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ABSTRACT

We investigate the approximation and estimation rates of conditional diffusion
transformers (DiTs) with classifier-free guidance. We present a comprehensive
analysis for “in-context” conditional DiTs under four common data assumptions.
We show that both conditional DiTs and their latent variants lead to the minimax op-
timality of unconditional DiTs under identified settings. Specifically, we discretize
the input domains into infinitesimal grids and then perform a term-by-term Taylor
expansion on the conditional diffusion score function under Hölder smooth data
assumption. This enables fine-grained use of transformers’ universal approxima-
tion through a more detailed piecewise constant approximation and hence obtains
tighter bounds. Additionally, we extend our analysis to the latent setting under the
linear latent subspace assumption. We not only show that latent conditional DiTs
achieve lower bounds than conditional DiTs both in approximation and estimation,
but also show the minimax optimality of latent unconditional DiTs. Our findings es-
tablish statistical limits for conditional and unconditional DiTs, and offer practical
guidance toward developing more efficient and accurate DiT models.

1 INTRODUCTION

We investigate the approximation and estimation rates of conditional diffusion transformers (DiTs)
with classifier-free guidance. Specifically, we derive score approximation, score estimation, and
distribution estimation guarantees for both conditional DiTs and their latent variants. We provide
a comprehensive analysis under various data conditions. Moreover, we show that both conditional
DiTs and their latent variants lead to the minimax optimality of unconditional DiTs under identified
settings. This analysis is not only practical but also timely. Transformer-based conditional diffusion
models are at the forefront of generative AI due to their success as scalable and flexible backbones
for image (Wu et al., 2024a; Bao et al., 2023; Batzolis et al., 2021) and video generation (Liu et al.,
2024; Ni et al., 2023; Saharia et al., 2022; Voleti et al., 2022). However, the theoretical understanding
of conditional DiTs remains limited. On the one hand, while prior work by Hu et al. (2024) reports
approximation and estimation rates of DiTs using the established universality of transformers (Yun
et al., 2020), their results are not tight and are limited to unconditional diffusion. On the other
hand, existing theoretical works on conditional diffusion models only focus on ReLU networks (Fu
et al., 2024a; Yuan et al., 2023), model-free settings (Ye et al., 2024; Guo et al., 2024) or generative
sampling process (Dinh et al., 2023), without considering the transformer architectures. This work
addresses this gap by providing a timely analysis of the statistical limits of conditional DiTs.

In this work, we present a comprehensive analysis of conditional DiT and its latent setting under
four common data assumptions. We also establish the minimax optimality of unconditional DiT
and its latent version by deriving the tight distribution estimation error bounds. Our techniques
include two key parts: (i) Discretizing the input domains into infinitesimal grids. (ii) On each
grid, performing a term-by-term Taylor expansion on the conditional diffusion score function under
generic and stronger Hölder smooth data assumptions, motivated by the local diffused polynomial
analysis (Fu et al., 2024a; Oko et al., 2023). These techniques leverage the nice regularity of the
score function imposed by the Hölder smoothness data assumptions and hence enable fine-grained
use of transformers’ universal approximation (Kajitsuka and Sato, 2024; Yun et al., 2020) through a
more detailed piecewise constant approximation. Consequently, we obtain tighter bounds.

Contributions. We summarize the theoretical results in Table 1. Our contributions are threefold:
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Table 1: Summary of Theoretical Results. The initial data is dx-dimensional, and the condition is dy-
dimensional. For latent DiT, the latent variable is d0-dimensional. σ2

t = 1− e−t is the denoising scheduler. The
sample size is n, and 0 < ϵ < 1 represents the score approximation error. While we report asymptotics for large
dx, d0, we reintroduce the n dependence in the estimation results to emphasize sample complexity convergence.

Assumption Score
Approximation

Score
Estimation

Dist. Estimation
(Total Variation Distance)

Minimax
Optimality

Generic Hölder Smooth Data
Dist. (Sections 3.1 and 3.3) O((log

(
1
ϵ

)
)dx/σ4

t ) n−Θ(1/dx) · (log n)O(dx) n−Θ(1/dx) · (log n)O(dx) é

Stronger Hölder Smooth Data
Dist. (Sections 3.2 and 3.3) (log

(
1
ϵ

)
)O(1)/σ2

t n−Θ(1/d2
x) · (log n)O(1) n−Θ(1/dx) · (log n)O(1) Ë

Latent Subspace + Generic
Hölder Smooth Data Dist.
(Section 4)

O((log
(
1
ϵ

)
)d0/σ4

t ) n−Θ(1/d0) · (log n)O(d0) n−Θ(1/d0) · (log n)O(d0) é

Latent Subspace + Stronger
Hölder Smooth Data Dist.
(Section 4)

(log
(
1
ϵ

)
)O(1)/σ2

t n−Θ(1/d2
0) · (log n)O(1) n−Θ(1/d0) · (log n)O(1) Ë

• Score Approximation. We characterize the approximation limit of matching the conditional DiT
score function with a transformer-based score estimator. The approximation results explain the
expressiveness of conditional DiT and its latent version, and guide the score network’s structural
configuration for practical implementations (Theorems 3.1, 3.2 and 4.1). The results also show
that the latent version achieves a better approximation for the score function.

• Score and Distribution Estimation. We study the score and distribution estimation of conditional
DiTs in practical training scenarios. Specifically, we provide a sample complexity bound for score
estimation (Theorems 3.3 and E.3), using norm-based covering number bound of transformer
architecture. Additionally, we show that the learned score estimator can recover the initial data
distribution in both conditional DiT and its latent setting (Theorems 3.4 and 4.2).

• Minimax Optimal Estimator. We extend our analysis to unconditional DiT and investigate
whether the generated data distribution achieves the minimax optimality in the total variation
distance. Specifically, we show that the upper bounds on the distribution estimation error match the
lower bounds under stronger Hölder smooth data distribution (Corollary 3.4.2 and Remark 4.3).

Organization. Section 2 presents preliminaries and the problem setup. Section 3 presents the results
of conditional DiTs. Section 4 presents the results of latent conditional DiTs. Appendix C.1 presents
related works’ discussions. The appendix contains an extended and improved version of (Hu et al.,
2024) on conditional DiTs (Appendix F), additional results, and detailed proofs.

Notations. The index set {1, ..., I} is denoted by [I], where I ∈ N+. We denote (column) vectors by
lower case letters, and matrices by upper case letters. Let a[i] denote the i-th component of vector
a. Let Aij denotes the (i, j)-th entry of matrix A. ∥x∥, ∥x∥1 and ∥x∥∞ denote the Euclidean norm,
1-norm, and infinite norm. ∥W∥2 and ∥W∥F denote the spectral norm and Frobenius norm, and
∥W∥p,q denotes the (p, q)-norm where p-norm is over columns and q-norm is over rows.

2 BACKGROUND AND PRELIMINARIES

In this section, we provide a high-level overview of the conditional diffusion model with classifier-free
guidance in Section 2.1 and conditional Diffusion Transformer (DiT) networks in Section 2.2.

2.1 CONDITIONAL DIFFUSION MODEL WITH CLASSIFIER-FREE GUIDANCE

Forward and Backward Conditional Diffusion Process. In the forward process, conditional
diffusion models gradually add noise to the original data x0 ∈ Rdx . Give a condition y ∈ Rdy ,
and x0 ∼ P0(·|y). Let xt denote the noisy data at the timestamp t, with marginal distribution and
density as Pt(·|y) and pt(·|y). The conditional distribution Pt(xt|y) follows N(αtx0, σ

2
t Idx), where

αt = e−t/2, σ2
t = 1 − e−t, and w(t) > 0 is a nondecreasing weighting function. In practice, the

forward process terminates at a large enough T such that PT is close to N(0, Idx
). In the backward

process, we obtain x←t by reversing the forward process. The generation of x←t depends on the score
function ∇ log pt(·|y). See Appendix G.1 for the details. In below, when the context is clear, we
suppress the notation dependence of xt on the time step t.

Classifier-Free Guidance. Classifier-free guidance (Ho and Salimans, 2022) is the standard
workhorse for training condition diffusion models. It approximates both conditional and unconditional
score functions using neural networks sW with parameters W . It uses the following loss function:

ℓ(x0, y; sW ) =

∫ T

t0

1

T − t0
Eτ,xt∼N(αtx0,σ2

t Idx )

[
∥sW (xt, τy, t)−∇xt

log ϕt (xt|x0)∥22
]
dt,
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R(·)

Reshape Layer

Embed

Concat fT ∈ T h,s,r

Transformer Network

R−1(·)

Reversed
Reshape Layer

x ∈ Rdx

Label y
Timestep t

Rd×L

Rd×2
Rd×(L+2) RdxRd×(L+2) Rd×L

Figure 1: Conditional DiT Network Architecture. The architecture consists of a reshape layer R(·), a
reversed reshape layer R−1(·), and the embedding layers for label y and timestep t. The embeddings of y and t
are concatenated with input sequences and then processed by a transformer network fT ∈ T h,s,r .

where ∇xt
log ϕt (xt|x0) = −(xt − αtx0)/σ

2
t , t0 is a small cutoff to stabilize training 1. τ = ∅

denotes the unconditional version, τ = id denotes the conditional version, and P (τ = ∅) = P (τ =
id) = 0.5. To train sW , we select n i.i.d. samples {x0,i, yi}ni=1, where x0,i ∼ P0(·|yi). We use

L̂(sW ) :=
1

n

n∑
i=1

ℓ(x0,i, yi; sW ), (2.1)

as the empirical loss. In addition, we denote population loss as L(sW ). See Appendix G.2 for details.
2.2 CONDITIONAL DIFFUSION TRANSFORMER NETWORKS

We use a transformer network as a score estimator sW . Our notation follows (Hu et al., 2024).

Transformer Block. Let f (SA) : Rd×L → Rd×L denote the self-attention layer. Let h and s denote
the number of heads and hidden dimension in the self-attention layer, and then we have

f (SA) (Z) := Z +

h∑
i=1

W i
O(W

i
V Z) Softmax

[
(W i

KZ)
⊤(W i

QZ)
]
, (2.2)

where W i
V ,W

i
K ,W

i
Q ∈ Rs×d, and W i

O ∈ Rd×s are the weight matrices. Next, we define the
feed-forward layer with MLP dimension r:

f (FF)(Z) := Z +W2ReLU(W1Z + b1) + b2, (2.3)

where W (1) ∈ Rr×d and W (2) ∈ Rd×r are weight matrices, and b(1) ∈ Rr, and b(2) ∈ Rd are bias.

Definition 2.1 (Transformer Block). We define a transformer block of h-head, s-hidden dimension,
r-MLP dimension, and with positional encoding E ∈ Rd×L as

fh,s,r (Z) := f (FF)
(
f (SA) (Z + E)

)
: Rd×L 7→ Rd×L.

Now, we define the transformer networks as compositions of transformer blocks.

Definition 2.2 (Transformer Network Function Class). Let T h,s,r denote the transformer network
function class where each function τ ∈ T h,s,r is a composition of transformer blocks fh,s,r, i.e.,

T h,s,r := {τ : Rd×L 7→ Rd×L | τ = fh,s,r ◦ · · · ◦ fh,s,r}.

Conditional Diffusion Transformer (DiT). Let f ∈ T h,s,r be a transformer network, and (x, y, t) ∈
Rdx × Rdy × [t0, T ] be the input data. We follow the “in-context conditioning” conditional DiT
network in (Peebles and Xie, 2023) as in Figure 1. The following reshape layer converts a vector
input x ∈ Rdx into the sequential matrix input format Z ∈ Rd×L for transformer with dx = d · L.

Definition 2.3 (DiT Reshape LayerR(·)). LetR(·) : Rdx → Rd×L be a reshape layer that transforms
the dx-dimensional input into a d × L matrix. Specifically, for any dx = i × i image input, R(·)
converts it into a sequence representation with feature dimension d := p2 (where p ≥ 2) and
sequence length L := (i/p)

2. Besides, we define the corresponding reverse reshape (flatten) layer
R−1(·) : Rd×L → Rdx as the inverse of R(·). By dx = dL, R,R−1 are associative w.r.t. their input.

We define the following transformer network function class with the reshape layer.

Definition 2.4 (Transformer Network Function Class with Reshape Layer T h,s,r
R ).

T h,s,r
R (CT , C

2,∞
Q , CQ, C

2,∞
K , CK , C

2,∞
V , CV , C

2,∞
O , CO, CE , C

2,∞
f1

, Cf1 , C
2,∞
f2

, Cf2 , LT ) satisfies

• T h,s,r
R := {R−1 ◦ fT ◦R : Rdx 7→ Rdx | fT ∈ T h,s,r};

1t0 is the early stopping time to prevent the score function from blowing up (Fu et al., 2024a; Chen et al.,
2023c; Dhariwal and Nichol, 2021; Song et al., 2021).
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• Model output bound: supZ ∥fT (Z)∥2 ≤ CT ;
• Parameter bound in f (SA):

∥∥(WQ)
⊤
∥∥
2,∞ ≤ C2,∞

Q ,
∥∥(WQ)

⊤
∥∥
2
≤ CQ, ∥WK∥2,∞ ≤ C2,∞

K ,

∥WK∥2 ≤ CK , ∥WV ∥2,∞ ≤ C2,∞
V , ∥WV ∥2 ≤ CV , ∥WO∥2,∞ ≤ C2,∞

O , ∥WO∥2 ≤ CO,∥∥E⊤∥∥
2,∞ ≤ CE ;

• Parameter bound in f (FF): ∥W1∥2,∞ ≤ C2,∞
f1

, ∥W1∥2 ≤ Cf1 , ∥W2∥2,∞ ≤ C2,∞
f2

, ∥W2∥2 ≤ Cf2 ;
• Lipschitz of fT ∈ T h,s,r: ∥fT (Z1)− fT (Z2)∥F ≤ LT ∥Z1 − Z2∥F , for any Z1, Z2 ∈ Rd×L.

These norm bounds are critical to quantify the interplay between model, performance and data.

3 STATISTICAL LIMITS OF CONDITIONAL DITS
In this section, we present a refined decomposition scheme for the fine-grained analysis of score
approximation, score estimation, and distribution estimation in conditional DiT. Our analysis con-
siders two assumptions on initial data distributions: (i) a generic Hölder smooth data assumption
(Section 3.1 for approximation, and Section 3.3 for estimation), (ii) a stronger Hölder smooth data
assumption (Section 3.2 for approximation, and Section 3.3 for estimation). This new scheme leads
to tighter bounds, including the minimax optimality of the unconditional DiT score estimator.

3.1 SCORE APPROXIMATION: GENERIC HÖLDER SMOOTH DATA DISTRIBUTIONS

We present a fine-grained piecewise approximation using transformers to approximate the conditional
score function under the Hölder smoothness assumption on the initial data (Fu et al., 2024b). At its
core, we introduce a score function decomposition scheme with term-by-term tractability.

We first introduce the definition of Hölder space and Hölder ball following (Fu et al., 2024b).

Definition 3.1 (Hölder Space). Let α ∈ Zd
+, and let β = k1 + γ denote the smoothness parameter,

where k1 = ⌊β⌋ and γ ∈ [0, 1). For a function f : Rd → R, the Hölder space Hβ(Rd) is defined
as the set of α-differentiable functions satisfying: Hβ(Rd) :=

{
f : Rd → R | ∥f∥Hβ(Rd) <∞

}
,

where the Hölder norm ∥f∥Hβ(Rd) satisfies:

∥f∥Hβ(Rd) := max
α:∥α∥1<k1

sup
x

|∂αf(x)|+ max
α:∥α∥1=k1

sup
x ̸=x′

|∂αf(x)− ∂αf(x′)|
∥x− x′∥γ∞

.

We also define the Hölder ball of radius B: Hβ(Rd, B) :=
{
f : Rd → R | ∥f∥Hβ(Rd) < B

}
.

Let x0 ∈ Rdx denote the initial data, and y ∈ [0, 1]dy the conditional label. With Definition 3.1, we
state the first assumption on the conditional distribution of initial data x0.

Assumption 3.1 (Generic Hölder Smooth Data). The conditional density function p0(x0|y) is defined
on the domain Rdx × [0, 1]dy and belongs to Hölder ball of radius B > 0 for Hölder index β > 0,
denoted by p0(x0|y) ∈ Hβ(Rdx × [0, 1]dy , B) (see Definition 3.1 for precise definition.) Also, for
any y ∈ [0, 1]dy , there exist positive constants C1, C2 such that p0(x0|y) ≤ C1 exp

(
−C2∥x0∥22/2

)
.

Remark 3.1. The Hölder continuity assumption captures various smoothness levels in the conditional
density function. The light-tail condition relaxes the bounded support assumption in (Oko et al.,
2023). Moreover, Assumption 3.1 only applies to the initial conditional distribution and imposes no
constraints on the induced conditional score function. This is far less restrictive than the Lipschitz
score condition in prior works (Yuan et al., 2024; Lee et al., 2023; Chen et al., 2022).

In our work, we aim to approximate the conditional score function ∇ log pt(xt|y) using transformer
architectures. Hu et al. (2024) analyze the unconditional DiTs based on the established universality
of transformers (Yun et al., 2020). These theories discretize the input and output domains into in-
finitesimal grids and employ piecewise constant approximations to construct universal approximators
with controllable errors. However, such methods do not yield tight bounds for DiT architectures (Hu
et al., 2024). To combat this, we build on the key observation by Fu et al. (2024a)2:

pt(xt|y) =
∫
Rdx

dx0

σdx
t (2π)dx/2

· p0(x0|y)︸ ︷︷ ︸
≈k1-order Taylor polynomial

· exp

(
−∥αtx0 − xt∥2

2σ2
t

)
︸ ︷︷ ︸
≈k2-order Taylor polynomial

. (3.1)

2Recall that pt(xt|y) =
∫
Rdx

p(x0|y)pt(xt|x0) dx0 with Pt(·|y) ∼ N(αtx0, σtIdx). In below, when the
context is clear, we suppress the notation dependence of xt on the time step t.
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A term-by-term Taylor expansion of the above conditional distribution under Assumption 3.1 enables
a more fine-grained analysis (e.g., Lemma I.2). As a result, we propose a fine-grained version of
piecewise constant approximation for conditional DiTs, allowing transformers to approximate the
conditional score function with tighter error bounds. In particular, we utilize a refined transformer
universal approximation modified from (Kajitsuka and Sato, 2024) (see Appendix H.1 for details).

Our score approximation procedure has two stages: first, we approximate pt and ∇pt using a Taylor
expansion, then use transformers to approximate pt, ∇pt, and the required algebraic operators to
construct ∇ log pt(x|y) = ∇pt(x|y)

pt(x|y) . These lead to provably tight estimation results in Section 3.3.

We state our main result of score approximation using transformers under Assumption 3.1 as follows:

Theorem 3.1 (Conditional Score Approximation under Assumption 3.1). Assume Assumption 3.1
and dx = Ω( logN

log logN ). For any precision parameter 0 < ϵ < 1 and smoothness parameter β > 0, let
ϵ ≤ O(N−β) for some N ∈ N. For some positive constants Cα, Cσ > 0, for any y ∈ [0, 1]dy and
t ∈ [N−Cσ , Cα logN ], there exists a Tscore(x, y, t) ∈ T h,s,r

R such that∫
Rdx

∥Tscore(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y) dx = O
(
B2

σ4
t

·N−
β

dx+dy · (logN)dx+
β
2 +1

)
.

Notably, for ϵ = O(N−β), the approximation error has the upper bound O((log
(
1
ϵ

)
)dx/σ4

t ).
The parameter bounds for the transformer network class are as follows:

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N

7β
dx+dy

+6Cσ

)
;

∥WO∥2, ∥WO∥2,∞ = O
(
N
− 3β

dx+dy
+6Cσ (logN)3(dx+β)

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d);

∥W1∥2, ∥W1∥2,∞ = O
(
N

2β
dx+dy

+4Cσ

)
;
∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N

3β
dx+dy

+2Cσ

)
;CT = O

(√
logN/σ2

t

)
.

Remark 3.2. N is the resolution of the input domain discretization (see Lemma I.2). We remark
that domain discretization is essential for utilizing the local smoothness of functions under Hölder
assumptions. Cσ and Cα control the stability cutoff and early stopping time, respectively.
Proof Sketch. Recall that ∇ log pt(x|y) = ∇pt(x|y)

pt(x|y) . We employ the following strategy: discretize
the domains, apply a term-by-term Taylor approximation to the decomposed conditional distribution
(3.1), decompose the conditional score function ∇ log pt(x|y) = ∇pt(x|y)

pt(x|y) into two fundamental
functions and a parsimonious set of algebraic operators, and then approximate the fundamental
functions and operators with transformer networks. The resulting joint error of this strategy is
controllable under Assumption 3.1. Our proof follows three steps:

Step 1. Input Domains Discretization. For any x ∈ Rdx , we construct a bounded domain Bx,N

to approximate polynomial functions evaluated at x on Rdx with the same functions on Bx,N to
arbitrary precision 1/N (Lemma I.1). Then, we discretize Bx,N × [0, 1]dy into Ndx+dy hypercubes
(Lemma I.2). This technique confines the approximation to a compact domain by controlling error
outside this domain under Assumption 3.1. Each hypercube is now compact and local, enabling a
well-behaved Taylor expansion at x. This confinement reduces approximation error in Step 2.

Step 2. Local, Term-by-Term Taylor Expansion for ∇ log pt. To approximate ∇ log pt, we
expand pt(x|y) and ∇pt(x|y) with Taylor polynomials on each local grid on Bx,N , following
the term-by-term expansion (3.1). Specifically, we approximate pt(x|y) with a scalar polynomial
function f1(x, y, t) ∈ R (Lemma I.3) and ∇pt(x|y) with a vector-valued polynomial function
f2(x, y, t) ∈ Rdx (Lemma I.4). Together with a parsimonious set of algebraic operators (inverse,
product), the obtained f1, f2 resemble ∇ log pt with a bounded error ErrorTaylor.

Step 3. Term-by-Term Approximations with Transformers. We utilize a refined universal
approximation theorem for transformers (Appendix H.1) to approximate all Taylor-expanded terms:
f1, f2, and the set of algebraic operators. Specifically, we approximate f1(x, y, t) and f2(x, y, t) with
transformer models Tf1 (Lemma I.5) and Tf2 (Lemma I.6). For the operators, we also approximate
each of them with a corresponding transformer Tµ with µ = {inverse, square . . .} (Lemmas I.8

5
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Tscore

entrywise min

square
Lemma I.8

inverse
Lemma I.9

σt

Lemma I.11

product
Lemma I.8

f2
Lemma I.6

inverse
Lemma I.9

max
f1

Lemma I.5

ϵlow

inverse
Lemma I.9

σt

Lemma I.11

RescaleLemma I.13

Figure 2: Approximate Score Function with Transformer Tscore under Assumption 3.1. The construction
consists of the transformers to approximate local polynomials f1 and f2, and the algebraic operators. We
highlight the overall term-by-term approximations and their corresponding lemmas to ensemble the transformers.

to I.9 and I.11). All approximations have precision guarantees. Finally, we combine the transformer
approximations Tf1 , Tf2 and Tµ for the set of algebraic operators, resulting in a joint approximation
for ∇ log pt (see Figure 2) with arbitrary small error ErrorT .

Error Matching. The overall error includes ErrorTaylor and ErrorT . Given a fixed discretization
resolution N , ErrorTaylor remains fixed. However, the approximation error bound of the transformer
can be an arbitrary value. We align ErrorT and ErrorTaylor to optimize the final results.

Please see Appendix I for a detailed proof.
Remark 3.3 (Approximation Rate). Given a fixed resolution N , the approximation error scales
inversely with the smoothness β. As the smoothness increases, we get a tighter approximation error.
Remark 3.4 (Comparing with Existing Works). Fu et al. (2024a) provide approximation rates for
conditional diffusion models using ReLU networks. We are the first to establish approximation error
bounds with transformer networks. Additionally, Oko et al. (2023) establish approximation rates
under a compactness condition on the input data. We mitigate this compactness requirement by
applying a Hölder smoothness assumption to control approximation error outside a compact domain.

3.2 SCORE APPROXIMATION: STRONGER HÖLDER SMOOTH DATA DISTRIBUTIONS

Next, we study the conditional DiT score approximation problem using our score decomposition
scheme under the stronger Hölder smoothness assumption from Fu et al. (2024b, Assumption 3.3).

Assumption 3.2 (Stronger Hölder Smooth Data). Let function f ∈ Hβ(Rdx × [0, 1]dy , B). Given
a constant radius B, positive constants C and C2, we assume the conditional density function
p(x0|y) = exp

(
−C2∥x0∥22/2

)
· f(x0, y) and f(x0, y) ≥ C for all (x0, y) ∈ Rdx × [0, 1]dy .

Assumption 3.2 imposes stronger assumption than Assumption 3.1 and induces a refined conditional
score function decomposition. Explicitly, by Lemma J.1, ∇ log pt(x|y) becomes:

∇ log pt(x|y) =
−C2x

α2
t + C2σ2

t

+
∇h(x, y, t)
h(x, y, t)

, (3.2)

where h(x, y, t) :=
∫
Rdx

f(x0,y)

σ̂dx
t (2π)dx/2

exp
(
−∥x0−α̂tx∥2

2σ̂2
t

)
dx0, σ̂t = σt√

α2
t+C2σ2

t

, and α̂t =
αt

α2
t+C2σ2

t
.

We highlight that (3.2) leads to a tighter approximation error compared with Theorem 3.1. Intuitively,
Assumption 3.2 imposes a lower bound on the conditional density function and hence implies in
better regularity of the score function. In contrast, under Assumption 3.1, the score function lacks
such regularity and may explode when pt is small. These low-density regions act as holes in the data
support. They cause the score function to diverge near the boundary of these holes. To combat this,
an implication of (3.2) is handy — h is bounded from zero, ensuring that the score function remains
well-behaved across the entire data domain. To elaborate more, two technical remarks are in order.
Remark 3.5 (Linearity). The first term on the RHS of (3.2) is linear in x. This makes part of
∇ log pt(x|y) a linear function of x, enabling easy approximation with a tighter bound.
Remark 3.6 (Tightened Approximation Induced by h’s Lower Bound). Moreover, the introduction
of h tightens the approximation error due to the lower bound imposed by Assumption 3.2 (i.e.,
f(x, y) ≥ C). The second term on the RHS of (3.2) mirrors the form ∇ log pt(x|y) = ∇pt(x|y)

pt(x|y) by
replacing p with h. In the analysis of Section 3.1, especially in Step 2 of the proof (resembling f1, f2
to approximate ∇pt(x|y)), we have to impose a threshold on the denominator of ∇pt(x|y)

pt(x|y) to prevent
score explosion under Assumption 3.1. This threshold introduces additional approximation error
(Lemma I.13). Assumption 3.2 remedies this by ensuring a lower bound on pt(x|y) through the
minimum values of f(x, y) and exp(−C2∥x∥22/2) within the compact domain after discretization.
Setting this lower bound eliminates the need for a threshold and improves the approximation.
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Consequently, decomposition (3.2) improves our approximation result from Section 3.1. We state our
main result of score approximation using transformers under Assumption 3.2 as follows:

Theorem 3.2 (Conditional Score Approximation under Assumption 3.2 (Informal Version of The-
orem J.1)). Assume Assumption 3.2. For any precision parameter 0 < ϵ < 1 and smoothness
parameter β > 0, let ϵ ≤ O(N−β) for some N ∈ N. For some positive constants Cα, Cσ > 0, for
any y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN ], there exists a Tscore(x, y, t) ∈ T h,s,r

R such that∫
Rdx

∥Tscore(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx = O
(
B2

σ2
t

·N−
2β

dx+dy · (logN)β+1

)
.

Notably, for ϵ = O(N−β), the approximation error has the upper bound (log
(
1
ϵ

)
)O(1)/σ2

t .

