.5 (Approximate Scalar Polynomials with Transformers). Assume Assumption 3.1.
Consider the diffused local polynomial f1 in Lemma I.3. For any ϵ > 0, there exists a trans-
former Tf1 ∈ T h,s,r

R , such that for any x ∈ [−Cx

√
logN,Cx

√
logN]dx , y ∈ [0, 1]dy and

t ∈ [N−Cσ , Cα logN] it holds

|f1(x, y, t)− Tf1(x, y, t)[dx]| ≤ ϵ.

The parameter bounds in the Transformer network class satisfy

∥WQ∥2, ∥WK∥2 = O
(
dϵ−

2dL+4d+1
d (logL)

1
2

)
;

∥WQ∥2,∞, ∥WK∥2,∞ = O
(
d

3
2 ϵ−

2dL+4d+1
d (logL)

1
2

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d);

∥WO∥2 = O
(√

dϵ
1
d

)
; ∥WO∥2,∞ = O

(
ϵ

1
d

)
;

∥W1∥2 = O
(
dϵ−

1
d · logN

)
; ∥W1∥2,∞ = O

(√
dϵ−

1
d · logN

)
;

∥W2∥2 = O
(
dϵ−

1
d

)
; ∥W2∥2,∞ = O

(√
dϵ−

1
d

)
;
∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
.

Proof of Lemma I.5. We first skip the embedded dimension of y and t for the following proof
without loss of generality. We put it back at the end of the derivation, by replacing L with L+ 2.

To implement a sequence-to-sequence model for approximating a function that outputs a scalar,
we define a trivial function for converting the scalar target into a sequence represented by matrices.

To begin with, for x ∈ Rdx and f1 : Rdx → R, we define a trivial function:

F1(x) := (α1f1(x), α2f1(x), . . . , αdx−1f1(x)︸ ︷︷ ︸
(padding dx − 1 elements)

, f1(x))
⊤ ∈ Rdx ,

for any set of non-repeated constants {αi}dx−1
i=1 ∈ R \ {1}.

68

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2025

By trivial, we mean that F1 transforms f1(x) ∈ R into a vector F1(x) ∈ Rdx where only the last
entry is meaningful.

In order to apply the universal approximation of transformers in Theorem H.2, we show the uniform
continuity of F1 as follows.

– Step A: Uniform Continuity.
For different input x, x′, we start by writing

∥F1(x)− F1(x
′)∥p =

{
|f(x)− f(x′)|p +

dx−1∑
i=1

|αif(x)− αif(x
′)|p
}1/p

=

{
|f(x)− f(x′)|p

(
1 +

dx−1∑
i=1

|αi|p
)}1/p

= η|f(x)− f(x′)|,

where η =
(
1 +

∑dx−1
i=1 |αi|p

)1/p
∈ R+.

Next, we utilize the fact that the diffused local polynomials f1 is continuous on compact support.
That is, for all ϵ > 0, there exists δ > 0 such that for all x and x′, if ∥x− x′∥∞ < δ, then
|f1(x)− f1(x

′)| < ϵ.

From this fact, by taking ϵ = ϵ′/η, we have that for all ϵ′ > 0, there exists δ′ > 0 such that for
all x and x′, if ∥x− x′∥∞ < δ′, then |f1(x)− f1(x

′)| < ϵ′ = ϵη.

This gives ∥F1(x)− F1(x
′)∥p ≤ ϵ′ and therefore we obtain the uniform continuity for F1.

Also, the reshape layer R(·) that converts x ∈ Rdx into sequential input R(x) ∈ Rd×L does not
harm this continuity due to its linearity. Therefore, the map R ◦ F1(x) : Rdx → Rd×L is also
uniformly continuous.

– Step B: Universal Approximation.
We apply Theorem H.2 that guarantees for any ϵf1 > 0, there exists one transformer block and
one feed-forward layer such that∥∥R ◦ F1 − fh,s,r ◦ fFF ◦R

∥∥
p
≤ ϵf1 .

Adding a reverse reshape layer, we have Tf1 = R−1 ◦ fh,s,r ◦ fFF ◦R with ∥F1 − Tf1∥p ≤ ϵf1 .

Next, observe that

|Tf1 [dx]− f1| ≤

{
dx∑
i=1

|Tf1 [i]− αif1|p
}1/p

= ∥Tf1 − F1∥p ≤ ϵf1 , (I.14)

with αdx
= 1. (I.14) completes the proof of the approximation error.

– Step C: Parameter Bounds.
To establish the approximation (I.14), we need the parameter bounds in Lemma H.5 to hold.
This requires transforming the input domain from [−Cx

√
logN,Cx

√
logN] to normalized

compact support [0, 1] for all dimensions (i.e., x[i] for all i ∈ [dx].)

Recall that (H.25), we have bound for W1:

∥W1∥2,∞ = O
(√

dD
)
= O

(√
dϵ−dL

)
, (I.15)

∥W1∥2 = O (dD) = O
(
dϵ−dL

)
, (I.16)

69

3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2025

that is, the bounds on each element in W1 scales up as the granularity increases. Because
for a fixed precision level, the granularity is proportional to the length of the interval in each
dimension of the input domain, we conclude that ∥W1∥2 = O

(
dϵ−dL logN

)
and ∥W1∥2,∞ =

O
(√

dϵ−dL logN
)

.

The rest of bounds for each operation follows Lemma H.5. Lastly, we incorporate the embedded
dimensions of y and t by replacing L with L+ 2 (see Figure 1).

This completes the proof.

Similarly, we have the corresponding Tf2 ∈ T h,s,r
R for the approximation of f2(x, y, t).

Lemma I.6 (Approximate Vector-Valued Polynomials with Transformers). Assume Assump-
tion 3.1 and consider f2(x, y, t) ∈ Rdx with every entry f2[1], . . . , f2[dx] is a local diffused
polynomial defined in Lemma I.2. For any ϵ > 0, there exists a transformer Tf2 ∈ T h,s,r

R such that

∥f2(x, y, t)− Tf2∥∞ ≤ ϵ,

for any x ∈ [−Cx

√
logN,Cx

√
logN]dx , y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN]. The parameter

bounds in the transformer network class follows Lemma I.5.

Proof of Lemma I.6. Since each entry of the diffused local polynomials in f2 is continuous on
compact support, f2 ∈ Rdx is uniformly continuous by the same argument as in the proof of
Lemma I.5.

Similarly, by Theorem H.2, for any ϵf2 > 0, there exists a transformer block and a feed-forward
layer such that

∥∥R ◦ f2 − fh,s,r ◦ fFF ◦R
∥∥
p
≤ ϵf2.

By adding the reversed reshape layer, we obtain Tf2 ∈ T h,s,r
R , satisfying ∥f2 − Tf2∥p ≤ ϵf2.

Then we have,

|Tf2 [j]− f2[j]| ≤

dx∑
j=1

|Tf2 [j]− f2[j]|p

1/p

≤ ϵf2

for all j = 1, . . . , dx. Thus the result with ℓ∞ bound also holds.

The network configuration follows the argument as in the proof of Lemma I.5.

This completes the proof.

So far, we have obtained approximation results for f1 and f2. To complete the full approximation
of the score decomposition ∇ log p = ∇p

p , we still need to approximate several key algebraic
operators, including the product (Lemma I.8), inverse (Lemma I.9)...etc.

We establish their approximations as follows.

• Step 3.2: Approximate Algebraic Operators with Transformers.
We give transformer approximation theory for the clipping operator, the inverse operator, the
product operator, and functions that evolve with time t:

– Clipping operation (Lemma I.7)

– Product operation (Lemma I.8)

– Inverse operation (Lemma I.9)

– Mean αt = exp(−t/2) (Lemma I.10)

70

3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833

Under review as a conference paper at ICLR 2025

– Standard deviation σt =
√
1− e−t (Lemma I.11)

The approximations for these operators are common with the network structure consisting of ReLU
activation function and fully connected feed-forward layers, such as the product approximation by
Schmidt-Hieber (2020) and the inverse approximation by Telgarsky (2017).

In their works, the general network structure is as follows.

Definition I.2. A family of fully-connected neural networks with length L, width W , sparsity
constraint S, and norm constraint B is defined as:

Φ(L,W, S,B) := A(L)ReLU(·) + b(L) ◦ · · · ◦A(1)x+ b(1),

where A(i) and b(i) represent the matrix operator and bias in the i-th layer. Specifically:
– Length: L ∈ R denotes the number of hidden layers plus one.

– Width: W ∈ NL+1 is a vector representing the output dimension of each layer.

– Sparsity Constraint:
∑L

i=1 ∥A(i)∥0,0 + ∥b(i)∥0 ≤ S specifies the maximum number of non-zero
terms.

– Norm Constraint: max
1≤i≤L

∥A(i)∥∞,∞ ∨∥b(i)∥∞ ≤ B specifies the upper bound on the parameter
norms.

Here ∨ denotes the maximum of two values.

Remark I.8 (Generalization ReLU Networks with Transformers). Transformers are more general
network class that encompasses ReLU-based networks defined in Definition I.2. By setting all self-
attention layers in the transformer to identity maps, we recover the ReLU feed-forward network
structure. Therefore, our work on approximating with transformers extends previous works Fu
et al. (2024b); Oko et al. (2023) by incorporating the flexibility of self-attention mechanisms.

The following lemma provides a network that executes the clipping operation.

Lemma I.7 (Clipping Operation, Lemma F.4 of (Oko et al., 2023)). For any a, b ∈ Rd with
a[i] ≤ b[i] for all i ∈ [d], there exist a neural network ϕclip(x; a, b) ∈ Φ(L,W, S,B) such that for
all i ∈ [d], it holds

ϕclip(x; a, b)[i] = min(b[i],max(x[i], a[i])),

with

L = 2, W = (d, 2d, d)⊤, S = 7d, B = max
1≤i≤d

max(|a[i]|, b[i]). (I.17)

Moreover, suppose a[i] = c and b[i] = C for all i ∈ [d] with c and C being some constant,
ϕclip(x; a, b) is denoted as ϕclip(x; c, C).

Proof. It suffices to show the result for i-th coordinate, and implement the parallelization to
complete the proof that holds for the entire vector ϕclip(x; a, b).8 The clipping operation yields the
middle among a[i], b[i] and the input x[i]. Following (Oko et al., 2023), we achieve the task by
setting:

min (b[i],max(x[i], a[i])) = ReLU(x[i]− a[i])− ReLU(x[i]− b[i]) + a[i].

Note that the RHS is realized by the network with one hidden layer:

(1,−1)ReLU

(
(1, 1)x[i] +

(
−a[i]
−b[i]

))
+ a[i],

8For a more detailed description regarding parallelization please see Appendix F of (Oko et al., 2023).

71

3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887

Under review as a conference paper at ICLR 2025

with 7 non-zero parameters, and the scale of parameter is max(|a[i]|, b[i]). So there exists
ϕclip(x[i]; a[i], b[i]) ∈ Φ(2, (1, 2, 1)⊤, 7,max(|a[i]|, b[i])) executing the clipping operation. Then
the proof is complete by the parallelization for all the components i = 1, . . . , d.

This completes the proof.

Next, we deal with the approximation of products with Transformer.

Lemma I.8 (Approximation of the Product Operator with Transformer.). Let m ≥ 2 and C ≥ 1.
For any 0 < ϵmult < 1, there exists Tmult(·) ∈ T h,s,r

R such that for all x ∈ [−C,C]m, x′ ∈ Rm

with ∥x− x′∥∞ ≤ ϵerror, it holds∣∣∣∣∣Tmult(x
′)−

m∏
i=1

xi

∣∣∣∣∣ ≤ ϵmult +mCm−1ϵerror.

The parameter bounds in the transformer network class T h,s,r
R satisfy

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
ϵ
−(2m+1)
mult (logm)

1
2

)
;

∥WO∥2, ∥WO∥2,∞ = O (ϵmmult) ; ∥WV ∥2, ∥WV ∥2,∞ = O(1);

∥W1∥2, ∥W1∥2,∞ = O
(
Cϵ−mmult

)
; ∥W2∥2, ∥W2∥2,∞ = O

(
ϵ−mmult

)
.

Proof. We build our proof on (Oko et al., 2023, Lemma F.6).

Unlike approximation for input x ∈ [−Cx

√
logN,Cx

√
logN]dx in Lemma I.5, the input dimen-

sion for the product operator is sufficiently smaller so that we skip the reshape layer by setting R
and R−1 as identity map.

Next, let f(x) =
∏m

i=1 x[i], and define a trivial function F (·) : Rm → R1×m as

F (x) := (α1f(x), α2f(x), . . . , αm−1f(x)︸ ︷︷ ︸
(padding m− 1 elements)

, f(x)) ∈ R1×m.

The idea of padding a scalar into a row vector again stems from the purpose of utilizing sequence-
to-sequence model to approximate functions that output a scalar.

By the same argument as in the proof of Lemma I.5, the uniform continuity of f guarantees the
uniform continuity of F with respect to the Lp norm.

By Theorem H.2 , for any ϵ > 0, there exist Tmult ∈ T h,s,r
R with R,R−1 being identity map such

that

∥Tmult − F∥p ≤ ϵ.

Clearly, |Tmult[m]− F [m]| ≤ ∥Tmult − F∥p ≤ ϵ.

To extend the input to x′ ∈ Rm with ∥x− x′∥ ≤ ϵerror, we adopt Lemma I.7 and write∣∣∣∣∣CmTmult(ϕclip(x
′;−C,C)/C)−

m∏
i=1

x[i]

∣∣∣∣∣
≤

∣∣∣∣∣CmTmult(ϕclip(x
′;−C,C)/C)−

m∏
i=1

min(C,max(x′[i]],−C))

∣∣∣∣∣+
∣∣∣∣∣
m∏
i=1

min(C,max(x′[i],−C))−
m∏
i=1

x[i]

∣∣∣∣∣
≤ CmC−mϵ+ Cm−1

m∑
i=1

|x[i]− min(C,max(x′[i]],−C))|

= ϵ+mCm−1ϵerror.

72

3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941

Under review as a conference paper at ICLR 2025

Further details regarding the product approximation are in Appendix F.2 of (Oko et al., 2023).

For the parameter bounds, following the same argument in the proof of Lemma I.5, it suffices to
take O(Cϵ−1) for W1. The rest of bounds for each operation follows Lemma H.5 with d = 1 and
L = m.

This completes the proof.

Next, we introduce the next lemma to approximate the inverse operator.

Lemma I.9 (Approximation of the Reciprocal Function with Transformer.). For any 0 < ϵrec < 1

there exists a Trec(·) ∈ T h,s,r
R such that for all x ∈ [ϵrec, ϵ

−1
rec] and x′ ∈ R. It holds that∣∣∣∣Trec(x

′)− 1

x

∣∣∣∣ ≤ ϵrec +
|x− x′|
ϵ2rec

.

The parameter bounds in the Transformer network class satisfy

∥WQ∥2, ∥WQ∥2,∞, ∥WK∥2, ∥WK∥2,∞ = O
(
ϵ−3rec

)
;

∥WO∥2, ∥WO∥2,∞ = O (ϵrec) ; ∥WV ∥2, ∥WV ∥2,∞ = O(1);

∥W1∥2, ∥W1∥2,∞ = O
(
ϵ−2rec

)
; ∥W2∥2, ∥W2∥2,∞ = O

(
ϵ−1rec

)
.

Proof. We build our proof on (Oko et al., 2023, Lemma F.7). For any ϵrec ∈ (0, 1), since 1/x is
continuous on x ∈ [ϵrec, ϵ

−1
rec], by Theorem H.2, there exist a transformer Trec ∈ T h,s,r

R such that∣∣∣∣Trec −
1

x

∣∣∣∣ ≤ ϵrec.

Extending to network with input x′ ∈ R, the sensitivity analysis follows:∣∣∣∣Trec(x
′)− 1

x

∣∣∣∣ ≤ ∣∣∣∣Trec(x
′)− 1

max(x′, ϵ)

∣∣∣∣+ ∣∣∣∣ 1x − 1

max(x′, ϵ)

∣∣∣∣.
This yields the result.

For the parameter bounds, by the same discussion in the proof of Lemma I.8, we scale W1 up by
ϵrec such that the quantization in (H.16) works on normalized [0, 1]. The rest of the bounds follow
Lemma H.5.

This completes the proof.

Next, we state approximation results using Transformer for αt and σt. From (G.2) we have
αt = exp(−t/2) and σt =

√
1− α2

t .

Lemma I.10 (Approximation of αt = exp(−t/2) with Transformer.). For any ϵα ∈ (0, 1), there
exists Transformer Tα(t) ∈ T h,s,r

R such that for all t ≥ 0, we have

|Tα(t)− αt| ≤ ϵα.

The parameter bounds in the Transformer network class satisfy

∥WQ∥2, ∥WQ∥2,∞, ∥WK∥2, ∥WK∥2,∞ = O
(
ϵ−3α

)
;

∥WO∥2, ∥WO∥2,∞ = O
(
ϵ−1α

)
; ∥WV ∥2, ∥WV ∥2,∞ = O(1);

∥W1∥2, ∥W1∥2,∞ = O
(
(log ϵ−1α)ϵ−1α

)
; ∥W2∥2, ∥W2∥2,∞ = O

(
ϵ−1α

)
.

Proof. We build our proof on (Fu et al., 2024b, Lemma F.8). The proof consists of four steps.

73

3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995

Under review as a conference paper at ICLR 2025

– Step A: Approximate exp(·) with Taylor polynomial for t ∈ [0, T].
By Taylor theorem, there exist some θ ∈ [0, T] such that

exp

(
− t

2

)
=

s−1∑
i=0

(−1)i

i!

(
t

2

)i

+
(−1)s

s!

(
θ

2

)s

exp

(
−θ
2

)
.

We further bound the error from the remainder by∣∣∣∣∣exp
(
− t

2

)
−

s−1∑
i=0

(−1)i

i!

(
t

2

)i
∣∣∣∣∣ ≤ T s

2ss!
, (I.18)

with T and s to be chosen later.

– Step B: Approximate Taylor polynomial with transformer for t ∈ [0, T].
We take t as a sequence with length 1 and one-dimensional token.

For t ∈ [0, T], Taylor polynomial is a continuous function with compact support.