Proof Sketch. Our proof follows Theorem 3.1, but uses a different conditional score function decom-
position in the form of (3.2). We highlight key differences in each corresponding step:

Step 0: Score Decomposition and Bounds on h and ∇h. We decompose ∇pt to the form of (3.2)
by Lemma J.1. Different from Section 3.2, we derive a lower bound on h in Lemma J.2.

Step 1: Input Domains Discretization. This step remains the same as Section 3.1, except the
approximation target changes from p,∇p to h,∇h. We confine and discretize input domains Rdx ×
[0, 1]dy into Ndx+dy hypercubes (Lemma I.2), each supporting well-behaved Taylor expansions.

Step 2: Local, Term-by-Term Taylor Expansion for h and ∇h. Similar to Section 3.1, we utilize
Taylor polynomials f1 and f2 to approximate h and ∇h on obtained hypercubes. The approximation
on h and ∇h differs from approximation on pt and ∇pt, as their boundedness eliminates the need for
a threshold to prevent score function blow-up. This leads to a faster approximation rate.

Step 3: Transformer Network Approximation. Similar to Section 3.1, we approximate polynomial
functions f1, f2 and all necessary algebraic operators to construct an approximator f3 for ∇pt:

f3(x, y, t) = − C2x

α2
t + C2σ2

t

+
α̂t

σ̂t
· f2(x, y, t)
f1(x, y, t)

, (3.3)

following (3.2). Differed from Section 3.1, (3.2) requires transformers to approximate two additional
operators, σ̂t and α̂t. All approximations have precision guarantees. Finally, we combine all
transformer approximations required in (3.3) and obtain a joint approximation error for ∇ log pt (see
Figure 5) with arbitrary precision. We complete the proof by matching the approximation errors of
the Taylor polynomial and transformer. Importantly, second term on the RHS of (3.3) manifests a
tighter bound than that of ∇pt(x|y)

pt(x|y) . The first linear-in-x term achieves a even tighter bound due to its
linearity. Combined, we obtain a smaller overall joint approximation error than Theorem 3.1.

Please see Appendix J for a detailed proof, and see Theorem J.1 for the formal version.

Remark 3.7 (Comparing with Theorem 3.1). Let Õ(·) hide the terms about t0, log t0, log n. In The-

orem 3.2, the approximation rate Õ(N
− 2β

dx+dy ) is faster than that of Theorem 3.1, i.e., Õ(N
− β

dx+dy ).
3.3 SCORE ESTIMATION AND DISTRIBUTION ESTIMATION OF CONDITIONAL DITS

Next, we study score and distribution estimations based on the two score approximation results for
two different data assumptions: Theorems 3.1 and 3.2. Let ŝ denote the trained score estimator.

Score Estimation. Building on our approximation results from Sections 3.1 and 3.2, the next
objective is to evaluate the performance of the score estimator ŝ trained with a set of finite samples
by optimizing the empirical loss (2.1). To quantify this, we introduce the notion of score estimation
risk and characterize its upper bound.

Definition 3.2 (Conditional Score Risk). Given a score estimator ŝ, we define risk as the expectation
of the squared ℓ2 difference between the score estimator and the ground truth with respect to (xt, y, t):

R(ŝ) :=

∫ T

t0

1

T − t0
Ext,y∥ŝ(xt, y, t)−∇ log pt(xt|y)∥22dt.

Given a set of i.i.d sample {xi, yi}i∈[n], direct computation of E{xi,yi}i∈[n]
[R(ŝ)] is infeasible due to

the absence of access to the joint distribution P (xt, y). To address this, we: (i) Decompose the risk
into estimation and approximation errors, (ii) Bound the estimation error using the covering number
of transformers, and (iii) Bound the approximation error using Theorem 3.1 and Theorem 3.2.
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Theorem 3.3 (Conditional Score Estimation with Transformer). Assume dx = Ω( logN
log logN ).

• Under Assumption 3.1, by taking N = n
1
ν1
· dx+dy
β+dx+dy , t0 = N−Cσ < 1 and T = Cα log n, it holds

E{xi,yi}ni=1
[R(ŝ)] = O

(
1

t0
n
− 1

ν1
· β
dx+dy+β (log n)ν2+2

)
,

where ν1 = 68β
(dx+dy)

+ 104Cσ and ν2 = 12dx + 12β + 2.

• Under Assumption 3.2, by taking N = n
1
ν3
· dx+dy
2β+dx+dy , t0 = N−Cσ < 1 and T = Cα log n, it holds

E{xi,yi}ni=1
[R(ŝ)] = O

(
log

1

t0
n
− 1

ν3
· 2β
dx+dy+2β (log n)max(10,β+1)

)
,

where ν3 = 4(12βdx+31βd+6β)
d(dx+dy)

+ 12(12Cαdx+25Cα·d+6Cα)
d + 72Cσ .

Corollary 3.3.1 (Low-Dimensional Input Region). Assume dx = o
(

logN
log logN

)
, i.e., dx ≪ n. Under

Assumption 3.1, by setting N, t0, T as specified in Theorem 3.3, we have E{xi,yi}ni=1
[R(ŝ)] =

O
(

1
t0
n
− 1

ν4
· β
dx+dy+β

)
, where ν4 = 72β(2dx+5d+1)

d(dx+dy)
+ 48Cσ(2dx+5d+1)

d − 4β.

Proof. Please see Appendix K.2 and Appendix K.4 for detailed proofs.

Remark 3.8 (Sample Complexity Bounds). To obtain ϵ-error in terms of score estimation, we have
the sample complexity Õ

(
ϵ−ν1(dx+dy+β)/β

)
under Assumption 3.1 and Õ

(
ϵ−ν3(dx+dy+2β)/2β

)
under Assumption 3.2. Here Õ(·) ignores the terms about t0, log t0 and log n. The Hölder data
smoothness degree β affects the sample complexity. This indicates that the regularity of the initial
data distribution determines the complexity of score estimation.

Distribution Estimation. Next, we study the distributional estimation capability of the trained
conditional score network s(x, y, t) by analyzing the total variation distance between the estimated
and true distributions. Our strategy uses a three-part decomposition: (i) the total variation between
the true distributions at timestamps 0 and t0, (ii) the total variation between the true distribution at t0
and the reverse process distribution using the true score function, and (iii) the total variation between
the reverse process distributions using the true and estimated score functions at t0.

Theorem 3.4 (Conditional Distribution Estimation). Assume dx = Ω( logN
log logN ). For y ∈ [0, 1]dy ,

let P̂t0(·|y) denote estimated conditional distributions at t0. Recall that P0(·|y) is the conditional
distribution of initial data x0 given y. Assume KL (P0(·|y) | N(0, I)) ≤ c for some constant c <∞.

• Under Assumption 3.1, by taking the early-stopping time t0 = n
− β

dx+dy+β and terminal time
T = 2β

dx+dy+2β log n, it holds

E{xi,yi}ni=1

[
Ey

[
TV

(
P̂t0(·|y), P0(·|y)

)]]
= O

(
n
− β

2(ν1−1)(dx+dy+β) (log n)
ν2
2 + 3

2

)
,

where ν1 = 68β
(dx+dy)

+ 104Cσ , ν2 = 12dx + 12β + 2 and Cσ = β
dx+dy+β .

• Under Assumption 3.2, by taking t0 = n
− 4β

dx+dy+2β−1, it holds

E{xi,yi}ni=1

[
Ey

[
TV

(
P̂t0(·|y), P0(·|y)

)]]
= O

(
n
− 1

2ν3

β
dx+dy+2β (log n)max(6, β2 + 3

2 )
)
,

where ν3 = 4(12βdx+31βd+6β)
d(dx+dy)

+ 12(12Cαdx+25Cα·d+6Cα)
d + 72Cσ and Cα = 2β

dx+dy+2β .
We remark that the choice of t0, T (i.e., Cσ, Cα) leads to the tightest rates in our analysis.

Corollary 3.4.1 (Low-Dimensional Input Region). Assume dx = o
(

logN
log logN

)
, i.e., dx ≪ n. Under

Assumption 3.1, by setting t0, T as specified in Theorem 3.4, we have

E{xi,yi}ni=1

[
Ey

[
TV

(
P̂t0(·|y), P0(·|y)

)]]
= O

(
n
− β

2(ν4+1)(dx+dy+β)

)
,

where ν4 = 72β(2dx+5d+1)
d(dx+dy)

+ 48Cσ(2dx+5d+1)
d − 4β.

Proof. Please see Appendix K.6 for a detailed proof.
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W⊤U

Latent
Encoder

WU

Latent
Decoder

R̃(·)

Reshape Layer

Embed

Concat gT ∈ T h,s,r

Transformer Network

R̃−1(·)

Reversed
Reshape Layer

⊕
x ∈ Rdx x ∈ Rd0

Label y
Timestep t

Rd̃×L̃

Rd̃×2 Rd̃×(L̃+2) Rd0 RdxRd×(L̃+2) Rd̃×L̃

−1/σ2
t

sW

Figure 3: Network Architecture of Latent Conditional DiT. The overall architecture consists of linear layer
of encoder and decoder W⊤

U and WU that transform input x ∈ Rdx into linear latent space Rd0 , reshaping layer
R̃(·) and R̃−1(·), embedding layer for label y and timestep t. The embedding concatenates with input sequences
and processes by the adapted transformer network T h,s,r

R̃
= R̃−1 ◦ gT ◦ f (FF) ◦ R̃.

3.4 MINIMAX OPTIMAL ESTIMATION OF UNCONDITIONAL DITS

In this section, we show the minimax optimality of the unconditional DiT architecture under Assump-
tion 3.2. Specifically, we obtain the distribution estimation error of unconditional DiTs by removing
the condition y and let dy = 0 in Theorem 3.4. Then the distribution estimation error becomes

Õ(ϵ−
1

2ν3

β
dx+2β ) under Assumption 3.2. Here Õ(·) ignores the term about log n. By setting 2ν3 = 1,

we show that the unconditional DiT is the minimax optimal distribution estimator.

Corollary 3.4.2 (Proposition 4.3 of Fu et al. (2024b)). For a fixed constant C2 and a Hölder index
β > 0. We consider the task of estimating a probability distribution P (x) with its density function
defined within the following function space

P =
{
p(x) = f(x) exp

(
−C2∥x∥22

)
: f(x) ∈ Hβ(Rdx , B), f(x) ≥ C ≥ 0

}
,

Given n i.i.d data {xi}ni=1, we have inf µ̂ supp∈P E{xi}ni=1
[TV(µ̂,P)] ≥ Ω(n−

β
dx+2β ). Here, the

estimator µ̂ ranges over all possible estimators constructed from the data.

Remark 3.9 (Comparing with Existing Works). Oko et al. (2023) analyze the ReLU network and
provide the near minimax optimal estimation rates in both the total variation distance and Wasserstein
distance of order one. Fu et al. (2024b) also uses the ReLU network and provides the minimax
optimality for distribution in total variation. Our results offer the first and exact minimax optimal
guarantee for unconditional DiTs in distribution estimation.
4 LATENT CONDITIONAL DITS

In this section, we extend the results from Section 3 by considering the latent conditional DiTs.
Specifically, we assume the raw input x ∈ Rdx has an intrinsic lower-dimensional representation.

Assumption 4.1 (Low-Dimensional Linear Latent Space). Initial data x has a latent representation
via x = Uh, where U ∈ Rdx×d0 is an unknown matrix with orthonormal columns. The latent
variable h ∈ Rd0 follows the distribution Ph with a density function ph.

Remark 4.1. “Linear Latent Space” means that each entry of a given latent vector is a linear
combination of the corresponding input, i.e., x = Uh. This is also known as the “low-dimensional
data” assumption in literature (Hu et al., 2024; Chen et al., 2023c). This assumption is fundamental in
dimensionality reduction techniques for capturing the intrinsic lower-dimensional structure of data.

Score Decomposition and Model Architecture. To derive approximation and estimation results,
we extend the techniques and network architecture presented in Section 3 to latent diffusion by
considering the “low-dimensional linear subpace”. Under Assumption 4.1, we decompose the score:

∇ log pt(x|y) = U( σ2
t∇ log pht (U

⊤x|y) + U⊤x︸ ︷︷ ︸
:=q(U⊤x,y,t): Rd0×Rdy×[t0,T ]→ Rd0

)/σ2
t − x/σ2

t︸ ︷︷ ︸
residual connection

, (4.1)

following Hu et al. (2024); Chen et al. (2023c) (see Lemma E.1). Based on this decomposition,
we construct the model architecture in Figure 3. The network detail for approximate (4.1) are
as follow: a transformer gT (W⊤U x, y, t) ∈ T h,s,r

R̃
to approximate q(U⊤x, y, t), a latent encoder

W⊤U ∈ Rd0×dx and decoder WU ∈ Rdx×d0 to approximate U⊤ ∈ Rd0×dx and U ∈ Rdx×d0 , and a
residual connection to approximate −x/σ2

t . Importantly, d0 is the latent dimension.

For latent diffusion, we follow the standard setting by Peebles and Xie (2023). For each input x ∈ Rdx

and corresponding label y ∈ Rdy , we use a transformer network to obtain a score estimator sW ∈ Rdx .
The key differences from Section 3 are as follows: First, we apply a latent encoder W⊤U ∈ Rd0×dx to
map the raw data x ∈ Rdx into a low-dimensional representation h :=W⊤U x ∈ Rd0 , where d0 ≤ dx.
Second, we reshape h ∈ Rd0 into a sequence H ∈ Rd̃×L̃ using a layer R̃(·) : Rd0 → Rd̃×L̃, with
d0 = d̃ · L̃. Note that, by d0 ≤ dx, d̃ ≤ d, and L̃ ≤ L. Third, we pass H ∈ Rd̃×L̃ through the

9
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transformer gT . Lastly, We then obtain the predicted score sW ∈ Rdx by applying the inverse reshape
layer R̃−1(·) : Rd̃×L̃ → Rd0 , followed by the latent decoder WU : Rd0 → Rdx .

For our analysis, we study the cases under both the generic and strong Hölder smoothness assumptions
on latent representation z ∈ Rd0 . Specifically, we assume the “latent” data is β0-Hölder smooth with
radius B0 following Assumptions 3.1 and 3.2. We extend both approximation and estimation results
from Section 3 to latent diffusion and establish the minimax optimality of latent conditional DiTs.

Score Approximation. We now present the approximation rates for latent score function under
both generic and stronger Hölder data assumptions. Let h :=W⊤U x ∈ Rd0 and h := U⊤x ∈ Rd0 be
the estimated and ground truth (according to Assumption 4.1) latent representations, respectively.

Theorem 4.1 (Score Approximation of Latent Conditional DiTs (Informal Version of Theorems E.1
and E.2)). Assume dx = Ω( logN

log logN ). For any precision 0 < ϵ < 1 and smoothness β0 > 0, let
ϵ ≤ O(N−β0) for some N ∈ N. For some positive constants Cα, Cσ > 0, for any y ∈ [0, 1]dy and
t ∈ [N−Cσ , Cα logN ], there exists a Tscore(x, y, t) ∈ T h,s,r

R̃
such that

• Under Assumption 3.1, we have∫
Rd0

∥∥Tscore(h, y, t)−∇ log pht (h|y)
∥∥2
2
· pht (h|y)dh = O

(
B2

0

σ4
t

·N−
β0

d0+dy · (logN)d0+
β0
2 +1

)
.

Notably, for ϵ = O(N−β0), the approximation error has the upper bound O((log
(
1
ϵ

)
)d0/σ4

t ).
• Under Assumption 3.2, we have∫

Rd0

∥∥Tscore(x, y, t)(h, y, t)−∇ log pht (h|y)
∥∥2
2
· pht (h|y)dh = O

(
B2

0

σ2
t

·N−
2β0

d0+dy · (logN)β0+1

)
.

Notably, for ϵ = O(N−β0), the approximation error has the upper bound (log
(
1
ϵ

)
)O(1)/σ2

t .

Proof. See Theorems E.1 and E.2 for the formal versions and Appendices I and J for proofs.
Remark 4.2 (Comparing with Theorems 3.1 and 3.2). Recall dx ≥ d0, and the approximation error
bounds are Õ(ϵ1/(dx+dy)/σ2

t ) in Theorem 3.1 and Õ(ϵ2/(dx+dy)/σ2
t ) in Theorem 3.2. These results

show that the latent conditional DiT achieves better approximation and has the potential to bypass the
challenges associated with the high dimensionality of initial data.
Score and Distribution Estimation. Based on Theorem 4.1, we derive the score estimation bounds
in Theorem E.3, and report the results for distribution estimation in next theorem.

Theorem 4.2 (Distribution Estimation of Latent Conditional DiTs). Assume d0 = Ω( logN
log logN ). For

y ∈ [0, 1]dy , let P̂t0(·|y) denote estimated conditional distributions at t0. Recall that P0(·|y) is the
conditional distribution of initial data x0 given y. Assume KL (P0(·|y) | N(0, I)) ≤ c for some
constant c <∞.
• Under Assumption 3.1, taking t0 = n

− β0
(d0+dy+β0) and T = 2β0

d0+dy+2β0
log n,it holds

E{xi,yi}ni=1

[
Ey

[
TV

(
P̂t0(·|y), P0(·|y)

)]]
= O

(
n
− β0

2(ν̃1−1)(d0+dy+β0) (log n)
ν̃2
2 + 3

2

)
,

where ν̃1 = 68β0

(d0+dy)
+ 104Cσ , ν̃2 = 12d0 + 12β0 + 2 and Cσ = β0

d0+dy+β0
.

• Under Assumption 3.2, taking t0 = n
− β0

4(d0+dy+β0) and T = 2β0

d0+dy+2β0
log n,it holds

E{xi,yi}ni=1

[
Ey

[
TV

(
P̂t0(·|y), P0(·|y)

)]]
= O

(
n
− 1

2ν̃3

β0
d0+dy+2β0 (log n)max(6,

β0
2 + 3

2 )

)
,

where ν̃3 = 4(12β0d0+31β0d̃+6β0)

d̃(d0+dy)
+ 12(12Cαd0+25Cα·d̃+6Cα)

d̃
+ 72Cσ and Cα = 2β0

d0+dy+2β0
.

Proof. Please see Appendix K.6 for a detailed proof.
Remark 4.3 (Minimax Optimal Estimation). Following the same idea in Section 3.4, we show that
the estimation error bound in Theorem 4.2 is the optimal tight bound for the latent unconditional DiT.
Specifically, by applying Corollary 3.4.2 and substituting p(x|y) and dx by pht (h|y) and d0 respec-
tively in Assumption 3.2, we establish a distribution estimation lower bound of O(n−β0/(d0+2β0)).
Setting 2ν̃3 = 1, we obtain the minimax optimality of latent unconditional DiT.
Concluding Remarks. We defer the discussion of our results and concluding remarks to Appendix A.
We extend our analysis to the setting of (Hu et al., 2024) and improve their results in Appendix F.
Importantly, our bounds avoid the gigantic 2(1/ϵ)

2L

term reported by Hu et al. (2024).
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A DISCUSSION AND CONCLUSION

We investigate the approximation and estimation rates of conditional DiT and its latent setting. We
focus on the “in-context” conditional DiT setting presented by Peebles and Xie (2023), and conduct
a comprehensive analysis under various common data conditions (Section 3 for generic and strong
Hölder smooth data, Section 4 for data with intrinsic latent subspace).

Interestingly, we establish the minimax optimality of the unconditional DiTs’ estimation by reducing
our analysis of conditional DiTs to the unconditional setting (Section 3.4 and Remark 4.3). Our key
techniques include a well-designed score decomposition scheme (Section 3.1). These enable a finer
use of transformers’ universal approximation, compared to the prior statistical rates of DiTs derived
from the universal approximation results in (Yun et al., 2020) by Hu et al. (2024).

Consequently, we provide two extensions in the appendix:

• In Appendix E, we expand Section 4 and extend our well-designed score decomposition scheme
from Section 3 to the latent conditional DiT. Notably, we also obtain provably tight rate, i.e., for
distribution estimation under Assumption 3.2 (Remark 4.3).

• In Appendix F, we extend the analysis of (Hu et al., 2024) to the conditional DiT setting and
provide an improved version. In particular, we analyze conditional latent DiTs under the following
three assumptions from (Hu et al., 2024) and obtained sharper rates:

– Low-Dimensional Linear Latent Space Data (Assumption 4.1)

– Lipschitz Score Function (Assumption F.2)

– Light Tail Data Distribution (Assumption F.3)

In detail, we use a modified universal approximation of the single-layer self-attention transformers
(modified from (Kajitsuka and Sato, 2024)) to avoid the need for dense layers required in (Yun et al.,
2020). This refinement results in tighter error bounds for both score and distribution estimation.
Consequently, our sample complexity error bounds avoid the gigantic double exponential term
2(1/ϵ)

2L

reported by Hu et al. (2024), and obtain sharper rates than those of (Hu et al., 2024).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B NOTATION TABLE

We summarize our notations in the following table for easy reference.
Table 2: Mathematical Notations and Symbols

Symbol Description

[I] The index set {1, ..., I}, where I ∈ N+

a[i] The i-th component of vector a
Aij The (i, j)-th entry of matrix A
∥x∥ Euclidean norm of vector x
∥x∥1 1-norm of vector x
∥x∥2 2-norm of vector x
∥x∥∞ Infinite norm of vector x
∥W∥2 Spectral norm of matrix W
∥W∥F Frobenius norm of matrix W
∥W∥p,q (p, q)-norm of matrix W , where p-norm is over columns and q-norm is over rows
∥f(x)∥L2 L2-norm, where f is a function
∥f(x)∥L2(P ) L2(P )-norm, where f is a function and P is a distribution
∥f(·)∥Lip Lipschitz-norm, where f is a function

dp(f, g) p-norm of the difference between functions f and g defined as dp(f, g) =
(∫

|f(x)− g(x)|p dx
)1/p

f♯P Pushforward measure, where f is a function and P is a distribution
KL(P,Q) Kullback-Leibler (KL) divergence between distributions P and Q
TV(P,Q) Total variation (TV) distance between distributions P and Q
N(µ, σ2) Normal distribution with mean µ and variance σ2

a ≲ b There exist constants C > 0 such that a ≤ Cb

n Sample size
x Data point in original data space, x ∈ Rdx

y Conditioning Label, x ∈ Rdy

h Latent variable in low-dimensional subspace, h ∈ Rd0

h h = U⊤x
ph The density function of h
U The matrix with orthonormal columns to transform h to x, where U ∈ Rd×d0

B Radius of Hölder ball for conditional density function p(x|y)
B0 Radius of Hölder ball for latent conditional density function p(h|y)
β Hölder index for conditional density function p(x|y)
β0 Hölder index for latent conditional density function p(h|y)
D Granularity in the construction of the transformer universal approximation
N Resolution of the discretization of the input domain
R Score risk (expectation of squared ℓ2 difference between score estimator and ground truth)
N (ϵ,F , ∥·∥) Covering number of collection F (see Definition K.5)

T Stopping time in the forward process of diffusion model
t0 Stopping time in the backward process of diffusion model
µ Discretized step size in backward process
pt(·) The density function of x at time t
pht (·) The density function of h at time t
ψ (Conditional) Gaussian density function

T h,s,r Transformer network function class (see Definition 2.2)
fh,s,r Transformer block of h-head, s-hidden size, r-MLP dimension (see Definition 2.1)
d Input dimension of each token in the transformer network of DiT
L Token length in the transformer network of DiT
d̃ Latent data input dimension of each token in the transformer network of DiT
L̃ Latent data token length in the transformer network of DiT
X Sequence input of transformer network in DiT, where X ∈ Rd×L

H Sequence latent data input of transformer network in DiT, where X ∈ Rd×L

E Position encoding, where E ∈ Rd×L

R(·) Reshape layer in DiT, R(·) : Rdx → Rd×L

R̃(·) Reshape layer in DiT, R̃(·) : Rd0 → Rd̃×L̃

R−1(·) Reverse reshape layer in DiT, R−1(·) : Rd×L → Rdx

R̃−1(·) Reverse reshape layer in DiT, R̃−1(·) : Rd̃×L̃ → Rd0

WU The orthonormal matrix to approximate U , where WU ∈ Rdx×d0
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C RELATED WORKS, BROADER IMPACT AND LIMITATIONS

C.1 RELATED WORKS

In the following, we discuss the recent success of the techniques used in our work. We first give
the universality (universal approximation) of the transformer. Then, we discuss recent theoretical
developments (approximation and estimation) in diffusion generative models.

Universality of Transformers. The universality of transformers refers to their ability to approx-
imate any sequence-to-sequence function with arbitrary precision. Yun et al. (2020) establish this
by showing that transformers is capable of universally approximate sequence-to-sequence func-
tions using deep stacks of feed-forward and self-attention layers. Additionally, Alberti et al. (2023)
demonstrate universal approximation for architectures employing non-standard attention mechanisms.
Recently, Kajitsuka and Sato (2024) show that even a single-layer transformer with self-attention
suffices for universal approximation assuming all attention weights are rank-1. Moreover, Hu et al.
(2024) leverage Yun et al. (2020) universality results to analyze the approximation and estimation
capabilities of DiT.

Our paper is motivated by and builds upon the works of Hu et al. (2024); Kajitsuka and Sato
(2024); Yun et al. (2020). Specifically, we utilize and extend the transformer universality result from
Kajitsuka and Sato (2024). We employ a relaxed contextual mapping property in Kajitsuka and Sato
(2024) (see Appendix H.1). This generalization allows us to avoid the “double exponential” sample
complexity bounds in previous DiT analyses (Hu et al., 2024, Remark 3.4) and establish transformer
approximation in the simplest configuration — a single-layer, single-head attention model.

Approximation and Estimation Theories of Diffusion Models. The theories of DiTs revolve
around two main frontiers: score function approximation and statistical estimation (Chen et al., 2024a;
Tang and Zhao, 2024). Score function approximation refers to the ability of the score network to
approximate the score function. It leverages the universal approximation ability of the neural network
in Lp norms (Hayakawa and Suzuki, 2020), the approximation characterized as Taylor polynomial
(Fu et al., 2024a) or B-Spline (Oko et al., 2023). Chen et al. (2023c) and Fu et al. (2024a) investigate
score approximation under specific conditions, such as low-dimensional linear subspaces and Hölder
smooth data assumptions, using ReLU-based models. Furthermore, Hu et al. (2024) presents the first
characterization of score approximation in diffusion transformers (DiTs).

The statistical estimation includes score function and distribution estimation (Wu et al., 2024b; Dou
et al., 2024a; Guo et al., 2024; Chen et al., 2023c). Under a L2 accurate score estimation, several
works have provided the convergence bounds under either smoothness assumptions (Benton et al.,
2024; Chen et al., 2022) or bounded second-order moment assumptions (Chen et al., 2023b; Lee
et al., 2023). Chen et al. (2023c) provide the first complete estimation theory using ReLU networks
without precise estimators. Oko et al. (2023) achieve nearly minimax optimal estimation rates for
total variation and Wasserstein distances. Meanwhile, Dou et al. (2024b) define exact minimax
optimality using kernel functions without characterizing the network architectures. In the realm of
diffusion transformers, Hu et al. (2024) introduces the first complete estimation theory. Jiao et al.
(2024a;b) demonstrate theoretical convergence for latent DiTs using ODE-based and Schrödinger
bridge diffusion models.3

Our paper advances the foundational works of Fu et al. (2024b); Oko et al. (2023); Hu et al. (2024).
We adopt the Hölder smooth data distribution assumption4, a more practical approach than the
bounded support assumption in Oko et al. (2023). Unlike the simple ReLU networks in Fu et al.
(2024b), we provide a complete approximation and estimation analysis for conditional DiTs and
establish their exact minimax optimality. Furthermore, while Hu et al. (2024) analyze DiTs, their
estimation upper bounds are suboptimal. We refine this by avoiding the substantial double exponential

3Of independent interest, many works investigate the convergence rates of diffusion models under various
score and data smoothness assumptions or with different samplers. Please see (Li et al., 2024a;b;c; Potaptchik
et al., 2024; Wu et al., 2024c; Liang et al., 2024b;a; Gatmiry et al., 2024; Gu et al., 2024; Guo et al., 2023; Chen
et al., 2024b; 2023b; 2022; Lee et al., 2023; 2022) and references therein.

4Recent work by Havrilla and Liao (2024) examines the generalization and approximation of transformers
under Hölder smoothness and low-dimensional subspace assumptions.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

term 2(1/ϵ)
2L

reported by Hu et al. (2024, Remark 3.4) and present a provably tight, minimax optimal
estimation.

C.2 BROADER IMPACT

This theoretical work aims to shed light on the foundations of generative diffusion models and is not
expected to have negative social impacts.

C.3 LIMITATIONS

Although our study provides a complete theoretical analysis of the conditional DiTs and establishes
the minimax optimality of the unconditional DiT, we acknowledge three main limitations:

• The minimax optimality of conditional DiT remains not clear.

• We did not explore other architectures such as “adaptive layer norm” and “cross-attention” DiT. A
potential direction is by establishing the universal approximation capacity of the transformer with
cross-attention mechanisms.

• Although we achieve a better bound for the latent conditional DiT under the Lipschitz assumption
than under the Hölder assumption, we do not show the minimax optimality under the Lipschitz
assumption.

We leave these for future work.

Furthermore, there are limitations regarding the Hölder smooth data assumptions in Assumption 3.1
and Assumption 3.2. Our results in Section 3 and Section 4 depend on the Hölder smooth data
assumptions. However, it is challenging to measure the smoothness of a given dataset (e.g., CIFAR10),
because it requires knowledge of the dataset’s exact distribution. Conversely, it is feasible to create a
dataset with a predefined level of smoothness. To illustrate this, we provide two examples.

• Diffusion Models in Image Generation: When modeling conditional distributions of images given
attributes (e.g., generating images based on class labels), these assumptions hold if the data
distribution around these attributes is smooth and decays. In diffusion-based generative models,
the data distribution often decays smoothly in high-dimensional space. The assumption that the
density function decays exponentially reflects the natural behavior of image data, where pixels or
features far from a central region or manifold are less likely. This is commonly observed in images
with blank boundaries.

• Physical Systems with Gaussian-Like Decay: This applies to cases where the spatial distribution
of a physical quantity, such as temperature, is smooth and governed by diffusion equations with
exponential decay. In physics-based diffusion models, like those simulating the spread of particles
or heat in a medium (e.g., stars in galaxies for astrophysics applications), the conditional density
typically decays exponentially with distance from a central region.
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D PROOF-OF-CONCEPT EXPERIMENTS

Experimental Objectives. We train a conditional diffusion transformer model on the CIFAR10
dataset to validate the following three parts:

• Objective 1. Validating the influence of input data dimension dx on the testing loss (score
estimation error) in Theorem 3.3.

• Objective 2. Validating the influence of input data dimension dx on the parameter norm bounds
(∥WO∥2,∞ and ∥WV ∥2,∞) in Theorem 3.1.

• Objective 3. Validating the influence of backward timestamp t0 on the testing loss (score estimation
error) in Theorem 3.3.

Experimental Details. We train the model on the CIFAR10 training dataset for 10 epochs. The
dataset consists of 50,000 images across 10 classes. We set the forward process termination step to
T = 1000. Then, we evaluate the model’s performance using the CIFAR10 testing dataset of 10,000
images from 10 classes. We use the testing loss as the measurement.

• To validate objectives 1 and 2, we test various values of dx at backward timestamp t0 = 5,
including 32 · 32 = 1, 024, 48 · 48 = 2, 304, 64 · 64 = 4, 096, and 80 · 80 = 6, 400.

• To validate objective 3, we test different backward timestamps t0, including 5, 4, 3, 2 and 1 for
both dx = 32 · 32 = 1, 024 and dx = 48 · 48 = 2, 304.

Model Setup. The conditional diffusion transformer model has 12 transformer blocks. The number
of attention heads is h = 6, and the hidden dimension is s = 384. We set the MLP dimension to
r = 1536. We fix d = 4 in the DiT reshape layer (Definition 2.3).

Computational Resource. We conduct all experiments using 1 NVIDIA A100 GPU with 80GB of
memory. Our code is based on the PyTorch implementation of the diffusion transformer (Peebles and
Xie, 2023) at https://github.com/chuanyangjin/fast-DiT.

D.1 EXPERIMENTAL RESULTS

Results for Objectives 1 and 2. We report the numerical results of objectives 1 and 2 in Table 3.

We observe an increase in the loss value with increasing dx. This is consistent with the score
estimation result in Theorem 3.3.

Additionally, we note an increase in the parameter norm bounds (∥WO∥2,∞ and ∥WV ∥2,∞) with
increasing dx. These align with the parameter norm bound results in Theorem 3.1.

Table 3: Influence of Input Data Dimension dx on the Testing Loss and Parameter Norm
Bounds at Backward Timestamp t0 = 5: The testing loss and parameter norm bounds (∥WO∥2,∞
and ∥WV ∥2,∞) increase with an increasing dx. These results are consistent with the results in
Theorem 3.3 and Theorem 3.1.

Input Data Dim. dx 32 · 32 = 1, 024 48 · 48 = 2, 304 64 · 64 = 4, 096 80 · 80 = 6, 400

Testing loss 0.9321 0.9356 0.9364 0.9476
∥WO∥2,∞ 1.6074 1.6332 1.6789 1.6886
∥WV ∥2,∞ 2.1513 2.1767 2.1858 2.1994

Results for Objective 3. We report numerical results of objectives 3 for dx = 32 · 32 = 1, 024 and
dx = 48 · 48 = 2, 304 in Table 4. We observe an increase in the loss value as t0 decreases. This is
consistent with the score estimation result in Theorem 3.3.
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Table 4: Influence of Backward Timestamp t0 on the Testing Loss: The testing loss increases with
increasing t0. This is consistent with the result in Theorem 3.3.

Testing loss t0 = 5 t0 = 4 t0 = 3 t0 = 2 t0 = 1

32 · 32 = 1, 024 0.9321 0.9329 0.9335 0.9350 0.9361
48 · 48 = 2, 304 0.9356 0.9357 0.9360 0.9363 0.9367
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E LATENT CONDITIONAL DIT WITH HÖLDER ASSUMPTION

In this section, we extend the results on approximation and estimation of DiT from Section 3
by considering the latent conditional DiTs. Latent DiTs enables efficient data generation from
latent space and therefore scales better in terms of spatial dimensionality (Rombach et al., 2022).
Specifically, we assume the raw input x ∈ Rdx has an intrinsic lower-dimensional representation in a
d0-dimensional subspace, where d0 ≤ dx. This setting is common in both empirical (Peebles and
Xie, 2022; Rombach et al., 2022) and theoretical studies (Hu et al., 2024; Chen et al., 2023c).

Organization. We present the statistical results under Hölder data smooth Assumptions 3.1 and 3.2
and state the results in Theorem E.1, Theorem E.2, Theorem E.3, and Theorem E.4, respectively.
Appendix E.1 discusses score approximation. Appendix E.2 discusses score estimation. Appendix E.3
discusses distribution estimation. The proofs in this section primarily follow Appendices I and J.

Let d0 denote the latent dimension. We summarize the key points of this section as follows:

K1. Low-Dimensional Subspace Space Data Assumption. We consider the setting that latent
representation lives in a “Low-Dimensional Subspace” under Assumption 4.1, following (Hu
et al., 2024; Chen et al., 2023c).

Assumption E.1 (Low-Dimensional Linear Latent Space (Assumption 4.1 Restated)). Data
point x = Uh, where U ∈ Rdx×d0 is an unknown matrix with orthonormal columns. The latent
variable h ∈ Rd0 follows a distribution Ph with a density function ph.

For raw data x ∈ Rdx , we utilize linear encoder W⊤U ∈ Rd0×dx and decoder WU ∈ Rdx×d0 to
convert the raw x ∈ Rdx and latent h ∈ Rd0 data representations. Importantly, x = Uh with
U ∈ Rdx×d0 by Assumption 4.1.

For each input x ∈ Rdx and corresponding label y ∈ Rdy , we use a transformer network to
obtain a score estimator sW ∈ Rdx . To utilize the transformer network as the score estimator, we
introduce reshape layer to convert vector input h ∈ Rd0 to matrix (sequence) input H ∈ Rd̃×L̃.
Specifically, the reshape layer in the network Figure 3 is defined as R̃(·) : Rd0 → Rd̃×L̃ and its
reverse R̃−1(·) : Rd̃×L̃ → Rd0 , where d0 ≤ dx, d̃ ≤ d, and L̃ ≤ L.

We remark that the “low-dimensional data” assumption leads to tighter approximation rates than
those of Sections 3.1 and 3.2 and estimation errors due to d0 ≤ dx (Theorems E.1 and E.2).

K2. Hölder Smooth Assumption. For approximation and estimation results for latent conditional
DiTs (Theorems E.1 to E.4), we study the cases under both the generic and strong Hölder
smoothness assumptions on latent representation h ∈ Rd0 . Specifically, we assume the “latent”
data is β0-Hölder smooth with radius B0 following Assumptions 3.1 and 3.2. We extend both
approximation and estimation results from Section 3 to latent diffusion and establish the minimax
optimality of latent conditional DiTs.

Assumption E.2 (Generic Hölder Smooth Data (Assumption 3.1 Restated)). The conditional
density function ph0 (h0|y) is defined on the domain Rd0 × [0, 1]dy and belongs to Hölder ball of
radius B0 > 0 for Hölder index β0 > 0, denoted by ph0 (h0|y) ∈ Hβ0(Rd0 × [0, 1]dy , B0) (see
Definition 3.1 for precise definition.) Also, for any y ∈ [0, 1]dy , there exist positive constants
C1, C2 such that ph0 (h0|y) ≤ C1 exp

(
−C2∥h0∥22/2

)
.

Assumption E.3 (Stronger Hölder Smooth Data (Assumption 3.2 Restated)). Let function
f ∈ Hβ0(Rd0 × [0, 1]dy , B0). Given a constant radius B0, positive constants C and C2,
we assume the conditional density function p(h0|y) = exp

(
−C2∥h0∥22/2

)
· f(h0, y) and

f(h0, y) ≥ C for all (h0, y) ∈ Rd0 × [0, 1]dy .

K3. Latent Score Network. Under low-dimensional data assumption, we decompose the score
function following (Hu et al., 2024; Chen et al., 2023c) (see Lemma E.1):

∇ log pt(x|y) = U(σ2
t∇ log pht (U

⊤x|y) + U⊤x︸ ︷︷ ︸
:=q(U⊤x,y,t): Rd0×[t0,T ]→ Rd0

)/σ2
t − x/σ2

t︸ ︷︷ ︸
residual connection

. (E.1)
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Based on this decomposition, we construct the model architecture in Figure 3. The network detail
for approximate (E.1) are as follow: a transformer gT (W⊤U x, y, t) ∈ T h,s,r to approximate
q(U⊤x, y, t), a latent encoder W⊤U ∈ Rd0×dx and decoder WU ∈ Rdx×d0 to approximate
U⊤ ∈ Rd0×dx and U ∈ Rdx×d0 , and a residual connection to approximate −x/σ2

t .

We adopt the following transformer network class of one-layer single-head self-attention

T h,s,r

R̃
=

{
sW (x, y, t) =

1

σ2
t

WUgT
(
W⊤U x, y, t

)
− 1

σ2
t

x︸︷︷︸
residual connection

}
, (E.2)

where gT ∈ T h,s,r = {fFF
2 ◦ fh,s,r : Rd̃×L̃ → Rd̃×L̃}.

Let h := W⊤U x ∈ Rd0 and h := U⊤x ∈ Rd0 be the estimated and ground truth (according to
Assumption 4.1) latent representations, respectively. Here we construct a network sW (x, y, t) to
approximate the score function in (E.1) (see Figure 3 for network illustration).

In Section 3, we derive the approximation theory of conditional DiTs using a one-layer, single-
head self-attention transformer to approximate the score function ∇ log pt(x|y). Here, we use the
similar transformer architecture to approximate latent score function ∇ log pht (h|y), where pht (h|y) =∫
ψt(h|h)ph(h|y)dh, ψt(·|h) is the Gaussian density function of N(βth, σ

2
t Id0

), βt = e−t/2, and
σ2
t = 1− e−t.

Base on the latent network construction in (K3), we employ the same techniques presented in
Section 3 for score function approximation and estimation. We restate for completeness. First, we
decompose the conditional score function ∇ log pht (h|y) as following:

∇ log pht
(
h|y
)
=

∇pht
(
h|y
)

pht
(
h|y
) . (E.3)

By the definition of Gaussian kernel, we have

pht
(
h|y
)
=

∫
Rd0

(2πσ2
t )
−dx/2 ph (h|y)︸ ︷︷ ︸

≈k1-order Taylor polynomial

exp

(
−
∥∥βth− h

∥∥2
2

2σ2
t

)
︸ ︷︷ ︸
≈k2-order Taylor polynomial

dh.

Similar to Section 3, our strategy is to expand above term-by-term with k1- and k2-order Taylor
polynomials for fine-grained characterizations.

Remark E.1. Here in the latent density function, we have (2πσ2
t )
−dx/2 instead of (2πσ2

t )
−d0/2.

However, the additional (2πσ2
t )
−(dx−d0)/2 term does not affect the application of Section 3 into

latent diffusion approximation.

Based on the low-dimensional data structure assumption, we have the following score decomposition
terms: on-support score s+(U⊤x, y, t) and orthogonal score s−(x, y, t).

Lemma E.1 (Score Decomposition, Lemma 1 of (Chen et al., 2023c)). Let data x = Uh follow
Assumption 4.1. The decomposition of score function ∇ log pt(x) is

∇ log pt(x) = U∇ log pht (h|y)︸ ︷︷ ︸
s+(h,y,t)

−
(
ID − UU⊤

)
x/σ2

t︸ ︷︷ ︸
s−(x,t)

, h = U⊤x, (E.4)

where pht
(
h|y
)
:=
∫
ψt(h|h)ph (h|y) dh, ψt(·|h) is the Gaussian density function of N(βth, σ

2
t Id0

),
βt = e−t/2 and σ2

t = 1− e−t.

Following the proof strategy of conditional DiTs in Appendices I and J with differences highlighted in
(K1), (K2), and the latent network in (K3). To derive the approximation and estimation under generic

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

and stronger Hölder assumptions results in Theorems 3.1 to 3.4 for data under low-dimensional data
assumption, we just need to replace the input dimension d, L to d̃ and L̃, and the input dimension dx
with d0, and consider the β0-Hölder smoothness assumption on latent data.

To begin, we clarify the relation between initial data admits to p(x|y) ∈ Hβ(Rdx × [0, 1]dy , B), and
under linear transformed data Assumption 4.1 admits to p(h|y) ∈ Hβ0(Rd0 × [0, 1]dy , B0) where
β0 = β and B0 ≤ C̃B by Lemma E.2.

Lemma E.2 (Transformation of Stronger Hölder Smooth Data Distribution under Linear Mapping).
Let f ∈ Hβ(Rdx × [0, 1]dy , B) satisfy f(x, y) ≥ C > 0 for all (x, y) ∈ Rdx × [0, 1]dy . Consider
the conditional density function:

p(x|y) = f(x, y) exp

(
−C2

2
∥x∥22

)
.

Suppose the data undergo the linear transformation x = Uh, where U ∈ Rdx×d0 has orthonormal
columns (U⊤U = Id0 ) and f0(h|y) = f(Uh|y). The transformed density p(h|y) becomes:

p(h|y) = f(Uh, y) exp

(
−C2

2
∥h∥22

)
.

The following condition holds for Hölder smooth data undergo linear transformation: f0 ∈ Hβ(Rdx×
[0, 1]dy , B0) with B0 ≤ C̃B, where C̃ = max{C ′, C ′′}.

Proof. First, we compute the partial derivative of the transformed function f0(h|y) := f(Uh|y).
From the definition of Hölder space Definition 3.1, and let α = (αh, αy) where αh + αy ≤ k1. We
compute the partial derivative up to the order of k1 and show that it is bounded by some C ′, that is

∂αh

h ∂αy
y p(h|y) = ∂αh

h ∂αy
y

[
f(Uh, y) exp

(
−C2

2
∥h∥22

)]
=
∑
α≤ν

(
α

µ

)(
∂
αµ

h f(Uh, y)
)(

∂
(α−ν)
h exp

(
−C2

2
∥h∥22

))
.

(
By product rule

)
From the relation ∂αh

h f(Uh, y) = Uαh∂αh
x f(Uh, y) where Uαh is the product of U entries corre-

spond to αh. Therefore,
∥∥∂αh

h ∂
αy
y f0(h|y)

∥∥ ≤ C ′B for some C ′ depends on U and αh. Since f
satisfied Hölder condition and the mapping h 7→ Uh is linear, for Hölder condition |αh|+ |αy| = k1
there exist C ′′ such that ∣∣∂αh

h ∂
αy
y f0(h|y)− ∂αh

h ∂
αy
y f0(h

′|y′)
∣∣

∥(h, y)− (h′, y′)∥γ∞
≤ C ′′B.

The bounded partial derivate up to order k1 satisfied Hölder condition.

This completes the proof.

E.1 SCORE APPROXIMATION

We present the approximation rate of latent score function under generic Hölder and stronger Hölder
data assumption in Theorems E.1 and E.2, respectively.

Theorem E.1 (Latent Conditional DiT Score Approximation (Formal Version of Theorem 4.1)).
Assume Assumption 3.1 and Assume dx = Ω( logN

log logN ). For any precision 0 < ϵ < 1 and smoothness
β0 > 0, let ϵ ≤ O(N−β0) for some N ∈ N. For some positive constants Cα, Cσ > 0, for any

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN ], there exists a Tscore(x, y, t) ∈ T h,s,r

R̃
such that∫

Rd0

∥∥Tscore(h, y, t)−∇ log pht (h|y)
∥∥2
2
· pht (h|y)dh = O

(
B2

0

σ4
t

·N−
β0

d0+dy · (logN)d0+
β0
2 +1

)
.

Notably, for ϵ = O(N−β0), the approximation error has the upper bound O((log
(
1
ϵ

)
)d0/σ4

t ).
The parameter bounds for the transformer network class are as follows:

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N

7β0
d0+dy

+6Cσ

)
;

∥WO∥2, ∥WO∥2,∞ = O
(
N
− 3β0

d0+dy
+6Cσ (logN)3(d0+β0)

)
;

∥WV ∥2 = O(
√
d̃); ∥WV ∥2,∞ = O(d̃);

∥W1∥2, ∥W1∥2,∞ = O
(
N

2β0
d0+dy

+4Cσ

)
;
∥∥E⊤∥∥

2,∞ = O
(
d̃

1
2 L̃

3
2

)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N

3β0
d0+dy

+2Cσ

)
;CT = O

(√
logN/σ2

t

)
.

Proof Sketch. The proof closely follows Theorem 3.1, with differences highlighted in (K1) and (K2).
By replacing the input dimension d, L to d̃ and L̃, and the input dimension dx with d0 in Theorem 3.1,
and under the the β0-Hölder smoothness assumption on latent data detailed in (K2), the proof is
complete. Please see Appendix I for a detailed proof.

Theorem E.2 (Latent Conditional DiT Score Approximation under Stronger Hölder Assumption
under Generic Hölder Assumption (Formal Version of Theorem 4.1)). Assume Assumption 3.2
and Assume dx = Ω( logN

log logN ). For any precision 0 < ϵ < 1 and smoothness β0 > 0, let
ϵ ≤ O(N−β0) for some N ∈ N. For some positive constants Cα, Cσ > 0, for any y ∈ [0, 1]dy and
t ∈ [N−Cσ , Cα logN ], there exists a Tscore(x, y, t) ∈ T h,s,r

R̃
such that∫

Rd0

∥∥Tscore(x, y, t)(h, y, t)−∇ log pht (h|y)
∥∥2
2
· pht (h|y)dh = O

(
B2

0

σ2
t

·N−
2β0

d0+dy · (logN)β0+1

)
.

Notably, for ϵ = O(N−β0), the approximation error has the upper bound (log
(
1
ϵ

)
)O(1)/σ2

t .
The parameter bounds in the transformer network class satisfy

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N

3β0(2d0+4d̃+1)

d̃(d0+dy)
+

9Cα(2d0+4d̃+1)

d̃

)
;

∥WV ∥2 = O(
√
d̃); ∥WV ∥2,∞ = O(d̃); ∥WO∥2, ∥WO∥2,∞ = O

(
N
− β0

d0+dy

)
;

∥W1∥2, ∥W1∥2,∞ = O
(
N

4β0
d0+dy

+9Cσ+
3Cα

2 · logN
)
;
∥∥E⊤∥∥

2,∞ = O
(
d̃

1
2 L̃

3
2

)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N

4β0
d0+dy

+9Cσ+
3Cα

2

)
;CT = O

(√
logN/σt

)
.

Proof Sketch. The proof closely follows Theorem J.1, with differences highlighted in (K1) and (K2).
By replacing the input dimension d, L to d̃ and L̃, and the input dimension dx with d0 in Theorem J.1,
and under the the β0-Hölder smoothness assumption on latent data detailed in (K2), the proof is
complete. Please see Appendix J for a detailed proof.

Remark E.2 (Score Approximation for Low-Dimensional Linear Latent Space). With the assumption
of low-dimensional latent space Assumption 4.1, Theorems E.1 and E.2 provide better approximation
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rates than Theorems 3.1 and 3.2 under Hölder smooth assumptions in Assumptions 3.1 and 3.2,
respectively. Specifically, from Lemma E.2 we have β0 = β and B0 ≲ B. Therefore, Theorems E.1

and E.2 deliver O
(
N

2β
(

dx−d0
(d0+dy)(dx+dy)

))
better approximation error over Theorem 3.1, where

d0 ≤ dx.

E.2 SCORE ESTIMATION

In this section, we provide the extended results for Section 3.3 on score estimation with the estimator
Tscore. We state the main results under Hölder data assumptions in Theorem E.3.

Theorem E.3 (Conditional Score Estimation of Latent DiT). Assume dx = Ω( logN
log logN ). Let ŝ

denote the score estimator trained with a set of finite samples {xi, yi}i∈[n] by optimizing the empirical
loss (2.1), and R denote the conditional score risk defined in Definition 3.2.

• Under Assumption 3.1, by taking N = n
1
ν̃1
· d0+dy
β0+d0+dy , t0 = N−Cσ < 1 and T = Cα log n, it holds

E{xi,yi}ni=1
[R(ŝ)] = O

(
1

t0
n
− β0

ν̃1(d0+dy+β0) (log n)ν̃2+2

)
,

where ν̃1 = 68β0/(d0 + dy) + 104Cσ and ν̃2 = 12d0 + 12β0 + 2.

• Under Assumption 3.2, by taking N = n
1
ν̃3
· d0+dy
2β0+d0+dy , t0 = N−Cσ < 1 and T = Cα log n, it

holds

E{xi,yi}ni=1
[R(ŝ)] = O

(
log

1

t0
n
− 1

ν̃3

2β0
d0+dy+2β0 (log n)max(10,β0+1)

)
,

where ν̃3 = 4(12β0d0+31β0d̃+6β0)

d̃(d0+dy)
+ 12(12Cαd0+25Cα·d̃+6Cα)

d̃
+ 72Cσ .

Proof Sketch. The proof closely follows Theorem 3.3, with differences highlighted in (K1) and (K2).
By replacing the input dimension d, L to d̃ and L̃, and the input dimension dx with d0 in Theorem 3.3,
and under the the β0-Hölder smoothness assumption on latent data detailed in (K2), the proof is
complete. Please see Appendix K.2 for a detailed proof.

Next, we present the score estimation result for low-dimensional input data.

Corollary E.3.1 (Low-Dimensional Input Region). Assume d0 = o
(

logN
log logN

)
, i.e., d0 ≪ n. Under

Assumption 3.1, by setting N, t0, T as specified in Theorem E.3, we have E{xi,yi}ni=1
[R(ŝ)] =

O
(

1
t0
n
− 1

ν̃4
· β0
d0+dy+β0

)
, where ν̃4 = 72β0(2d0+5d̃+1)

d̃(d0+dy)
+ 48Cσ(2d0+5d̃+1)

d̃
− 4β0.

Proof. The proof closely follows Corollary 3.3.1, with differences highlighted in (K1) and (K2). By
replacing the input dimension d, L to d̃ and L̃, and the input dimension dx with d0 in Corollary 3.3.1,
and under the the β0-Hölder smoothness assumption on latent data detailed in (K2), the proof is
complete. Please see Appendix K.2 and Appendix K.4 for detailed proofs.

Remark E.3 (Comparing Score Estimation in Theorems 3.3 and E.3). Under Hölder data assumption,
the sample complexity of L2 estimator for achieving ϵ-error are bound by Õ

(
ϵ−ν̃1(d0+dy+β0)/β0

)
and Õ

(
ϵ−ν̃3(d0+dy+2β0)/β0

)
where Õ ignores d̃, L̃, log L̃, log 1/t0, 1/t0, and log n. Invoking

Lemma E.2 where β0 = β and B0 ≲ B the sample complexity in Theorem E.3 improves
Theorem 3.3 by O

(
ϵ−ζ(dx−d0)

)
where ζ is a positive constant defined by ζ = 104Cσ/β −

68β(1/((dx + dy)(d0 + dy))) and d0 ≤ dx.
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E.3 DISTRIBUTION ESTIMATION

In this section, we provide the extended results for Section 3.3 on distribution estimation with the
estimator Tscore. We state the main results under Hölder data assumptions in Theorem E.3.

Theorem E.4 (Conditional Distribution Estimation of Latent DiT). Assume dx = Ω( logN
log logN ). For

all y ∈ [0, 1]dy , let KL (P (·|y)|N(0, I)) ≤ c for some constant c < ∞. Taking the early-stopping

time t0 = n
− β0

(d0+dy+β0) and terminal time T = 2β0

d0+dy+2β0
log n.

• Under Assumption 3.1, we have

E{xi,yi}ni=1

[
Ey

[
TV

(
P̂t0(·|y), P (·|y)

)]]
= O

(
n
− β

2(ν̃1−1)(d0+dy+β0) (log n)
ν̃2
2 + 3

2

)
,

where ν̃1 = 68β0/(d0 + dy) + 104Cσ and ν̃2 = 12d0 + 12β0 + 2.

• Under Assumption 3.2. we have

E{xi,yi}ni=1

[
Ey

[
TV

(
P̂t0(·|y), P (·|y)

)]]
= O

(
n
− 1

2ν̃3

β0
d0+dy+2β0 (log n)max(6,

β0
2 + 3

2 )

)
,

where ν̃3 = 4(12β0d0+31β0d̃+6β0)

d̃(d0+dy)
+ 12(12Cαd0+25Cα·d̃+6Cα)

d̃
+ 72Cσ .

Proof. The proof closely follows Theorem 3.4, with differences highlighted in (K1) and (K2). By
replacing the input dimension d, L to d̃ and L̃, and the input dimension dx with d0 in Theorem 3.4,
and under the the β0-Hölder smoothness assumption on latent data detailed in (K2), the proof is
complete. Please see Appendix K.6 for a detailed proof.

Next, we present the distribution estimation result for low-dimensional input data.