Therefore, by Theorem H.2. for any ϵ there exist a transformer T ′α ∈ T h,s,r
R such that∣∣∣∣∣T ′α −

s−1∑
i=1

(−1)i

i!

(
t

2

)i
∣∣∣∣∣ ≤ ϵ. (I.19)

– Step C: Extend the two approximation results from Step 1. and Step 2. to t > T .
We define Tα as

(i) Tα(t) = T ′α(t) for t ∈ [0, T].

(ii)Tα(t) = T ′α(T) for t ≥ T .

Next, we bound the error for t > T by∣∣∣∣exp(− t

2

)
− Tα(t)

∣∣∣∣ ≤ ∣∣∣∣exp(−T2
)
− exp

(
− t

2

)∣∣∣∣+ ∣∣∣∣Tα(t)− exp

(
−T

2

)∣∣∣∣. (I.20)

– Step D: Select T , s and transformer approximation error such that the result holds for all
t ≥ 0.
For any ϵα > 0, we ensure |Tα − exp(−t/2)| ≤ ϵα holds for all t ≥ 0.

To achieve this, apply Stirling formula to (I.18) and set s = eT , T = 2 log 3ϵ−1α , we have∣∣∣∣∣e− t
2 −

s−1∑
i=0

(−1)i

i!

(
t

2

)i
∣∣∣∣∣ ≤

(
1

2

)eT

=
(ϵα
3

) 2e
log2 e ≤ ϵα

3
.

Next we set the transformer error ϵ = ϵα/3. Combining (I.18) and (I.19), for t ∈ [0, T] we
obtain ∣∣∣∣Tt − exp

(
− t

2

)∣∣∣∣ ≤ 2

3
ϵα.

Furthermore, since exp(−T/2) = ϵα/3, (I.20) becomes∣∣∣∣exp(− t

2

)
− Tα(t)

∣∣∣∣ ≤ ϵα
3

+
2ϵα
3

= ϵα.

74

3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049

Under review as a conference paper at ICLR 2025

For the parameter bounds, by the same argument as in the proof of Lemma I.5, we normalize
the domain from [0, T] to [0, 1] for the quantization, and then the rest of the step follows
Theorem H.2.

This results in parameter bound O(log ϵ−1α ϵ
− 1

d
α) for ∥W1∥2 and ∥W1∥2,∞, and the rest of the

bounds follow the result in Lemma H.5 with d = 1 and L = 1.

This completes the proof.

Lemma I.11 (Approximation of σt =
√
1− e−t with transformer). For any σσ ∈ (0, 1), there

exists a transformer Tσ(t) ∈ T h,s,r
R such that for any t ∈ [t0, T] with t0 < 1 we have

|Tσ(t)− σt| ≤ ϵσ.

The parameter bounds in the transformer network class satisfy

∥WQ∥2, ∥WQ∥2,∞, ∥WK∥2, ∥WK∥2,∞ = O
(
ϵ−3σ

)
;

∥WO∥2, ∥WO∥2,∞ = O (ϵσ) ; ∥WV ∥2, ∥WV ∥2,∞ = O(1);

∥W1∥2 = O
(
Tϵ−1σ

)
; ∥W1∥2,∞ = O

(
Tϵ−1σ

)
;

∥W2∥2 = O
(
ϵ−1σ

)
; ∥W2∥2,∞ = O

(
ϵ−1σ

)
.

Proof. We follow the proof structure of (Fu et al., 2024b, Lemma F.10).

Since f(t) =
√
1− e−t with t ∈ [t0, T] is a continuous on compact domain. The first part of the

proof is complete by applying Theorem H.2.

For the parameter bounds, we take O(Tϵ−1σ) for ∥W1∥2 and ∥W1∥2∞ in the first feed-forward
layer. This follows from the argument in the proof of Lemma I.5.

The rest of the bounds follow Lemma H.5 with d = 1 and L = 1

This completes the proof.

We have finished the approximation of every key component for the proof of Theorem 3.1. We
now proceed to the detailed assembly and integration of these components to finalize the proof.

• Step 3.3: Unified Transformer-Based Score Function Approximation.
First, we establish a theoretical upper bound for transformer model output by analyzing the upper
bound of the score function in ℓ∞ distance under Assumption 3.1 as follows.

– Bound on pt(x|y):
Recall that the conditional distribution at time t has the form:

pt(x|y) =
1

σd
t (2π)

d
2

∫
p(x0|y) exp

(
−∥x− αtx0∥2

2σ2
t

)
dx0.

dk Applying the light tail property in Assumption 3.1, the upper bound follows:

pt(x|y) ≤
C1

σd
t (2π)

d
2

∫
exp

(
−C2∥x0∥2

2

)
exp

(
−∥x− αtx0∥2

2σ2
t

)
dx0. (I.21)

On the other hand, the lower bound follows:

pt(x|y) ≥
1

σd
t (2π)

d
2

∫
∥x0∥≤1

p(x0|y) exp

(
−∥x− αtx0∥2

2σ2
t

)
dx0. (I.22)

75

4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103

Under review as a conference paper at ICLR 2025

– Bound on ∇pt(x|y): The first element of the gradient has the form:

|(∇pt)[1]| =
1

σ2
t (2π)

d
2

·

∣∣∣∣∣
∫ (

x[1]− αtx0[1]

σ2
t

)
p(x0|y) exp

(
−∥x− αtx0∥2

2σ2
t

)
dx0

∣∣∣∣∣. (I.23)

The ℓ∞ bound on ∇pt follows by applying light tail property to each coordinate as in (I.21).

Combining (I.21), (I.22) and (I.23), we provide the ℓ∞ bounds on the score.

Lemma I.12 (Bounds on Score, Lemma A.10 of (Fu et al., 2024b)). Assume Assumption 3.1.
There exists a constant K such that

∥∇ log pt(x|y)∥∞ ≤ K

σ2
t

(∥x∥+ 1).

Further details regarding the derivation are in Appendix A.7 of (Fu et al., 2024b).

Next lemma incorporates previous approximation results into an unified transformer architecture.

Lemma I.13 (Approximation Score Function with Transformer on Supported Domain). As-
sume Assumption 3.1. Consider t ∈ [N−Cσ , Cα logN], for constant Cσ, Cα, and (x, y) ∈
−[Cx

√
logN,Cx

√
logN]dx × [0, 1]dy , where N ∈ N and Cx depends on d, β,B,C1, C2. There

exist a transformer network Tscore(x, y, t) ∈ T h,s,r
R such that

pt(x|y)∥∇ log pt(x|y)− Tscore(x, y, t)∥∞ ≲
B

σ2
t

N−β(logN)
dx+k1+1

2 .

The parameter bounds in the Transformer network class satisfy

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (7β+6Cσ)

)
;

∥WO∥2, ∥WO∥2,∞ = O
(
N−(3β+6Cσ)(logN)3(dx+β)

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d);

∥∥E⊤∥∥
2,∞ = O

(
d

1
2L

3
2

)
;

∥W1∥2, ∥W1∥2,∞ = O
(
N (2β+4Cσ)

)
;CT = O

(√
logN/σ2

t

)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N (3β+2Cσ)

)
.

Proof of Lemma I.13. Our poof follows the structure of Fu et al. (2024b, Proposition A.3).

Recall that from Lemma I.12, we have ∥∇ log pt(x|y)∥∞ ≤ K(Cx

√
dx logN + 1)/σ2

t , along
with the diffused local polynomial f1 and f2, we define first-step score approximator f3(x, y, t) as

f3(x, y, t) = min

(
f2

σtf1,clip
,
K

σ2
t

(Cx

√
dx logN + 1)

)
,

where we set f1,clip = {f1, ϵlow} to prevent score from blowing up and we set ϵlow later.

We proceed with the following three steps:

– Step A. Approximate Score Function with f3.
Without loss of generality, we first derive error bound on the difference between the first
component in f3 and the score.

|(∇ log pt)[1]− f3[1]| ≤
∣∣∣∣(∇ log pt)[1]−

f2[1]

σtf1,clip

∣∣∣∣
≤
∣∣∣∣ (∇pt)[1]pt

− (∇pt)[1]]
f1,clip

∣∣∣∣+ ∣∣∣∣ (∇pt)[1]f1,clip
− f2[1]

σtf1,clip

∣∣∣∣.
76

4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157

Under review as a conference paper at ICLR 2025

From Lemma I.12, the bound on the score implies (∇pt)[1] ≤ K(
√
dx logN + 1)pt/σ

2
t .

Therefore,

|(∇ log pt)[1]− f3[1]|

≤ K

σ2
t

(
√
d logN + 1)pt

∣∣∣∣ 1pt − 1

f1,clip

∣∣∣∣+ 1

f1,clip

∣∣∣∣ (∇σtpt)[1]− f2[1]

σt

∣∣∣∣
≲

1

f1,clip

(
1

σ2
t

√
logN |pt − f1,clip|+

(∇σtpt)[1]− f2[1]

σt

)
.

(
By dropping Constant Terms

)
From Lemma I.5, we have

|f1 − pt| ≤ BN−β log
dx+k1

2 N.

We set ϵlow = C3N
−β log(dx+k1)/2N ≤ pt such that f1 ≥ pt/2 by the choice of constant C3.

We further write

|(∇ log pt)[1]− f3[1]|

≲
1

pt

(
1

σ2
t

√
logN |pt − f1,clip|+

(∇σtpt)[1]− f2[1]

σt

) (
By the choice of ϵlow

)
≲

B

σ2
t pt

N−β(logN)
dx+k1+1

2 .
(
By Lemma I.3 and Lemma I.4

)
By the symmetry of each coordinate, the infinity bound for the score holds as well:

∥∇ log pt − f3∥∞ ≲
B

σ2
t pt

N−β(logN)
dx+k1+1

2 . (I.24)

– Step B: Approximate f3 with Transformer Tscore.
In this step, we utilize transformers to approximate f3 to an accuracy of order N−β such that it
aligns with the error order in (I.24).

Since f3 is the minimum between two components, we approximate each of them as follows.

* Step B.1: Approximate 1
σt

· f2
f1,clip

.

First, we utilize Tf1 , Tf2 and Tσ,1 in Lemma I.5, Lemma I.6, and Lemma I.11 for f1, f2, and
σt respectively. This gives error ϵf1 , ϵf2 and ϵσ,1, and we address the clipping of f1 in later
paragraph.

Next, We utilize Trec,1 and Trec,2 in Lemma I.9 for the approximation of the inverse of f1 and
σt.

This gives error ∣∣∣∣Trec,1 −
1

f1

∣∣∣∣ ≤ ϵrec,1 +
|Tf1 − f1|
ϵ2rec,1

≤ ϵrec,1 +
ϵf1
ϵ2rec,1

,

and ∣∣∣∣Trec,2 −
1

σt

∣∣∣∣ ≤ ϵrec,2 +
|Tσ,1 − σt|
ϵ2rec,2

≤ ϵrec,2 +
ϵσ,1
ϵ2rec,2

.

Note that all the approximation error propagates to the next approximation.

Next, we utilize Tmult,1 in Lemma I.8 for the approximation of the product of f−11 , f2 and
σ−1t .

77

4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211

Under review as a conference paper at ICLR 2025

This gives error of∣∣∣∣Tmult,1 −
f2
σtf1

∣∣∣∣ ≤ ϵmult,1 + 3K2
2 max

(
ϵrec,1 +

ϵf1
ϵ2rec,1

, ϵf2 , ϵrec,2 +
ϵσ,1
ϵ2rec,2

)
︸ ︷︷ ︸

:=ϵ1

= ϵmult,1 + 3K2
2ϵ1,

and K2 is a positive constant. From Lemma I.8 we require that [−K2,K2] covers the domain
for all of f−11 , f2 and f−1σ .

To be more specific, we reiterate three facts that determines the choice of K2.

· Recall that in the Step A., we set f1,clip = {f1, ϵlow}.

· Lemma I.12 states K(Cx

√
dx logN + 1)/σ2

t is the ℓ∞ bound on the score.

· The maximum value of σ−1t happens at t = t0.

As a result, we set K2 as

K2 = max

(
1

ϵlow
,
K

σt0
(Cx

√
dx logN + 1),

1

σt0

)
.

By the earlier choice of ϵlow, we have ϵ−1low = O(Nβ logN−(dx+k1)/2), and next we expand
σt0 .

σt0 =
√

1− exp(N−Cσ) = 1−
(
1−O(N−Cσ)

)
.

Therefore we have σ−1t0 = O(NCσ). Putting all together, we have

K2 = O
(
Nβ+Cσ log−

dx+β
2 N

)
, (I.25)

where we use k1 ≤ β.

* Step B.2 : Approximate K(Cx

√
dx logN + 1)/σ2

t .
We invoke Tσ,2 in Lemma I.11 for the approximation of σt, and this gives error ϵσ,2.

Next, we utilize Trec,3 in Lemma I.8 for the approximation of the inverse of σt.

This gives error ∣∣∣∣Trec,3 −
1

σt

∣∣∣∣ ≤ ϵrec,3 +
|Tσ,3 − σt|
ϵ2rec,3

≤ ϵrec,3 +
ϵσ,2
ϵ2rec,3

.

Next, we utilize Tmult,2 for the approximation of the square of σ−1t .

This gives error of ∣∣∣∣∣Tmult,2 −
(

1

σt

)2
∣∣∣∣∣ ≤ ϵmult,2 + 2K1

(
ϵrec,3 +

ϵσ,2
ϵ2rec,3

)
,

and K1 is constant to be chosen such that σt ∈ [−K1,K1].

With the same argument for K2, it suffices to take O(σ−1t):

K1 = O
(
NCσ

)
. (I.26)

78

4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265

Under review as a conference paper at ICLR 2025

* Step B.3: Error Bound on Every Approximation Combined.
Combining Step B.1 and Step B.2, the total error is bounded by

ϵscore ≤ max

(
ϵmult,2 + 2K1

(
ϵrec,3 +

ϵσ,2
ϵ2rec,3

)
, ϵmult,1 + 3K2

2ϵ1

)
.

The goal is to guarantee the final error ϵscore ≤ N−β such that it matches the order of the
approximation error in Step A. We list all the error choice to achieve the goal.9

· For the Error of the First Two Inverse Operators:

ϵrec,1, ϵrec,2 = O
(
N−(3β+2Cσ)(logN)(dx+β)

)
.

· For the Error of the Last Inverse Operator:

ϵrec,3 = O
(
N−(β+2Cσ)

)
.

· For the Error of f1:

ϵf1 = O
(
N−(9β+6Cσ)(logN)3(dx+β)

)
.

· For the Error of f2:

ϵf2 = O
(
N−(3β+2Cσ)(logN)(dx+β)

)
.

· For the Error of the First Variance:

ϵσ,1 = O
(
N−(9β+6Cσ)(logN)3(dx+β)

)
.

· For the Error of the Second Variance:

ϵσ,2 = O
(
N−(7β+5Cσ)(logN)2(dx+β)

)
.

· For the Error of the Two Product Operators:

ϵmult,1, ϵmult,2 = O(N−β).

The above error choice renders ϵscore ≤ N−β .

Therefore we conclude that there exist a transformer Tscore ∈ T h,s,r
R such that

∥Tscore(x, y, t)− f3(x, y, t)∥∞ ≤ N−β . (I.27)

Combining (I.24) and (I.27) we obtain

∥∇ log pt − Tscore(x, y, t)∥∞ ≲
1

pt

B

σ2
t

N−β(logN)
dx+k1+1

2 .

9Further details regarding the choice of each one of ϵ are in Appendix F.4 of (Fu et al., 2024b).

79

4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319

Under review as a conference paper at ICLR 2025

We have completed the first part of the proof. We next give the norm bounds for the transformer
parameters. Specifically, we select the parameter bounds that are consistent across all operations.
including Lemma I.5, Lemma I.6, Lemma I.8, Lemma I.9 and Lemma I.11.

– Step C: Transformer Parameter Bound.
Our result highlights the influence of N under varying dx. Therefore, for the transformer
parameter bounds, we keep terms with dx, d, L appearing in the exponent of N and logN .

Note that the following parameter selection is based on high-dimensional case where logN term
dominates N term.

* Parameter Bound on WQ and WK .
Given error ϵ, the bound on each operation follows:

· For ϵf1 : By Lemma I.5, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (9β+6Cσ)· 2dL+4d+1

d · (logN)−3(dx+β)· 2dL+4d+1
d

)
.

· For ϵf2 : By Lemma I.6, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (3β+2Cσ)· 2dL+4d+1

d · (logN)−(dx+β)· 2dL+4d+1
d

)
.

· For ϵmult,1: By Lemma I.8 with m = 3, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N7β

)
.

· For ϵmult,2: By Lemma I.8 with m = 2, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N5β

)
.

· For ϵrec,1, ϵrec,2: By Lemma I.9, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (9β+6Cσ)(logN)−3(dx+β)

)
.

· For ϵrec,3: By Lemma I.9, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (3β+6Cσ)

)
.

· For ϵσ1
: By Lemma I.11, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WQ∥2,∞ = O
(
N (27β+18Cσ)(logN)−9(dx+β)

)
.

· For ϵσ2 : By Lemma I.11, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WQ∥2,∞ = O
(
N (21β+15Cσ)(logN)−6(dx+β)

)
.

We select the largest parameter bound from ϵmult,1 and ϵrec,3 that remains valid across all other
approximations. That is, we take N (7β+6Cσ) as the upper-bound.

* Parameter Bound on WO and WV .

80

4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373

Under review as a conference paper at ICLR 2025

Given error ϵ, the bound on each operation follows:

· For ϵf1 : By Lemma I.5, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−

(9β+6Cσ)
d (logN)

3(dx+β)
d

)
.

· For ϵf2 : By Lemma I.6, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−

(3β+2Cσ)
d (logN)

(dx+β)
d

)
.

· For ϵmult,1: By Lemma I.8 with m = 3, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−3β

)
.

· For ϵmult,2: By Lemma I.8 with m = 2, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−2β

)
.

· For ϵrec,1, ϵrec,2: By Lemma I.9, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(3β+Cσ)(logN)dx+β

)
.

· For ϵrec,3: By Lemma I.9, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(β+2Cσ)

)
.

· For ϵσ1
: By Lemma I.11, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(9β+6Cσ)(logN)3(dx+β)

)
.