Corollary E.4.1 (Low-Dimensional Input Region). Assume d0 = o
(

logN
log logN

)
, i.e., d0 ≪ n. Under

Assumption 3.1, by setting t0, T as specified in Theorem E.4, we have

E{xi,yi}ni=1

[
Ey

[
TV

(
P̂t0(·|y), P0(·|y)

)]]
= O

(
n
− β0

2(ν̃4+1)(d0+dy+β0)

)
,

where ν̃4 = 144d̃β0(L̃+2)(d0+2d̃+1)
d0+dy

+ 96d̃Cσ(L̃+ 2)(d0 + 2d̃+ 1)− 4β0.

Proof. The proof closely follows Corollary 3.4.1, with differences highlighted in (K1) and (K2). By
replacing the input dimension d, L to d̃ and L̃, and the input dimension dx with d0 in Corollary 3.4.1,
and under the the β0-Hölder smoothness assumption on latent data detailed in (K2), the proof is
complete. Please see Appendix K.6 for a detailed proof.
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F LATENT CONDITIONAL DIT WITH LIPSCHITZ ASSUMPTION

In this section, we apply our techniques to the setting of (Hu et al., 2024) on DiT approximation and
estimation theory. Specifically, we extend their work by using the one-layer self-attention transformer
universal approximation framework introduced in Appendix H.1.

Compared to (Hu et al., 2024), we consider classifier-free conditional DiTs, providing a holistic
view of the theoretical guarantees under various assumptions. In particular, our sample complexity
bounds avoid the gigantic double exponential term 2(1/ϵ)

2L

reported in (Hu et al., 2024). We adopt
the following three assumptions considered by Hu et al. (2024):

(A1) Low-Dimensional Linear Latent Space Data Assumption.

Assumption F.1 (Low-Dimensional Linear Latent Space (Assumption 4.1 Restated)). Data
point x = Uh, where U ∈ Rdx×d0 is an unknown matrix with orthonormal columns. The
latent variable h ∈ Rd0 follows a distribution Ph with a density function ph.

Under this data assumption, Chen et al. (2023a) show that the latent score function endows a
neat decomposition into on-support s+ and orthogonal s− terms (see Lemma E.1).

Lemma F.1 (Score Decomposition, Lemma 1 of (Chen et al., 2023c) (Lemma E.1 Restated)).
Let data x = Uh follow Assumption 4.1. The decomposition of score function ∇ log pt(x) is

∇ log pt(x) = U∇ log pht (h|y)︸ ︷︷ ︸
s+(h,y,t)

−
(
ID − UU⊤

)
x/σ2

t︸ ︷︷ ︸
s−(x,t)

, h = U⊤x, (F.1)

where pht
(
h|y
)

:=
∫
ψt(h|h)ph (h|y) dh, ψt(·|h) is the Gaussian density function of

N(βth, σ
2
t Id0), βt = e−t/2 and σ2

t = 1− e−t.

(A2) Lipschitz Score Assumption. We assume the on-support score function s+(h, y, t) to be
Ls+ -Lipschitz for any h and y.

Assumption F.2 (Ls+-Lipschitz of s+(h, y, t)). The on-support score function s+(h, y, t) is
Ls+-Lipschitz with respect to any h ∈ Rd0 and y ∈ Rdy for any t ∈ [0, T ]. i.e., there exist a
constant Ls+ , such that for any h, y and h

′
, y′:

∥s+(h, y, t)− s+(h
′
, y′, t)∥2 ≤ Ls+∥h− h

′∥2 + Ls+∥y − y′∥2.

(A3) Light Tail Data Assumption.

Assumption F.3 (Tail Behavior of Ph). The density function ph > 0 is twice continuously
differentiable. Moreover, there exist positive constants A0, A1, A2 such that when ∥h∥2 ≥ A0,
the density function ph (h|y) ≤ (2π)−d0/2A1exp(−A2∥h∥22/2).

We note that, the assumptions (A1) and (A3) are on data, and (A2) are on the score function. Notably,
(A2) on the smoothness of score function is stronger than Hölder data smoothness assumptions
considered in Sections 3 and 4.

Organization. We study latent conditional DiTs under low-dimensional data Assumption F.1,
Lipschitz smoothness Assumption F.2, and tail behavior of Ph Assumption F.3 and states the results
in Appendices F.1 to F.3, respectively. Appendix F.1 discusses score approximation. Appendix F.2
discusses score estimation. Appendix F.3 discusses distribution estimation. The proof in this section
provided in Appendices F.4 to F.6. The proof strategy in this section follows (Hu et al., 2024).

Here we summarize the key settings of this section:

S1. Lipschitz Smooth Assumption and Tail Behavior. Following (Hu et al., 2024), we introduce
two assumptions on Lipschitz smoothness for on-support score function s+ and tail behavior
of Ph in Assumptions F.2 and F.3, respectively. The on-support score function is defined as
s+(U

⊤x, y, t) = U∇ log pht
(
U⊤x|y

)
(see Lemma E.1 for score decomposition).
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S2. Low-Dimensional Space. We consider the setting of latent representation that is the data lives
in a “Low-Dimensional Subspace” under Assumption 4.1, following (Hu et al., 2024; Chen
et al., 2023c). The raw data x ∈ Rdx is supported by latent h ∈ Rd0 where d0 ≤ dx.

S3. Transformer Network. We follow the standard setting of “in-context” conditional DiTs by
Peebles and Xie (2023) on latent representation. The network settings refer to Section 4. Here we
apply transformer-block gT ∈ Rd0 for the approximation of on-support score function s+. For
each input x ∈ Rdx and corresponding label y ∈ Rdy , we use an adapted transformer network to
obtain a score estimator sW ∈ Rd0 . The adapted transformer network as the score estimator has
the following components. We utilize reshape layer to convert vector input h ∈ Rd0 to matrix
(sequence) input H ∈ Rd̃×L̃. Specifically, the reshape layer in the network Figure 3 is defined as
R̃(·) : Rd0 → Rd̃×L̃ and its reverse R̃−1(·) : Rd̃×L̃ → Rd0 , where d0 ≤ dx, d̃ ≤ d, and L̃ ≤ L.
For raw data x ∈ Rdx , we utilize linear encoder W⊤U ∈ Rd0×dx and decoder WU ∈ Rdx×d0

to convert the raw x ∈ Rdx to latent h ∈ Rd0 data representations. Importantly, x = Uh with
U ∈ Rdx×d0 by Assumption 4.1.

Under the Assumptions F.1 to F.3 with the network setting following (S3), the theoretical results in
Appendices F.1 to F.3 achieve tighter approximation rates and efficient recovery accuracy of latent
data detailed in (R1), (R2), and (R3).

We summarize the theoretical comparisons from Appendix E and Appendix F as follows:

R1. For score approximation (see Theorems E.1, E.2 and F.1):

– Under Hölder data assumption the approximation rates gives Õ
(
ϵ1/(d0+dy)

)
, where Õ ignores

B0, log ϵ, and log n.

– Under Lipschitz score assumption the approximation rate gives Õ
(
ϵ ·
√
d0 + dy

)
, where Õ

ignores B0, log ϵ, and log n.

– For any precision 0 < ϵ < 1, the Lipschitz score assumption provides a tighter approximate
rate for high dimension data d0 ≫ 1 compared with under Hölder data assumption.

R2. For score estimation (see Theorems E.3 and F.2):

– Under Hölder data assumption the score estimation error gives Õ
(
n
− 1

ν̃3
· β0
d0+dy+2β0

)
, where

Õ ignores B0, log ϵ, and log n.

– Under Lipschitz score assumption the score estimation error gives Õ
(
n

−3

2(1+3/d̃+4L̃)

)
, where

Õ ignores B0, log ϵ, and log n.

– Under minimax optimal condition (see Section 3.4) by setting ν̃3 = 1/2, Hölder data

assumption gives Õ
(
n
− β0

2(d0+dy+2β0)

)
. On the other hand, Lipschitz assumption gives

Õ
(
n
− d̃

(3/4)d0+(2/3)d̃+2

)
. Therefore, the Lipschitz assumption gives a better sample complex-

ity guarantee for high dimensional data d0 = d̃L̃≫ 1.

R3. For distribution estimation (see Theorems E.4 and F.3):

– Under Hölder data assumption: Õ
(
n
− 1

ν̃3

β0
2(d0+dy+2β0)

)
.

– Under Lipschitz score assumption: Õ
(
n

−3

2(1+3/d̃+4L̃)

)
.
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– Follow the arguments in (R2), Lipschitz assumption gives a better distribution estimation
guarantee for high dimensional data.

Note that d0, dy is the latent data dimension and conditioning label dimension and ν̃3 =
4(12β0d0+31β0d̃+6β0)

d̃(d0+dy)
+ 12(12Cαd0+25Cα·d̃+6Cα)

d̃
+ 72Cσ .

From (R1), (R2), and (R3), we conclude that stronger approximations yield sharper rates.

F.1 SCORE APPROXIMATION

For completeness, we follow the proofs from (Hu et al., 2024) for score approximation of the
conditional latent diffusion model.

Here we use stricter assumptions on the latent density function, instead of assuming Hölder smooth-
ness of the initial conditional data distribution as in Section 4. To be specific, we directly approximate
the on-support latent score function, instead of approximating the denominator and nominator sep-
arately. From the score decomposition in (4.1), we define the on-support score function s+ as
following:

s+(U
⊤x, y, t) = U

∫ ∇hψt(h|h)ph (h|y)∫
ψt(h|h′)ph′ (h′|y) dh′

dh

= U∇ log pht
(
U⊤x|y

)
. (F.2)

Here we require two assumptions following the proof of (Hu et al., 2024) on tail behavior of density
function and Lipschitz continuous for on-support score function. Assumption F.3 is the analogy
of Assumption 3.1 for assuming the tail behavior of the density function. On the other hand,
Assumption F.2 further assume the on-support score function s+ to be Ls+-Lipshitz. Note that this
assumption is stricter than Assumption 3.1 since we make the Lipschitz assumption directly on the
score function instead of on the latent density function.

Theorem F.1 (Latent Score Approximation of Conditional DiT, modified from Theorem 3.1 in Hu
et al. (2024)). For any approximation error ϵ > 0 and any data distribution P0 under Assumptions 4.1,
F.2 and F.3, there exists a DiT score network Tscore(h, y, t) ∈ T h,s,r

R̃
where W = {WU , Tscore}, such

that for any t ∈ [t0, T ], we have:

∥Tscore(·, t)−∇ log pt(·)∥L2(Pt)
≤ ϵ ·

√
d0 + dy/σ

2
t ,

where σ2
t = 1− e−t and the parameter bounds in the transformer network class satisfy

∥WQ∥2 = ∥WK∥2 = O
(
d̃ · ϵ−(

1

d̃
+2L̃)(log L̃)

1
2

)
;

∥WQ∥2,∞ = ∥WK∥2,∞ = O
(
d̃

3
2 · ϵ−(

1

d̃
+2L̃)(log L̃)

1
2

)
;

∥WO∥2 = O
(
d̃

1
2 ϵ

1

d̃

)
; ∥WO∥2,∞ = O

(
ϵ

1

d̃

)
;

∥WV ∥2 = O(d̃
1
2 ); ∥WV ∥2,∞ = O(d̃);

∥W1∥2 = O
(
d̃ϵ−

1

d̃

)
, ∥W1∥2,∞ = O

(
d̃

1
2 ϵ−

1

d̃

)
;

∥W2∥2 = O
(
d̃ϵ−

1

d̃

)
; ∥W2∥2,∞ = O

(
d̃

1
2 ϵ−

1

d̃

)
;∥∥E⊤∥∥

2,∞ = O
(
d̃

1
2 L̃

3
2

)
.

Proof. Please see Appendix F.4 for a detailed proof.
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Remark F.1 (Comparing with Hölder Assumption Results in Low-Dimensional Data). Under
Assumptions 3.1 and 3.2, the score approximation give us Õ

(
ϵ

1
dx+dy /σ4

t

)
and Õ

(
ϵ

1
dx+dy /σ2

t

)
in

Theorems E.1 and E.2, respectively. On the other hand, the direct approximation of the Lipschitz
smooth on-support score function gives us the approximation error of O

(
ϵ ·
√
d0 + dy/σ

2
t

)
. For

(d0 + dy) ≫ 1, Theorem F.1 delivers superior approximation error compare with Theorems E.1
and E.2.

F.2 SCORE ESTIMATION

Theorem F.2 (Score Estimation of Latent DiT). Under the Assumptions F.1 to F.3, we choose the
score network Tscore(x, y, t) ∈ T h,s,r

R̃
from Theorem F.1 using ϵ ∈ (0, 1) and L̃ > 1. With probability

1− 1/poly(n), we have

1

T − t0

∫ T

t0

∥Tscore(·, t)−∇ log pt(·)∥L2(Pt)
dt = Õ

(
1

t20
n

−3

2(1+3/d̃+4L̃) log3 L̃ log3 n

)
,

where Õ hides the factor about dx, dy, d0, d̃, Ls+ and δ(n) is negligible for sufficiently large n.

Proof. Please see Appendix F.5 for a detailed proof.

Remark F.2 (Comparing Score Estimation in Theorems E.3 and F.2). Under Hölder data assumption,
the sample complexity of L2 estimator for achieving ϵ-error are bound by Õ

(
ϵ−ν̃1(d0+dy+β0)/β0

)
and Õ

(
ϵ−ν̃3(d0+dy+2β0)/β0

)
. In contrast, Theorem F.2 has the sample complexity bound of

Õ
(
ϵ−2(1+3/d̃+4L̃)/3

)
. Therefore, a direct approximation of the Lipschitz smooth score function

offers a better sample complexity bound than Hölder data assumption.

F.3 DISTRIBUTION ESTIMATION

In practice, DiTs generate data using the discretized version with step size µ. Let P̂t0 be the
distribution generated by Tscore(x, y, t) in Theorem F.2. Let Ph

t0 and pht0 be the distribution and
density function of on-support latent variable h at t0. We have the following results for distribution
estimation.

Theorem F.3 (Distribution Estimation of DiT, Modified From Theorem 3 of (Chen et al., 2023c)).
Let T = O(log n), t0 = O(min{c0, 1/Ls+}), where c0 is the minimum eigenvalue of EPh

[hh⊤].
With the estimated DiT score network Tscore(x, y, t) in Theorem F.2, we have the following with
probability 1− 1/poly(n).

(i) The accuracy to recover the subspace U is

∥∥WUW
⊤
U − UU⊤

∥∥2
F
= Õ

(
1

c0
n

−3

2(1+3/d̃+4L̃) · log3 n
)
. (F.3)

(ii) (WBU)⊤♯ P̂t0 denotes the pushforward distribution. With the conditions KL(Ph||N(0, Id0)) <

∞, and step size µ ≤ ξ(n, t0, L) ·t20/(d0
√
log d0). There exists an orthogonal matrix U ∈ Rd×d

such that we have the following upper bound for the total variation distance

TV(Ph
t0 , (WBU)⊤♯ P̂t0) = Õ

(
1

t0
√
c0
n

−3

4(1+3/d̃+4L̃) · log4 n
)
, (F.4)

where Õ hides the factor about dx, d0, d, and Ls+ .

(iii) For the generated data distribution P̂t0 , the orthogonal pushforward (I − WBW
⊤
B )♯P̂t0 is

N(0,Σ), where Σ ⪯ at0I for a constant a > 0.
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Proof. Please see Appendix F.6 for a detailed proof.

Remark F.3 (Compare with Existing Work). In (Chen et al., 2023c, Theorem 3), the upper bound
for total variation distance with ReLU network is Õ

(√
1/(c0t0)n

−1/(d+5) log2 n
)

. Therefore, for

n≫ 1, Theorem F.3 gives tighter accuracy if 3d+ 11 > 12/d̃+ 16L̃ where d̃ ≤ d and L̃ ≤ L. On
the other hand, under similar conditions for d and L, Theorem F.3 suggest to achieve similar total
variation distance we only require

√
t0 early stopping time which is beneficial for empirical setting.

F.4 PROOF OF SCORE APPROXIMATION (THEOREM F.1)

To begin the proof of the approximate theorem, we first restate some auxiliary lemmas and their
proofs here from (Chen et al., 2023c) for later convenience. Note that some of the proofs extend to
the latent density function.

Lemma F.2 (Modified from Lemma 16 in (Chen et al., 2023c)). Consider a probability density
function ph (h|y) = exp

(
−C∥h∥22/2

)
for h ∈ Rd0 and constant C > 0. Let rh > 0 be a fixed

radius. Then it holds∫
∥h∥2>rh

ph (h|y) dh ≤ 2d0π
d0/2

CΓ(d0/2 + 1)
rd0−2
h exp

(
−Cr2h/2

)
,∫

∥h∥2>rh

∥h∥22ph (h|y) dh ≤ 2d0π
d0/2

CΓ(d0/2 + 1)
rd0

h exp
(
−Cr2h/2

)
.

Lemma F.3 (Modified from Lemma 2 in (Chen et al., 2023c)). Suppose Assumption Assumption F.3
holds and q is defined as:

q
(
h, y, t

)
=

∫
hψt

(
h|h
)
ph (h|y)∫

ψt

(
h|h
)
ph (h|y) dh

dh, h = B⊤x.

Given ϵ > 0, with rh = c
(√

d0 log(d0/t0) + log(1/ϵ)
)

for an absolute constant c, it holds

∥∥q (h, y, t)1{∥∥h∥∥
2
≥ rh}

∥∥
L2(Pt)

≤ ϵ, for t ∈ [t0, T ].

Lemma F.4 (Modified from Theorem 1 in (Chen et al., 2023c)). We denote

τ(rh) = sup
t∈[t0,T ]

sup
h∈[0,rh]d0

sup
y∈[0,1]dy

∥∥∥∥ ∂∂tq(h, y, t)
∥∥∥∥
2

.

With q(h, y, t) =
∫
hψt(h|h)ph(h|y)/(

∫
ψt(h|h)ph(h|y)dh)dh and ph satisfies Assumption F.3,

we have a coarse upper bound for τ(rh)

τ(rh) = O
(
1 + β2

t

βt

(
Ls+ +

1

σ2
t

)√
d0rh

)
= O

(
eT/2Ls+rh

√
d0

)
.

Proof of Lemma F.4.

∂

∂t
q(h, y, t) = U

∫
h ∂
∂tψt(h|h)ph(h|y)∫
ψt(h|h)ph(h|y)dh

dh− U

∫
hψt(h|h)ph(h|y)

∫
∂
∂tψt(h|h)ph(h|y)dh(∫

ψt(h|h)ph(h|y)dh
)2 dh

= U

∫ h βt

σ2
t

(
∥h∥22 − (1 + β2

t )h
⊤h+ βt

∥∥h∥∥2
2

)
ψt(h|h)ph(h|y)∫

ψt(h|h)ph(h|y)dh
dh
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− U

∫ hψt(h|h)ph(h|y)
∫

βt

σ2
t

(
∥h∥22 − (1 + β2

t )h
⊤h+ βt

∥∥h∥∥2
2

)
ψt(h|h)ph(h|y)dh(∫

ψt(h|h)ph(h|y)dh
)2 dh

(i)
=
βt
σ2
t

U
[
EPh

[
h∥h∥22

]
− (1 + β2

t ) Cov
[
h|h
]
h
]
,

where we plug in ∂ψt(h|h)/∂t = βt

(
∥h∥22 − (1 + β2

t )h
⊤h+ βt

∥∥h∥∥2
2

)
ψt(h|h)/σ2

t and collect
terms in (i). Since Ph has a Gaussian tail, its third moment is bounded.

Then we bound
∥∥Cov[h|h]∥∥

op
by taking derivative of s+(h, y, t) with respect to h, here

s+(h, y, t) = U
βt
σ2
t

∫
h · ψt(h|h)ph(h|y)∫
ψt(h|h)ph(h|y)dh

dh− U
h

σ2
t

.

Then we have

∂

∂h
s+(h, y, t) =

(
βt
σ2
t

)2

U

[∫
hh⊤φ(h, y)dh−

∫
hφ(h, y)dh

∫
h⊤φ(h, y)dh

]
− 1

σ2
t

U

=

(
βt
σ2
t

)2

U

[
Cov(h|h)− 1

σ2
t

Id0

]
,

where

φ(h, y) =
ψt(h|h)ph(h|y)∫
ψt(h|h)ph(h|y)dh

.

Along with the Ls+ -Lipschitz property of s+, we obtain

∥∥Cov(h|h)∥∥
op

≤ σ4
t

β2
t

(
Ls+ +

1

σ2
t

)
.

Therefore, we deduce

τ(rh) = O
(
1 + β2

t

βt

(
Ls+ +

1

σ2
t

)√
d0rh

)
= O

(
eT/2Ls+rh

√
d0

)
,

as Ph having sub-Gaussian tail implies EPh

[
h∥h∥22

]
is bounded.

Lemma F.5 (Modified from Lemma 10 in (Chen et al., 2023c)). For any given ϵ > 0, and L-Lipschitz
function g defined on [0, 1]d0 × [0, 1]dy , there exists a continuous function f constructed by trapezoid
function that ∥∥g − f

∥∥
∞ ≤ ϵ.

Moreover, the Lipschitz continuity of f is bounded by∣∣f(x, y)− f(x′, y′)
∣∣ ≤ 10d0L∥x− x′∥2 + 10dyL∥y − y′∥2,

for any x, x′ ∈ [0, 1]d0 and y, y′ ∈ [0, 1]dy

Proof of Lemma F.5. This proof closely follows Lemma 10 in (Chen et al., 2023c). We divide the
proof into two parts: First, we use a collection of Trapezoid function f to approximate the function g
defined on [0, 1]d0 × [0, 1]dy . Then we establish the Lipschitz continuity of the function f to facilitate
the approximation with a transformer.
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1. Approximation by Trapezoid Function. Given an integer N > 0, we choose (N + 1)d0 points
in the hypercube [0, 1]d0 and (N + 1)dy points in the hypercube [0, 1]dy . We denote the index
of the hypercubes as m = [m1,m2, · · · ,md0

]
⊤ ∈ {0, · · · , N} and n =

[
n1, n2, · · · , ndy

]⊤ ∈
{0, · · · , N}. Next, we define a univariate trapezoid function (see Figure 4) as follow

ϕ(a) =


1, |a| < 1

2− |a|, |a| ∈ [1, 2]

0, |a| > 2

. (F.5)

ϕ
(
3N
(
xk − mk

N

))

mk/N xk

Figure 4: Trapezoid function.

For any x ∈ [0, 1]d0 and y ∈ [0, 1]dy , we define a partition of unity based on a product of trapezoid
functions indexed by m and n,

ξm,n(x, y) = 1

{
y ∈

(
n− 1

N
,
n

N

]} d0∏
k=1

ϕ
(
3N
(
xk − m

N

))
. (F.6)

For example, the product of trapezoid function ξm,n(x, y) ̸= 0 only if y ∈
(
n−1
N , n

N

]
and

x ∈
[
m−2·1·3

N , m+2·1·3
N

]
. For any target L-Lipschitz function g with respect to x and y, it is more

convenient to write its Lipschitz continuity with respect to the ℓ∞ norm, i.e.,

|g(x, y)− g(x′, y′)| ≤ L∥x− x′∥2 + L∥y − y′∥2
≤ L

√
d0∥x− x′∥∞ + L

√
dy∥y − y′∥∞. (F.7)

We now define a collection of piecewise-constant functions as

Pm,n(x, y) = g(m,n) for m ∈ {0, . . . , N}d0 and n ∈ {0, . . . , N}dy .

We claim that f(x, y) =
∑

m,n ξm,n(x, y)Pm,n(x, y) is an approximation of g, with an approxi-
mation error evaluated as

sup
x∈[0,1]d0

sup
y∈[0,1]dy

∣∣f(x, y)− g(x, y)
∣∣

= sup
x∈[0,1]d0

sup
y∈[0,1]dy

∣∣∣∣∣∑
m,n

ξm,n(x, y) (Pm,n(x, y)− g(x, y))

∣∣∣∣∣
≤ sup

x∈[0,1]d0
sup

y∈[0,1]dy

∑
m:|xk−mk/N |≤ 2

3N

n:|yj−nj/N |∈(− 1
2N , 1

2N ]

|Pm,n(x, y)− g(x, y)|

= sup
x∈[0,1]d0

sup
y∈[0,1]dy

∑
m:|xk−mk/N |≤ 2

3N

n:|yj−nj/N |∈(− 1
2N , 1

2N ]

|g(m,n)− g(x, y)|

≤ L
√
d02

d0+1 1

3N
+ L

√
dy1

dy
1

2N

(
By Lipschitz continuity in (F.7)

)
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=
L

N

(√
d02

d0+1

3
+

√
dy

2

)
,

where the last inequality follows the Lipschitz continuity in (F.7) and using the fact that there
are at most 2d0 terms in the summation of m and at most 1dy terms in the summation of n. By
choosing N = ⌈L

(√
d02

d0+1/3 +
√
dy/2

)
/ϵ⌉, we have

∥∥g − f
∥∥
∞ ≤ ϵ.

2. Lipschitz Continuity. Next we compute the Lipschitz of the function f with respect to x and y.
Suppose the approximation error ϵ > 0 is small enough, then we have∣∣f(x, y)− f(x′, y′)

∣∣
≤
∣∣f(x, y)− g(x, y)

∣∣+ |g(x, y)− g(x′, y′)|+
∣∣g(x′, y′)− f(x′, y′)

∣∣
≤ 2ϵ+ L

√
d0∥x− x′∥∞ + L

√
dy∥y − y′∥∞

≤ 10L
√
d0∥x− x′∥∞ + 10L

√
dy∥y − y′∥∞

≤ 10Ld0∥x− x′∥2 + 10Ldy∥y − y′∥2.

This completes the proof.

Main Proof of Theorem F.1. Now we are ready to state the main proof.

Proof of Theorem F.1. From low-dimensional data assumption, the score function log pt(x|y) de-
composes as the on-support and orthogonal component (see Lemma E.1). Recall the on-support
score function is given by ∇ log pht

(
h|y
)
= U⊤s+(h, y, t) from (F.7). We use a latent score network

to approximate the score function (see (K3)). Specifically, the latent score network includes a latent
encoder and a latent decoder. The encoder approximates U⊤ ∈ Rd0×dx ,and decoder approximates
U ∈ Rdx×d0 . At its core, we use the transformer gT (W⊤U x, y, t) ∈ T h,s,r to approximate q

(
h, y, t

)
as defined in (E.1). The expression for q

(
h, y, t

)
is given by:

q(h, y, t) = σ2
t∇ log pht (U

⊤x|y) + U⊤x = σ2
tU
⊤(s+(h, y, t) + x/σ2

t ). (F.8)

We proceed as follows:

• Step 1. Approximate q(h, y, t) with a compact-supported continuous function f(h, y, t).

• Step 2. Approximate f(h, y, t) with a one-layer single-head transformer network.

Step 1. Approximate q(h, y, t) with a Compact-Supported Continuous Function f(h, y, t). First,
we partition Rd0 into a compact subset H1 := {h |

∥∥h∥∥
2
≤ rh} and its complement H2, where the

choice of rh comes from Lemma F.3. Next, we approximate q(h, y, t) on the two subsets by using
the compact-supported continuous function f(h, y, t). Finally, calculating the continuity of f gives
an estimation error of

√
d0 + dyϵ between q(h, y, t) and f(h, y, t). We present the main proof as

follows.

• Approximation onH2×[0, 1]×[t0, T ]. For any ϵ > 0, by taking rh = c(
√
d0 log(d0/t0)− log ϵ),

we obtain from Lemma F.3 that∥∥q(h, y, t)1{∥∥h∥∥
2
≥ rh}

∥∥
L2(Pt)

≤ ϵ for t ∈ [t0, T ] and y ∈ [0, 1].

So we set f(h, y, t) = 0 on H2 × [0, 1]× [t0, T ].
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• Approximation on H1 × [0, 1]× [t0, T ]. On H1 × [0, 1]× [t0, T ], we approximate

q(h, y, t) = [q1(h, y, t), q2(h, y, t), · · · , qd0
(h, y, t)],

by approximating each coordinate qk(h, y, t) separately.

We firstly rescale the input by h′ = (h+ rh1)/2rh and t′ = t/T , so that the transformed input
space is [0, 1]d0 × [0, 1]dy × [t0/T, 1]. Here we do not need to rescale y, since it is already in [0, 1]
by definition. We implement such transformation by a single feed-forward layer.

By Assumption F.2, the on-support score s+(h, y, t) is Ls+ -Lipschitz with respect to any h ∈ Rd0

and y ∈ Rdy . This implies q(h, y, t) is (1 + Ls+)-Lipschitz in h and y. When taking the
transformed inputs, g(h′, y, t′) = q(2rhh

′ − rh1, T t
′) becomes 2rh(1 + Ls+)-Lipschitz in h′;

each coordinate gk(h′, y, t) is also 2rh(1 + Ls+)-Lipschitz in h′. Here we denote L∗ = 1 + Ls+ .

Besides, g(h′, y, t′) is Tτ(rh)-Lipsichitz with respect to t, where

τ(rh) = sup
t∈[t0,T ]

sup
h∈[0,rh]d

sup
y∈[0,1]dy

∥∥∥∥ ∂∂tq(h, y, t)
∥∥∥∥
2

.

We have a coarse upper bound for τ(rh) in Lemma F.4. We restate it as follows:

τ(rh) = O
(
1 + β2

t

βt

(
Ls+ +

1

σ2
t

)√
d0rh

)
= O

(
eT/2Ls+rh

√
d0

)
.

Since each gk(h′, y, t) is Lipsichitz continuous, we apply Lemma F.5 to construct a collection of
coordinate-wise functions, denoted as fk(h′, y, t). We concatenate fk’s together and construct
f = [f1, . . . , fd0

]⊤. According to the construction of trapezoid function in Lemma F.5, for any
given ϵ, we have the following relations:

sup
h′,y,t′∈[0,1]d0×[0,1]

dy×[t0/T,1]

∥∥f(h′, y, t′)− g(h′, y, t′)
∥∥
∞ ≤ ϵ.

Considering the input rescaling (i.e., h→ h′, y → y and t→ t′), we obtain:

– The constructed function is Lipschitz continuous in h and y, i.e., for any h1, h2 ∈ H1, y1, y2 ∈
[0, 1] and t ∈ [t0, T ], it holds∥∥f(h1, y1, t)− f(h2, y2, t)

∥∥
∞ ≤ 10d0L∗

∥∥h1 − h2
∥∥
2
+ 10dyL∗∥y1 − y2∥2. (F.9)

– The function is also Lipschitz in t, i.e., for any t1, t2 ∈ [t0, T ] and
∥∥h∥∥

2
≤ rh, it holds∥∥f(h, y, t1)− f(h, y, t2)

∥∥
∞ ≤ 10τ(rh)∥t1 − t2∥2.

To conclude, the construction of f
(
h, y, t

)
uses a collection of trapezoid functions, as described

in Lemma F.5. This ensures that f(h, y, t) = 0 for
∥∥h∥∥

2
> rh, for all t ∈ [t0, T ] and y ∈ [0, 1].

Consequently, the Lipschitz continuity of f
(
h, y, t

)
with respect to h extends over the entire space

Rd0 .

• Approximation Error Analysis under L2 Norm. We first decompose the L2 approximation
error of f into two terms (

∥∥h∥∥
2
< rh and

∥∥h∥∥
2
< rh):∥∥q(h, y, t)− f

(
h, y, t

)∥∥
L2(Ph

t )
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=
∥∥(q(h, y, t)− f

(
h, y, t

))
1
{∥∥h∥∥

2
< rh

}∥∥
L2(Ph

t )
+
∥∥q(h, y, t)1{∥∥h∥∥

2
> rh

}∥∥
L2(Ph

t )
.

By selecting rh = O
(√

d0 log(d0/t0) + log(1/ϵ)
)

(see Lemma F.3), we bound the second term
on the RHS of above expression as:∥∥g(h, y, t)1{∥∥h∥∥

2
> rh}

∥∥
L2(Ph

t )
≤ ϵ.

For the first term, we bound∥∥(q(h, y, t)− f
(
h, y, t

))
1
{∥∥h∥∥

2
< rh

}∥∥
L2(Ph

t )

≤
√
d0 + dy sup

h′,y,t′∈[0,1]d0×[0,1]dy×[t0/T,1]

∥∥f(h′, y, t′)− g(h′, y, t′)
∥∥
∞

≤
√
d0 + dyϵ.

So we obtain ∥∥q(h, y, t)− f
(
h, y, t

)∥∥
L2(Ph

t )
≤
(√

d0 + dy + 1
)
ϵ.

Substituting ϵ with ϵ/2 gives an approximation error for f(h, y, t) of
√
d0 + dyϵ.

Step 2. Approximate f(h, y, t) with One-Layer Self-Attention. This step is based on the universal
approximation of single-layer single-head transformers for compact-supported continuous function
in Theorem H.2.

Recall the reshape layer R̃(·) from Definition 2.3. We use f(·) := R̃−1 ◦ ĝT ◦ R̃(·) to approximate
f t(·) := f(·, t), where ĝT (·) ∈ T h,s,r = {f (FF)

2 ◦ f (SA) ◦ f (FF)
1 : Rd̃×L̃ → Rd̃×L̃}.

We first use f̂t(·) := R̃−1 ◦ ĝT ◦ R̃(·) to approximate the function f t(·) constructed at Step 1 and
denote H = R(h). Using Theorem H.2, we have:

∥∥∥f t(h, y)− f̂(h, y)
∥∥∥
L2(Ph

t )
=

(∫
Ph

t

∥∥∥f t(h, y)− f̂(h, y)
∥∥∥2
2
dh

)1/2

(F.10)

=

(∫
Ph

t

∥∥∥R̃ ◦ f t ◦ R̃−1(H)− R̃ ◦ ĝT ◦ R̃−1(H)
∥∥∥2
F
dh

)1/2

=

(∫
Ph

t

∥∥∥R̃ ◦ f t ◦ R̃−1(H)− ĝT (H)
∥∥∥2
F
dh

)1/2

≤ ϵ. (F.11)

Along with Step 1, we obtain∥∥∥q(h, y, t)− f̂(h, y)
∥∥∥
L2(Ph

t )
≤
∥∥q(h, y, t)− f(h, y, t)

∥∥
L2(Ph

t )
+
∥∥f(h, y, t)− ĝT (h, y)

∥∥
L2(Ph

t )

≤
(
1 +

√
d0 + dy

)
ϵ.

The approximator s
Ŵ

for the score function ∇ log pt(h|y) is define in (E.2) where s
Ŵ

=

(WU f̂(U
⊤x, y, t)− x)/σ2

t . The approximation error for such an approximator is

∥∥∇ log pt(·)− s
Ŵ
(·, t)

∥∥
L2(Pt)

≤
1 +

√
d0 + dy

σ2
t

ϵ, for all t ∈ [t0, T ].
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Finally, the parameter bounds in the transformer network class satisfy

∥WQ∥2 = ∥WK∥2 = O
(
d̃ · ϵ−(

1

d̃
+2L̃)(log L̃)

1
2

)
;

∥WQ∥2,∞ = ∥WK∥2,∞ = O
(
d̃

3
2 · ϵ−(

1

d̃
+2L̃)(log L̃)

1
2

)
;

∥WO∥2 = O
(
d̃

1
2 ϵ

1

d̃

)
; ∥WO∥2,∞ = O

(
ϵ

1

d̃

)
;

∥WV ∥2 = O(d̃
1
2 ); ∥WV ∥2,∞ = O(d̃);

∥W1∥2 = O
(
d̃ϵ−

1

d̃

)
, ∥W1∥2,∞ = O

(
d̃

1
2 ϵ−

1

d̃

)
;

∥W2∥2 = O
(
d̃ϵ−

1

d̃

)
; ∥W2∥2,∞ = O

(
d̃

1
2 ϵ−

1

d̃

)
;∥∥E⊤∥∥

2,∞ = O
(
d̃

1
2 L̃

3
2

)
.

We refer to Appendix H.2 for the calculation of the hyperparameters configuration of this network.

This completes the proof.

F.5 PROOF OF SCORE ESTIMATION (THEOREM F.2)

Lemma F.6 (Lemma 15 of (Chen et al., 2023c)). Let G be a bounded function class, i.e., there exists
a constant b such that any function g ∈ G : Rd0 7→ [0, b]. Let z1, z2, · · · , zn ∈ Rd0 be i.i.d. random
variables. For any δ ∈ (0, 1), a ≤ 1, and c > 0, we have

P

(
sup
g∈G

1

n

n∑
i=1

g(zi)− (1 + a)E [g(z)] >
(1 + 3/a)B

3n
log

N (c,G, ∥·∥∞)

δ
+ (2 + a)c

)
≤ δ,

P

(
sup
g∈G

E [g(z)]− 1 + a

n

n∑
i=1

g(zi) >
(1 + 6/a)B

3n
log

N (c,G, ∥·∥∞)

δ
+ (2 + a)c

)
≤ δ.

Main Proof of Theorem F.2. Now we are ready to state the main proof.

Proof of Theorem F.2. Our proof is built on (Chen et al., 2023c, Appendix B.2).

Recall that the empirical score-matching loss is

L(s
Ŵ
) =

1

n

n∑
i=1

ℓ(xi, yi; sŴ ), (F.12)

with the loss function ℓ for a data sample (x, y) is defined as

ℓ(x, y, s
Ŵ
) =

∫ T

t0

1

T − t0
E(xt|x0=x,τ)

[
∥s(xt, τy, t)−∇ log ϕt(xt|x0)∥22

]
dt.

We organize the proof into the following three steps:

• Step 1. Decomposing L
(
s
Ŵ

)
: We first decompose L into three terms (A), (B), and (C).

• Step 2. Bounding Each Term: We then bound three terms separately using some helper from
Lemma F.2 and Lemma F.6.

• Step 3. Putting All Together: Finally, we combine the above bounds and substitute the covering
number of S (Cx) from Lemma K.3.
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• Step 1. Decomposing L
(
s
Ŵ

)
:

Following (Chen et al., 2023c, Appendix B.2), for any a ∈ (0, 1), we have:

L(s
Ŵ
)

≤ Ltrunc(s
Ŵ
)− (1 + a)L̂trunc(s

Ŵ
)︸ ︷︷ ︸

(A)

+L(s
Ŵ
)− Ltrunc(s

Ŵ
)︸ ︷︷ ︸

(B)

+(1 + a) inf
sW∈T h,s,r

R̃

L̂(sW )︸ ︷︷ ︸
(C)

.

where

Ltrunc(s
Ŵ
) := Ex∼P0

[
ℓ(x, τy, s

Ŵ
)1{∥x∥2 ≤ rx}

]
, rx > B,

We denote

η := 4CT (CT + rx)(rx/dx)
dx−2 · exp

(
−r2x/σ2

t

)
/t0(T − t0),

rx := O
(√

d0 log d0 + logCT + log
(
n/δ

))
.

• Step 2. Bounding Each Term: We bound (A), (B), and (C) term separately using some helper
from Lemma F.2 and Lemma F.6.

Bounding term (A). For any δ > 0, following (Chen et al., 2023c, Appendix B.2) and applying
Lemma F.6, we have the following for term (A) with probability 1− δ,

(A) = O

 (1 + 3/a)(C2
T + r2x)

nt0(T − t0)
log

N
(

(T−t0)(ϵc−η)
(CT +rx) log(T/t0)

, T h,s,r, ∥·∥2
)

δ
+ (2 + a)c

 ,

where c ≤ 0 is a constant, and ϵc > 0 is another constant to be determined later.

By setting ϵc = log(2/(nt0(T − t0))), then we have

(A) = O

 (1 + 3/a)
(
C2
T + r2x

)
nt0(T − t0)

log
N
(
(n(CT + rx)t0 log (T/t0))

−1
, T h,s,r, ∥·∥2

)
δ

+
1

n

,
(F.13)

with probability 1− δ.

Bounding term (B). Following (Chen et al., 2023c, Appendix B.2) and applying Lemma F.2, we
has the following bound for term (B):

(B) = O
(

1

t0(T − t0)
C2
T r

d0
x

2−2/d0+2d0
Γ(d0/2 + 1)

exp
(
−C2r

2
x/2
))

. (F.14)

Bounding term (C). In Theorem F.1, we approximate the score function with the network ŝW for
any ϵ > 0. We decompose the term (C) into statistical error (C1) and approximation error (C2):

(C) ≤ L̂(ŝW )− (1 + a)Ltrunc(ŝW )︸ ︷︷ ︸
(C1)

+(1 + a)Ltrunc(ŝW )︸ ︷︷ ︸
(C2)

.
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Following (Chen et al., 2023c, Appendix B.2) and applying Lemma F.2 and Lemma F.6, we have
the following bound for term (C1):

(C1) = L̂trunc(ŝW )− (1 + a)Ltrunc(ŝW ) = O
(
(1 + 6/a)(C2

T + r2x)

nt0(T − t0)
log

1

δ

)
,

with probability 1− δ.

Finally, for the term (C2) we use Theorem F.1 for score function approximation of L(ŝW ):

(C2) = O
(

d0 + dy
t0(T − t0)

ϵ2
)
+ (const.).

This give us the bound for term (C) ≤ (C1) + (1 + a)(C2) as

(C) ≤ O
(
(1 + 6/a)(C2

T + r2x)

nt0(T − t0)
log

1

δ
+

d0 + dy
t0(T − t0)

ϵ2
)
+ (const.). (F.15)

• Step 3. Putting All Together: In the final steps, we combine three terms and substitute the
covering number to get the score estimation bound for latent DiT.

Combining (A), (B) and (C). Following (Chen et al., 2023c, Appendix B.2), we set a = ϵ2 and
get the overall bound:

1

T − t0

∫ T

t0

∥∥s
Ŵ
(·, t)−∇ log pt(·)

∥∥2
L2(Pt)

dt

= O

( (
C2
T + r2x

)
ϵ2nt0(T − t0)

log
N
(
(n(CT + rx)t0 log(T/t0))

−1,ST h,s,r , ∥·∥2
)

δ
+

1

n
+

d0 + dy
t0(T − t0)

ϵ2

)
,

(F.16)

with probability 1− 3δ.

Before we move on to the covering number of T h,s,r

R̃
, we first compute the Lipschitz upper bound

LT and model output bound CT .

Lipschitz Upper Bound LT and Model Output Bound CT . We then compute the Lipschitz
upper bound LT for the transformer. We denote f t,R(·) = R̃ ◦ ĝt ◦ R̃−1(·) and H =

(
R̃(h), y

)
.

We get the Lipschitz upper bound for f̂T ∈ T h,s,r

R̃
:∥∥∥f̂T (H1)− f̂T (H2)

∥∥∥
F
≤
∥∥∥f̂T (H1)− f t,R̃ (H1)

∥∥∥
F
+
∥∥∥f t,R̃ (H1)− f t,R̃ (H2)

∥∥∥
F

+
∥∥∥f t,R̃ (H2)− f̂T (H2)

∥∥∥
F

≤ 2ϵ+
∥∥∥f t,R̃ (H1)− f t,R̃ (H2)

∥∥∥
F

(
By (F.10)

)
≤ 2ϵ+ 10(d0 + dy)Ls+∥H1 −H2∥F .

(
By (F.9)

)
Then we get the upper bound of Lipschitzness of T h,s,r

R̃
:

LT = O
(
(d0 + dy)Ls+

)
. (F.17)

Next, we compute the model output bound for T h,s,r

R̃
. For the output of the constructed transformer

f̂T ∈ T h,s,r, according to (H.20), the output of the network is lower bounded by O(1). Thus with
the Lipschitz upper bound LT = O((d0 + dy)Ls+), we have ∥f̂T (H)∥F = O((d0 + dy)Ls+rh),
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where ∥H∥F ≤ rh. With rh = c(
√
d0 log(d0/t0) + log(1/ϵ)), we obtain

CT = O
(
(d0 + dy)Ls+ ·

√
d0 log(d0/t0) + log(1/ϵ)

)
. (F.18)

Covering Number of T h,s,r

R̃
. The next step is to calculate the covering number of T h,s,r

R̃
. In

particular, T h,s,r

R̃
consists of two components: (i) Matrix WU with orthonormal columns; (ii)

Network function gT . Suppose we have WU1,WU2 and g1, g2 such that ∥WU1 −WU2∥F ≤ δ1
and sup∥x∥2≤3rx+

√
dx log dx,y∈[0,1],t∈[t0,T ] ∥g1(x, y, t)− g2(x, y, t)∥2 ≤ δ2, where g1 = R̃−1 ◦

gT 1 ◦ R̃ and g2 = R̃−1 ◦ gT 2 ◦ R̃. Then we evaluate

sup
∥x∥2≤3rx+

√
dx log dx,y∈[0,1],t∈[t0,T ]

∥sWU1,gT 1
(x, y, t)− sWU2,gT 2

(x, y, t)∥2

=
1

σ2
t

sup
∥x∥2≤3rx+

√
dx log dx,y∈[0,1],t∈[t0,T ]

∥∥WU1g1(W
⊤
U1x, y, t)−WU2g2(W

⊤
U2x, y, t)

∥∥
2

≤ 1

σ2
t

sup
∥x∥2≤3rx+

√
dx log dx,y∈[0,1],t∈[t0,T ]

(∥∥WU1g1(W
⊤
U1x, y, t)−WU1g1(W

⊤
U2x, y, t)

∥∥
2︸ ︷︷ ︸

1st term

+
∥∥WU1g1(W

⊤
U2x, y, t)−WU1g2(W

⊤
U2x, y, t)

∥∥
2︸ ︷︷ ︸

2nd term

+
∥∥WU1g2(W

⊤
U2x, y, t)−WU2g2(W

⊤
U2x, y, t)

∥∥
2︸ ︷︷ ︸

3rd term

)

≤ 1

σ2
t

LT δ1√d0(3rx +
√
dx log dx)︸ ︷︷ ︸

1st term

+ δ2︸︷︷︸
2ndterm

+ δ1︸︷︷︸
3rd term

 , (F.19)

where LT upper bounds the Lipschitz constant of gT (see (F.17)).

For the set {WB ∈ Rdx×d0 : ∥WB∥2 ≤ 1}, its δ1-covering number is
(
1 + 2

√
d0/δ1

)dxd0 (Chen
et al., 2023c, Lemma 8). The δ2-covering number of f needs further discussion as there is a
reshaping process in our network. For the input reshaped from h ∈ Rd0 to H ∈ Rd̃×L̃, we have∥∥h∥∥

2
≤ rx ⇐⇒ ∥H∥F ≤ rx,

Thus we have

sup
∥h∥

2
≤3rx+

√
D logD,y∈[0,1],t∈[t0,T ]

∥∥g1(h, y, t)− g2(h, y, t)
∥∥
2
≤ δ2,

⇐⇒ sup
∥H∥F≤3rx+

√
D logD,y∈[0,1],t∈[t0,T ]

∥gT 1(H)− gT 2(H)∥2 ≤ δ2.

Next we follow the covering number property for sequence-to-sequence transformer T h,s,r

R̃
, i.e.,

Lemma K.2 and get the following δ2-covering number

logN
(
ϵc, T h,s,r

R̃
, ∥·∥2

)
(F.20)

≤ log(nL)

ϵ2c
· α2

(
(CF )

2C2,∞
OV

) 2
3︸ ︷︷ ︸

1st term

+(d+ dy)
2
3
(
C2,∞

F

) 4
3︸ ︷︷ ︸

2nd term

+(d+ dy)
2
3
(
2(CF )

2COV C2,∞
KQ

) 2
3︸ ︷︷ ︸

3rd term


3

,

(F.21)
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where

α :=
∏
j<i

(CF )
2COV (1 + 4CKQ)(CX + CE).

Recall that from the network configuration in Theorem F.1, we have the following bound:

∥WQ∥2 = ∥WK∥2 = O
(
d̃ · ϵ−(

1

d̃
+2L̃)(log L̃)

1
2

)
;

∥WQ∥2,∞ = ∥WK∥2,∞ = O
(
d̃

3
2 · ϵ−(

1

d̃
+2L̃)(log L̃)

1
2

)
;

∥WO∥2 = O
(
d̃

1
2 ϵ

1

d̃

)
; ∥WO∥2,∞ = O

(
ϵ

1

d̃

)
;

∥WV ∥2 = O(d̃
1
2 ); ∥WV ∥2,∞ = O(d̃);

∥W1∥2 = O
(
d̃ϵ−

1

d̃

)
, ∥W1∥2,∞ = O

(
d̃

1
2 ϵ−

1

d̃

)
;

∥W2∥2 = O
(
d̃ϵ−

1

d̃

)
; ∥W2∥2,∞ = O

(
d̃

1
2 ϵ−

1

d̃

)
;∥∥E⊤∥∥

2,∞ = O
(
d̃

1
2 L̃

3
2

)
.

Note that WK,Q =WQW
⊤
K and WO,V =WOW

⊤
V . Combining every component and substitute

into (F.20), we have three respective terms bounded as

1st term = O
(
d̃2ϵ−2/(3d̃)

)
,

2nd term = O
(
(d0 + dy)

2/3
d̃2/3ϵ−4/(3d̃)

)
,

3rd term = O
(
(d0 + dy)

2/3 ·
(
log L̃

)2/3
· d̃4 · ϵ(−2/3)(3/d̃+4L̃)

)
.

Apparently the 3rd term dominates the other two. For the α2 term, we write

α2 = O
(
d̃10ϵ−2(3/d̃+4L̃)

(
log L̃

)
C ′x

)
,

where C ′x =
(
Cx + (d0 + dy)

3/2
)2

.

Combining the above bound we get the log-covering number of T2 as

logN
(
ϵc, T h,s,r

R̃
, ∥·∥2

)
≲ O

(
log (nL̃) log3 (L̃)

ϵ2c
d̃22(d0 + dy)

2ϵ−4(3/d̃+4L̃)C2
x

)
. (F.22)

Substituting the log-covering number of T h,s,r

R̃
into (F.16), we have

1

T − t0

∫ T

t0

∥∥s
Ŵ
(·, t)−∇ log pt(·)

∥∥2
L2(Pt)

dt

= O

((
C2
T + log

(
n/δ

))
ϵ2nt0(T − t0)

(
log (nL̃) log3 (L̃)

(T − t0)n2
d̃22(d0 + dy)

2ϵ−4(3/d̃+4L̃)C2
x

)
+

1

n
+

d0 + dy
t0(T − t0)

ϵ2

)
(
By (F.16)

)
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= O

(
((d̃+ d0)

2L2
s+(d0 log(d0/t0) + log(1/ϵ)) + log

(
n/δ

)
)

ϵ2nt0(T − t0)

(
log (nL̃) log3 (L̃)

(T − t0)n2
d̃22(d̃+ dy)

2ϵ−4(3/d̃+4L̃)C2
x

)

+
d0 + dy
t0(T − t0)

ϵ2

)
.

(
By (F.17) and (F.18)

)

Balancing Error Terms. To balance the error term, we set ϵ = n−3/4(1+3/d̃+4L̃). Also setting
δ = 1/3n then we have

1

T − t0

∫ T

t0

∥∥s
Ŵ
(·, t)−∇ log pt(·)

∥∥2
L2(Pt)

dt = O

(
d̃22(d̃+ d0)

2(d̃+ dy)
2

t20
n

−3

2(1+3/d̃+4L̃) log3 L̃ log3 n

)
(F.23)

with probability of 1− 1
n .

This completes the proof.

F.6 PROOF OF DISTRIBUTION ESTIMATION (THEOREM F.3)

Our proof is built on Chen et al. (2023c, Appendix C). The main difference between our work and
Chen et al. (2023c) is our score estimation error from Theorem F.2. This is based on our universal
approximation of transformers in Corollary H.2.1. Consequently, only the subspace error and the
total variation distance differ from Chen et al. (2023c, Theorem 3).

Proof Sketch of (i). We show that if the orthogonal score increases significantly, the mismatch
between the column span of U and WU will be greatly amplified. Therefore, an accurate score
network estimator forces U and WU to align with each other.

Proof Sketch of (ii). We conduct the proof via 2 steps:

• Step 1: Total Variation Distance Bound. We obtain the discrete result from the continuous-time
generated distribution P̂t0 by adding discretization error (Chen et al., 2023c, Lemma 4). It suffices
to bound the divergence between the following two stochastic processes:

– For the ground-truth backward process, consider h←t = B⊤yt and the following SDE:

dh←t =

[
1

2
h←t +∇ log phT − t(h←t )

]
dt+ dUh

t .

Denote the marginal distribution of the ground-truth process as Ph
t0 .

– For the learned process, consider h̃←,r
t and the following SDE:

dh̃
←,r

t =

[
1

2
h̃←,r
t + s̃hf,M (h̃←,r

t , T − t)

]
dt+ dU

h

t ,

where s̃hf,M (z, t) := [M⊤f(Mz, t) − z]/σ2
t and M is an orthogonal matrix. Following the

notation in (Chen et al., 2023c), we use (WUM)⊤♯ P̂t0 to denote the marginal distribution of
P̂t0 . We first calculate the latent score matching error, i.e., the error between ∇ log pht (h, y) and
s̃hM,f (h, y, t). Then, we adopt Girsanov’s Theorem (Chen et al., 2022) and bound the difference
in the KL divergence of the above two processes to derive the score-matching error bound.

Proof Sketch of (iii). We derive item (iii) by solving the orthogonal backward process of the
diffusion model.
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Definition F.1. For later convenience, let us define ξ(n, t0, d̃, L̃) := 1
t20
n

−3

2(1+3/d̃+4L̃) log3 n.

Here we include a few auxiliary lemmas from Chen et al. (2023c) without proofs. Recall the definition
of Lipschitz norm: for a given function f , ∥f(·)∥Lip = supx̸=y(∥f(x)− f(y)∥2/∥x− y∥2).

Lemma F.7 (Lemma 3 of Chen et al. (2023c)). Assume that the following holds

Eh∼Ph
∥∇ log ph(h|y)∥22 ≤ Csh, λminEh∼Ph

[hh⊤] ≥ c0, Eh∼Ph
∥h∥22 ≤ Ch,

where λmin denotes the smallest eigenvalue. We denote

E[ϕ(·, t)] =
∫ T

t0

1

σ4
t

Ex∼Pt
[ϕ(·, t)]dt.

We set t0 ≤ min{2 log(d0/Csh), 1, 2 log(c0), c0} and T ≥ max{2 log(Ch/d0), 1}. Suppose we
have

E
∥∥WBf(W

⊤
B x, y, t)− Uq(B⊤x, y, t)

∥∥2
2
≤ ϵ.

Then we have ∥∥WUW
⊤
U − UU⊤

∥∥2
F
= O(ϵt0/c0),

and there exists an orthogonal matrix M ∈ Rd0×d0 , such that:

E
∥∥M⊤f(Mh, y, t)− q(h, y, t)

∥∥2
2

= ϵ · O

(
1 +

t0
c0

[
(T − log t0)d0 ·max

t
∥f(·, t)∥2Lip + Csh

]
+

maxt ∥f(·, t)∥2Lip · Ch

c0

)
.

Lemma F.8 (Lemma 4 of Chen et al. (2023c)). Assume that Ph is sub-Gaussian, f(h, y, t) and
∇ log pht (h|y) are Lipschitz in both h, y and t. Assume we have the latent score matching error-bound∫ T

t0

Eh∼Ph
t

∥∥s̃hM,f (ht, y, t)−∇ log pht (ht|y)
∥∥2
2
dt ≤ ϵlatent (T − t0).

Then we have the following latent distribution estimation error for the undiscretized backward SDE

TV
(
Ph
t0 , P̂

h
t0

)
≲
√
ϵlatent (T − t0) +

√
KL (Ph∥N (0, Id0

)) · exp(−T ).