· For ϵσ2
: By Lemma I.11, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(7β+5Cσ)(logN)2(dx+β)

)
.

Note that only ϵf1 and ϵf2 involve the reshape operation. From Lemma H.5, we take
O(

√
d) and O(d) ∥WV ∥2 and ∥WV ∥2,∞. Moreover, We select the largest parameter bound

from ϵrec,1 and ϵσ1
that remains valid across all other approximations. That is, we take

N−(3β+6Cσ)(logN)3(dx+β) as the upper-bound.

* Parameter Bound on W1.
Given error ϵ, the bound on each operation follows:

· For ϵf1 : By Lemma I.5, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N

(9β+6Cσ)
d (logN)−

3(dx+β)
d · (logN)

)
.

· For ϵf2 : By Lemma I.6, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N

(3β+2Cσ)
d (logN)−

(dx+β)
d · (logN)

)
.

81

4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427

Under review as a conference paper at ICLR 2025

· For ϵmult,1: By Lemma I.8 with m = 3 and C = K2 in (I.25), we have

∥W1∥2, ∥W1∥2,∞ = O
(
K2 ·N3β

)
= O

(
N (4β+Cσ)(logN)−

1
2 (dx+β)

)
.

· For ϵmult,2: By Lemma I.8 with m = 2 and C = K1 in (I.26), we have

∥W1∥2, ∥W1∥2,∞ = O
(
K1 ·N2β

)
= O

(
N (2β+Cσ)

)
.

· For ϵrec,1 , ϵrec,2: By Lemma I.9, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (6β+4Cσ)(logN)−2(dx+β)

)
.

· For ϵrec,3: By Lemma I.9, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (2β+4Cσ)

)
.

· For ϵσ1
: By Lemma I.11, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (9β+6Cσ)(logN)−3(dx+β) · logN

)
.

· For ϵσ2 : By Lemma I.11, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (7β+5Cσ)(logN)−2(dx+β) · logN

)
.

We select the largest parameter bound from ϵrec,3 that remains valid across all other approxi-
mations. That is, we take N (2β+4Cσ) as the upper-bound.

* Parameter Bound for W2.
Given error ϵ, the bound on each operation follows:

· For ϵf1 : By Lemma I.5, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N

(9β+6Cσ)
d (logN)−3

(dx+β)
d

)
.

· For ϵf2 : By Lemma I.6, we have For ϵf1 : By Lemma I.5, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N

(3β+2Cσ)
d (logN)−

(dx+β)
d

)
.

· For ϵmult,1: By Lemma I.8 with m = 3, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N3β

)
.

· For ϵmult,2: By Lemma I.8 with m = 2, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N2β

)
.

82

4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481

Under review as a conference paper at ICLR 2025

· For ϵrec,1, ϵrec,2: By Lemma I.9, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (3β+2Cσ)(logN)−(dx+β)

)
.

· For ϵrec,3: By Lemma I.9, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (β+2Cσ)

)
.

· For ϵσ1 : By Lemma I.11, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (9β+6Cσ)(logN)−3(dx+β)

)
.

· For ϵσ2
: By Lemma I.11, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (7β+5Cσ)(logN)−2(dx+β)

)
.

We select the largest parameter bound from ϵmult,1 and ϵrec,3 that remains valid across all other
approximations. That is, we take N (3β+2Cσ) as the upper-bound.

* Parameter Bound for E.
Since only ϵf1 and ϵf2 involve the reshape operation. From Lemma H.5, we take O(d

1
2L

3
2)

for
∥∥E⊤∥∥

2,∞.

By integrating results above, we derive the following parameter bounds for the transformer
network, ensuring valid approximation across all nine approximations.

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (7β+6Cσ)

)
;

∥WO∥2, ∥WO∥2,∞ = O
(
N−(3β+6Cσ)(logN)3(dx+β)

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d);

∥∥E⊤∥∥
2,∞ = O

(
d

1
2L

3
2

)
;

∥W1∥2, ∥W1∥2,∞ = O
(
N (2β+4Cσ)

)
;CT = O

(√
logN/σ2

t

)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N (3β+2Cσ)

)
.

The last network output bound CT = O(
√
dx logN/σ

2
t) follows the entry-wise minimum

bounds K(Cx

√
d logN + 1)/σ2

t in ℓ∞ distance by Lemma I.12.

This completes the proof.

I.2 MAIN PROOF OF THEOREM 3.1

In Lemma I.13, we establish the score approximation with transformer that incorporates every
essential components and encodes the Hölder smoothness in the final result. However, it is only valid
within the input domain [Cx

√
logN,Cx

√
logN]dx × [0, 1]dy , and we also excludes region pt < ϵlow

where the problem of score explosion remains unaddressed.

To combat this, we introduce two additional lemmas. The first lemma gives us the error caused by
the truncation of Rdx within a radius R1 in ℓ2 distance.

83

4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535

Under review as a conference paper at ICLR 2025

Lemma I.14 (Truncate x for Score Function, Lemma A.1 of (Fu et al., 2024b)). Assume Assump-
tion 3.1. For any R1 > 1, y, t > 0 we have∫

∥x∥∞≥R1

pt(x|y)dx ≤ R1 exp
(
−C ′2R2

1

)
,∫

∥x∥∞≥R1

∥∇ log pt(x|y)∥22pt(x|y)dx ≤ R3
1

σ4
t

exp
(
−C ′2R2

1

)
,

where C ′2 = C2/(2max(C2, 1)).

Remark I.9. Because we only impose assumption on the light tail property of the conditional
distribution in Assumption 3.1, the unboundedness of x necessitates a truncation for integrals
regarding x, or else the result would diverge.

Furthermore, we address the explosion of score function with the second lemma.

Lemma I.15 (Lemma A.2 of (Fu et al., 2024b)). Assume Assumption 3.1. For any R2, y, ϵlow > 0
we have ∫

∥x∥∞≤R2

1{|pt(x|y)| < ϵlow} · pt(x|y)dx ≤ Rdx
2 ϵlow,∫

∥x∥∞≤R2

1{|pt(x|y)| < ϵlow} · ∥∇ log pt(x|y)∥22pt(x|y)dx ≤ 1

σ4
t

Rdx+2
2 ϵlow.

Remark I.10. Recall that the score function has the form ∇ log pt(x|y) = ∇pt(x|y)/pt(x|y). It is
essential to set a threshold for pt(x|y) prevents the explosion of the score function.

We begin the proof of Theorem 3.1.

Proof Sketch of Theorem 3.1. In the following proof, we give error bound for the three terms:

• (A.1): The approximation for ∥x∥∞ > R1.

This step controls the error from truncation of Rdx with radius R1 in ℓ2 distance. We approximate
the error with Lemma I.14

• (A.2): The approximation for 1{pt(x|y) < ϵlow} and {∥x∥∞ ≤ R1}.
This step controls the error from setting a threshold to prevent score explosion within the bounded
domain ∥x∥∞ ≤ R1. We approximate the error with Lemma I.15.

• (A.3) The approximation for 1{pt(x|y) ≥ ϵlow} and {∥x∥∞ ≤ R1}.
With previous two steps ensuring the bounded domain and preventing the divergence of score
function, we approximate with Lemma I.13.

Proof of Theorem 3.1. We apply N = N1/(dx+dy) in Lemma I.13. Throughout the proof, we use N
as a notational simplification, with the understanding that N represents N1/(dx+dy) in full form. At
the end of of the proof we replace N by N1/(dx+dy).

To begin with, we set R1 = R2 =
√
2β logN/C ′2 in Lemma I.14 and Lemma I.15, and we expand

the target into three parts (A1), (A2), and (A3):∫
Rdx

∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx

84

4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589

Under review as a conference paper at ICLR 2025

=

∫
∥x∥∞>

√
2β

C′
2
logN

∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx︸ ︷︷ ︸
(A1)

,

+

∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| < ϵlow}∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx︸ ︷︷ ︸
(A2)

+

∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| ≥ ϵlow}∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx︸ ︷︷ ︸
(A3)

.

We derive the bound for (A1), (A2), (A3) and combine these results.

• Bounding (A1). We apply Lemma I.14. Note that we have ∥s(x, y, t)∥∞ ≲
√
logN/σ2

t from the
construction of the score estimator in Lemma I.13.∫

∥x∥∞>

√
2β

C′
2
logN

∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx
(
By expanding the ℓ2 norm

)
≤ 2

∫
∥x∥∞>

√
2β

C′
2
logN

∥s(x, y, t)∥22 · pt(x|y)dx+ 2

∫
∥x∥∞>

√
2β

C′
2
logN

∥∇ log pt(x|y)∥22 · pt(x|y)dx(
By ∥·∥22 ≤ dx∥·∥2∞

)
≤ 2dx

∫
∥x∥∞>

√
2β

C′
2
logN

∥s(x, y, t)∥2∞ · pt(x|y)dx+ 2

∫
∥x∥∞>

√
2β

C′
2
logN

∥∇ log pt(x|y)∥22 · pt(x|y)dx(
By the ℓ∞ bound on the score function

)
≲ 2dx

(√
logN

σ2
t

)2 ∫
∥x∥∞>

√
2β

C′
2
logN

pt(x|y)dx+ 2

∫
∥x∥∞>

√
2β

C′
2
logN

∥∇ log pt(x|y)∥22 · pt(x|y)dx(
By Lemma I.14 and dropping constant

)
≲ 2dx

(√
logN

σ2
t

)2
(√

2β

C ′2
logNN−2β

)
+

2

σ4
t

(
2β

C ′2
logN

) 3
2

N−2β(
By dropping constant and lower order term

)
≲

1

σ4
t

N−2β(logN)
3
2 .

• Bounding (A2). We apply Lemma I.15. Note that we set ϵlow = C3N
−β(logN)(dx+k1)/2 in

Lemma I.13.∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| < ϵlow}∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx(
By expanding the ℓ2 norm

)
≤
∫
∥x∥∞≤

√
2β

C′
2
logN

21{|pt(x|y)| < ϵlow}
(
∥s(x, y, t)∥22 + ∥∇ log pt(x|y)∥22

)
· pt(x|y)dx

(
By ∥·∥22 ≤ dx∥·∥2∞

)
≤
∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| < ϵlow}
(
dx∥s(x, y, t)∥2∞ + ∥∇ log pt(x|y)∥22

)
· pt(x|y)dx(

By the ℓ∞ bound on the score function
)

85

4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643

Under review as a conference paper at ICLR 2025

≲
∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| < ϵlow}

(
dx

(√
logN

σ2
t

)2

+ ∥∇ log pt(x|y)∥22

)
· pt(x|y)dx(

By Lemma I.15 and dropping constant
)

≲ dx

(√
logN

σ2
t

)2(
2β

C ′2
logN

) dx
2

ϵlow +

(
2β

C ′2
logN

) dx+2
2 ϵlow

σ4
t(

By dropping constant and lower order term
)

≲
1

σ4
t

(logN)
dx+2

2 ϵlow.

• Bounding (A3). We apply Lemma I.13.∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| ≥ ϵlow}∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx(
By ∥·∥22 ≤ dx∥·∥2∞

)
≤
∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| ≥ ϵlow}dx∥s(x, y, t)−∇ log pt(x|y)∥2∞ · pt(x|y)dx(
Multiply with pt/pt

)
=

∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| ≥ ϵlow}
pt(x|y)

dx∥s(x, y, t)−∇ log pt(x|y)∥2∞ · p2t (x|y)dx(
By Lemma I.13

)
≲
B2dx
σ2
t

N−2β(logN)dx+k1+1

∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| ≥ ϵlow}pt(x|y)dx(
Multiply with ϵlow/ϵlow

)
=
B2dx
σ2
t ϵlow

N−2β(logN)dx+k1+1

∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| ≥ ϵlow}
ϵlow

pt(x|y)
dx

(
By Lemma I.15

)
≲
B2dx
σ2
t ϵlow

N−2β(logN)dx+k1+1 ·
(
2β

C ′2
logN

) dx
2

(
By the choice of ϵlow and dropping lower order term

)
≲
B2dx
σ4
t ϵlow

N−2β(logN)
3dx
2 +k1+1.

• Combining the Results.
Combining (A1), (A2) and (A3), we have∫

Rd

∥s(x, y, t)−∇ log pt(x|y)∥22pt(x|y)dx

≲
N−2β(logN)

3
2

σ4
t︸ ︷︷ ︸

(A1)

+
ϵlow(logN)

dx+2
2

σ4
t︸ ︷︷ ︸

(A2)

+
B2d

σ4
t ϵlow

N−2β(logN)
3dx
2 +k1+1︸ ︷︷ ︸

(A3)

.

86

4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697

Under review as a conference paper at ICLR 2025

By replacing ϵlow with C3N
−β(logN)dx+k1/2 and using the relation k1 ≤ β,10 we obtain∫

Rd

∥s(x, y, t)−∇ log pt(x|y)∥22pt(x|y)dx = O
(
B2

σ4
t

N−β(logN)dx+
β
2 +1

)
.

Replacing N with N1/(dx+dy) completes the first part of the proof.

The transformer parameter norm bounds follow Lemma I.13, with the replacement of N with
N1/(dx+dy) as well. Note that this results in t ∈ [N−Cα/(dx+dy), Cσ/((dx + dy)) logN]. For better
interpretation of the cutoff and early stopping time parameter, we reset Cα as (dx + dy)Cα and Cσ

as (dx + dy)Cσ such that t ∈ [N−Cα , Cσ logN].

This completes the proof.

10Recall the definition of the Hölder smoothness from Definition 3.1.

87

4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751

Under review as a conference paper at ICLR 2025

J PROOF OF THEOREM 3.2

We provide the formal version of Theorem 3.2 at the end of Appendix J.2.

• Step 0. We decompose the density function and the score function under Assumption 3.2. In
Lemma J.1, we provide details regarding the decomposed form of the score function presented in
(3.2). We specify the upper and lower bound on h and ∇h in Lemma J.2.

• Step 1. Similar to the domain discretization in the proof of previous main result, we discretize the
input domain of the decomposed density function in Lemma J.3.

• Step 2. We construct polynomial approximation based on Taylor expansion of h and ∇h in
Lemmas J.4 and J.5. The approximation result captures the local Hölder smoothness, with
improved precision relative to the analogous step in Lemma I.3 and Lemma I.4.

• Step 3. We approximate h and ∇h with transformer in Lemmas J.6 and J.7. In order to construct
the score approximator with transformer, we approximate several additional algebraic operators
with transformer in Lemma J.8, Lemma J.9 and Lemma J.10. We incorporate these results into a
unified transformer architecture in Lemma J.11.

Organization. Appendix J.1 includes the four steps and auxiliary lemmas supporting our proof.
Appendix J.2 includes the formal version and main proof of Theorem 3.2.

J.1 AUXILIARY LEMMAS

Step 0: Decompose the Score with Stronger Hölder Smoothness Assumption. We utilize the
condition assumed in Assumption 3.2 to achieve the decomposition.

Lemma J.1 (Lemma B.1 of Fu et al. (2024b)). Assume Assumption 3.2. The conditional distribution
at time t has the following expression:

pt(x|y) =
1

(α2
t + C2σ2

t)
dx/2

exp

(
−

C2∥x∥22
2(α2

t + C2σ2
t)

)
h(x, y, t).

Moreover, the score function has the following expression:

∇ log pt(x|y) =
−C2x

α2
t + C2σ2

t

+
∇h(x, y, t)
h(x, y, t)

,

where h(x, y, t) =
∫ f(x0,y)

σ̂d
t (2π)

d/2 exp
(
−∥x0−α̂tx∥2

2σ̂2
t

)
dx0, σ̂t = σt

(α2
t+C2σ2

t)
1/2 , and α̂t =

αt

α2
t+C2σ2

t
.

Proof. From Assumption 3.2, we have the initial conditional density with the form: p(z|y) =

exp
(
−C2∥z∥22/2

)
· f(z, y).

This allows the decomposition:

pt(x|y) =
∫

1

σd
t (2π)

d/2
p(z|y) exp

(
−∥x− αtz∥2

2σ2
t

)
dz, (J.1)

=
1

σd
t (2π)

d/2

∫
exp

(
−
C2∥z∥22

2

)
f(z, y) exp

(
−∥x− αtz∥2

2σ2
t

)
dz. (J.2)

We rearrange the two exponential terms in (J.2) into

exp

(
−
C2∥z∥22

2

)
exp

(
−∥x− αtz∥2

2σ2
t

)
= exp

(
− 1

2σ2
t

d∑
i=1

(x[i]2 − 2αtx[i]z[i] + α2
t z[i]

2 + C2σ
2
t z[i]

2)

)
.

88

4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805

Under review as a conference paper at ICLR 2025

Note that, we replace the summation in the exponents by first focusing on one coordinate and then do
the product for all d components.

Without loss of generality, we derive the first coordinate of the fucntion:

exp

(
− 1

2σ2
t

(x[1]2 − 2αtx[1]z[1] + α2
t z[1]

2 + C2σ
2
t z[1]

2)

)
,

= exp

(
− 1

2σ2
t

(α2
t + C2σ

2
t)

(
z[1]2 − 2αt

α2
t + C2σ2

t

x[1]z[1] +
x[1]2

α2
t + C2σ2

t

))
,

= exp

(
− 1

2σ2
t

(α2
t + C2σ

2
t)

(
z[1]− αtx[1]

α2
t + C2σ2

t

)2

− 1

2σ2
t

(
−α2

t

α2
t + C2σ2

t

+ 1

)
x[1]2

)
,

= exp

(
− 1

2σ2
t

(α2
t + C2σ

2
t)

(
z[1]− αtx[1]

α2
t + C2σ2

t

)2
)
exp

(
− C2x[1]

2

2(α2
t + C2σ2

t)

)
.

The other dx − 1 coordinates abide by the same derivation. Consider the product of them, we have:

exp

(
−
C2∥z∥22

2

)
exp

(
−∥x− αtz∥2

2σ2
t

)
, (J.3)

= exp

(
− 1

2σ2
t

(α2
t + C2σ

2
t)

∥∥∥∥z − αtx

α2
t + C2σ2

t

∥∥∥∥2
)
exp

(
− C2

2(α2
t + C2σ2

t)
∥x∥22

)
. (J.4)

Following (Fu et al., 2024b), we plug (J.3) into (J.1) and set α̂t =
αt

α2
t+C2σ2

t
and σ̂2

t =
σ2
t

α2
t+C2σ2

t
for

simplicity. Then we get:

pt(x|y)

=
1

σd
t (2π)

d/2
exp

(
−

C2∥x∥22
2(α2

t + C2σ2
t)

)∫
f(z, y) exp

(
− 1

2σ2
t

(α2
t + C2σ

2
t)

∥∥∥∥z − αtx

α2
t + C2σ2

t

∥∥∥∥2
)
dz,

=
1

σd
t (2π)

d/2
exp

(
−

C2∥x∥22
2(α2

t + C2σ2
t)

)∫
f(z, y) exp

(
−∥z − α̂tx∥2

2σ̂2
t

)
dz.

Finally, we define h(x, y, t) =
∫

1
σ̂d
t (2π)

d/2 f(z, y) exp
(
−∥z−α̂tx∥2

2σ̂2
t

)
dz and plug it back to the

equation above.

The form of the score function is proved by simply implementing the logarithm and the gradient to
the result of pt(x|y)
This completes the proof.

Next, we provide lemma that provides bound on h(x, y, t) and ∇h(x, y, t) in Lemma J.1

Lemma J.2 (Lemma B.8 of (Fu et al., 2024b)). Under Assumption 3.2, we have the following bounds
for h(x, y, t) and σ̂t

α̂t
∇h(x, y, t)

C1 ≤ h(x, y, t) ≤ B,

∥∥∥∥ σ̂tα̂t
∇h(x, y, t)

∥∥∥∥
∞

≤
√

2

π
B,

where C1 and B are the hyperparameters of Hβ(Rdx × [0, 1]dy , B) in Assumption 3.2.

Remark J.1 (Bound on h and ∇h). We reiterate that Lemma J.2 drives the key distinction between
the analyses in Theorem 3.1 and Theorem 3.2. Specifically, in Appendix I.2, the decomposed term
containing the threshold ϵlow results in lower approximation rate, while bounds on h and ∇h eliminate
the need of the threshold with h’s lower bound C1, rendering faster approximation rate.

89

4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859

Under review as a conference paper at ICLR 2025

Step 1: Discretize Rdx × [0, 1]dy for h(x, y, t). This step parallels Lemma I.1; however, the
discretization differs due to the structure of h.

Lemma J.3 (Clipping Integral, Lemma B.10 of Fu et al. (2024b)). Assume Assumption 3.2. Consider
any integer vector κ ∈ Zdx

+ with ∥κ∥1 ≤ n. There exists a constant C(n, dx), such that for any
x ∈ Rdx and 0 < ϵ ≤ 0.99, it holds∫

Rdx\Bx

∣∣∣∣(α̂tx0 − x

σ̂t

)κ∣∣∣∣ · p(x0|y) · 1

σ̂d
t (2π)

d/2
exp

(
−∥α̂tx0 − x∥2

2σ̂2
t

)
dx0 ≤ ϵ, (J.5)

where
(

α̂tx0−x
σ̂t

)κ
:= ((α̂tx0[1]1−x[1]

σ̂t
)κ[1], (α̂tx0[2]−x[2]

σ̂t
)κ[2], . . . , (α̂tx0[dx]−x[dx]

σ̂t
)κ[dx]) and

Bx :=
[
α̂tx− C(n, d)σ̂t

√
log ϵ−1, α̂tx+ C(n, d)σ̂t

√
log ϵ−1

]dx

.

Step 2: Approximate h and ∇h with Polynomials. Similar to the construction of the diffused
local polynomials in Lemma I.5 and Lemma I.6, the following two lemmas render the first step
approximation for h(x, y, t) and ∇h(x, y, t) that captures the local smoothness.

Lemma J.4 (Approximation with Diffused Local Polynomials, Lemma B.4 of (Fu et al., 2024b)).
Assume Assumption 3.2. For sufficiently larger N > 0 and constant C2, there exists a diffused local
polynomial f1(x, y, t) with at most Nd+dy (d+ dy)

k1 monomials such that

|f1(x, y, t)− h(x, y, t)| ≲ BN−β log
k1
2 N,

for any x ∈ [−Cx

√
logN,Cx

√
logN]dx , y ∈ [0, 1]dy and t > 0.

Lemma J.5 (Counterpart of Lemma J.4, Lemma B.6 of (Fu et al., 2024b)). Assume Assumption 3.2.
For sufficiently larger N > 0 and constant C2, there exists a diffused local polynomial f2(x, y, t) ∈
T h,s,r
R with at most Ndx+dy (dx + dy)

k1 monomials f2[i](x, y, t) such that∣∣∣∣f2[i](x, y, t)− (σ̂tα̂t
∇h(x, y, t)

)
[i]

∣∣∣∣ ≲ BN−β log
k1+1

2 N,

for any x ∈ Rdx , y ∈ [0, 1]dy and t > 0.

Step 3: Approximate Diffused Local Polynomials and Algebraic Operators with Transformers.
First, we apply the universal approximation theory of transformers to f1 and f2. Second, we adopt a
comparable approach to approximate the algebraic operators essential for the final score computation.
Last, we introduce Lemma J.11 that outlines how these components fit into a single transformer
architecture with a specified parameter configuration.

• Step 3.1: Approximate the Diffused Local Polynomials f1 and f2.
We invoke the universal approximation theorem of transformer Theorem H.2. We utilize network
consisting of one transformer block and one feed-forward layer (see Figure 1 and Definition 2.2).

Lemma J.6 (Approximate Scalar Polynomials with Transformers). Assume Assumption 3.1.
Consider the diffused local polynomial f1 in Lemma J.4. For any ϵ > 0, there exists a trans-
former Tf1 ∈ T h,s,r

R , such that for any x ∈ [−Cx

√
logN,Cx

√
logN]dx , y ∈ [0, 1]dy and

t ∈ [N−Cσ , Cα logN], it holds

|f1(x, y, t)− Tf1(x, y, t)[dx]| ≤ ϵ,

The parameter bounds in the transformer network class follows Lemma I.5.

Proof of Lemma J.6. The proof closely follows Lemma I.5

90

4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913

Under review as a conference paper at ICLR 2025

Lemma J.7 (Approximate Vector-Valued Polynomials with Transformers). Assume Assump-
tion 3.1 and consider f2(x, y, t) ∈ Rdx in Lemma J.5. For any ϵ > 0, there exists a transformer
Tf2 ∈ T h,s,r

R such that

∥f2(x, y, t)− Tf2∥∞ ≤ ϵ,

for any x ∈ [−Cx

√
logN,Cx

√
logN]dx , y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN]. The parameter

bounds in the transformer network class follows Lemma I.5.

Proof of Lemma J.7. The proof closely follows Lemma I.6

• Step 3.2: Approximate Algebraic Operators with Transformers.
Next, we introduce lemmas regarding the function of time. These are also key components to the
proof of Theorem J.1.

Lemma J.8 (Approximation of α2 with Transformer). For t ∈ [t0, T] with t0 < 1, there exists
Transformer Tα2(t) ∈ T h,s,r

R such that ∣∣Tα2 − α2
∣∣ ≤ ϵα̂.

The parameter bounds in the Transformer network class follow Lemma I.11.

Proof. The proof closely follows Lemma I.11.

Also, we approximate α̂ and σ̂t as well.

Lemma J.9 (Approximation of α̂ with Transformer). Consider α̂t =
αt

α2
t+C2σ2

t
, for t ∈ [t0, T]

with t0 < 1, there exists Transformer Tα̂(t) ∈ T h,s,r
R such that

|Tα̂ − α̂| ≤ ϵα̂.

The parameter bounds in the transformer network class follow Lemma I.11.

Proof. The proof closely follows Lemma I.11.

Lemma J.10 (Approximation of σ̂ with Transformer). Consider σ̂t = σt

(α2
t+C2σ2

t)
1/2 , for t ∈ [t0, T]

with t0 < 1, there exists Transformer Tσ̂(t) ∈ T h,s,r
R such that

|Tσ̂ − σ̂| ≤ ϵσ̂.

The parameter bounds in the transformer network class follow Lemma I.11.

Proof. The proof closely follows Lemma I.11.

We have finished establishing the approximation with transformer for every key component for the
proof of Theorem 3.2.

• Step 3.3: Unified Transformer-Based Score Function Approximation.
We introduce the counterpart of Lemma I.13. It is the core of the proof for Theorem J.1.

Lemma J.11 (Score Approximation with Transformer). Assume Assumption 3.2. For sufficiently
large integer N , there exists a mapping from transformer Tscore ∈ T h,s,r

R such that∥∥∥∥Tscore −∇ log h(x, y, t) +
C2x

α2
t + C2σ2

t

∥∥∥∥
∞

≤ B

σt
N−β(logN)

k1+1
2 ,

91

4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967

Under review as a conference paper at ICLR 2025

for any x ∈ [−Cx

√
logN,Cx

√
logN]dx , y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN].

The parameter bounds in the transformer network class satisfy

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (3β+9Cσ)

2dL+4d+1
d

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d); ∥WO∥2, ∥WO∥2,∞ = O

(
N−β

)
;

∥W1∥2, ∥W1∥2,∞ = O
(
N4β+9Cσ+

3Cα
2 · logN

)
;
∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N4β+9Cσ+

3Cα
2

)
;CT = O

(√
logN/σt

)
.

Proof. Our proof follows the proof structure of (Fu et al., 2024b, Proposition B.3).

Recall the decomposed score function presented in Step 0, we establish the the first-step approxi-
mator f3 with the form:

f3(x, y, t) :=
α̂t

σ̂t
· f2(x, y, t)
f1(x, y, t)

− C2x

α2
t + C2σ2

t

.

We derive the error bound on the approximation of the first term containing Taylor polynomials
in f3. We incorporate second term containing the linear function in x into the the transformer
architecture.

We proceed as follows:

1. Step A: Approximate ∇ log pt(x|y) with f3.

2. Step B: Approximate f3 with Tscore ∈ T h,s,r
R .

3. Step C: Derive the final Parameter Configuration

– Step A. Approximate Scroe Function with f3.
We first construct f1(x, y, t) and f2(x, y, t) from Lemma J.4 and Lemma J.5 to approximate
h(x, y, t) and ∇h(x, y, t) respectively.

From Lemma J.2, we have C1 ≤ h ≤ B and
∥∥∥ σ̂t∇h

α̂t

∥∥∥
∞

≤
√

2
πB.

Next, by Lemma J.4 and Lemma J.5, we select a sufficiently large N such that C1

2 ≤ f1 ≤ 2B
and f2 ≤ B.

Without loss of generality, we begin by bounding the first coordinate of ∇h, denoted as ∇h[1]:∣∣∣∣∇h[1]h
− α̂t

σ̂t

f2[1]

f1

∣∣∣∣ ≤ ∣∣∣∣∇h[1]h
− ∇h[1]]

f1

∣∣∣∣+ ∣∣∣∣∇h[1]f1
− α̂t

σ̂t

f2[1]]

f1

∣∣∣∣,
≤
∣∣∣∣∇h[1]]h · f1

∣∣∣∣|f1 − h|+ α̂t

σ̂t

∣∣∣∣ 1f1
∣∣∣∣∣∣∣∣f2 − σ̂t

α̂t
∇h[1]]

∣∣∣∣,
≲
α̂t

σ̂t

(
|f1 − h|+

∣∣∣∣f2 − σ̂t
α̂t

∇h[1]
∣∣∣∣) , (

By bounds on h, ∇h, f1, f2
)

≲
α̂t

σ̂t

(
BN−β(logN

k1
2 +BN−β(logN

k1+1
2)
)
,(

By Lemma J.4 and Lemma J.5
)

≲
1

σt

(
BN−β(logN

k1+1
2)
)
.

92

4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021

Under review as a conference paper at ICLR 2025

Tscore

sum

product
Lemma I.8

product
Lemma I.8

x

α̂t

Lemma J.9

inverse
Lemma I.9

inverse
Lemma I.9

σ̂t

Lemma I.11

f1
Lemma I.5

α̂t

Lemma J.9

f2
Lemma I.6

C2×

C2 + (1− C2)×

Figure 5: Approximate Score Function under Assumption 3.2 with Transformer Tscore. The construction of
the final score function consists of the approximation of diffused local polynomials f1 and f2 with transformer
and transformer-approximate operators. We highlight the overall pipeline and related lemmas to ensemble the
Transformer network.

Note that in the last line, we utilize

α̂t

σ̂t
=
αt

σt

1√
α2
t + C2σ2

t

=
1

σt

1√
1 + C2 (σt/αt)

2
=

1

σt

1√
1 + C2

σ2
t

1−σ2
t

= O(σ−1t).

By the symmetry of each coordinate in ∇h, we obtain the ℓ∞ bounds:∥∥∥∥∇h(x, y, t)h(x, y, t)
− α̂t

σ̂t

f2(x, y, t)

f1(x, y, t)

∥∥∥∥
∞

≲
B

σt
N−β(logN)

k1+1
2 . (J.6)

– Step B. Approximate f3 with Transformer Tscore.

Next, we prove that there exist Transformer networks Tscore ∈ T h,s,r
R that approximates

f3(x, y, t) with error of order N−β . We illustrate the overall approximation of f3 in Figure 5.

In the following, we construct a transformer approximating the two terms in f3, and incorporate
the result into a unified network architecture.

* Step B.1: Approximation for α̂tf2
σ̂tf1

.

We utilize Tf1 , Tf2 , Tα̂ and Tσ̂ in Lemma I.5, Lemma I.6, Lemma J.9 and Lemma J.10 to
approximate each one of the component. This gives error ϵf1 , ϵf2 , ϵα̂ and ϵσ̂ respectively.

Next we utilize Trec,2 and Trec,3 in Lemma I.9 for the approximation of the inverse of f1 and
σ̂t. This gives error ∣∣∣∣Trec,2 −

1

f1

∣∣∣∣ ≤ ϵrec,2 +
|Tf1 − f1|
ϵ2rec,2

≤ ϵrec,2 +
ϵf1
ϵ2rec,2

,

and ∣∣∣∣Trec,3 −
1

σ̂t

∣∣∣∣ ≤ ϵrec,3 +
|Tσ̂ − σ̂t|
ϵ2rec,2

≤ ϵrec,3 +
ϵσ̂
ϵ2rec,3

.

93

5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075

Under review as a conference paper at ICLR 2025

Next we utilize Tmult,1 in Lemma I.8 for the approximation of the product of f−11 , f2, α̂t and
σ̂−1t . This gives error∣∣∣∣Tmult,1 −

α̂tf2
σ̂tf1

∣∣∣∣
≤ ϵmult,1 + 4K3

4 max

(
ϵrec,2 +

ϵf1
ϵ2rec,2

, ϵf2 , ϵα̂, ϵrec,3 +
ϵσ̂
ϵ2rec,3

)
︸ ︷︷ ︸

:=ϵ2

:= ϵmult,1 + 4K3
4ϵ2,

and K3 is a positive constant.

From Lemma I.8, we require [−K4,K4] to cover the domain of f−11 , f2, α̂, and σ̂t. Recall
that we give the upper and lower bounds for f−11 and f2 in the beginning of Step 1. Thus, we
set K4 = max

(
σ̂−1t , α̂t

)
.

To derive the asymptotic behavior of K4, we set the positive constant C2 = 2 without loss of
generality and note that the maximum occurs at t = t0. We then expand σ̂t0 and α̂−1t0 :

σ̂t0 =

(
1− exp(−t0)
2− exp(−t0)

) 1
2

=

(
1− 1

2− exp(−t0)

) 1
2

= O
(
N−Cσ

)
.

and

α̂−1t0 =

(
2− exp(−t0)
exp
(
− t0

2

))
= 2 exp

(
t0
2

)
− exp

(
− t0

2

)
= O

(
N−Cσ

)
.

So we take K4 = O(NCσ).

* Step B.2: Approximation for −C2x/(α
2
t + C2σ

2
t).

We use α2
t + σ2

t = 1 to rewrite (α2
t + C2σ

2
t)
−1 as (C2 + (1− C2)α

2
t)
−1.

We first utilize Tα2 in Lemma J.8 for the approximation of α2
t . This gives error ϵα2 .

Next, we utilize Trec,1 in Lemma I.8 for the approximation of the inverse of α2
t .

This gives error

∣∣∣∣Trec,1 −
1

α2
t

∣∣∣∣ ≤ ϵrec,1 +

∣∣∣Tα2
t
− α2

t

∣∣∣
ϵ2rec,1

≤ ϵrec,1 +
ϵα2

ϵ2rec,1
.

Next, we utilize Tmult,2 for the approximation of the product of (C2 + (1− C2)α
2
t)
−1 and x.

This gives error∣∣∣∣Tmult,2 −
(

x

C2 + (1− C2)α2
t

)∣∣∣∣ ≤ ϵmult,2 + 2K3

(
ϵrec,1 +

ϵα2

ϵ2rec,1

)
,

and from Lemma I.8, K3 is positive constant such that x ∈ [−K3,K3] and α−1t ∈ [−K3,K3].
Since x ∈ [−Cx

√
logN,Cx

√
logN] and α−1T = (exp(−Cα logN/2))−1 = NCα/2, we

take K3 = NCα/2.

* Step B.3: Error Bound on Every Approximation Combined.

94

5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129

Under review as a conference paper at ICLR 2025

Combining Step B.1 and Step B.2, we obtain the total network with error bounded by

ϵscore ≤ ϵmult,2 + 2K3

(
ϵrec,1 +

ϵα2

ϵ2rec,1

)
+ ϵmult,1 + 4K3

4ϵ2.

Next, we specify on the choice of ϵ in each approximation to attain a final approximation
error of order N−β .

· For the Error of the First Inverse Operator:

ϵrec,1 = O
(
N−(β+

1
2Cα)

)
.

· For the Error of the Second and Third Inverse Operator:

ϵrec,2, ϵrec,3 = O
(
N−(β+3Cσ)

)
.

· For the Error of f1:

ϵf1 = O
(
N−(3β+9Cσ)

)
.

· For the Error of f2:

ϵf2 = O
(
N−(β+3Cσ)

)
.