Furthermore, we have the following latent distribution estimation error for the discretized backward
SDE

TV
(
Ph
t0 , P̂

h,dis
t0

)
≲
√
ϵlatent(T − t0) +

√
KL (Ph∥N (0, Id0

)) · exp(−T ) +
√
ϵdis(T − t0),

where

ϵdis =

(
maxh ∥f(h, y, ·)∥Lip

σ (t0)
+

maxh,t ∥f(h, y, t)∥2
t20

)2

η2

+

(
maxt ∥f(·, y, t)∥Lip

σ (t0)

)2

η2 max
{
E ∥h0∥2 , d0

}
+ ηd0,

and η is the step size in the backward process.
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Lemma F.9 (Lemma 6 of Chen et al. (2023c)). Consider the following discretized SDE with step
size µ satisfying T − t0 = KTµ

dyt =

[
1

2
− 1

σ(T − kµ)

]
ykµdt+ dUt, for t ∈ [kµ, (k + 1)µ),

where Y0 ∼ N(0, I). Then when T > 1 and t0 + µ ≤ 1, we have YT−t0 ∼ N
(
0, σ2I

)
with

σ2 ≤ e (t0 + µ).

Lemma F.10 (Lemma 10 in Chen et al. (2023c)). Assume that ∇ log ph(h|y) is Lh-Lipschitz. Then
we have Eh∼Ph

∥∇ log ph(h|y)∥22 ≤ d0Lh.

Main Proof of Theorem F.3. Now we are ready to state the main proof.

Proof of Theorem F.3. Recall that in (F.23), we have

ξ(n, t0, d̃, L̃) :=
1

t20
n

−3

2(1+3/d̃+4L̃) log3 L log3 n.

• Proof of (i). With Lemma F.7, we replace ϵ to be ϵ(T − t0)
2 and we set Csh = Lhd0 by

Lemma F.10, we have

∥∥WUW
⊤
U − UU⊤

∥∥2
F
= O

(
t20ξ(n, t0, d̃, L̃)

c0

)
.

We substitute the score estimation error in Theorem F.2 and T = O(log n) into the bound above,
we deduce ∥∥WUW

⊤
U − UU⊤

∥∥2
F
= Õ

(
1

c0
n

−3

2(1+3/d̃+4L̃) · log3 n
)
.

We note that log n is great enough to make T satisfies T ≥ max{log(Ch/d0 + 1), 1} where
Ch ≥ Eh∼Ph

∥h∥22.

• Proof of (ii). Lemma F.7 and Lemma F.10 imply that

E
∥∥M⊤f(Mh, y, t)− q(h, y, t)

∥∥2
2
= O(ϵlatent(T − t0)),

where

ϵlatent = ϵ · O

(
t0
c0

[
(T − log t0)d0 · L2

s+ + d0Lh

]
+
L2
s+ · Ch

c0

)
.

Through the algebra calculation, we get

E
∥∥M⊤f(Mh, y, t)− q(h, y, t)

∥∥2
2
=

∫ T

t0

Eh∼Ph
t

∥∥∥∥U⊤f(Uh, y, t)− h

σ2
t

−∇ log pht (h|y)
∥∥∥∥2
2

dt

≤ ϵlatent(T − t0).

With ϵlatent and Lemma F.8, we obtain

TV(Ph
t0 , (WUM)⊤♯ P̂

dis
t0 )
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≲
√
ϵlatent (T − t0) +

√
KL (Ph∥N (0, Id0

)) exp(−T ) +
√
ϵdis (T − t0)

= Õ

(
1

t0
√
c0
n

−3

2(1+3/d̃+4L̃) · log3 n+
1

n
+ µ

√
d20 log d0
t20

+
√
µ
√
d0

)
.

As we choose time step µ = O
(
t20/d0

√
log d0n

−3

4(1+3/d̃+4L̃)

)
, we obtain

TV(Ph
t0 , (WUM)⊤♯ P̂

dis
t0 ) = Õ

(
1

t0
√
c0
n

−3

2(1+3/d̃+4L̃) · log3 n
)
.

By definition, P̂h,dis
t0 = (UWB)

⊤
♯ P̂

dis
t0 . This completes the proof of the total variation distance.

• Proof of (iii). We apply Lemma F.9 due to our score decomposition. With the marginal distribution
at time T − t0 and observing µ≪ t0, we obtain the last property.

This completes the proof.
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G SUPPLEMENTARY THEORETICAL BACKGROUND

In this section, we provide an overview of the conditional diffusion model and classifier guidance in
Appendix G.1 and classifier-free guidance in Appendix G.2.

G.1 CONDITIONAL DIFFUSION PROCESS

Conditional diffusion models use the conditional information (guidance) y to generate samples from
conditional data distribution P (·|y = guidance). Depending on the model’s objective, the guidance
is either a label for generating categorical images, a text prompt for generating images from input
sentences, or an image region for tasks like image editing and restoration. Throughout this paper, we
coin diffusion models with label guidance y as conditional diffusion models (CDMs). Practically,
implement a conditional diffusion model characterized as classifier and classifier-free guidance. The
classifier guidance diffusion model combines the unconditional score function with the gradient of an
external classifier trained on corrupted data. On the other hand, classifier-free guidance integrates the
conditional and unconditional score function by randomly ignoring y with mask signal (see (G.6)).
In this paper, we focus on the latter approach.

Specifically, we consider data x ∈ Rdx and label y ∈ Rdy with initial conditional distribution P (x|y).
The diffusion process (forward Ornstein–Uhlenbeck process) is characterized by:

dXt = −1

2
Xtdt+ dWt with X0 ∼ P (x|y), (G.1)

where Wt is a Wiener process. The distribution at any finite time t is denoted by Pt(x|y), and X∞
follows standard Gaussian distribution. Up to a sufficiently large terminating time T, we generate
samples by the reverse process:

dX←t =

[
1

2
X←t +∇ log pT−t(X

←
t |y)

]
dt+ dW t with X←0 ∼ PT (x|y), (G.2)

where the term ∇ log pT−t(X
←
t |y) represents the conditional score function. We have Xt|X0 ∼

N(αtX0, σ
2
t I) with αt = e−t/2 and σ2

t = 1− e−t.

We use a score network ŝ to estimate the conditional score function ∇ log pt(x|y), and the quadratic
loss of the conditional diffusion model is given by

ŝ := argmin
s∈T h,s,r

R

Et

[
E(x0,y)

[
E(x′∼x′|x0)

[
∥s(x′, y, t)−∇x′ log pt(x

′|x0)∥
2
2

]]]
, (G.3)

where t ∼ Unif(t0, T ).

With the estimate score network ŝ in (G.3), we generates the conditional sample in the backward
process as follows:

dX̃←t =

[
1

2
X̃←t + ŝ

(
X̃←t , y, T − t

)]
dt+ dW t with X̃←0 ∼ N(0, Id). (G.4)

Classifier guidance (Song et al., 2021; Dhariwal and Nichol, 2021) and classifier-free guidance (Ho
and Salimans, 2022) are piratical implementations for conditional score estimation. For classifier
guidance (Song et al., 2021; Dhariwal and Nichol, 2021), it use the gradient of the classifier to improve
the conditional sample quality of the diffusion model. According to Bayes rule, the conditional score
function has the relation:

∇x log pt(xt|y) = ∇ log pt(xt)︸ ︷︷ ︸
Approximate by ŝ

+ ∇x log pt(y|xt)︸ ︷︷ ︸
Guidance from classifier

. (G.5)
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It uses the neural network to approximate the unconditional score function ∇ log p̂t(xt) along with
external classifier to approximate p̂t(y|xt) and compute the gradient of the classifier logits as the
guidance ∇ log p̂t(y|xt).

G.2 CLASSIFIER-FREE GUIDANCE

Classifier-free guidance (Ho and Salimans, 2022) provides a widely used approach for training
condition diffusion models. It not only simplifies the training pipeline but also improves performance
and removes the need for an external classifier. Classifier-free guidance diffusion model approximates
both conditional and unconditional score functions by neural networks sW , where W is the network
parameters.

Our primary goal is to establish the theoretical guarantee for selecting conditional score estimator
ŝ(x, y, t) chosen from the transformer architecture class and bound the error for such estimation.
Based on previous work by Dhariwal and Nichol (2021); Fu et al. (2024b); Sohl-Dickstein et al.
(2015); Ho and Salimans (2022), we adopt the unified setting for the conditional diffusion model.
First we define the mask signal as τ := {∅, id}, where ∅ denotes the the absence of guidance y and id
denotes otherwise. Unites the learning of conditional and unconditional scores by randomly ignoring
the guidance y. Therefore we write the function class of the score estimator as

s(x, y, t) =

{
s1(x, y, t), if y ∈ Rdy

s2(x, t), if y = ∅.
(G.6)

Both s1(x, y, t) and s2(x, t) belong to the transformer function class with slight adaption. Following
Fu et al. (2024b), we consider P (τ = id) = P (τ = ∅) = 1

2 without loss of generality, and we have
the following objective function for score matching:

ŝ := argmin
sW∈T h,s,r

R

Et

[
E(x0,y)

[
E(τ,x′∼x′|x0)

[
∥sW (x′, τy, t)−∇x′ log pt(x

′|x0)∥
2
2

]]]
.

In practice, the loss function is given by

ℓ(x0, y; sW ) =

∫ T

T0

1

T − T0
Eτ,xt|x0∼N(αtx0,σ2

t Idx )

[
∥sW (xt, τy, t)−∇xt

log pt (xt|x0)∥22
]
dt,

(G.7)

where T0 is a small value for stabilize training (Vahdat et al., 2021). To train sW , we select n i.i.d.
training samples {x0,i, yi}ni=1, where x0,i ∼ P0(·|yi). We utilize the following empirical loss:

L̂(sW ) =
1

n

n∑
i=1

ℓ(x0,i, yi; sW ). (G.8)

With the estimate score function sW (x, y, t) from minimizing the empirical loss in (G.8), we use
sW (x, y, t) to generate new samples. In the classifier-free guidance setting, we generate a new
conditional sample by replacing the approximation sW in (G.4) with s̃W , defined as:

s̃W (x, y, t) = (1 + η) · sW (x, y, t)− η · sW (x, ∅, t), (G.9)

where the strength of guidance η > 0. The proper choice of η is crucial for balancing trade-offs
between conditional guidance and unconditional ones. The choice directly impacts the performance
of the generation process. Wu et al. (2024b) theoretically study the effect of guidance η on Gaussian
mixture model. They demonstrate that strong guidance improves classification confidence but reduces
sample diversity. For more detailed related work, refer to Appendix C.1.
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H UNIVERSAL APPROXIMATION OF TRANSFORMERS

H.1 TRANSFORMERS AS UNIVERSAL APPROXIMATORS

Background: Contextual Mapping. Let X,Y ∈ Rd×L be the input and output label sequences,
respectively. Let X:,i ∈ Rd be the i-th token (column) of each X sequence.

Definition H.1 (Vocabulary). We define the i-th vocabulary set for i ∈ [N ] by V(i) =
⋃

k∈[L]X
(i)
:,k ⊂

Rd, and the whole vocabulary set V is defined by V =
⋃

i∈[N ] V(i) ⊂ Rd.

To facilitate our analysis, we introduce the idea of input token separation following (Kajitsuka and
Sato, 2024; Kim et al., 2022; Yun et al., 2020).

Definition H.2 (Tokenwise Separateness). Let Z(1), . . . , Z(N) ∈ Rd×L be input sequences. Then,
Z(1), . . . , Z(N) are called tokenwise (γmin, γmax, δ)-separated if the following three conditions hold.

(i) For any i ∈ [N ] and k ∈ [n], ∥Z(i)
:,k∥ > γmin holds.

(ii) For any i ∈ [N ] and k ∈ [n], ∥Z(i)
:,k∥ < γmax holds.

(iii) For any i, j ∈ [N ] and k, l ∈ [n] if Z(i)
:,k ̸= Z

(j)
:,l , then ∥Z(i)

:,k − Z
(j)
:,l ∥ > δ holds.

Note that when only conditions (ii) and (iii) hold, we denote this as (γ, δ)-separateness. Moreover, if
only condition (iii) holds, we denote it as (δ)-separateness.

To clarify condition (iii), we consider cases where there are repeated tokens between different input
sequences. Next, we define contextual mapping. Contextual mapping describes a function’s ability to
capture the context of each input sequence as a whole and assign a unique ID to each input sequence.

Definition H.3 (Contextual Mapping). Let X(1), . . . , X(N) ∈ Rd×L be input sequences. Then, a
map q : Rd×L → Rd×L is called an (γ, δ)-contextual mapping if the following two conditions hold:

1. For any i ∈ [N ] and k ∈ [L], ∥q(X(i)):,k∥ < γ holds.

2. For any i, j ∈ [N ] and k, l ∈ [L] such that V(i) ̸= V(j) or X(i)
:,k ̸= X

(j)
:,l , ∥q(X(i)):,k −

q(X(j)):,l∥ > δ holds.

Note that q
(
X(i)

)
for i ∈ [N ] is called a context ID of X(i).

Helper Lemmas. To prove that 1-layer single-head attention is a contextual mapping, we first
introduce some useful lemmas.

Lemma H.1 (Boltz Preserves Distance, Lemma 1 of (Kajitsuka and Sato, 2024)). Given (γ, δ)-
tokenwise separated vectors z(1), . . . , z(N) ∈ Rn with no duplicate entries in each vector, that
is

z(i)s ̸= z
(i)
t ,

where i ∈ [N ] and s, t ∈ [L], s ̸= t. Also, let

δ ≥ 4 lnn.

Then, the outputs of the Boltzmann operator has the following property:∣∣∣Boltz(z(i))∣∣∣ ≤ γ, (H.1)∣∣∣Boltz(z(i))− Boltz
(
z(j)
)∣∣∣ > δ′ = ln2(n) · e−2γ (H.2)

for all i, j ∈ [N ], i ̸= j.

49



2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

Lemma H.2 (Lemma 13 of (Park et al., 2021)). For any finite subset X ⊂ Rd, there exists at least
one unit vector u ∈ Rd such that

1

|X |2

√
8

πd
∥x− x′∥ ≤

∣∣u⊤ (x− x′)
∣∣ ≤ ∥x− x′∥

for any x, x′ ∈ X .

With Lemma H.2, we present a configuration for weight matrices of a self-attention layer.

Lemma H.3 (Construction of Weight Matrices). Given a dataset with a (γmin, γmax, ϵ)-separated
finite vocabulary V ⊂ Rd. There exists rank-ρ weight matrices WK ,WQ ∈ Rs×d such that∣∣∣(WKva)

⊤
(WQvc)− (WKvb)

⊤
(WQvc)

∣∣∣ > δ,

for any δ > 0, any min (d, s) ≥ ρ ≥ 1 and any va, vb, vc ∈ V with va ̸= vb. In addition, the matrices
are constructed as

WK =

ρ∑
i=1

piq
⊤
i ∈ Rs×d, WQ =

ρ∑
j=1

p′jq
′⊤
j ∈ Rs×d,

where for at least one i, qi, q′i ∈ Rd are unit vectors that satisfy Lemma H.2, and pi, p′i ∈ Rs satisfies

∣∣p⊤i p′i∣∣ = 5 (|V|+ 1)
4
d

δ

ϵγmin
.

Proof of Lemma H.3. We build our proof upon (Kajitsuka and Sato, 2024). We start the proof by
applying Lemma H.2 to V ∪ {0}. We obtain at least one unit vector q ∈ Rd such that for any
va, vb ∈ V ∪ {0} and va ̸= vb, we have

1

(|V|+ 1)
2
d0.5

∥va − vb∥ ≤
∣∣q⊤ (va − vb)

∣∣ ≤ ∥va − vb∥.

By choosing vb = 0, we have that for any vc ∈ V

1

(|V|+ 1)
2
d0.5

∥vc∥ ≤
∣∣q⊤vc∣∣ ≤ ∥vc∥. (H.3)

For convenience, we denote the set of all unit vector q that satisfies (H.3) as Q. Next, we choose
some arbitrary vector pairs pi, p′i ∈ Rs that satisfy

∣∣p⊤i p′i∣∣ = (|V|+ 1)
4
d

δ

ϵγmin
. (H.4)

We construct the weight matrices by setting

WK =

ρ∑
i=1

piq
⊤
i ∈ Rs×d,

WQ =

ρ∑
j=1

p′jq
′⊤
j ∈ Rs×d,

where for at least one i, pi, p′i satisfies (H.4) and qi, q′j ∈ Q. Here, Q = {q ∈ Rn : ∥q∥ = 1} denotes
the set of all unit vectors in Rn. We arrive at
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∣∣∣(WKva)
⊤
(WQvc)− (WKvb)

⊤
(WQvc)

∣∣∣
=
∣∣∣(va − vb)

⊤
(WK)

⊤
(WQvc)

∣∣∣
=

∣∣∣∣∣∣(va − vb)
⊤

(
ρ∑

i=1

qip
⊤
i

) ρ∑
j=1

p′jq
′⊤
j vc

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(

ρ∑
i=1

(va − vb)
⊤
qip
⊤
i

) ρ∑
j=1

p′jq
′⊤
j vc

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ρ∑

i=1

ρ∑
j=1

(va − vb)
⊤
qip
⊤
i p
′
jq
′⊤
j vc

∣∣∣∣∣∣
=

ρ∑
i=1

ρ∑
j=1

∣∣∣(va − vb)
⊤
qi

∣∣∣ · ∣∣p⊤i p′j∣∣ · ∣∣q′⊤j vc
∣∣

≥ 1

(|V|+ 1)
2
d0.5

∥va − vb∥ · (|V|+ 1)
4
d

δ

ϵγmin
· 1

(|V|+ 1)
2
d0.5

∥vc∥
(
By (H.3) and (H.4)

)
> δ.

(
By (γmin, γmax, ϵ)-separateness of V

)
This completes the proof.

Any-Rank Attention is Contextual Mapping. Now we present the result showing that a softmax-
based 1-head, 1-layer attention block with any-rank weight matrices is a contextual mapping.

Theorem H.1 (Any-Rank Attention is (γ, δ)-Contextual Mapping, Modified from Theorem 2 of (Ka-
jitsuka and Sato, 2024)). Given input sequences X(1), . . . , X(N) ∈ Rd×L which are (γmin, γmax, ϵ)-
tokenwise separated and vocabulary set V =

⋃
i∈[N ] V(i) ⊂ Rd. Also, let X(1), . . . , X(N) ∈ Rd×L

be sequences with no duplicate word token in each sequence, that is,X(i)
:,k ̸= X

(i)
:,l , for any i ∈ [N ] and

k, l ∈ [L]. Then, there exists a 1-layer single head attention with weight matrices WO ∈ Rd×s and
WV ,WK ,WQ ∈ Rs×d, that is a (γ, δ)-contextual mapping for the input sequences X(1), . . . , X(N)

with γ = γmax + ϵ/4, δ = exp
(
−5ϵ−1|V|4dκγmax logL

)
where κ = γmax/γmin.

Theorem H.1 indicates that any-rank self-attention function distinguishes input tokens X(i)
:,k = X

(j)
:,l

such that V(i) ̸= V(j). In other words, it distinguishes two identical tokens within a different context.

Remark H.1 (Comparing with Existing Works). In comparison with (Kajitsuka and Sato, 2024),
they provide a proof for the case where all self-attention weight matrices WV ,WK ,WQ ∈ Rs×d are
strictly rank-1. However, this is almost impossible in practice for any pre-trained transformer-based
models. Here, by considering self-attention weight matrices of rank ρ where 1 ≤ ρ ≤ min(d, s), we
show that single-head, single-layer self-attention with matrices of any rank is a contextual mapping,
pushing the universality of (prompt tuning) transformers towards more practical scenarios.

Remark H.2. In (Kajitsuka and Sato, 2024), γ and δ are chosen as follows:

γ = γmax +
ϵ

4
, δ =

2(lnL)2ϵ2γmin

γ2max(|V|+ 1)4(2 lnL+ 3)πd
exp

(
−(|V|+ 1)4

(2 lnL+ 3)πdγ2max

4ϵγmin

)
.

Since the exponential term dominates the polynomial terms, in Lemma H.1, we simplify δ to
exp
(
−Θ(ϵ−1|V|4dκγmax lnL)

)
.

Proof Sketch. We generalize the results of (Kajitsuka and Sato, 2024, Theorem 2) where all weight
matrices have to be rank-1. We eliminate the rank-1 requirement, and extend the lemma for weights
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of any rank ρ . This is achieved by constructing the weight matrices as a outer product sum
∑ρ

i uiv
⊤
i ,

where ui ∈ Rs, vi ∈ Rd. Specifically, we divide the proof into two parts:

• We first construct a softmax-based self-attention that maps different input tokens to unique contex-
tual embeddings, by configuring weight matrices according to Lemma H.3.

• Secondly, for the identical tokens within a different context, we utilize the tokenwise separateness
guaranteed by Lemma H.3 and Lemma H.1 which shows Boltz preserves some separateness.

As a result, we prove that the self-attention function distinguishes input tokens X(i)
:,k = X

(j)
:,l such

that V(i) ̸= V(j). This completes the proof.

Proof of Theorem H.1. We build our proof upon (Kajitsuka and Sato, 2024). We construct a self-
attention layer that is a contextual mapping. There are mainly two things to prove. We first show that
the attention later we constructed maps different tokens to unique ids. Secondly, we prove that the
self-attention function distinguishes duplicate input tokens within different context. For the first part,
we show that our self-attention layer satisfies:

∥Ψ∥ =

∥∥∥∥WO

(
WVX

(i)
)
Softmax

[(
WKX

(i)
)⊤ (

WQX
(i)
:,k

)]∥∥∥∥ < ϵ

4
, (H.5)

for i ∈ [N ] and k ∈ [L]. Since with (H.5), it is easy to show that∥∥∥∥f (SA)
(
X(i)

)
:,k

− f (SA)
(
X(j)

)
:,l

∥∥∥∥ =
∥∥∥X(i)

:,k −X
(j)
:,l +

(
Ψ(i) −Ψ(j)

)∥∥∥ (H.6)

≥
∥∥∥X(i)

:,k −X
(j)
:,l

∥∥∥− ∥∥∥Ψ(i) −Ψ(j)
∥∥∥

≥
∥∥∥X(i)

:,k −X
(j)
:,l

∥∥∥− ∥∥∥Ψ(i)
∥∥∥− ∥∥∥Ψ(j)

∥∥∥
> ϵ− ϵ

4
− ϵ

4
=
ϵ

2
,

(
By ϵ-separatedness of X and H.5

)
for any i, j ∈ [N ] and k, l ∈ [L] such thatX(i)

:,k ̸= X
(j)
:,l . Now, we prove (H.5) by utilizing Lemma H.3.

We define the weight matrices as

WK =

ρ∑
i=1

piq
⊤
i ∈ Rs×d,

WQ =

ρ∑
j=1

p′jq
′⊤
j ∈ Rs×d,

where pi, p′j ∈ Rs and qi, q′j ∈ Rd. In addition, let δ = 4 lnn and p1, p′1 ∈ Rs be an arbitrary vector
pair that satisfies

∣∣p⊤1 p′1∣∣ = (|V|+ 1)
4
d

δ

ϵγmin
. (H.7)

Then by Lemma H.3, there are some unit vectors q1, q′1 such that we have,∣∣∣(WKva)
⊤
(WQvc)− (WKvb)

⊤
(WQvc)

∣∣∣ > δ, (H.8)
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for any va, vb, vc ∈ V with va ̸= vb. In addition, for the other two weight matrices WO ∈ Rd×s and
WV ∈ Rs×d, we set

WV =

ρ∑
i=1

p′′i q
′′⊤
i ∈ Rs×d, (H.9)

where q′′ ∈ Rd, q′′1 = q1 and p′′i ∈ Rs is some nonzero vector that satisfies

∥WOp
′′
i ∥ =

ϵ

4ργmax
, (H.10)

This can be accomplished, e.g., WO =
∑ρ

i=1 p
′′′
i p
′′
i
⊤ for any vector p′′′i which satisfies ∥p′′′i ∥ =

ϵ/(4ρ2γmax∥p′′i ∥
2
) for any i ∈ [ρ]. As a result, we now bound Ψ as:

∥Ψ∥ =

∥∥∥∥WO

(
WVX

(i)
)
Softmax

[(
WKX

(i)
)⊤ (

WQX
(i)
:,k

)]∥∥∥∥
=

∥∥∥∥∥
L∑

k′=1

skk′WO

(
WVX

(i)
)
:,k′

∥∥∥∥∥ (
Denote skk′ = Softmax

[(
WKX(i)

)⊤ (
WQX

(i)
:,k

)]
k′

)

=

L∑
k′=1

skk′

∥∥∥∥WO

(
WVX

(i)
)
:,k′

∥∥∥∥
≤ max

k′∈[L]

∥∥∥∥WO

(
WVX

(i)
)
:,k′

∥∥∥∥ ( ∑n
k′=1 s

k
k′ = 1

)
= max

k′∈[L]

∥∥∥∥∥WO

(
ρ∑

i=1

p′′i q
′′⊤
i

)
X

(i)
:,k′

∥∥∥∥∥ (
By Lemma H.3

)
=

ρ∑
i=1

∥WOp
′′
i ∥ · max

k′∈[L]

∣∣∣q′′⊤i X
(i)
:,k′

∣∣∣ (
By (H.10)

)
=

ϵ

4γmax
· max
k′∈[L]

∥∥∥X(i)
:,k′

∥∥∥ (
By (H.10) and ∥q′′i ∥ = 1

)
<
ϵ

4
.

Next, for the second part, we prove that with the weight matrices WO,WV ,WK ,WQ configured
above, the attention layer distinguishes duplicate input tokens with different context, X(i)

:,k = X
(j)
:,l

with V(i) ̸= V(j). We choose any i, j ∈ [N ] and k, l ∈ [L] such that X(i)
:,k = X

(j)
:,l and V(i) ̸= V(j).

In addition, we define a(i), a(j) as

a(i) =
(
WKX

(i)
)⊤ (

WQX
(i)
:,k

)
∈ Rn, a(j) =

(
WKX

(j)
)⊤ (

WQX
(j)
:,l

)
∈ Rn.

From (H.8) we have that a(i) and a(j) are tokenwise (γ, δ)-separated where γ is computed by∣∣∣a(i)k′

∣∣∣ = ∣∣∣∣(WKX
(i)
:,k′

)⊤ (
WQX

(i)
:,k

)∣∣∣∣
=

∣∣∣∣∣∣
(

ρ∑
i=1

piq
⊤
i X

(i)
:,k′

)⊤ ρ∑
j=1

p′jq
′⊤
j X

(i)
:,k

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(

ρ∑
i=1

X
(i)⊤
:,k′ qip

⊤
i

) ρ∑
j=1

p′jq
′⊤
j X

(i)
:,k

∣∣∣∣∣∣
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=

∣∣∣∣∣∣
ρ∑

i=1

ρ∑
j=1

X
(i)⊤
:,k′ qip

⊤
i p
′
jq
′⊤
j X

(i)
:,k

∣∣∣∣∣∣
=

ρ∑
i=1

ρ∑
j=1

∣∣∣X(i)⊤
:,k′ qi

∣∣∣∣∣p⊤i p′j∣∣∣∣∣q′⊤j X
(i)
:,k

∣∣∣
≤ | (|V|+ 1)

4
d

δ

ϵγmin
γ2max.

(
By (H.7) and ∥qi∥ =

∥∥q′j∥∥ = 1
)

Therefore,

γ = (|V|+ 1)
4
d
δγ2max

ϵγmin
.