· For the Error of σ̂:

ϵσ̂ = O
(
N−(3β+9Cσ)

)
.

· For the Error of α̂:

ϵα̂ = O
(
N−(β+3Cσ)

)
.

· For the Error of α2:

ϵα2 = O
(
N−(3β+

3
2Cα)

)
.

· For the Error of the Two Product Operators:

ϵmult,1, ϵmult,2 = O(N−β).

With above error choice, we have

|Tscore(x, y, t)− f3(x, y, t)| ≤ N−β . (J.7)

Combining (J.6), (J.7) and dropping lower order term, we obtain

∥Tscore −∇ log pt(x|y)∥∞ ≲
B

σt
N−β(logN)

k1+1
2 .

95

5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183

Under review as a conference paper at ICLR 2025

We have completed the first part of the proof. Next, we select the parameter bounds based on all
the above approximations.

Step C: Transformer Parameter Bound.
Our result highlights the influence ofN under varying dx. Therefore, for the transformer parameter
bounds, we keep terms with dx, d, L appearing in the exponent of N and logN .

– Parameter Bound on WQ and WK .
Given error ϵ, the bound on each operation follows:

* For ϵf1 : By Lemma I.5, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (3β+9Cσ)

2dL+4d+1
d

)
.

* For ϵf2 : By Lemma I.6, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (β+3Cσ)

2dL+4d+1
d

)
.

* For ϵmult,1: By Lemma I.8 with m = 4, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N9β

)
.

* For ϵmult,2: By Lemma I.8 with m = 2, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N5β

)
.

* For ϵrec,1: By Lemma I.9, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N3β+ 3Cα

2

)
.

* For ϵrec,2 and ϵrec,3: By Lemma I.9, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N3β+9Cσ

)
.

* For ϵα̂: By Lemma I.11, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WQ∥2,∞ = O
(
N3β+9Cσ

)
.

* For ϵα2 : By Lemma I.11, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WQ∥2,∞ = O
(
N9β+ 9Cα

2

)
.

* For ϵσ̂: By Lemma I.11, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WQ∥2,∞ = O
(
N9β+27Cσ

)
.

We select the largest parameter bound from ϵf1 that remains valid across all other approximations.

– Parameter Bound on WO and WV .

96

5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237

Under review as a conference paper at ICLR 2025

Given error ϵ, the bound on each operation follows:

* For ϵf1 : By Lemma I.5, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−

(3β+9Cσ)
d

)
.

* For ϵf2 : By Lemma I.6, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−

(β+3Cσ)
d

)
.

* For ϵmult,1: By Lemma I.8 with m = 4, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−4β

)
.

* For ϵmult,2: By Lemma I.8 with m = 2, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−2β

)
.

* For ϵrec,1: By Lemma I.9, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(β+

Cα
2)
)
.

* For ϵrec,2 and ϵrec,3: By Lemma I.9, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(β+3Cσ)

)
.

* For ϵα̂: By Lemma I.11, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(β+3Cσ)

)
.

* For ϵα2 : By Lemma I.11, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(3β+

3Cα
2)
)
.

* For ϵσ̂: By Lemma I.11, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(3β+9Cσ)

)
.

Since we do not impose any relation on Cσ, Cα and β, we simply take looser bound
∥WO∥2, ∥WO∥2,∞ = N−β . Moreover, since only ϵf1 and ϵf2 involve the reshape operation.
From Lemma H.5, we take O(

√
d) and O(d) ∥WV ∥2 and ∥WV ∥2,∞.

– Parameter Bound for W1.
Given error ϵ, the bound on each operation follows:

* For ϵf1 : By Lemma I.5, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N

(3β+9Cσ)
d · logN

)
.

97

5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291

Under review as a conference paper at ICLR 2025

* For ϵf2 : By Lemma I.6, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N

(β+3Cσ)
d · logN

)
.

* For ϵmult,1: By Lemma I.8 with m = 4 and C = K4 in (I.25), we have

∥W1∥2, ∥W1∥2,∞ = O
(
K4 ·N4β

)
= O

(
N (4β+Cσ)

)
.

* For ϵmult,2: By Lemma I.8 with m = 2 and C = K3 in (I.26), we have

∥W1∥2, ∥W1∥2,∞ = O
(
K3 ·N2β

)
= O

(
N (2β+Cα

2)
)
.

* For ϵrec,1: By Lemma I.9, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N2β+Cα

)
.

* For ϵrec,2 and ϵrec,3: By Lemma I.9, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (2β+6Cσ)

)
.

* For ϵα̂: By Lemma I.11, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (β+3Cσ) · logN

)
.

* For ϵα2 : By Lemma I.11, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (3β+ 3Cα

2) · logN
)
.

* For ϵσ̂: By Lemma I.11, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (3β+9Cσ) · logN

)
.

We select the largest parameter bound from ϵf1 that remains valid across all other approximations.

– Parameter Bound for W2.
Given error ϵ, the bound on each operation follows:

* For ϵf1 : By Lemma I.5, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N

(3β+9Cσ)
d

)
.

* For ϵf2 : By Lemma I.6, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N

(β+3Cσ)
d

)
.

98

5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345

Under review as a conference paper at ICLR 2025

* For ϵmult,1: By Lemma I.8 with m = 4, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N4β

)
.

* For ϵmult,2: By Lemma I.8 with m = 2, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N2β

)
.

* For ϵrec,1: By Lemma I.9, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (β+Cα

2)
)
.

* For ϵrec,2 and ϵrec,3: By Lemma I.9, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (β+3Cσ)

)
.

* For ϵα̂: By Lemma I.11, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (β+3Cσ)

)
.

* For ϵα2 : By Lemma I.11, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (3β+ 3Cα

2)
)
.

* For ϵσ̂: By Lemma I.11, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (3β+9Cσ)

)
.

We select the largest parameter bound from ϵf1 that remains valid across all other approximations.

– Parameter Bound for E.
Since only ϵf1 and ϵf2 involve the reshape operation. From Lemma H.5, we take O(d1/2L3/2).

By integrating results above, we derive the following parameter bounds for the transformer network,
ensuring valid approximation across all ten approximations.

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (3β+9Cσ)

2dL+4d+1
d

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d); ∥WO∥2, ∥WO∥2,∞ = O

(
N−β

)
;

∥W1∥2, ∥W1∥2,∞ = O
(
N4β+9Cσ+

3Cα
2 · logN

)
;
∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N4β+9Cσ+

3Cα
2

)
;CT = O

(√
logN/σt

)
.

This completes the proof.

99

5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399

Under review as a conference paper at ICLR 2025

J.2 MAIN PROOF OF THEOREM 3.2

We state the formal version of Theorem 3.2.

Next, similar to the proof of Theorem 3.1, we need the truncation of x due to the unboundedness as
well.

Lemma J.12 (Truncate x, Lemma B.2 of (Fu et al., 2024b).). Assume Assumption 3.2. For any
R3 > 1, we have: ∫

∥x∥∞≥R3

pt(x|y)dx ≲ R3 exp
(
−C ′2R2

2

)
.

∫
∥x∥∞≥R3

∥∇ log pt(x|y)∥22pt(x|y)dx ≲ R3 exp
(
−C ′2R2

3

)
≲

1

σ2
t

R3
3 exp

(
−C ′2R2

3

)
,

where C ′2 = C2/(2max(1, C2)).

Again, unlike result under Assumption 3.1, the explicit form of pt(x|y) in (J.1) and the upper and the
lower bound of the joint distribution Lemma J.2 automatically allow us to skip the threshold ϵlow as
in Lemma I.15.

Theorem J.1 (Approximation Score Function with Transformer under Stronger Hölder Assumption
(Formal Version of Theorem 3.2)). Assume Assumption 3.2 and dx = Ω(logN

log logN). For any precision
parameter 0 < ϵ < 1 and smoothness parameter β > 0, let ϵ ≤ O(N−β) for some N ∈ N. For
some positive constants Cα, Cσ > 0, for any y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN], there exists a
Tscore(x, y, t) ∈ T h,s,r

R such that the conditional score approximation satisfies∫
Rdx

∥Tscore(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx = O
(
B2

σ2
t

·N−
2β

dx+dy · (logN)β+1

)
.

Notably, for ϵ = O(N−β), the approximation error has the upper bound Õ(ϵ2/(dx+dy)/σ2
t).

The parameter bounds in the transformer network class satisfy

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N

3β(2dx+4d+1)
d(dx+dy)

+
9Cα(2dx+4d+1)

d

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d); ∥WO∥2, ∥WO∥2,∞ = O

(
N
− β

dx+dy

)
;

∥W1∥2, ∥W1∥2,∞ = O
(
N

4β
dx+dy

+9Cσ+
3Cα

2 · logN
)
;
∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N

4β
dx+dy

+9Cσ+
3Cα

2

)
;CT = O

(√
logN/σt

)
.

Proof Sketch of Theorem J.1. We decompose the integral into two terms based on Lemma J.12.

• (A.1): The approximation for region outside of the truncation ∥x∥ > R3:
We give the error bound via Lemma J.12.

• (A.2): The approximation for region within the truncation ∥x∥∞ ≤ R3:
We give the error bound via Lemma J.11.

Proof of Theorem 3.2. For simplicity, we change the variable N to N
1

dx+dy in the following subsec-
tion. We put the original form back at the end of the proof.

100

5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453

Under review as a conference paper at ICLR 2025

We take Cx =
√

2β
C′

2
in Lemma J.11 and R3 = Cx

√
logN in Lemma J.12.

With the transformer parameter bounds in Lemma J.11, we have ∥Tscore∥2 ≤
√
logN/σt for any

x ∈ Rdx , y ∈ Rdy and t > 0. We start with the truncation on x∫
Rdx

∥Tscore −∇ log pt∥22ptdx

≤
∫
∥x∥∞>

√
2β

C′
2
logN

(
2∥Tscore∥22 + 2∥∇ log pt∥22

)
ptdx

︸ ︷︷ ︸
(A.1)

+

∫
∥x∥∞≤

√
2β

C′
2
logN

(
∥Tscore −∇ log pt∥22

)
ptdx

︸ ︷︷ ︸
A.2(

By expanding ℓ2 norm
)

≲
∫
∥x∥∞>

√
2β

C′
2
logN

(
2

(√
logN

σt

)2

+ 2∥∇ log pt∥22

)
ptdx+

B2

σ2
t

N−2β(logN)k1+1

(
By ℓ2 bound on Tscore and Lemma J.11

)
≲ 2dx

√
logN

σ2
t

(
2β

C ′2
logN

) 1
2

N−2β +
2

σ2
t

(
2β

C ′2
logN

) 3
2

N−2β +
B2

σ2
t

N−2β(logN)k1+1(
By Lemma J.12

)
≲
B2

σ2
t

N−2β(logN)β+1.
(
By dropping lower order term

)
The transformer parameter norm bounds follow Lemma J.11, with the replacement of N with
N1/dx+dy . This gives in t ∈ [N−Cα/(dx+dy), Cσ(logN)1/(dx+dy)]. For a better interpretation of the
cutoff and early stopping time parameter, we reset Cα = (dx + dy)Cα and Cσ = (dx + dy)Cσ such
that t ∈ [N−Cα , Cσ logN].

This completes the proof.

101

5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507

Under review as a conference paper at ICLR 2025

K PROOF OF THE ESTIMATION RESULTS FOR CONDITIONAL DITS

Overview of Our Proof Strategy of Theorem 3.3.

Step 0. Preliminaries. We introduce the mixed risk that accounts for risk with the distribution of the
mask signal in Definition K.1. We restate the loss function and the score matching technique
in Definition K.2.

Step 1. Truncate the Domain of the Risk. We truncate the domain of the loss function in order
to obtain finite covering number of transformer network class. Precise definition of the
truncated loss function class is in Definition K.4. We bound the error from the truncation
from the assumed light tail condition in Lemma K.1.

Step 2. Derive the Covering Number of Transformer Network. We introduce the covering number
of a given function class in Definition K.5. We provide lemma detailing the calculation of
the covering number for transformer architecture in Lemma K.2. We derive the covering
numbers under the respective parameter configurations for our two previous main results in
Lemma K.3.

Step 3. Bound the True Risk on Truncated Domain. With the previous steps, we present the
upper-bound of the mixed risk in Lemma K.4.

Overview of Our Proof Strategy of Theorem 3.4. We decompose the total variation into three
components and we bound the separately.

Step 1. We bound the total variation distance between the true distributions evaluated at t = 0 and
early-stopping time t = t0.

Step 2. We bound the total variation between the true distribution at t0 and the reverse process
distribution using the true score function.

Step 3. We bound the total variation between the reverse process distributions using the true and
estimated score functions at t0.

Organization. Appendix K.1 includes auxiliary lemmas for supporting our proof of Theorem 3.3.
Appendix K.2 includes the main proof of Theorem 3.3. Appendix K.5 includes auxiliary lemmas for
supporting our proof of Theorem 3.4. Appendix K.6 includes the main proof of Theorem 3.4.

K.1 AUXILIARY LEMMAS FOR THEOREM 3.3

Step 0: Preliminary Framework. We evaluate the quality of the estimator sW through the risk:

R(sW) :=

∫ T

t0

1

T − t0
Ext,y∥sW (xt, y, t)−∇ log pt(xt|y)∥22dt. (K.1)

Definition K.1 (Mixed Risk). The risk (K.1) considers guidance y throughout whole the diffusion
process. We refer to it as the conditional score risk. In contrast, we have the mixed risk Rm that
accounts for the distribution of the mask signal τ = {∅, id} with P (τ = ∅) = P (τ = id) = 0.5:

Rm(sW) :=

∫ T

t0

1

T − t0
E(xt,y,τ)

[
∥sW (xt, τy, t)−∇ log pt(xt|τy)∥22

]
dt, (K.2)

Remark K.1. Given the score estimator ŝ trained from the empirical loss (G.8), the conditional score
risk is upper-bounded by twice of the mixed risk. That is, we have R(ŝ) ≤ 2Rm(ŝ). This follows
from direct calculation:

Rm(ŝ) =
1

2

∫ T

t0

1

T − t0
Ext

[
∥ŝ(xt, ∅, t)−∇ log pt(xt)∥22

]
dt+

1

2
R(ŝ).

102

5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561

Under review as a conference paper at ICLR 2025

Definition K.2 (Loss Function and Score Matching). Let x = xt|x0 denote the random variable
following Gaussian distribution N(αtx0, σ

2
t Idx

), we define loss function and score matching loss:

ℓ(x, y; sW) :=

∫ T

T0

1

T − T0
Eτ,x

[
∥sW (xt, τy, t)−∇ log pt (xt|x0)∥22

]
dt,

L(sW) :=

∫ T

t0

1

T − t0
Ex0,y

[
Eτ,x

[
∥s(xt, τy, t)−∇ log pt(xt|x0)∥22

]]
dt.

Remark K.2. Given i.i.d samples {x0,i, yi}ni=1, we write ℓ(xi, yi; sW) with the understanding that
xi = xt|x0,i. When context is clear, we use ℓ(xi, yi; sW) and ℓ(x0,i, yi; sW); {x0,i, yi}ni=1 and
{xi, yi}ni=1 interchangeably.

Remark K.3. By (Vincent, 2011), L(sW) and Rm(sW) differ by a constant that is inconsequential
to the minimization. Therefore, minimizing the mixed risk is equivalent to minimizing the score
matching loss

Definition K.3 (Empirical Risk). Consider a score estimator sW ∈ T h,s,r
R . Recall the definition of

empirical loss: L̂(sW) =
∑n

i=1
1
nℓ(xi, yi; sW). Let s◦ := ∇ log pt(x|y), we define the empirical

risk:

R̂m(sW) := L̂(sW)− L̂(s◦) =
n∑

i=1

1

n
ℓ(xi, yi; sW)−

n∑
i=1

1

n
ℓ(xi, yi; s

◦).

Remark K.4. The key distinction between Rm and L lies in their formulations. Specifically, Rm

takes input xt and compares sW to the ground truth ∇ log pt(x|y). In contrast, the score matching
loss L provides an explicit calculation based on the sample. It averages the squared difference
between sW and ∇ log pt(x|x0) over the sample and time interval.

Remark K.5. Observe (I): s◦ = ∇ log pt(x|y) is the ground truth of score function with Rm(s◦) = 0,
and (II): By (Vincent, 2011), Rm and L differ by a constant. Based on (I) and (II), we define the
empirical risk R̂m using the score matching loss as an intermediary: Rm(sW) = Rm(sW) −
Rm(s◦) = L(sW) − L(s◦). This leads to the definition of the empirical risk R̂m as a practical
approximation of the true risk difference Rm(sW)−Rm(s◦).

Remark K.6. For any score estimator sW ∈ T h,s,r
R obtained from the training with i.i.d. samples

{xi, yi}ni=1, it holds E{xi,yi}ni=1
[R̂m(sW)] = Rm(sW). This follows from direct calculation with

Definition K.3 and the i.i.d. assumption.

Step 1: Domain Truncation of the Risk. We define the loss function with truncated domain. This
is essential for obtaining finite covering number for transformer network class.

Definition K.4 (Truncated Loss). We define the truncated domain of the score function by D :=
[−RT , RT]dx × [0, 1]dy ∪ ∅. Given loss function ℓ(x, y; sW), we define the truncated loss:

ℓtrunc(x, y; sW) := ℓ(x, y; sW)1{∥x∥∞ ≤ RT }. (K.3)

Similarly, we define Ltrunc(sW) := L(sW)1{∥x∥∞ ≤ RT } , Rtrunc
m (sW) := Rm(sW)1{∥x∥∞ ≤

RT } and R̂trunc
m (sW) := R̂m(sW)1{∥x∥∞ ≤ RT }. We define the function class of the truncated

loss by

S(RT) := {ℓ(·, ·; sW) : D → R | sW ∈ T h,s,r
R }. (K.4)

Next, we introduce the following lemma dealing with the error bound for the truncation of the loss.

Lemma K.1 (Truncation Error, Lemma D.1 of (Fu et al., 2024b)). Consider the truncated loss
ℓtrunc(x, y; sW) and t ∈ [n−O(1),O(log n)]. Under Assumption 3.1, we have |ℓ(x, y; sW)| ≲ 1/t0.