Now, since V(i) ̸= V(j) and there is no duplicate token in X(i) and X(j) respectively, we use
Lemma H.1 and obtain that∣∣∣Boltz(a(i))− Boltz

(
a(j)
)∣∣∣ = ∣∣∣∣(a(i))⊤ Softmax

[
a(i)
]
−
(
a(j)
)⊤

Softmax
[
a(j)
]∣∣∣∣ (H.11)

> δ′

= (lnn)2e−2γ .

As we assumed X(i)
:,k = X

(j)
:,l , we have∣∣∣∣(a(i))⊤ Softmax

[
a(i)
]
−
(
a(j)
)⊤

Softmax
[
a(j)
]∣∣∣∣ (H.12)

=

∣∣∣∣(X(i)
:,k

)⊤
(WQ)

⊤
WK

(
X(i) Softmax

[
a(i)
]
−X(j) Softmax

[
a(j)
])∣∣∣∣

=

∣∣∣∣∣∣
(
X

(i)
:,k

)⊤ ρ∑
j=1

q′jp
′⊤
j

( ρ∑
i=1

piq
⊤
i

)(
X(i) Softmax

[
a(i)
]
−X(j) Softmax

[
a(j)
])∣∣∣∣∣∣(

By Lemma H.3
)

=

ρ∑
i=1

ρ∑
j=1

∣∣∣q′⊤j X
(i)
:,k

∣∣∣ · ∣∣p′⊤j pi
∣∣ · ∣∣∣(q⊤i X(i)

)
Softmax

[
a(i)
]
−
(
q⊤i X

(j)
)
Softmax

[
a(j)
]∣∣∣

≤
ρ∑

i=1

γmax · (|V|+ 1)4
πd

8

δ

ϵγmin
·
∣∣∣(q⊤i X(i)

)
Softmax

[
a(i)
]
−
(
q⊤i X

(j)
)
Softmax

[
a(j)
]∣∣∣.(

By (H.7)
)

By combining (H.11) and (H.12), we have

ρ∑
i=1

∣∣∣(q⊤i X(i)
)
Softmax

[
a(i)
]
−
(
q⊤i X

(j)
)
Softmax

[
a(j)
]∣∣∣ > δ′

(|V|+ 1)
4

ϵγmin

dδγmax
. (H.13)

Now we arrive at the lower bound of the difference between the self-attention outputs of X(i), X(j)

as: ∥∥∥∥f (SA)
S

(
X(i)

)
:,k

− f
(SA)
S

(
X(j)

)
:,l

∥∥∥∥ (H.14)

=
∥∥∥WO

(
WVX

(i)
)
Softmax

[
a(i)
]
−WO

(
WVX

(j)
)
Softmax

[
a(j)
]∥∥∥
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=

ρ∑
i=1

∥WOp
′′
i ∥ ·

∣∣∣(q′′⊤i X(i)
)
Softmax

[
a(i)
]
−
(
q′′⊤i X(j)

)
Softmax

[
a(j)
]∣∣∣(

WV =
∑ρ

i=1 p
′′
i q

′′⊤
i

)
>

ϵ

4γmax

δ′

(|V|+ 1)
4

ϵγmin

dδγmax
.

(
By (H.10) and (H.13)

)
where δ = 4 lnL and δ′ = ln2(L)e−2γ with γ = (|V|+ 1)

4
dδγ2max/(ϵγmin). Note that we are able

to use (H.13) in the last inequality of (H.14) because (H.13) is guaranteed by q1, and we set q′′1 = q1
when constructing WV in (H.9).

Theorem H.2 (Transformers with 1-Layer Self-Attention are Universal Approximators, Modified
from Proposition 1 of (Kajitsuka and Sato, 2024)). Let 0 ≤ p <∞ and f (FF), f (SA) be feed-forward
neural network layers and a single-head self-attention layer with softmax function respectively. Then,
for any permutation equivariant, continuous function f with compact support and ϵ > 0, there exists
f ′ ∈ T h,s,r

R such that dp(f, f ′) < ϵ holds

Proof of Theorem H.2. We restate the proof from (Kajitsuka and Sato, 2024) for completeness.

The proof consists of the following steps:

1. Approximate by Step Function: Given a permutation equivariant continuous function f on a
compact set, there exists a Transformer f ′ ∈ T h,s,r

R with one self-attention layer to approximate
f by step function with arbitrary precision in terms of p-norm.

2. Quantization via fFF
1 : The first feed-forward network fFF

1 quantize the input domain, reducing the
problem to memorization of finite samples.

3. Contextual Mapping f (SA) and Memorization fFF
2 : According to Theorem H.1, we construct

any-rank attention f (SA) to be contextual mapping. Then use the second feed-forward fFF
2 to

memorize the context ID with its corresponding label.

The details for the three steps are below.

1. Since f is a continuous function on a compact set, f has maximum and minimum values on the
domain. By scaling with fFF

1 and fFF
2 , f is assumed to be normalized without loss of generality:

That is for any Z ∈ Rd×L \ [0, 1]d×L, we have f(Z) = 0. For any X ∈ [−1, 1]d×L, the function
f(X) satisfies −1 ≤ f(X) ≤ 1.

Let D ∈ N be the granularity of a grid

GD = {1/D, 2/D, . . . , 1}d×L ⊂ Rd×L

such that a piece-wise constant approximation

f(X) =
∑

L∈GD

f (L) 1Z∈L+[−1/D,0)d×L

satisfies

dp(f, f) < ϵ/3. (H.15)

Such a D always exists because of uniform continuity of f .

2. We use fFF
1 to quantize the input domain into GD.

We first define the following two terms for first feed-forward neural network to approximate.

55



2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

• The quantize term (quantd×LD : Rd×L → Rd×L): Quantize [0, 1] into {1/D, . . . , 1}, while it
projects R \ [0, 1] to 0 by shifting and stacking step function.

D−1∑
t=0

ReLU [x/δ − t/δD]− ReLU [x/δ − 1− t/δD]

D

≈ quantD(x) =


0 x < 0

1/D 0 ≤ x < 1/D
...

...
1 1− 1/D ≤ x

. (H.16)

• The penalty term (penalty): Identify whether an input sequence is in [0, 1]d×L. This is defined
by

ReLU [(x− 1)/δ]− ReLU [(x− 1)/δ − 1]− ReLU [−x/δ]− ReLU [−x/δ − 1]

≈ penalty(x) =


−1 x ≤ 0

0 0 < x ≤ 1

−1 1 < x

. (H.17)

Combining these components together, the first feed-forward neural network layer fFF
1 approxi-

mates the following function:

f
(FF)
1 (X) = quantd×LD (X) +

d∑
t=1

L∑
k=1

penalty(Xt,k) (H.18)

Note that this function quantizes inputs in [0, 1]d×L with granularity D, while every element of
the output is non-positive for inputs outside [0, 1]d×L. In particular, the norm of the output is
upper-bounded by

max
X∈Rd×L

∥∥fFF
1 (X):,k

∥∥ = dL︸︷︷︸
Total number of elements in X

×
√
d︸︷︷︸

Maximum Euclidean norm in d-dimensional space

(H.19)

for any k ∈ [L].

3. Let G̃D ⊂ GD be a sub-grid

G̃D = {G ∈ GD | ∀k, l ∈ [L], G:,k ̸= G:,l} ,

and consider memorization of G̃D with its labels given by f(G) for each G ∈ G̃D. Using our
modified any-rank attention is contextual mapping in Theorem H.1 allows us to construct a
self-attention f (SA) to be a contextual mapping for such input sequences, because G̃D can be
regarded as tokenwise (1/D,

√
d, 1/D)-separated input sequences. By taking sufficiently large

granularity D of GD, the number of cells with duplicate tokens, that is, |GD \ G̃D| is negligible.

From the way the self-attention f (SA) is constructed, we have∥∥∥f (SA)(X):,k −X:,k

∥∥∥ < 1

4
√
dD

max
k′∈[L]

∥X:,k′∥

for any k ∈ [L] and X ∈ Rd×L.
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If we take large enoughD, every element of the output forX ∈ Rd×L\[0, 1]d×L is upper-bounded
by

f (SA) ◦ fFF
1 (X)t,k <

1

4D
(∀t ∈ [d], k ∈ [L]),

while the output for X ∈ [0, 1]d×L is lower-bounded by

f (SA) ◦ fFF
1 (X)t,k >

3

4D
(∀t ∈ [d], k ∈ [L]).

Finally, we construct bump function of scale R > 0 to map each input sequence L ∈ G̃D to
its labels f(L) and for input sequence outside the range X ∈ (−∞, 1/4D)d×L to 0 using the
second feed-forward fFF

2 . Precisely, bump function of scale R > 0 is given by

bumpR(x) =
f(L)

dL

d∑
t=1

L∑
k=1

(ReLU [R(Xt,k −Gt,k)− 1]− ReLU [R(Zt,k −Gt,k)]

+ ReLU [R(Zt,k −Gt,k) + 1]) + ReLU[R(Gt,k − Zt,k)]
(H.20)

for each input sequence G ∈ G̃D and add up these functions to implement fFF
2 .

In addition, the value of f (FF)
2 is always bounded: 0 ≤ f

(FF)
2 ≤ 1. Thus, by taking sufficiently

small δ > 0 to quantize the step function, we have

dp

(
f
(FF)
2 ◦ f (SA) ◦ f (FF)

1 , f
(FF)
2 ◦ f (SA) ◦ f (FF)

1

)
<
ϵ

3
. (H.21)

Taking large enough D to make duplicate tokens negligible, we have

dp

(
f
(FF)
2 ◦ f (SA) ◦ f (FF)

1 , f
)
<
ϵ

3
. (H.22)

Combining estimation of step function (H.15), estimation of quantization (H.21) and estimatation
of duplicate tokens (H.22) together, we get the approximation error of the any-rank Transformer
as

dp

(
f
(FF)
2 ◦ f (SA) ◦ f (FF)

1 , f
)
< ϵ. (H.23)

This completes the proof.

Lastly, we provide the next corollary stating that the required transformer configuration (h, r, s) for
universal approximation.

Corollary H.2.1 (Universal Approximation of Transformers). From Theorem H.2, for any permu-
tation equivariant, continuous function f with compact support and ϵ > 0, a transformer network
f ′ ∈ T 1,1,4

R with MLP dimension (width) r = 4 and = O((1/ϵ)dL) FFN layers is sufficient to
approximate f such that dp(f, f ′) < ϵ.

Remark H.3. We remark that T 1,1,4
R belongs to the considered transformer network function class

Definition 2.2.

We establish in Corollary H.2.1 the minimal transformer configuration required to achieve universal
approximation for compactly supported functions. We remark that this configuration is minimally
sufficient but not necessary. More complex configurations can also achieve transformer universality,
as reported in (Hu et al., 2024; Kajitsuka and Sato, 2024; Yun et al., 2020).
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Throughout this paper, unless otherwise specified, we use the transformer class T 1,1,4
R to construct

score function approximations.

H.2 PARAMETER NORM BOUNDS FOR TRANSFORMER APPROXIMATION

In the analysis of the approximation ability of transformers in (Kajitsuka and Sato, 2024), universal
approximation is ensured by using a sufficiently large granularity D, a sufficiently small δ in f (FF)

1 ,
and an appropriate scaling factor R in f (FF)

2 . Here, we provide a detailed discussion on parameter
bounds for matrices in T h,r,s

R , focusing on the choice of granularity and scaling factor.

Lemma H.4 (Order of Granularity and Scaling Factor). Consider the universal approximation
theorem for transformers in Theorem H.2. The order for the granularity and the scaling factor follows
D = O(ϵ−1/d) and R = O(D), and the parameter δ for the first feed-forward layer in (H.16) follows
δ = o(D−1).

Proof. We investigate the more precise choice of D, R, and δ respectively.

• Bound on Scaling Factor in f (FF)
2 .

First, we need to ensure that R > 0 is large enough such that it maps input Z ∈ (−∞, 1
4D )d×L to

zero.

Because we have Zt,k − Lt,k ≤ − 3
4D , we obtain the desired result from (H.20) by taking

R = O(D) such that three ReLU(·) output zero.

Second, we need to ensure that R > 0 is large enough such that it maps L ∈ G̃ ⊂ ( 3
4D ,∞)d×L to

the corresponding label f(L).

From (H.20), we achieve this by selecting proper R such that

d∑
t=1

L∑
k=1

ReLU [RS − 1]− ReLU [RS] + ReLU [RS + 1]ReLU[−RS] = dL,

where S := Zt,k − Lt,k = O(D−1).

For any S ∈ R, we take R = O(D) such that |RS| ≤ 1.

• Bound on Granularity D.
In (Kajitsuka and Sato, 2024), there are O(D−d|GD|) omitted duplicated input. Clearly, by taking
sufficiently large granularity

∣∣∣GD \ G̃D

∣∣∣ becomes negligible, but here we aim to evaluate the
corresponding order of D.

First, by the extreme value theorem, the continuous function f on [0, 1]d×L here is bounded by
some constant, denoted by B.

Second, the total omitted points are O(Dd(L−1)).

Third, the probability for each point in GD is 1/DdL.

Therefore, the corresponding error is bounded by O(D−d/p). Since we require error to be bounded
ϵ/3, setting D = O(ϵ−p/d) for some constant p > 0 guarantees the result. We provide the detailed
derivations as follows.

We follow (Kajitsuka and Sato, 2024) considering Lipschitz (under p-norm) function class of
continuous sequence-to-sequence. This consideration is practical as realistic input of transformer
blocks are vector embedding in Euclidean space. Let f(·) : [0, 1]d×L → [0, 1]d×L be the target
function and f(·) be the piece-wise constant approximation of regularity D. Recall the p-norm
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difference between two function f(·) and f(·). (H.15) gives

dp(f, f) = (

∫
∥f(x)− f(x)∥pdx)1/p

= O(DdL−d) · (Bp(1/D)dL)1/p

= O(D(dL−d)/p) · O(D−dL/p)

= O(D−d/p).

Here, O(D−d/p) = ϵ implies D = O(ϵ−p/d) for some constant p > 0. For simplicity, we use
D = O(ϵ−1/d) in our analysis without loss of generality.

• Bound on Parameter δ in f (FF)
1 .

In the quantization operation realized by the network, we need to ensure the error within region
(i/D, i/D + δ) does not affect the desired interval (i/D, (i+ 1)/D) for i ∈ [D].

Thus, we need δ = o(1/D).

This completes the proof.

Building upon Lemma H.4, we extend the results to derive explicit parameter bounds for matrices
regarding the transformer-based universal approximation framework. That is, we ensure a more
precise quantification of parameter constraints across the architecture.

Lemma H.5 (Transformer Matrices Bounds). Consider an input sequence Z ∈ [0, 1]d×L. Let f(Z) :
[0, 1]d×L → Rd×L be any permutation equivariant and continuous sequence-to-sequence function
on compact support [0, 1]d×L. For the transformer network f ′ ∈ T r,h,s

R defined in Definition 2.4 to
approximate f within ϵ precision, i.e., dp(f, f ′) < ϵ, the following parameter bounds must hold for
d ≥ 1 and L ≥ 2:

∥WQ∥2 = ∥WK∥2 = O(d · ϵ−(
2dL+1

d ))(logL)
1
2 );

∥WQ∥2,∞ = ∥WK∥2,∞ = O(d
3
2 · ϵ−(

2dL+1
d )(logL)

1
2 );

∥WO∥2 = O
(√

dϵ
1
d

)
; ∥WO∥2,∞ = O

(
ϵ

1
d

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d);

∥W1∥2 = O
(
dϵ−

1
d

)
, ∥W1∥2,∞ = O

(√
dϵ−

1
d

)
;

∥W2∥2 = O
(
dϵ−

1
d

)
; ∥W2∥2,∞ = O

(√
dϵ−

1
d

)
;∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
.

For the case L = 1, the parameter bounds remain valid with the substitution of logL with 1.

Proof. For the self-attention layer, we denote the separatedness of the input tokens by (γmin, γmax, ϵs)
and the separatedness of the output tokens by (γ, δs). Moreover, in (H.16) we denote the parameter
taken in fFF

1 corresponding to the granularity by δf1 .

• Bounds for WQ and WK in f (SA).
From the universal approximation theorem of transformer Theorem H.2, with pi, p′i ∈ Rs and
qi, q

′
i, being any unit vectors in Rd, we construct rank ρ matrix WQ and WK as

WK =

ρ∑
i=1

piq
⊤
i ∈ Rs×d,
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WQ =

ρ∑
i=1

p′iq
′⊤
i ∈ Rs×d,

with the identity p⊤i p
′
i = (|V|+ 1)4dδs/(ϵsγmin). With this, we have the bound for pi, p′i:

∥pi∥ = O

(
|V|2

√
d

δs
ϵsγmin

)
, ∥p′i∥ = O

(
|V|2

√
d

δs
ϵsγmin

)
. (H.24)

Summing over the set of p⊤i p
′
i for i = 1, . . . , ρ, we obtain the bound for rank ρ matrix WQ and

WK

∥WQ∥2 = sup
∥x∥2=1

∥WQx∥2 ≤ CQ = O

(
√
ρ|V|2

√
d

δc
ϵcγmin

)
,

∥WQ∥2,∞ = max
1≤i≤d

∥(WQ)(i,:)∥2 ≤ C2,∞
Q = O

(
ρ|V|2

√
d

δs
ϵsγmin

)
,

∥WK∥2 = sup
∥x∥2=1

∥WKx∥2 ≤ CK = O

(
√
ρ|V|2

√
d

δs
ϵsγmin

)
,

∥WK∥2,∞ = max
1≤i≤d

∥(WK)(i,:)∥2 ≤ C2,∞
K = O

(
ρ|V|2

√
d

δs
ϵsγmin

)
,

where ρ ≤ s and the head size s ≤ d.

After the first step quantization, we obtain vocabulary bounds |V| = O(DdL) and output sequences
with (1/D,

√
d, 1/D) tokenwise separatedness. Also, in Theorem H.2 we take δs = 4 logL so

that f (SA) is a contextual mapping.

Next, by Lemma H.4, we need D = O(ϵ1/(dL)) for Theorem H.2 to hold.

Combining all the components, we have the bounds for WQ and WK

∥WQ∥2, ∥WK∥2 = O
(
dD2dL+1(logL)

1
2

)
= O(dϵ

2dL+1
dL (logL)

1
2 ),

∥WQ∥2,∞, ∥WK∥2,∞ = O
(
d

3
2D2dL+1(logL)

1
2

)
= O(d

3
2 ϵ

2dL+1
dL (logL)

1
2 )

• Bounds for WO and WV in f (SA).
Following the construction of WQ and WK in Theorem H.2, we have the relation for WV and WO

as

WV =

ρ∑
i=1

p′′i q
′′⊤
i ∈ Rs×d,

WO =

ρ∑
i=1

p′′′i p
′′
i
⊤ ∈ Rd×s,

with the identity ∥p′′′i ∥ ≲ ϵs/(4ργmax∥p′′i ∥) from (H.10), and p′′i ∈ Rs is any nonzero vector.

Along with the (γmin = 1/D, γmax =
√
d, ϵs = 1/D) separateness and taking D = O(ϵ1/(dL)),

we have the following bounds for WV and WO:

∥WV ∥2 = sup
∥x∥2=1

∥WV x∥2 ≤ CV = O (
√
ρ) ,
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∥WV ∥2,∞ = max
1≤i≤d

∥(WV )(i,:)∥2 ≤ C2,∞
V = O (ρ) ,

∥WO∥2 = sup
∥x∥2=1

∥WOx∥2 ≤ CO = O
(√
ρ · ρ−1 · γ−1max · ϵs

)
= O

(
d−1ϵ−

1
dL

)
∥WO∥2,∞ = max

1≤i≤s
∥(WO)(i,:)∥2 ≤ C2,∞

O = O
(
ρ · ρ−1 · γ−1max · ϵs

)
= O

(
d−

1
2 ϵ−

1
dL

)
.

Note that we use the fact max ρ = d in the last two lines.

• Bounds for W1 in fFF
1 .

In order to approximate the quantization in Theorem H.2, we set up fFF
1 as in (H.16) where every

entry of W1 in the layer is bounded by O(1/δ). Therefore we have

∥W1∥2,∞ ≤ C2,∞
F1

= O

(√
d

δ

)
, (H.25)

∥W1∥2 ≤ ∥W1∥F ≤ CF1
= O

(
d

δ

)
, (H.26)

where the bound for δ is given from Lemma H.4. We set δ = νD−1 for some ν ∈ (0, 1) such that
we have the bounds O(

√
dϵ1/(dL)) and O(dϵ1/(dL)) respectively.

• Bounds on W2 in fFF.
The bounds for ∥W2∥2, ∥W2∥2,∞ in (H.20) follow the same argument as for W1, with the replace-
ment of the largest element with the scaling factor R. So we have

∥W2∥2,∞ ≤ C2,∞
F2

= O
(√

dR
)
, (H.27)

∥W2∥2 ≤ CF2
= O (dR) . (H.28)

Again, by Lemma H.4, we take R = O(D) = O(ϵ1/(dL)) such that we have the bounds
O(

√
dϵ1/(dL)) and O(dϵ1/(dL)) respectively.

• Bounds on Positional Encoding Matrix E.
For

∥∥E⊤∥∥
2
,
∥∥E⊤∥∥

2,∞, following (Kajitsuka and Sato, 2024), it suffices to set the positional
encoding:

E =

2γmax 4γmax · · · 2Lγmax
...

...
. . .

...
2γmax 4γmax · · · 2Lγmax

 .

Since the ℓ2 norm over every row is identical, it suffices to derive

∥∥E⊤∥∥
2,∞ =

(
L∑

i=1

(2iγmax)
2

) 1
2

=

(
4γ2max

L(L+ 1)(2L+ 1)

6

)2

= O
(
γmaxL

3
2

)
.

Recall that we have the relation γmax =
√
d in the self-attention layer. Therefore, we have the

following bound for encoding matrix E:∥∥E⊤∥∥
2,∞ ≤ CE = O(d1/2L3/2). (H.29)

This completes the proof.
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I PROOF OF THEOREM 3.1

Our proof builds on the local smoothness properties of functions within Hölder spaces and the
universal approximation of transformers. While the universal approximation theory of transformers
in Appendix G ensures arbitrarily small errors, it does not account for the smoothness of functions in
the result. To incorporate the smoothness assumptions of interest, we propose the following three
steps to integrate function smoothness into approximation theory of transformer architectures.

• Step 1. Consider the integral form of pt(xt|y) in (3.1). We clip the input domain Rdx into closed
and bounded region Bx,N in (I.2). This facilitates the error analysis for the Taylor expansion
approximation in the next step. The clipping error arises from the integral over the region outside
Bx,N . We specify the clipping error in Lemma I.1.

• Step 2. We employ k1-order and k2-order Taylor expansion for p(x0|y) and exp(·) in (3.1).
We construct the diffused local polynomial in Lemma I.2 based on the Taylor expansion. We
approximate pt and ∇pt with the diffused local polynomial f1(x, y, t) ∈ R and f2(x, y, t) ∈ Rdx

in Lemma I.3 and Lemma I.4.

• Step 3. We approximate f1(x, y, t), f2(x, y, t) with transformers in Lemmas I.5 and I.6. To
construct the final score approximator with the transformer, we approximate necessary algebraic
operators in Lemmas I.7 to I.11. We provide the output bound of our transformer model in
Lemma I.12. We combine all components into Lemma I.13, and complete the proof of Theorem 3.1.

Organization. Appendix I.1 includes details regarding the three steps with auxiliary lemmas for
supporting our proof. Appendix I.2 includes the main proof of Theorem 3.1.

I.1 AUXILIARY LEMMAS

Step 1: Clip Rdx × [0, 1]dy for pt(x|y). We introduce a helper lemma on the clipping integral.

Lemma I.1 (Approximating Clipped Multi-Index Gaussian Integral, Lemma A.8 of (Fu et al., 2024b)).
Assume Assumption 3.1. Consider any integer vector κ ∈ Zdx

+ with ∥κ∥1 ≤ n. There exists a constant
C(n, dx) ≥ 1, such that for any x ∈ Rdx and 0 < ϵ ≤ 1/e, it holds∫

Rdx\Bx

∣∣∣∣(αtx0 − x

σt

)κ∣∣∣∣ · p(x0|y) · 1

σd
t (2π)

d/2
exp

(
−∥αtx0 − x∥2

2σ2
t

)
dx0 ≤ ϵ, (I.1)

where
(

αtx0−x
σt

)κ
:= ((αtx0[1]1−x[1]

σt
)κ[1], (αtx0[2]−x[2]

σt
)κ[2], . . . , (αtx0[dx]−x[dx]

σt
)κ[dx]) is a multi-

indexed vector and

Bx :=
[x− σtC(n, dx)

√
log (1/ϵ)

αt
,
x+ σtC(n, dx)

√
log (1/ϵ)

αt

]
⋂[

− C(n, dx)
√

log (1/ϵ), C(n, dx)
√
log (1/ϵ)

]dx

.

Remark I.1. Bx is a bounded domain. Lemma I.1 provides the difference between integrals of the
form (I.1) on Rdx and on Bx. The difference becomes arbitrarily small with precision ϵ = 1/N .

Based on Lemma I.1, we have the following considerations:

• For each x ∈ Rdx , consider a bounded domain

Bx,N (I.2)

:=

[
x− σtC(0, dx)

√
β logN

αt
,
x+ σtC(0, dx)

√
β logN

αt

]
︸ ︷︷ ︸

(I)

⋂[
−C(0, dx)

√
β logN,C(0, dx)

√
β logN

]dx

︸ ︷︷ ︸
(II)

,
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where C(0, dx) is some positive constant depending on dx and N . Here, we pick n = 0 for
C(n, dx) to reduce (I.1) to

pt(x|y) =
∫
Rdx\Bx,N

p(x0|y) ·
1

σd
t (2π)

d/2
exp

(
−∥αtx0 − x∥2

2σ2
t

)
dx0 ≤ ϵ = 1/N.

This motivates a polynomial expansion of (3.1) on Bx,N with precision 1/N .

• Uniformly discretize each dimension of Bx,N into N segments. Note that while not necessary, it
is possible to pick a C(0, dx) such that grids in Bx,N are non-overlapping.

• Uniformly discretize each dimension of [0, 1]dy into N segments of length 1/N .

This discretization of domains leads to Ndx+dy hypercubes on bounded domain Bx,N × [0, 1]dy .

Remark I.2. For any x ∈ Rdx , we shorthand (I.2) with

Bx,N =
[
−Cx

√
logN,Cx

√
logN

]dx

, (I.3)

where Cx summarize all factors except
√
logN in all dimensions of x ∈ Rdx . Moreover, when

content is clear, we suppress the notation dependence on dx for (I.3). Namely, we use the notation
Bx,N =

[
−Cx

√
logN,Cx

√
logN

]
and Bx,N =

[
−Cx

√
logN,Cx

√
logN

]dx interchangeably.

Remark I.3. Lemma I.1 ensures that we can approximate the Gaussian integral of any polynomial
function of the form (I.1) on Rdx with the same integral on Bx to an arbitrary precision 0 < ϵ < 1/e.
This motivate us to approximate functions on Rdx with polynomials evaluated at x ∈ Rdx on Bx,N .
A natural choice is through Taylor expansion around x ∈ Rdx , as the Hölder class assumption
guarantees local smoothing behavior for our error analysis.

Step 2: Approximate pt(x|y) and ∇pt(x|y) with Taylor Expansion. We begin with the definition.

Definition I.1 (Normalization of Bx,N ). Consider the clipping in Lemma I.1 and the initial con-
ditional distribution p(x0|y) with closed and bounded support Bx,N × [0, 1]dy . We define RB :=
(2C(0, d)

√
β logN) and x′0 := x0/RB+1/2. Moreover, we defineM(x′0, y) := p(RB(x

′
0−1/2)|y).