103

5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615

Under review as a conference paper at ICLR 2025

Consider the parameter configuration in Theorem 3.1, it holds:

Ex,y

[∣∣ℓ(x, y, t)− ℓtrunc(x, y, s)
∣∣] ≲ exp

(
−C2R

2
T
)
RT

(
1

t0

)
.

Moreover, under Assumption 3.2, we have |ℓ(x, y; sW)| ≲ log(1/t0). Consider the parameter
configuration in Theorem J.1, it holds:

Ex,y

[∣∣ℓ(x, y, t)− ℓtrunc(x, y, s)
∣∣] ≲ exp

(
−C2R

2
T
)
RT log

(
1

t0

)
.

Step 2: Covering Number of Transformer Network Class. We begin with the definition.

Definition K.5 (Covering Number). Given a function class F and a data distribution P . Sample n
data points {Xi}ni=1 from P , then the covering number N (ϵ,F , {Xi}ni=1, ∥·∥) is the smallest size of
a collection (a cover) C ∈ F such that for any f ∈ F , there exist f̂ ∈ C satisfying

max
i

∥∥∥f(Xi)− f̂(Xi)
∥∥∥ ≤ ϵ.

Further, we define the covering number with respect to the data distribution as

N (ϵ,F , ∥·∥) = sup
{Xi}ni=1∼P

N (ϵ,F , {Xi}ni=1, ∥·∥).

Next, we introduce the following lemma that provides results for the calculation of the covering
number for transformer networks.

Lemma K.2 (Modified from Theorem A.17 of Edelman et al. (2022)).

Let T h,s,r
R (CT , C

2,∞
Q , CQ, C

2,∞
K , CK , C

2,∞
V , CV , C

2,∞
O , CO, CE , C

2,∞
f1

, Cf1 , C
2,∞
f2

, Cf2 , LT)

represent the class of functions of one transformer block satisfying the norm bound for matrix and
Lipsichitz property for feed-forward layers. Then for all data point ∥X∥2,∞ ≤ RT we have

logN (ϵc, T h,s,r
R , ∥·∥2)

≤ log(nLT)

ϵ2c
·
(
α

2
3

(
d

2
3

(
C2,∞

F

) 4
3

+ d
2
3

(
2(CF)

2COV C
2,∞
KQ

) 2
3

+ 2
(
(CF)

2C2,∞
OV

) 2
3

))3

,

where α := (CF)
2COV (1 + 4CKQ)(RT + CE).

Remark K.7. We modify (Edelman et al., 2022, Theorem A.17) in seven aspects:

1. We do not consider the last linear layer in the model: converting each column vector of the
transformer output to a scalar. Therefore, we ignore the item related to the last linear layer in
Edelman et al. (2022, Theorem A.17).

2. We do not consider the normalization layer in our model. Because the normalization layer in the
original proof only applies ∥

∏
norm(X1)−

∏
norm(X2)∥2,∞ ≤ ∥X1 −X2∥2,∞, ignoring this

layer does not change the result.

3. Our activation function is ReLU, we replace the Lipschitz upper bound of the activate function
by 1.

4. We consider the positional encoding in our work, we need to replace the upper bound RT for
the inputs with the upper bound RT + CE . Besides, for multi-layer transformer, the original
conclusion in Edelman et al. (2022, Theorem A.17) considers the upper bound for the 2,∞-norm
of inputs is 1, we add the upper bound for the inputs in Lemma K.2.

104

5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669

Under review as a conference paper at ICLR 2025

5. We use the feed-forward layer, including two linear layers and a residual layer. Thus, in
Lemma K.2, we replace the original upper bound for the norm of the weight matrix with the
upper bound for the norm of Id +W2W1. In the following, we use O to estimate the log-covering
number, thus we ignore the item for Id here for convenience. This is the same for the self-attention
layer.

6. We use multi-head attention, and we add the number of heads τ in our result, similar to (Edelman
et al., 2022, Theorem A.12).

7. In our work, we use transformer T 1,4,1
R , i.e., with h = 1 head, r = 4 MLP dimension, and s = 1

hidden dimension, following the configuration for transformers’ universality in Theorem H.2
and Corollary H.2.1. We remark that this configuration is minimally sufficient to achieve DiTs’
score approximation result Theorem 3.1 but not necessary. More complex configurations can also
achieve transformer universality, as reported in (Hu et al., 2024; Kajitsuka and Sato, 2024; Yun
et al., 2020).

With Lemma K.2, we derive the covering number under transformer weights configuration in
Theorem 3.1 and Theorem J.1.

Lemma K.3 (Covering Number for S(RT)). Given ϵc > 0 and consider ∥x∥∞ ≤ RT . With
sample {xi, yi}ni=1, the ϵc-covering number for S(RT) with respect to ∥·∥L∞

under the network
configuration in Theorem 3.1 satisfies

logN (ϵc,S(RT), ∥·∥∞) ≲
log n

ϵ2c
Nν1(logN)ν2(RT)

2,

where ν1 = 172β/(dx + dy) + 104Cσ and ν2 = 12dx + 12β + 2. Moreover, under network
configuration in Theorem J.1, we have

logN (ϵc, S(RT), ∥·∥∞) ≲
log n

ϵ2c
Nν3(logN)10(RT)

2,

where ν3 = 48dβ(L+ 2)(dx + 2d+ 1)/(dx + dy) + 144dCσ(L+ 2)− 8β.

Proof. Applying Lemma K.2, we have

logN (ϵc, T h,s,r
R , ∥·∥2)

≤ log n

ϵ2c
· α2

(
2
(
(CF)

2C2,∞
OV

) 2
3︸ ︷︷ ︸

(I)

+(d
2
3

(
C2,∞

F

) 4
3︸ ︷︷ ︸

(II)

+ d
2
3

(
2(CF)

2COV C
2,∞
KQ

) 2
3︸ ︷︷ ︸

(III)

)3

, (K.5)

where α := (CF)
2COV (1 + 4CKQ)(RT + CE).

Note that we drop LT because it is inconsequential under Assumptions 3.1 and 3.2.

• Step A: Covering Number for Transformer with Network Configuration in Theorem 3.1
(under Assumption 3.1).
Recall that from the network configuration in Theorem 3.1:

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N

7β
dx+dy

+6Cσ

)
;

∥WO∥2, ∥WO∥2,∞ = O
(
N
− 3β

dx+dy
+6Cσ (logN)3(dx+β)

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d);

∥W1∥2, ∥W1∥2,∞ = O
(
N

2β
dx+dy

+4Cσ

)
;
∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
;

105

5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723

Under review as a conference paper at ICLR 2025

∥W2∥2, ∥W2∥2,∞ = O
(
N

3β
dx+dy

+2Cσ

)
;CT = O

(√
logN/σ2

t

)
.

Note that WK,Q =WQW
⊤
K , we take ∥WQ∥2,∞ · ∥WK∥2,∞ as the upper bound for ∥WKQ∥2,∞.

Since WQ, WK share identical upper-bound, we calculate (C2,∞
K)4 for (C2,∞

K,Q)
2. Similarly

we use ∥WO∥2,∞ · ∥WV ∥2,∞ as the upper bound for ∥WOV ∥2,∞. Moreover, we take CF =

max{Cf1 , Cf2}. Since we do not impose any relation on β andCσ here, we takeN3β/(dx+dy)+4Cσ

such that the upper-bound holds for both W1 and W2.

Our result highlights the influence ofN under varying dx. Therefore, for the transformer parameter
bounds, we keep terms with dx, d, L appearing in the exponent of N and logN .

Among three terms, it is obvious that (III) dominates the other two. so we begin with:

(III) ≲
(
(CF)

4(COV)
2(C2,∞

KQ)2
) 1

3

≲

(
N

12β
dx+dy

+16Cσ︸ ︷︷ ︸
(CF)4

N
− 6β

dx+dy
+12Cσ (logN)6(dx+β)︸ ︷︷ ︸

(COV)2

N
28β

dx+dy
+24Cσ︸ ︷︷ ︸

(C2,∞
K)4

) 1
3

,

≲
(
N

34β
dx+dy

+52Cσ (logN)6(dx+β)
) 1

3

.

Recall α := (CF)
2COV (1 + 4CKQ)(RT + CE),

α2 ≲ (CF)
4(COV)

2(CKQ)
2(RT + CE)

2,

≲ N
12β

dx+dy
+16Cσ︸ ︷︷ ︸

(CF)4

N
− 6β

dx+dy
+12Cσ (logN)6(dx+β)︸ ︷︷ ︸

(COV)2

N
28β

dx+dy
+24Cσ︸ ︷︷ ︸

(C2,∞
K)4

R2
T dL

3︸ ︷︷ ︸
(R2

T C2
E)

,

≲

N 34β
dx+dy

+52Cσ (logN)6(dx+β)︸ ︷︷ ︸
(III)3

(RT)
2

 .

Putting all together, we obtain

logN
(
ϵc, T h,s,r

R , ∥·∥2
)
≲

log n

ϵ2c
N

68β
dx+dy

+104Cσ (logN)12dx+12β(RT)
2. (K.6)

• Step B: Covering Number for Transformer with Network Configuration in Theorem J.1
(under Assumption 3.2).
Recall that from the network configuration in Theorem J.1

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N

3β(2dx+4d+1)
d(dx+dy)

+
9Cα(2dx+4d+1)

d

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d); ∥WO∥2, ∥WO∥2,∞ = O

(
N
− β

dx+dy

)
;

∥W1∥2, ∥W1∥2,∞ = O
(
N

4β
dx+dy

+9Cσ+
3Cα

2 · logN
)
;
∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N

4β
dx+dy

+9Cσ+
3Cα

2

)
;CT = O

(√
logN/σt

)
.

We derive the covering number for result under second assumption by the same procedure.

Similar to previous step, we bound (III) in (K.5). First, we calculate:

106

5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777

Under review as a conference paper at ICLR 2025

– Bound on (CF)
4 = (Cf1)

4.

(Cf1)
4 ≲ O

(
N

16β
dx+dy

+36Cσ+6Cα · (logN)4
)

– Bound on (C2,∞
K)4.

(C2,∞
K)4 ≲ N

12β(2dx+4d+1)
d(dx+dy)

+
36Cα(2dx+4d+1)

d

The upper-bound on (III) follows:

(III) ≲
(
d2(Cf1)

4(COV)
2(C2,∞

KQ)2
) 1

3

,

≲

N 24βdx+64βd+12β
d(dx+dy)

+ 72Cαdx+150Cαd+36Cα
d +36Cσ (logN)4︸ ︷︷ ︸

(Cf1
)4·(C2,∞

K)4

N
− 2β

dx+dy︸ ︷︷ ︸
(COV)2

1
3

(
N

24βdx+62βd+12β
d(dx+dy)

+ 72Cαdx+150Cαd+36Cα
d +36Cσ (logN)4

)
Second we bound α in (K.5).

α2 ≲ (Cf1)
4(COV)

2(CKQ)
2(RT + CE)

2 ≲ (III)3 · (RT)2.

Combining (III) and α2 for network configuration in Theorem J.1, we obtain

logN
(
ϵc, T h,s,r

R , ∥·∥2
)
≲

log n

ϵ2c
N

4(12βdx+31βd+6β)
d(dx+dy)

+
12(12Cαdx+25Cα·d+6Cα)

d +72Cσ (logN)8 · (RT)2.

(K.7)

• Step C: Covering Number under Domain Truncation.
We extend the result to the covering number for S(RT) defined in (K.4).

First note that we obtain the score estimator from T2 by virtue of arranging x, y, t into a row vector
and treating them as a sequence for execution, so we convert our ℓ2,∞ case into ℓ∞ as stated in Fu
et al. (2024b) without loss of generality.

For two score estimator s1(x, y, t), s2(x, y, t) ∈ T h,s,r
R such that ∥s1 − s2∥L∞,D ≤ ϵ, Proof of

lemma D.3 in Fu et al. (2024b) shows the difference between the loss ℓ(·, ·, s1) and ℓ(·, ·, s2) in
L∞ is bounded by

|ℓ(·, ·, s1)− ℓ(·, ·, s2)| ≲ ϵ logN. (K.8)

Therefore, by replacing ϵc with ϵc/ logN in (K.6) we obtain the log-covering number for trans-
former under Assumption 3.1

logN (ϵc,S(RT), ∥·∥∞) ≲
log n

ϵ2c
N

172β
dx+dy

+104Cσ (logN)12dx+12β+2(RT)
2

:=
log n

ϵ2c
Nν1(logN)ν2(RT)

2,

where ν1 = 68β/(dx + dy) + 104Cσ and ν2 = 12dx + 12β + 2.

107

5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831

Under review as a conference paper at ICLR 2025

Moreover, by replacing ϵc with ϵc/ logN in (K.7)we obtain the log-covering number for trans-
former under Assumption 3.2

logN (ϵc,S(RT), ∥·∥∞) =
log n

ϵ2c
Nν3(logN)10(RT)

2.

where ν3 = 4(12βdx+31βd+6β)
d(dx+dy)

+ 12(12Cαdx+25Cα·d+6Cα)
d + 72Cσ .

This completes the proof.

Step 3: Bound the True Risk on Truncated Domain. We begin with the definition.

Definition K.6. Let s◦ := ∇ log pt(x|y) denote the ground truth of score function for simplicity.
Given i.i.d samples {xi, yi}ni=1 and a score estimator sW ∈ T h,s,r

R , we define the difference function:

∆n(sW , s◦) :=
∣∣∣E{xi,yi}ni=1

[
R̂trunc

m (sW)−Rtrunc
m (sW)

]∣∣∣.
Remark K.8. Note that the difference function ∆n(sW , s◦) measures the expected difference
between the truncated empirical risk and the truncated mixed risk with respect to the training sample.
Since the true risk is unattainable, we construct ∆n(sW , s◦) serving as an intermediate that allows us
to derive the upper-bound on the mixed risk. Surprisingly, we are able to handle the upper-bound of
the difference function, presented in Lemma K.4.

Definition K.7. Given the truncated loss function class S(RT), we define its ϵc-covering with the
minimum cardinality in the L∞ metric as LN := {ℓ1, ℓ2, . . . , ℓN }. Moreover, we define ℓJ ∈ LN
with random variable J . By definition, there exist ℓJ ∈ LN such that ∥ℓJ − ℓ(xi, yi; sW)∥∞ ≤ ϵc.

Note that Lemma K.3 provides the upper-bound on the ϵc-covering number of S(RT) for score
estimator trained from transformer network class. Next, we bound the difference function.

Lemma K.4 (Bound on Difference Function). Consider i.i.d training samples {x0,i, yi}ni=1 and score
estimator ŝ from (2.1). Under Assumption 3.1 and parameter configuration in Theorem 3.1, it holds:

∆n(ŝ, s
◦) ≲ E{xi,yi}ni=1

[
R̂m(ŝ)

]
+

1

t0

(
RT exp

(
−C2R

2
T
)
+

1

n
logN

)
+ 7ϵc,

where N (ϵc, T h,s,r
R , ∥·∥2) is the covering number of transformer network class. Moreover, Under

Assumption 3.2 and parameter configuration in Theorem J.1, it holds:

∆n(ŝ, s
◦) ≲ E{xi,yi}ni=1

[
R̂m(ŝ)

]
+ log

1

t0

(
RT exp

(
−C2R

2
T
)
+

1

n
logN

)
+ 7ϵc.

Proof. In this proof, we let zi := (x0i , yi), ℓ̂(zi) := ℓtrunc(zi; ŝ) and ℓ◦(zi) := ℓtrunc(zi; s
◦). For

simplicity, we use κ = 1/t0 for the case in Theorem 3.1 and κ = log(1/t0) for the case in
Theorem J.1.

• Step A: Rewrite the true risk.
To derive the upper-bound of the true risk, we introduce a different set of i.i.d samples {x′0,i, y′i}ni=1
independent of the training data drawn from the same distribution.

This allows us to rewrite the true risk as:

Rm(ŝ)−Rm(s◦) = L(ŝ)− L(s◦) = E{x′
i,y

′
i}ni=1

[
1

n

n∑
i=1

(ℓ(x′i, y
′
i, ŝ)− ℓ(x′i, y

′
i, s
◦))

]
. (K.9)

108

5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885

Under review as a conference paper at ICLR 2025

With (K.9), we rewrite the difference function:

∆n(ŝ, s
◦) =

∣∣∣∣∣ 1nE{zi,z′
i}ni=1

[
n∑

i=1

((
ℓ̂(zi)− ℓ◦(zi)

)
−
(
ℓ̂(z′i)− ℓ◦(z′i)

))]∣∣∣∣∣. (K.10)

• Step B: Introduce the ϵc-covering.
Before further decomposing (K.10), we introduce three definitions.

– ωJ(z) := ℓJ(z)− ℓ◦(z) and ω̂(z) := ℓ̂(z)− ℓ◦(z).

– Ω := max
1≤J≤N

∣∣∣∣ n∑
i=1

ωJ (zi)−ωJ (z
′
i)

hJ

∣∣∣∣.
– hJ := max{A,

√
Ez′ [ℓJ(z′)− ℓ◦(z′)]} with constant A to be chosen later.

With hj , ωj and Ω, we start bounding (K.10) by writing

∆n(ŝ, s
◦) =

∣∣∣∣∣ 1nE{zi,z′
i}ni=1

[
n∑

i=1

((
ℓ̂(zi)− ℓ◦(zi)

)
−
(
ℓ̂(z′i)− ℓ◦(z′i)

))]∣∣∣∣∣
≤

∣∣∣∣∣ 1nE{zi,z′
i}ni=1

[
n∑

i=1

(ωJ(zi)− ωJ(z
′
i))

]∣∣∣∣∣+ 2ϵc
(
By Replacing ℓ̂ with ℓJ

)
≤ 1

n
E{zi,z′

i}ni=1
[hJΩ] + 2ϵc

(
By introducing Ω and hJ

)
≤ 1

n

√
E{zi,z′

i}ni=1
[h2J]E{zi,z′

i}ni=1
[Ω2] + 2ϵc

(
By Cauchy-Schwarz inequality

)
≤ 1

n

(
n

2
E{zi,z′

i}ni=1
[h2J] +

1

2n
E{zi,z′

i}ni=1
[Ω2]

)
+ 2ϵc

(
By AM-GM inequality

)
=

1

2
E{zi,z′

i}ni=1
[h2J]︸ ︷︷ ︸

(I)

+
1

2n2
E{zi,z′

i}ni=1
[Ω2]︸ ︷︷ ︸

(II)

+2ϵc. (K.11)

– Step B.1: Bounding (I).
By the definition of hJ ,

E{zi,z′
i}ni=1

[h2J] ≤ A2 + E{zi,z′
i}ni=1

[
Ez′ [ω2

J(z)]
]

≤ A2 + Ez′ [ω̂2(z′)] + 2ϵc

= A2 + E{zi}ni=1

[
Rtrunc

m (ŝ)
]
+ 2ϵc. (K.12)

– Step B.2: Bounding (II).
By Lemma K.1, we have |ℓ(z; sW)| ≲ κ, and by the definition of Ω2, we write

E{zi,z′
i}ni=1

[
n∑

i=1

(
ωJ(zi)− ωJ(z

′
i)

hJ

)2
]
≤

n∑
i=1

E{zi,z′
i}ni=1

[(
ωJ(zi)

hJ

)2

+

(
ωJ(z

′
J)

hJ

)2
]

(
By the independence between zi and z′i

)
≤ κ

n∑
i=1

E{zi,z′
i}ni=1

[
ω2
J(zi)

hJ
+
ω2
J(z
′
i)

hJ

]
≤ 2nκ.

109

5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939

Under review as a conference paper at ICLR 2025

From the following two facts

* (1)
∣∣∣ωJ (zi)−ωJ (z

′
i)

hJ

∣∣∣ ≤ κ/A

* (2)
n∑

i=1

ωJ (zi)−ωJ (z
′
i)

hJ
is centered

we further write

P

(n∑
i=1

ωJ(zi)− ωJ(z
′
i)

hJ

)2

≥ ω

 = 2P

((
n∑

i=1

ωJ(zi)− ωj(z
′
i)

hj

)
≥

√
ω

)
≤ 2 exp

− ω/2

κ
(
2n+

√
ω

3A

)
 ,

(
By Bernstein’s inequality

)
for any J and ω ≥ 0. Therefore, we have

P
(
Ω2 ≥ ω

)
≤
N∑

J=1

P

(n∑
i=1

ωJ(zi)− ωJ(z
′
i)

hJ

)2

≥ ω

 ≤ 2N exp

− ω/2

κ
(
2n+

√
ω

3A

)
 .

For some ω0 > 0, we bound Ω2 by

E{zi,zn
i }ni=1

[
Ω2
]
=

∫ ω0

0

P
(
Ω2 ≥ ω

)
dω +

∫ ∞
ω0

P
(
Ω2 ≥ ω

)
dω,

(
By integral identity

)
≤ ω0 +

∫ ∞
ω0

2N exp

− ω/2

κ
(
2n+

√
ω

3A

)
dω,

≤ ω0 + 2N
∫ ∞
ω0

{
exp

(
− ω

8nκ

)
+ exp

(
−3A

√
ω

4κ

)}
dω,

≤ ω0 + 2N
{
8nκ exp

(
− ω0

8nκ

)
+

(
8κ

√
ω0

3A
+

32κ

9A2

)
exp

(
−
3A√

ω0

4κ

)}
.

Taking A =
√
ω0/6n and ω0 = 8nκ logN , we have

E{zi,zn
i }ni=1

[Ω2] ≤ nκ logN . (K.13)

• Step C: Altogether.
Combining (K.12) and (K.13), we obtain:

∆n(ŝ, s
◦) ≤ 1

2
E{zi,z′

i}ni=1
[h2J] +

1

2n2
E{zi,z′

i}ni=1
[Ω2] + 2ϵc

≲
1

2
E{zi}ni=1

[
Rtrunc

m (ŝ)
]
+

κ

2n
logN +

7

2
ϵc.

Recall Definition K.6 and multiply the above inequality with 2, we have

E{zi}ni=1

[
Rtruncŝ

m

]
≲ 2E{zi}ni=1

[
R̂trunc

m (ŝ)
]
+
κ

n
logN + 7ϵc.

110

5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993

Under review as a conference paper at ICLR 2025

Therefore,

∆n(ŝ, s
◦) ≲ E{zi}ni=1

[
R̂trunc

m (ŝ)
]
+
κ

n
logN + 7ϵc

(
By Lemma K.1

)
≲ E{xi,yi}ni=1

[
R̂m(ŝ)

]
+ κ

(
RT exp

(
−C2R

2
T
)
+

1

n
logN

)
+ 7ϵc,

This completes the proof.

K.2 PROOF OF THEOREM 3.3

Proof of Theorem 3.3. For simplicity, we use κ = 1/t0 for the case in Theorem 3.1 and κ =
log(1/t0) for the case in Theorem J.1. The proof proceeds through the following three steps.

• Step A: Decompose the mixed risk.
We denote the ground truth by s◦(x, y, t) = ∇ log pt(x|y). Moreover, if y = ∅ we set s◦(x, y, t) =
∇ log pt(x).

Recall Definition K.3 and Lemma K.4. By introducing a different set of i.i.d. samples {x′i, y′i}ni=1
from the initial data distribution P0(x, y) independent of the training samples, we rewrite the
mixed risk:

Rm(ŝ) = E{x′
i,y

′
i}ni=1

[
1

n

n∑
i=1

(ℓ(x′i, y
′
i, ŝ)− ℓ(x′i, y

′
i, s
◦))

]
= E{x′

i,y
′
i}ni=1

[
R̂′m(ŝ)

]
,

where we use R̂′m(ŝ) to denote the empirical risk of the score estimator ŝ trained from the i.i.d
samples {x′i, y′i}ni=1 .

This allows us to do the decomposition of E{xi,yi}ni=1
[Rm(ŝ)] as follows.

E{xi,yi}ni=1
[Rm(ŝ)] = E{xi,yi}ni=1

[
E{x′

i,y
′
i}ni=1

[
R̂′m(ŝ)− R̂′ trunc

m (ŝ)
]]

︸ ︷︷ ︸
(I)

+ E{xi,yi}ni=1

[
E{x′

i,y
′
i}ni=1

[
R̂′ trunc

m (ŝ)− R̂trunc
m (ŝ)

]]
︸ ︷︷ ︸

(II)

+ E{xi,yi}ni=1

[
R̂trunc

m (ŝ)− R̂m(ŝ)
]

︸ ︷︷ ︸
(III)

+E{xi,yi}ni=1

[
R̂m(ŝ)

]
︸ ︷︷ ︸

(IV)

• Step B: Derive the Upper Bound.

– Step B.1: Bound Each Term.

* By Lemma K.1, we have both (I), (III) ≲ κ exp
(
−C2R

2
T
)
RT .

* By Lemma K.4, we have (II) ≲ (IV) + κ
(
RT exp

(
−C2R

2
T
)
+ 1

n logN
)
+ 7ϵc,

* By the following, we have (IV)≤ minsW∈T h,s,r
R

Rm(s).

(IV) = E{zi}ni=1

[
R̂(ŝ)

]
≤ E{zi}ni=1

[
R̂m(s)

]
= Rm(s).

The inequality holds because ŝ is the minimizer of the empirical risk.

– Step B.2: Combine (I), (II), (III), (IV).

111

5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047

Under review as a conference paper at ICLR 2025

Combining these results we obtain

E{xi,yi}ni=1
[Rm(ŝ)] ≤ 2 min

sW∈T h,s,r
R

∫ T

t0

1

T − t0
Ext,y,τ

[
∥s(xt, τy, t)−∇ log pt(xt|τy)∥22

]
dt

+O
(κ
n
logN

)
+O(exp

(
−C2R

2
T
)
κ) +O (ϵc) . (K.14)

By taking RT =
√

(Cσ+2β) logN
C2(dx+dy)

along with the result in Lemma K.3, we further write

E{xi,yi}ni=1
[Rm(ŝ)] ≤ 2 min

s∈T h,s,r
R

∫ T

t0

1

T − t0
Eτ,xt,y

[
∥s(x, τy, t)−∇ log pt(x|y)∥22

]
dt

O
(κ
n
logN

)
+O

(
N
− 2β

dx+dy

)
+O (ϵc) . (K.15)

where we invoke κ ≲ 1
t0

= NCσ to obtain the second term on the RHS.

Step C: Altogether.
To apply the previous approximation theorems (Theorem 3.1 and Theorem J.1) to the first term on
the RHS of (K.14), we rewrite the expectation as

Ext,y,τ

[
∥s(xt, τy, t)−∇ log pt(xt|τy)∥22

]
(K.16)

=
1

2

∫
Rdx

∥s(x, ∅, t)−∇ log pt(x|y)∥22pt(x)dx+
1

2
Ey

[∫
Rdx

∥s(x, y, t)−∇ log pt(x|y)∥22pt(x|y)dx
]
.

Since the marginal distribution pt(x) also satisfies the subgaussian property, the previous result
of the conditional score estimation applies to its unconditional counterpart by removing the label
throughout the whole process.

– Step C.1: Result under Assumption 3.1.
From Theorem 3.1, we rewrite (K.15) as

E{zi}ni=1
[Rm(ŝ)] ≲ O

(
N
− β

dx+dy (logN)dx+
β
2 +1
)

︸ ︷︷ ︸
(i)

+O
(
N
− 2β

dx+dy

)
︸ ︷︷ ︸

(ii)

+O
(κ
n
logN

)
︸ ︷︷ ︸

(iii)

+O (ϵc)︸ ︷︷ ︸
(iv)

.

Moreover, from Lemma K.1 we have κ = O(1/t0) and from Lemma K.3 we have

logN (ϵc,S(RT), ∥·∥∞) ≲
log n

ϵ2c
N

172β
dx+dy

+104Cσ (logN)12dx+12β+2(RT)
2

:=
log n

ϵ2c
Nν1(logN)ν2(RT)

2,

where ν1 = 68β/(dx + dy) + 104Cσ and ν2 = 12dx + 12β + 2.

Taking N = n
1
ν1

dx+dy
(dx+dy+β) and ϵc = N

− 1
4

ν1β

(dx+dy) renders error

* (i) = O
(

1
t0
(log n)dx+

β
2 +1n

− β
ν1(dx+dy+β)

)
from (K.16) and Theorem 3.1

* (ii) = O
(
n
− 2β

ν1(dx+dy+β)

)
* (iii) = O

(
κn−1n

1
2

β
dx+dy+β (log n)n

dx+dy
dx+dy+β (log n)ν2(log n)

)

112

6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101

Under review as a conference paper at ICLR 2025

Rearranging the expression, we have (iii) = O
(

1
t0
n
− 1

2
β

dx+dy+β (log n)ν2+2
)

* (iv) = O
(
n
− 1

4
β

dx+dy+β

)
The total error is bounded by

E{xi,yi}ni=1
[R(ŝ)] = O

(
1

t0
n
− β

ν1(dx+dy+β) (log n)ν2+2

)
.

Step C.2: Result under Assumption 3.2.
With Theorem J.1, we further write (K.15) as

E{zi}ni=1
[Rm(ŝ)] ≲ O

(
N
− 2β

dx+dy (logN)β+1
)

︸ ︷︷ ︸
(i)

+O
(
N
− 2β

dx+dy

)
︸ ︷︷ ︸

(ii)

+O
(κ
n
logN

)
︸ ︷︷ ︸

((iii)

+O (ϵc)︸ ︷︷ ︸
(iv)

.

Moreover, from Lemma K.1 we have κ = O(log 1
t0
) and from Lemma K.3

logN (ϵc,S(RT), ∥·∥∞) =
log n

ϵ2c
Nν3(logN)10(RT)

2.

where ν3 = 4(12βdx+31βd+6β)
d(dx+dy)

+ 12(12Cαdx+25Cα·d+6Cα)
d + 72Cσ .

Taking N = n
(dx+dy)

ν3(dx+dy+2β) and ϵc = N
− 1

4
ν3β

(dx+dy) renders error

* (i) = O
(
log 1

t0
(log n)β+1n

− 1
ν3

2β
(dx+dy+2β)

)
from (K.16) and Theorem 3.1

* (ii) = O
(
n
− 2β

ν3(dx+dy+2β)
)

* (iii) = O
(

κ
nn

1
2

β
dx+dy+2β (log n)n

dx+dy
dx+dy+2β (log n)10(log n)

)
Rearranging the expression we have (iii) = O

(
log 1

t0
n
− 3

2
β

dx+dy+2β (log n)12
)

* (iv) = O
(
n
− 1

4
β

dx+dy+2β

)
The total error is bounded by

E{xi,yi}ni=1
[R(ŝ)] = O

(
log

1

t0
n
− 1

ν3

β
dx+dy+2β (log n)max(12,β+1)

)
.

This completes the proof.

113

6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155

Under review as a conference paper at ICLR 2025

K.3 DOMINANCE TRANSITION BETWEEN N AND logN FOR ALL NORM BOUNDS UNDER
ASSUMPTION 3.1

Here we show that there is a sharp transition between the dominance of N and logN in all norm
bounds for using transformers to approximate score function under Assumption 3.1 (in Theorem 3.1).

We remark that this sharp transition necessitates separate analyses for the low-dimensional region
(dx ≪ n) in Corollaries 3.3.1 and 3.4.1.

Lemma K.5 (Dominance Transition between N and logN for All Norm Bounds). Let dx be
the feature dimension of the data. Let N be the discretization resolution of the locally diffused
polynomial defined in Lemma I.1 and Remark I.1. Under Assumption 3.1, dx = Θ

(
logN

log logN

)
divides the dependence of N and logN into two regions for the required norm bounds on attention
weights WK ,WQ,WO,W1,W2 in score approximation using transformer networks (Theorem 3.1):

• High-Dimensional Region: If dx = Ω
(

logN
log logN

)
, N dominates over logN .

• Mild and Low-Dimensional Region: If dx = o
(

logN
log logN

)
, logN dominates over N .

Proof of Lemma K.5. Recall the required parameter norm bounds for approximating score function
with transformer networks from Step C of Lemma I.13. We provide a comprehensive summary of all
parameter bounds involving terms dependent on N and logN from each respective operation.

• Bound on WQ and WK .

– For ϵf1 :

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (9β+6Cσ)· 2dL+4d+1

d · (logN)−3(dx+β)· 2dL+4d+1
d

)
.

Since dx = dL, N and logN balance at

NO(dx) = (logN)O(d2
x),

and hence

dx = O
(

logN

log logN

)
.

– For ϵf2 :

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (3β+2Cσ)· 2dL+4d+1

d · (logN)−(dx+β)· 2dL+4d+1
d

)
.

Since dx = dL, N and logN balance at

NO(dx) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

– For ϵrec,1 and ϵrec,2:

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (9β+6Cσ)(logN)−3(dx+β)

)
.

114

6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209

Under review as a conference paper at ICLR 2025

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

– For ϵσ,1:

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WQ∥2,∞ = O
(
N (27β+18Cσ)(logN)−9(dx+β)

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

– For ϵσ,3:

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WQ∥2,∞ = O
(
N (21β+15Cσ (logN)−6(dx+β)

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

• Bound on WO.

– For ϵf1

∥WO∥2, ∥WO∥2,∞ = O
(
N−

(9β+6Cσ)
d (logN)

3(dx+β)
d

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

– For ϵf2

∥WO∥2, ∥WO∥2,∞ = O
(
N−

(3β+2Cσ)
d (logN)

(dx+β)
d

)
.

115

6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263

Under review as a conference paper at ICLR 2025

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

– For ϵrec,1 and ϵrec,2:

∥WO∥2, ∥WO∥2,∞ = O
(
N−(3β+6Cσ)(logN)dx+β

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

– For ϵσ1 :

∥WO∥2, ∥WO∥2,∞ = O
(
dN−(9β+6Cσ)(logN)3(dx+β)

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

– For ϵσ2
:

∥WO∥2, ∥WO∥2,∞ = O
(
dN−(7β+5Cσ)(logN)2(dx+β)

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

• Bound on W1.

– For ϵf1 :

∥W1∥2, ∥W1∥2,∞ = O
(
N

(9β+6Cσ)
d (logN)−

3(dx+β)
d · (logN)

)
.

116

6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317

Under review as a conference paper at ICLR 2025

N and logN balance at

No(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

– For ϵf2 :

∥WO∥2, ∥WO∥2,∞ = O
(
N−

(3β+2Cσ)
d (logN)

(dx+β)
d

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

– For ϵmult,1:

∥W1∥2, ∥W1∥2,∞ = O
(
N (4β+Cσ)(logN)−

1
2 (dx+β)

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

– For ϵrec,1, ϵrec,2:

∥W1∥2, ∥W1∥2,∞ = O
(
N (6β+4Cσ)(logN)−2(dx+β)

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

– For ϵσ1
:

∥W1∥2, ∥W1∥2,∞ = O
(
N (9β+6Cσ)(logN)−3(dx+β) · logN

)
.

117

6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371

Under review as a conference paper at ICLR 2025

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

– For ϵσ2
:

∥W1∥2, ∥W1∥2,∞ = O
(
N (7β+5Cσ)(logN)−2(dx+β) · logN

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

• Bound on W2.

– For ϵf1 and ϵf2 :

∥W2∥2, ∥W2∥2,∞ = O
(
N

(9β+6Cσ)
d (logN)−3

(dx+β)
d

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

– For ϵf2 and ϵf2 :

∥W2∥2, ∥W2∥2,∞ = O
(
N

(3β+2Cσ)
d (logN)−

(dx+β)
d

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

118

6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425

Under review as a conference paper at ICLR 2025

– For ϵrec,1 and ϵrec,2:

∥W2∥2, ∥W2∥2,∞ = O
(
N (3β+2Cσ)(logN)−(dx+β)

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

For ϵσ1 :

∥W1∥2, ∥W1∥2,∞ = O
(
N (9β+6Cσ)(logN)−3(dx+β)

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

For ϵσ2
:

∥W1∥2, ∥W1∥2,∞ = O
(
N (7β+5Cσ)(logN)−2(dx+β)

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

This completes the proof.

K.4 PROOF OF COROLLARY 3.3.1

By brute force, we know N = O(nd
κ
x) with11 κ = −2, 1 under Assumption 3.1. This indicates the

positive proportionality between the sample size n and the resolution N .

By Lemma K.5, we conclude:

• High-Dimension: dx = Ω(logN
log logN), and κ = 1.

• Mild and Low-Dimensional Region: dx = o(logN
log logN) and κ = −2.

11The options of κ values are from the hindsight. One must compute all norm bounds to identify the available
values

119

6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479

Under review as a conference paper at ICLR 2025

Low-Dimension Approximation Result. For dx = o (logN/(log logN)), since the dominant
term in the norm bounds differs (Lemma K.5), we obtain a distinct score approximation result from
Theorem 3.1:

Theorem K.1 (Conditional Score Approximation under Assumption 3.1 and
dx = o (logN/(log logN))). Assume Assumption 3.1 and dx = o (logN/(log logN)).
For any precision parameter 0 < ϵ < 1 and smoothness parameter β > 0, let ϵ ≤ O(N−β) for some
N ∈ N. For some positive constants Cα, Cσ > 0, for any y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN],
there exists a Tscore(x, y, t) ∈ T h,s,r

R such that the conditional score approximation satisfies∫
Rdx

∥Tscore(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y) dx = O
(
B2

σ2
t

·N−
β

dx+dy · (logN)dx+
β
2 +1

)
.

Notably, for ϵ = O(N−β), the approximation error has the upper bound Õ(ϵ1/(dx+dy)/σ2
t).

The parameter bounds for the transformer network class are as follows:

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞

= O
(
N

9β(2dx+4d+1)
d(dx+dy)

+
6Cσ(2dx+4d+1)

d · (logN)−3(dx+β)· 2dL+4d+1
d

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d); ∥WO∥2, ∥WO∥2,∞ = O

(
N
− β

dx+dy

)
;

∥W1∥2, ∥W1∥2,∞ = O
(
N

9β
dx+dy

+6Cσ (logN)−2(dx+β)+1
)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N

9β
dx+dy

+6Cσ (logN)−2(dx+β)
)
;∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
;CT = O

(√
logN/σ2

t

)
.

Proof of Theorem K.1. We show the proof by the following two steps.

• Step A: Upper-Bound Selection.
For dx = o (logN/(log logN)), N dominates the logN term. We set the parameter based on the
order of N when N and logN coexist. By Step C in the proof of Lemma I.13, we have:

– Bound on WQ and WK .
We set the parameter to the largest upper bound determined by the approximation error ϵf1 :

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (9β+6Cσ)· 2dL+4d+1

d · (logN)−3(dx+β)· 2dL+4d+1
d

)
.

– Parameter Bound on WO and WV .
We set the parameter to the largest upper bound determined by the approximation error ϵmult,2
and ϵrec,3:

∥WO∥2, ∥WO∥2,∞ = O
(
N−β

)
.

Note that only ϵf1 and ϵf2 involve the reshape operation. That is, approximation other than f1
and f2 has ∥WV ∥2, ∥WV ∥2,∞ = O(1). Therefore, we take O(

√
d) and O(d) for ∥WV ∥2 and

∥WV ∥2,∞ by Lemma H.5 respectively.

– Parameter Bound on W1.
We set the parameter to the largest upper bound determined by the approximation error ϵσ,1 and
ϵσ,2. That is, we take N (9β+6Cσ) from the former and we take (logN)−2(dx+β) from the latter.

∥W1∥2, ∥W1∥2,∞ = O
(
N (9β+6Cσ)(logN)−2(dx+β) · logN

)
.

120

6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533

Under review as a conference paper at ICLR 2025

– Parameter Bound on W2.
Following the same argument for W1, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (9β+6Cσ)(logN)−2(dx+β)

)
.

• Step B: Change of Variables.
Recalling from the last step in the proof of Theorem 3.1 (in Appendix I), we replace N with
N1/(dx+dy) and Cσ with (dx + dy)Cσ to obtain the final approximation result. Here we perform
the same change of variables.

This completes the proof.

We compute the covering number for the function class of truncated loss S(RT) (defined in Defini-
tion K.4) under Assumption 3.1 in low-dimensional region dx = o (logN/(log logN)) .

Lemma K.6 (Covering Number for S(RT)). Given ϵc > 0 and consider ∥x∥∞ ≤ RT . With
sample {xi, yi}ni=1, the ϵc-covering number for S(RT) with respect to ∥·∥L∞

under the network
configuration in Theorem 3.1 satisfies

logN (ϵc,S(RT), ∥·∥2) ≲
log n

ϵ2c
Nν4(logN)ν5(RT)

2,

where ν4 = 144dβ(L + 2)(dx + 2d + 1)/(dx + dy) + 96dCσ(L + 2)(dx + 2d + 1) − 8β and
ν5 = −16d(dx + β)(L+ 2)(3dx + 6d+ 2) + 2.

Proof of Lemma K.6. The proof closely follows Lemma K.3. Applying Lemma K.2, we calculate

logN (ϵc, T h,s,r
R , ∥·∥2)

≤ log n

ϵ2c
· α2

(
2
(
(CF)

2C2,∞
OV

) 2
3︸ ︷︷ ︸

(I)

+(d
2
3

(
C2,∞

F

) 4
3︸ ︷︷ ︸

(II)

+ d
2
3

(
2(CF)

2COV C
2,∞
KQ

) 2
3︸ ︷︷ ︸

(III)

)3

,

where (III) dominates (I) and (II).
Plug in the network configuration from Theorem K.1:

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞

= O
(
N

9β(2dx+4d+1)
d(dx+dy)

+
6Cσ(2dx+4d+1)

d · (logN)−3(dx+β)· 2dL+4d+1
d

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d); ∥WO∥2, ∥WO∥2,∞ = O

(
N
− β

dx+dy

)
;

∥W1∥2, ∥W1∥2,∞ = O
(
N

9β
dx+dy

+6Cσ (logN)−2(dx+β)+1
)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N

9β
dx+dy

+6Cσ (logN)−2(dx+β)
)
;∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
;CT = O

(√
logN/σ2

t

)
.

Note that WK,Q = WQW
⊤
K , we take ∥WQ∥2,∞ · ∥WK∥2,∞ as the upper bound for ∥WKQ∥2,∞.

Since WQ, WK share identical upper-bound, we calculate (C2,∞
K)4 for (C2,∞

K,Q)
2. Similarly we use

∥WO∥2,∞ ·∥WV ∥2,∞ as the upper bound for ∥WOV ∥2,∞. Moreover, we take CF = max{Cf1 , Cf2}.

121

6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587

Under review as a conference paper at ICLR 2025

• Bound on C4
F = (Cf2)

4:

(Cf2)
4 ≲ N

36β
dx+dy

+24Cσ (logN)−8(dx+β).

• Bound on (C2,∞
K)4:

(C2,∞
K)4 ≲ N

36β(2dx+4d+1)
d(dx+dy)

+
24Cσ(2dx+4d+1)

d · (logN)−12(dx+β)· 2dL+4d+1
d .

The bound on (III) follows:

(III) ≲
(
(Cf2)

4(COV)
2(C2,∞

KQ)2
) 1

3

≲

N 36β(2dx+5d+1)
d(dx+dy)

+
24Cσ(2dx+5d+1)

d (logN)−
(dx+β)(24dL+56d+12)

d︸ ︷︷ ︸
(Cf2

)4·(C2,∞
K)4

· N−2β︸ ︷︷ ︸
(COV)2

1
3

.

Moreover, α := (CF)
2COV (1 + 4CKQ)(RT + CE), we have:

α2 ≲ (Cf1)
4(COV)

2(CKQ)
2(RT + CE)

2 ≲ (III)3 ·R2
T .

By the Step C in Lemma K.3, we extend the log-covering number of transformer to the truncated
loss S(RT) with ∥x∥∞ ≤ RT by replacing ϵc with ϵc/ logN .

Combining (III) and α2 for network configuration in Theorem J.1, we obtain:

logN (ϵc,S(RT), ∥·∥2) ≲ N
72β(2dx+5d+1)

d(dx+dy)
+

48Cσ(2dx+5d+1)
d −4β

(logN)−
8(dx+β)(6dL+14d+3)

d +2 · (RT)2

:=
log n

ϵ2c
Nν4(logN)ν5(RT)

2,

where ν4 = 72β(2dx+5d+1)
d(dx+dy)

+ 48Cσ(2dx+5d+1)
d − 4β and ν5 = − 8(dx+β)(6dL+14d+3)

d + 2.

This completes the proof.

Proof of Corollary 3.3.1. The proof closely follows the high-dimensional result where dx =
Ω(logN/(log logN)) in Appendix K.2. The only distinction lies in the covering number with
transformer network (defined in Definition K.5), characterized by νi with i ∈ [5]. Therefore, we
replace ν1, ν2 in Theorem 3.3 with ν4 and ν5.

Specifically, for score estimation under Assumption 3.1, by taking N = n
1
ν4
· dx+dy
β+dx+dy , t0 = N−Cσ <

1 and T = Cα log n, it holds

E{xi,yi}ni=1
[R(ŝ)] = O

(
1

t0
n
− 1

ν4
· β
dx+dy+β (log n)ν5+2

)
= O

(
1

t0
n
− 1

ν4
· β
dx+dy+β

)
,

(
n term surpasses logn term

)
ν4 = 72β(2dx+5d+1)

d(dx+dy)
+ 48Cσ(2dx+5d+1)

d − 4β and ν5 = − 8(dx+β)(6dL+14d+3)
d + 2.

This completes the proof.

122

6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641

Under review as a conference paper at ICLR 2025

K.5 AUXILIARY LEMMAS FOR THEOREM 3.4.

We give the following two lemmas serving as the key components in the proof of Theorem 3.4.

Lemma K.7 (Proposition D.1 of Oko et al. (2023), Lemma D.4 of Fu et al. (2024b) and also Chen
et al. (2022)). Consider probability distribution p0 and two stochastic processes h = {ht}t∈[0,T] and
h′ = {h′t}t∈[0,T] that satisfy the following SDE respectively

dht = b(ht, t)dt+ dWt h0 ∼ p0

dh′t = b′(h′t, t)dt+ dWt h′0 ∼ p0.

Plus denote the distribution of the two processes at time t as pt and p′t. Then suppose∫
x

pt(x)∥(b− b′)(x, t)∥dx ≤ C (K.17)

holds for any t ∈ [0, T], then we have

KL(pT || p′T) =
∫ T

0

1

2

∫
x

pt(x)∥(b− b′)(x, t)∥dxdt

The bound for KL divergence stems from Girsanov’s Theorem, with the extension to the case where
the Novikov’s condition is replaced with (K.17) by Chen et al. (2022). Moreover, we need the
following lemma to bound to total variation.

Lemma K.8 (Lemma D.5 of Fu et al. (2024b)). Assume Assumption 3.1 or Assumption 3.2. For any
y ∈ [0, 1]dy we have

TV (P0(·|y), Pt0(·|y)) = O
(√

t0 log
dx+1

2

(
1

t0

))
.

With the above lemmas and discussion, we begin the proof of Theorem 3.4.

K.6 MAIN PROOF OF THEOREM 3.4

Proof of Theorem 3.4. Given label y, we let P̂t0(·|y) denote the data distribution with early-stopped
time t0 generated by the reverse process with the score estimator from transformer network class.

The decomposition of the total variation between the processes driven by the ground truth and the
score estimator follows

TV
(
P (·|y), P̂t0(·|y)

)
≲ TV (P (·|y), Pt0(·|y))︸ ︷︷ ︸

(I)

+TV
(
Pt0(·|y), P̃t0(·|y)

)
︸ ︷︷ ︸

(II)

+TV
(
P̃t0(·|y), P̂t0(·|y)

)
︸ ︷︷ ︸

(III)

• Step A: Derive the Upper Bound

– Step A.1: Bounding (I).

From Lemma K.8 we have TV
(
P (·|y), P̃t0(·|y)

)
= O

(√
t0 log

dx+1
2

(
1
t0

))
.

– Step A.2: Bounding (II).
We use the following process that represents the reverse process starting with standard Gaussian.

dX̃←t =

[
1

2
dX̃←t +∇ log pT−t(X̃

←
t |y)

]
dt+ dW t X̃←0 ∼ N(0, Idx

).

The distribution of X̃←t conditioned on the label y is denoted by P̃T−t(·|y).

123

6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695

Under review as a conference paper at ICLR 2025

Next, by Data Processing Inequality and Pinsker’s Inequality (Canonne, 2022, Lemma 2) we
have

TV
(
Pt0(·|y), P̃t0(·|y)

)
≲
√

KL(Pt0(·|y) || P̃t0(·|y))

≲
√

KL(PT (·|y) || N(0, Idx
))

≲
√

KL(P (·|y) || N(0, Idx)) exp(−T). (K.18)

Therefore for (II), from (K.18) we have

TV
(
Pt0(·|y), P̃t0(·|y)

)
≲
√

KL(P (·|y) || N(0, Idx
)) exp(−T)

≲ exp(−T)

– Step A.3: Bounding (III).
From (K.18) and Lemma K.7, we have

TV
(
P̃t0(·|y), P̂t0(·|y)

)
≲

√∫ T

t0

1

2

∫
x

pt(x|y)∥ŝ(x, y, t)−∇ log pt(x|y)∥2dxdt.

• Step B: Altogether.
Combining (I) (II) and (III), we take the expectation to the total variation with respect to y

Ey

[
TV
(
P (·|y), P̂t0(·|y)

)]
≲
√
t0 log

dx+1
2

(
1

t0

)
+ exp(−T) +

√∫ T

t0

1

2

∫
x

pt(x|y)∥ŝ(x, y, t)−∇ log pt(x|y)∥2dxdt(
By Jensen’s inequality

)
≲
√
t0 log

dx+1
2

(
1

t0

)
+ exp(−T) +

√
T

2
R(ŝ).

Lastly, take the expectation with respect to the sample {xi, yi}ni=1 and take T = Cα log n we have

E{xi,yi}ni=1

[
Ey

[
TV
(
P (·|y), P̂t0(·|y)

)]]
≲
√
t0 log

dx+1
2

(
1

t0

)
+ n−Cα +

√
log nE{xi,yi}ni=1

[√
R(ŝ)

] (
By Jenson’s Inequality

)
≲
√
t0 log

dx+1
2

(
1

t0

)
︸ ︷︷ ︸

(i)

+n−Cα +
√
log n

√
E{xi,yi}ni=1

[R(ŝ)]︸ ︷︷ ︸
(ii)

– Step B.1: Result under Assumption 3.1.

We apply Theorem 3.3 and setting Cα = 2β
dx+dy+2β and t0 = n−β/(dx+dy+β), we further write

the above expression into

E{xi,yi}ni=1

[
Ey

[
TV
(
P (·|y), P̂t0(·|y)

)]]
124

6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749

Under review as a conference paper at ICLR 2025

≲ n
− β

2(dx+dy+β) (log n)(
dx+1

2)︸ ︷︷ ︸
(i)

+n
− 2β

dx+dy+2β + (log n)
1
2

(
1

t0
n
− β

ν1(dx+dy+β) (log n)ν2+2

) 1
2

︸ ︷︷ ︸
(ii)

Therefore, under Assumption 3.1 we have

E{xi,yi}ni=1

[
Ey

[
TV
(
P (·|y), P̂t0(·|y)

)]]
= O

(
n
− β

2(ν1−1)(dx+dy+β) (log n)
ν2
2 + 3

2

)
– Step B.2: Result under Assumption 3.2.

We apply Theorem 3.3 and set t0 = n
− 4β

dx+dy+2β−1. Note that we have

√
t0

(
log

1

t0

) dx+1
2

≲ n
− 2β

dx+dy+2β .

We further write

E{xi,yi}ni=1

[
Ey

[
TV
(
P (·|y), P̂t0(·|y)

)]]
≲ n

− 2β
dx+dy+2β︸ ︷︷ ︸

(i)

+n
− 2β

dx+dy+2β + (log n)
1
2

(
log

1

t0
n
− 1

ν3

β
dx+dy+2β (log n)max(10,β+1)

) 1
2

︸ ︷︷ ︸
(ii)

.

Therefore we have

E{xi,yi}ni=1

[
Ey

[
TV
(
P (·|y), P̂t0(·|y)

)]]
= O

(
n
− 1

2ν3

β
dx+dy+2β (log n)max(6,(β+3)/2)

)

This completes the proof.

K.7 PROOF OF COROLLARY 3.4.1

Proof of Corollary 3.4.1. The proof closely follows the high-dimensional result where dx =
Ω(logN/(log logN)) in Appendix K.2. The only distinction lies in the covering number with
transformer network (defined in Definition K.5), characterized by νi with i ∈ [5]. Therefore, we
replace ν1, ν2 in Theorem 3.4 with ν4 and ν5. This completes the proof.

125

	Introduction
	Background and Preliminaries
	Conditional Diffusion Model with Classifier-free Guidance
	Conditional Diffusion Transformer Networks

	Statistical Limits of Conditional DiTs
	Score Approximation: Generic Hölder Smooth Data Distributions
	Score Approximation: Stronger Hölder Smooth Data Distributions
	Score Estimation and Distribution Estimation of Conditional DiTs
	Minimax Optimal Estimation of Unconditional DiTs

	Latent Conditional DiTs
	Discussion and Conclusion
	Notation Table
	Related Works, Broader Impact and Limitations
	Related Works
	Broader Impact
	Limitations

	Proof-of-Concept Experiments
	Experimental Results

	Latent Conditional DiT with Hölder Assumption
	Score Approximation
	Score Estimation
	Distribution Estimation

	Latent Conditional DiT with Lipschitz Assumption
	Score Approximation
	Score Estimation
	Distribution Estimation
	Proof of Score Approximation ()
	Proof of Score Estimation ()
	Proof of Distribution Estimation ()

	Supplementary Theoretical Background
	Conditional Diffusion Process
	Classifier-free Guidance

	Universal Approximation of Transformers
	Transformers as Universal Approximators
	Parameter Norm Bounds for Transformer Approximation

	Proof of
	Auxiliary Lemmas
	Main Proof of

	Proof of
	Auxiliary Lemmas
	Main Proof of

	Proof of the Estimation Results for Conditional DiTs
	Auxiliary Lemmas for
	Proof of
	Dominance Transition between and for All Norm Bounds under
	Proof of
	Auxiliary Lemmas for .
	Main Proof of
	Proof of