Remark I.4. The purpose of Definition I.1 is to simplify the process of discretizing Bx,N × [0, 1]dy

into Ndx+dy hypercubes. In particular, M(x′0, y) has compact support on [0, 1]dx+dy , where RB

denotes the length of each coordinate of Bx,N , and x′0 ∈ [0, 1]dx represents x0 normalized on Bx,N .

Remark I.5. The only difference between M(x′0, y) and p(x0|y) lies in their respective domains,
leading to the difference in the size of the Hölder ball radius. Recall that under Assumption 3.1,
we have p(x0|y) ∈ Hβ(Rdx × [0, 1]dy , B). Here we have M(x′0, y) ∈ H([0, 1]dx+dy , BRk1

B ). This
follows from the fact that p(·|y) is k1-time differentiable so that the radius scale by a factor of Rk1

B .

Lemma I.2 (Diffused Local Polynomial, Modified from (Fu et al., 2024a)). Assume Assumption 3.1.
We write pt(x|y) into the product of p(x0|y) and exp(·):

pt(x|y) =
∫
Rdx

p(x0|y)pt(x|x0)dx0 =

∫
Rdx

1

σdx
t (2π)dx/2

p(x0|y)exp

(
−∥αtx0 − x∥2

2σ2
t

)
dx0.

Then we approximate p(x0|y) and exp
(
−∥αtx0−x∥2

2σ2
t

)
with k1-order Taylor polynomial and k2-order

Taylor polynomial within Bx,N respectively. Altogether, we approximate pt(x|y) with the following
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diffused local polynomial with the bounded domain Bx,N around x in (I.3):

f1(x, y, t) =
∑

v∈[N ]d,w∈[N ]dy

∑
∥nx∥1+∥ny∥1≤k1

R
∥nx∥
B

nx!ny!

∂nx+nyp

∂xnx∂yny

∣∣∣∣∣
x=RB( v

N−
1
2 ),y=

w
N

Φnx,ny,v,w(x, y, t),

(I.4)

where
• ϕ(·) is the trapezoid function.

• g(x, nx, v, k2) := 1
σt

√
2π

∫ (
x0

R + 1
2 − v

N

)nx 1
k2!

(
−|x−σtx

2
0|

2σ2
t

)k2

dx0.

• Φnx,ny,v,w(x, y, t) :=
(
y − w

N

)ny ∏dy

j=1 ϕ
(
3N(y[j]− w

N )
)∏dx

i=1

∑
k2<p g(x[i], nx[i], v[i], k2).

Remark I.6. The form of the diffused local polynomial arises from the Taylor expansion approxi-
mation applied on each grid point within [0, 1]dx+dy , with v ∈ [N ]dx and w ∈ [N ]dy denoting the
specific grid point undergoing approximation.

Remark I.7. The Hölder space assumption in Assumption 3.1 establishes an upper bound on the
error arising from the remainder term in the Taylor expansion. This ensures the approximation
accuracy is well-controlled.

Proof Sketch. We provide the proof overview of Lemma I.2. with the following three steps.

Step A: Clip Rdx × [0, 1]dy .
We clip the domain Rdx × [0, 1]dy into closed and bounded region Bx,N .

Step B: Replace p(x0|y) with k1-order Taylor Polynomials.
We discretize [0, 1]dx+dy into Ndx+dy hypercubes. We apply Taylor expansion to each grid point.
For areas not located on any grid point, we construct a trapezoid function and an indicator function to
control the approximation error.

Step C: Replace exp(·) with k2-order Taylor Polynomials.
We apply Taylor expansion to approximate regions within Bx,N for exp(·). Note that we leverage
the explicit form of the exponential function to achieve accurate approximation without additional
discretization as in previous step.

Step D: Altogether, the Diffused Local Polynomials.
We combine these 4 steps and construct the diffused local polynomial (I.4).

Proof of Lemma I.2. We demonstrate details regarding the three steps.

• Step A: Clip Rdx × [0, 1]dy .
We take κ[i] = 0 for i = [dx] and set ϵ = N−β in Lemma I.1. This gives closed and bounded
domain Bx,N specified in (I.3) and clipping-induced error:∣∣∣∣∣pt(x|y)−

∫
Bx,N

p(x0|y) ·
1

σd
t (2π)

d/2
exp

(
−∥αtx0 − x∥2

2σ2
t

)
dx0

∣∣∣∣∣ ≤ N−β . (I.5)

• Step B: Replace p0(x0|y) with k1-order Taylor Expansion.
We construct a approximator Q(x′0, y) for M(x′0, y) with domain [0, 1]dx+dy .5 At the end of this
step, we reset x′0 = x0/RB + 1/2 in Q(x′0, y) as the final approximator of p(x0|y).

5Recall RB := (2C(0, d)
√
β logN), x′

0 := x0/RB + 1/2, and M(x′
0, y) := p(RB(x

′
0 − 1/2)|y) from

Definition I.1.

64



3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2025

– Step B.1: Discretize [0, 1]dx+dy .
We uniformly discretize [0, 1]dx+dy into grid points [0, 1/N, 2/N, . . . , (N − 1)/N, 1]dx+dy .

– Step B.2: Implement Taylor Expansion.
We construct the k1-order Taylor polynomial Pv,w(x, y) at point (v/N,w/N) for M(x′0, y):

6

Pv,w(x
′
0, y) :=

∑
∥nx∥1+∥ny∥1≤k1

1

nx!ny!

∂nx+nyM

∂xnx∂yny

∣∣∣∣∣
x′
0=

v
N ,y= w

N

(
x′0 −

v

N

)nx
(
y − w

N

)ny

.

(I.6)

For x′0 and y not located on any grid point, we construct an indicator function that ensures
∥x′0 − v/N∥∞ < 1/N and ∥y − w/N∥∞ < 1/N in the next step. For now, we assume these
conditions hold.

To analyze the error, we expand the target function M(x′0, y). By Taylor’s theorem, there exist
θx ∈ [0, 1]dx and θy ∈ [0, 1]dy such that

M(x′0, y) =
∑

∥nx∥1+∥ny∥1<k1

1

nx!ny!
· ∂

nx+nyM

∂x′nx
0 ∂yny

∣∣∣∣∣
x′
0=

v
N ,y= w

N

(
x′0 −

v

N

)nx
(
y − w

N

)ny

+
∑

∥nx∥1+∥ny∥1=k1

1

nx!ny!
· ∂

nx+nyM

∂x′nx
0 ∂yny

∣∣∣∣∣
x′
0=x1,y=y1

(
x′0 −

v

N

)nx
(
y − w

N

)ny

,

where x1 = (1− θx)v/N + θxx
′
0 and y1 = (1− θy)w/N + θyy. This ensures x1 lies between

x′0 and v/N , and y1 lies between y and w/N .

Note that the difference between Pv,w(x
′
0, y) and M(x′0, y) stems from the different value taken

in ∂nx+nyM/(∂x′nx
0 ∂yny ) for all terms in the series with ∥nx∥1 + ∥ny∥1 = k1.

To study the error, let z = (x′0, y) and recall from the definition of Hölder norm (Definition 3.1):

max
α:∥α∥1=k1

sup
z ̸=z′

∣∣∂k1M(z)− ∂k1M(z′)
∣∣

∥z − z′∥γ∞
< ∥M(x′0, y)∥Hβ([0,1]dx+dy ) < Rk1

B B. (I.7)

We rewrite the error as

|Pv,w(x
′
0, y)−M(x′0, y)|

≤
∑

∥nx∥1+∥ny∥1=k1

1

nx!ny!

(
x′0 −

v

N

)nx
(
y − w

N

)ny

∣∣∣∣∣∣∣∣∣∣∣
 ∂nx+nyM

∂x′nx
0 ∂yny

∣∣∣∣∣
x′
0=x1,y=y1

− ∂nx+nyM

∂x′nx
0 ∂yny

∣∣∣∣∣
x′
0=

v
N ,y= w

N


︸ ︷︷ ︸

Apply Hölder Regularity

∣∣∣∣∣∣∣∣∣∣∣
≤

∑
∥nx∥1+∥ny∥1=k1

1

nx!ny!

(
x′0 −

v

N

)nx
(
y − w

N

)ny

∥M(x′0, y)∥Hβ([0,1]dx+dy )︸ ︷︷ ︸
(I.7)

∥∥∥∥[θxx′0, θyy]− 1

N
[θxv, θyw]

∥∥∥∥γ
∞︸ ︷︷ ︸

Controlled by indicator function (I.8)

≤
∑

∥nx∥1+∥ny∥1=k1

BRk1

B

nx!ny!N
∥nx∥1+∥ny∥1+γ

=
BRk1

B (dx + dy)
k1

Nβk1!
.

– B.3: Control Error for the Off-Grid Regions.

6Please see Remarks I.4 and I.5 for details.
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For regions not located on any grid point (v/N,w/N), we construct an indicator function
ψ(x′0, y) to ensure that our Taylor approximation at (v/N,w/N) does not deviate from (x′0, y)
by more than 1/N in ℓ∞ distance.

Specifically, we define

ψv,w(x
′
0, y) := 1

{
x′0 ∈

(
v − 1

N
,
v

N

]} dy∏
j=1

ϕ
(
3N
(
y[j]− w

N

))
, (I.8)

where ϕ(·) is the trapezoid function:

ϕ(τ) =


1, |τ | < 1

2− |τ |, |τ | ∈ [1, 2]

0, |τ | > 2.

Note that, ψv,w is nonzero if and only if x′0 ∈ [(v − 1)/N, v/N ] and y[j] ∈ [(w[j] −
2/3)/N, (w[j] − 2/3)/N)] for j ∈ [dy]. This guarantees ∥x′0 − v/N∥∞ ≤ 1/N and
∥y − w/N∥∞ ≤ 1/N .

– Step B.4: Construct the Final Approximator for p(x0|y).
Combining (I.6) and (I.8), we obtain an approximator of the form:

Q(x′0, y) =
∑
v,w

ψv,w(x, y)Pv,w(x
′
0, y).

Since for all x ∈ (0, 1]dx and y ∈ [0, 1]dy the indicator function ψv,w(x
′
0, y) sums to 1, it holds:

|M(x′0, y)−Q(x′0, y)| ≤
BRk1(dx + dy)

k1

k1!Nβ
. (I.9)

We conclude this step with the approximator Q(x′0, y) = Q(x0/RB + 1/2, y) for p(x0|y).

• Step C: Replace exp(·) with k2-order Taylor Expansion.
Recall that we set Bx,N as

Bx,N =

[
x− σtC(0, dx)

√
β logN

αt
,
x+ σtC(0, dx)

√
β logN

αt

]
⋂[

−C(0, dx)
√
β logN,C(0, dx)

√
β logN

]dx

.

This gives |(x[i]− αtx0[i])/σt| ≤ C(0, dx)
√
β logN for any i ∈ [dx] and x0 ∈ Bx,N .

Furthermore, we have

∥(x− αtx0)/σt∥2 =

dx∑
i=1

|(x[i]− αtx0[i])/σt|2 ≤ dx ·
(
C(0, dx)

√
β logN

)2
. (I.10)

From this fact, we implement the k2-order Taylor expansion to exp
(
−∥(x− αtx0)/σt∥2/2

)
:∣∣∣∣∣∣exp

(
−∥x− αtx0∥2

2σ2
t

)
−
∑
k2<u

1

k2!

(
−∥x− αtx0∥2

2σ2
t

)k2

∣∣∣∣∣∣ (
By Taylor theorem

)
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≤ 1

u!2u

(∥∥∥∥x− αtx0
σt

∥∥∥∥2
)u

=
1

u!2u

(
dx∑
i=1

|(x[i]− αtx0[i])/σt|2
)u

≤ 1

u!2u

(
dx ·

(
C(0, d)

√
β logN

)2)u

.

for all x0 ∈ Bx,N , and u is a positive real number.

Following the choice of u from (Fu et al., 2024b), by utilizing the inequality u! ≥ (u/3)u for
u ≥ 3 and setting

u := max

(
2

3
C2(0, d)β2e logN, β logN + log dx

)
,

we further write the bound as:∣∣∣∣∣∣exp
(
−∥x− αtx0∥2

2σ2
t

)
−
∑
k2<u

1

k2!

(
−∥x− αtx0∥2

2σ2
t

)k2

∣∣∣∣∣∣ ≲ N−β . (I.11)

• Step D: The Diffused Local Polynomial.
Substituting p(x0|y) and exp(·) with their respective approximator in (I.9) and (I.11), we obtain
the following expression:

f1(x, y, t) =
1

σdx
t (2π)

dx
2

∫
Bx,N

Q

(
x0
RB

+
1

2
, y

) ∑
k2<u

1

k2!

(
−∥x− αtx0∥2

2σ2
t

)k2

dx0. (I.12)

We term f1 as diffused local polynomial, following (Fu et al., 2024a).
7Rearranging (I.12), we obtain the form

f1(x, y, t) =
∑

v∈[N ]d,w∈[N ]dy

∑
∥nx∥1+∥ny∥1≤k1

R
∥nx∥
B

nx!ny!

∂nx+nyf

∂xnx∂yny

∣∣∣∣∣
x= v

N ,y= w
N

Φnx,ny,v,w(x, y, t),

(I.13)

where

– g(x, nx, v, k2) :=
1

σt

√
2π

∫ (
x0

R + 1
2 − v

N

)nx 1
k2!

(
−∥x−σtx

2
0∥

2σ2
t

)k2

dx0.

– Φnx,ny,v,w(x, y, t) :=
(
y − w

N

)ny ∏dy

j=1 ϕ
(
3N(y[j]− w

N )
)∏dx

i=1

∑
k2<p g(x[i], nx[i], v[i], k2).

This completes the proof.

We specifies the error from the approximation of pt and ∇pt with f1 and f2 in Lemmas I.3 and I.4.

Lemma I.3 (Approximation of pt(x|y) by Polynomials, Lemma A.4 of (Fu et al., 2024b)). Assume
Assumption 3.1. For any x ∈ Rdx , y ∈ [0, 1]dy , t > 0, and a sufficiently larger N > 0, there exists a

7Further details regarding the derivation are in (Fu et al., 2024b, Appendix A.4).
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diffused local polynomial f1(x, y, t) with at most Ndx+dy (dx + dy)
k1 monomials such that

|f1(x, y, t)− pt(x|y)| ≲ BN−β log
dx+k1

2 N.

Lemma I.4 (Approximation of ∇ log pt(x|y) by Polynomials, Lemma A.6 of (Fu et al., 2024b)).
Assume Assumption 3.1. For any x ∈ Rdx , y ∈ [0, 1]dy , t > 0, and a sufficiently larger N > 0, there
exists f2 := (f2[1], . . . , f2[dx])

⊤ ∈ Rdx with local diffused polynomial f2[i] such that

|f2(x, y, t)[i]− σt∇pt(x|y)[i]| ≲ BN−β log
dx+k1+1

2 N,

where each f2[i] contains at most Ndx+dy (dx + dy)
k1 monomials.

We have finished the approximation of pt and ∇pt with diffused local polynomial f1 and f2.

Step 3. Approximate Diffused Local Polynomials and Algebraic Operators with Transformers.
First, we utilize universal approximation capabilities of transformers to deal with f1, f2 established
in previous step. Second, we employ similar scheme to approximate several algebraic operators
necessary in final score approximation. Lastly, we present the incorporation of these components in
Lemma I.13 with a unified transformer architecture and corresponding parameter configuration.

• Step 3.1: Approximate the Diffused Local Polynomials f1 and f2.
We invoke the universal approximation theorem of transformer (Theorem H.2). We utilize network
consisting of one transformer block and one feed-forward layer (see Figure 1 and Definition 2.2).

Lemma I.5 (Approximate Scalar Polynomials with Transformers). Assume Assumption 3.1.
Consider the diffused local polynomial f1 in Lemma I.3. For any ϵ > 0, there exists a trans-
former Tf1 ∈ T h,s,r

R , such that for any x ∈ [−Cx

√
logN,Cx

√
logN ]dx , y ∈ [0, 1]dy and

t ∈ [N−Cσ , Cα logN ] it holds

|f1(x, y, t)− Tf1(x, y, t)[dx]| ≤ ϵ.

The parameter bounds in the Transformer network class satisfy

∥WQ∥2, ∥WK∥2 = O
(
dϵ−

2dL+4d+1
d (logL)

1
2

)
;

∥WQ∥2,∞, ∥WK∥2,∞ = O
(
d

3
2 ϵ−

2dL+4d+1
d (logL)

1
2

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d);

∥WO∥2 = O
(√

dϵ
1
d

)
; ∥WO∥2,∞ = O

(
ϵ

1
d

)
;

∥W1∥2 = O
(
dϵ−

1
d · logN

)
; ∥W1∥2,∞ = O

(√
dϵ−

1
d · logN

)
;

∥W2∥2 = O
(
dϵ−

1
d

)
; ∥W2∥2,∞ = O

(√
dϵ−

1
d

)
;
∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
.

Proof of Lemma I.5. We first skip the embedded dimension of y and t for the following proof
without loss of generality. We put it back at the end of the derivation, by replacing L with L+ 2.

To implement a sequence-to-sequence model for approximating a function that outputs a scalar,
we define a trivial function for converting the scalar target into a sequence represented by matrices.

To begin with, for x ∈ Rdx and f1 : Rdx → R, we define a trivial function:

F1(x) := (α1f1(x), α2f1(x), . . . , αdx−1f1(x)︸ ︷︷ ︸
(padding dx − 1 elements)

, f1(x))
⊤ ∈ Rdx ,

for any set of non-repeated constants {αi}dx−1
i=1 ∈ R \ {1}.
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By trivial, we mean that F1 transforms f1(x) ∈ R into a vector F1(x) ∈ Rdx where only the last
entry is meaningful.

In order to apply the universal approximation of transformers in Theorem H.2, we show the uniform
continuity of F1 as follows.

– Step A: Uniform Continuity.
For different input x, x′, we start by writing

∥F1(x)− F1(x
′)∥p =

{
|f(x)− f(x′)|p +

dx−1∑
i=1

|αif(x)− αif(x
′)|p
}1/p

=

{
|f(x)− f(x′)|p

(
1 +

dx−1∑
i=1

|αi|p
)}1/p

= η|f(x)− f(x′)|,

where η =
(
1 +

∑dx−1
i=1 |αi|p

)1/p
∈ R+.

Next, we utilize the fact that the diffused local polynomials f1 is continuous on compact support.
That is, for all ϵ > 0, there exists δ > 0 such that for all x and x′, if ∥x− x′∥∞ < δ, then
|f1(x)− f1(x

′)| < ϵ.

From this fact, by taking ϵ = ϵ′/η, we have that for all ϵ′ > 0, there exists δ′ > 0 such that for
all x and x′, if ∥x− x′∥∞ < δ′, then |f1(x)− f1(x

′)| < ϵ′ = ϵη.

This gives ∥F1(x)− F1(x
′)∥p ≤ ϵ′ and therefore we obtain the uniform continuity for F1.

Also, the reshape layer R(·) that converts x ∈ Rdx into sequential input R(x) ∈ Rd×L does not
harm this continuity due to its linearity. Therefore, the map R ◦ F1(x) : Rdx → Rd×L is also
uniformly continuous.

– Step B: Universal Approximation.
We apply Theorem H.2 that guarantees for any ϵf1 > 0, there exists one transformer block and
one feed-forward layer such that∥∥R ◦ F1 − fh,s,r ◦ fFF ◦R

∥∥
p
≤ ϵf1 .

Adding a reverse reshape layer, we have Tf1 = R−1 ◦ fh,s,r ◦ fFF ◦R with ∥F1 − Tf1∥p ≤ ϵf1 .

Next, observe that

|Tf1 [dx]− f1| ≤

{
dx∑
i=1

|Tf1 [i]− αif1|p
}1/p

= ∥Tf1 − F1∥p ≤ ϵf1 , (I.14)

with αdx
= 1. (I.14) completes the proof of the approximation error.

– Step C: Parameter Bounds.
To establish the approximation (I.14), we need the parameter bounds in Lemma H.5 to hold.
This requires transforming the input domain from [−Cx

√
logN,Cx

√
logN ] to normalized

compact support [0, 1] for all dimensions (i.e., x[i] for all i ∈ [dx].)

Recall that (H.25), we have bound for W1:

∥W1∥2,∞ = O
(√

dD
)
= O

(√
dϵ−dL

)
, (I.15)

∥W1∥2 = O (dD) = O
(
dϵ−dL

)
, (I.16)
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that is, the bounds on each element in W1 scales up as the granularity increases. Because
for a fixed precision level, the granularity is proportional to the length of the interval in each
dimension of the input domain, we conclude that ∥W1∥2 = O

(
dϵ−dL logN

)
and ∥W1∥2,∞ =

O
(√

dϵ−dL logN
)

.

The rest of bounds for each operation follows Lemma H.5. Lastly, we incorporate the embedded
dimensions of y and t by replacing L with L+ 2 (see Figure 1).

This completes the proof.

Similarly, we have the corresponding Tf2 ∈ T h,s,r
R for the approximation of f2(x, y, t).

Lemma I.6 (Approximate Vector-Valued Polynomials with Transformers). Assume Assump-
tion 3.1 and consider f2(x, y, t) ∈ Rdx with every entry f2[1], . . . , f2[dx] is a local diffused
polynomial defined in Lemma I.2. For any ϵ > 0, there exists a transformer Tf2 ∈ T h,s,r

R such that

∥f2(x, y, t)− Tf2∥∞ ≤ ϵ,

for any x ∈ [−Cx

√
logN,Cx

√
logN ]dx , y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN ]. The parameter

bounds in the transformer network class follows Lemma I.5.

Proof of Lemma I.6. Since each entry of the diffused local polynomials in f2 is continuous on
compact support, f2 ∈ Rdx is uniformly continuous by the same argument as in the proof of
Lemma I.5.

Similarly, by Theorem H.2, for any ϵf2 > 0, there exists a transformer block and a feed-forward
layer such that

∥∥R ◦ f2 − fh,s,r ◦ fFF ◦R
∥∥
p
≤ ϵf2.

By adding the reversed reshape layer, we obtain Tf2 ∈ T h,s,r
R , satisfying ∥f2 − Tf2∥p ≤ ϵf2.

Then we have,

|Tf2 [j]− f2[j]| ≤


dx∑
j=1

|Tf2 [j]− f2[j]|p


1/p

≤ ϵf2

for all j = 1, . . . , dx. Thus the result with ℓ∞ bound also holds.

The network configuration follows the argument as in the proof of Lemma I.5.

This completes the proof.

So far, we have obtained approximation results for f1 and f2. To complete the full approximation
of the score decomposition ∇ log p = ∇p

p , we still need to approximate several key algebraic
operators, including the product (Lemma I.8), inverse (Lemma I.9)...etc.

We establish their approximations as follows.

• Step 3.2: Approximate Algebraic Operators with Transformers.
We give transformer approximation theory for the clipping operator, the inverse operator, the
product operator, and functions that evolve with time t:

– Clipping operation (Lemma I.7)

– Product operation (Lemma I.8)

– Inverse operation (Lemma I.9)

– Mean αt = exp(−t/2) (Lemma I.10)
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– Standard deviation σt =
√
1− e−t (Lemma I.11)

The approximations for these operators are common with the network structure consisting of ReLU
activation function and fully connected feed-forward layers, such as the product approximation by
Schmidt-Hieber (2020) and the inverse approximation by Telgarsky (2017).

In their works, the general network structure is as follows.

Definition I.2. A family of fully-connected neural networks with length L, width W , sparsity
constraint S, and norm constraint B is defined as:

Φ(L,W, S,B) := A(L)ReLU(·) + b(L) ◦ · · · ◦A(1)x+ b(1),

where A(i) and b(i) represent the matrix operator and bias in the i-th layer. Specifically:
– Length: L ∈ R denotes the number of hidden layers plus one.

– Width: W ∈ NL+1 is a vector representing the output dimension of each layer.

– Sparsity Constraint:
∑L

i=1 ∥A(i)∥0,0 + ∥b(i)∥0 ≤ S specifies the maximum number of non-zero
terms.

– Norm Constraint: max
1≤i≤L

∥A(i)∥∞,∞ ∨∥b(i)∥∞ ≤ B specifies the upper bound on the parameter
norms.

Here ∨ denotes the maximum of two values.

Remark I.8 (Generalization ReLU Networks with Transformers). Transformers are more general
network class that encompasses ReLU-based networks defined in Definition I.2. By setting all self-
attention layers in the transformer to identity maps, we recover the ReLU feed-forward network
structure. Therefore, our work on approximating with transformers extends previous works Fu
et al. (2024b); Oko et al. (2023) by incorporating the flexibility of self-attention mechanisms.

The following lemma provides a network that executes the clipping operation.

Lemma I.7 (Clipping Operation, Lemma F.4 of (Oko et al., 2023)). For any a, b ∈ Rd with
a[i] ≤ b[i] for all i ∈ [d], there exist a neural network ϕclip(x; a, b) ∈ Φ(L,W, S,B) such that for
all i ∈ [d], it holds

ϕclip(x; a, b)[i] = min(b[i],max(x[i], a[i])),

with

L = 2, W = (d, 2d, d)⊤, S = 7d, B = max
1≤i≤d

max(|a[i]|, b[i]). (I.17)

Moreover, suppose a[i] = c and b[i] = C for all i ∈ [d] with c and C being some constant,
ϕclip(x; a, b) is denoted as ϕclip(x; c, C).

Proof. It suffices to show the result for i-th coordinate, and implement the parallelization to
complete the proof that holds for the entire vector ϕclip(x; a, b).8 The clipping operation yields the
middle among a[i], b[i] and the input x[i]. Following (Oko et al., 2023), we achieve the task by
setting:

min (b[i],max(x[i], a[i])) = ReLU(x[i]− a[i])− ReLU(x[i]− b[i]) + a[i].

Note that the RHS is realized by the network with one hidden layer:

(1,−1)ReLU

(
(1, 1)x[i] +

(
−a[i]
−b[i]

))
+ a[i],

8For a more detailed description regarding parallelization please see Appendix F of (Oko et al., 2023).
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with 7 non-zero parameters, and the scale of parameter is max(|a[i]|, b[i]). So there exists
ϕclip(x[i]; a[i], b[i]) ∈ Φ(2, (1, 2, 1)⊤, 7,max(|a[i]|, b[i])) executing the clipping operation. Then
the proof is complete by the parallelization for all the components i = 1, . . . , d.

This completes the proof.

Next, we deal with the approximation of products with Transformer.

Lemma I.8 (Approximation of the Product Operator with Transformer.). Let m ≥ 2 and C ≥ 1.
For any 0 < ϵmult < 1, there exists Tmult(·) ∈ T h,s,r

R such that for all x ∈ [−C,C]m, x′ ∈ Rm

with ∥x− x′∥∞ ≤ ϵerror, it holds∣∣∣∣∣Tmult(x
′)−

m∏
i=1

xi

∣∣∣∣∣ ≤ ϵmult +mCm−1ϵerror.

The parameter bounds in the transformer network class T h,s,r
R satisfy

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
ϵ
−(2m+1)
mult (logm)

1
2

)
;

∥WO∥2, ∥WO∥2,∞ = O (ϵmmult) ; ∥WV ∥2, ∥WV ∥2,∞ = O(1);

∥W1∥2, ∥W1∥2,∞ = O
(
Cϵ−mmult

)
; ∥W2∥2, ∥W2∥2,∞ = O

(
ϵ−mmult

)
.

Proof. We build our proof on (Oko et al., 2023, Lemma F.6).

Unlike approximation for input x ∈ [−Cx

√
logN,Cx

√
logN ]dx in Lemma I.5, the input dimen-

sion for the product operator is sufficiently smaller so that we skip the reshape layer by setting R
and R−1 as identity map.

Next, let f(x) =
∏m

i=1 x[i], and define a trivial function F (·) : Rm → R1×m as

F (x) := (α1f(x), α2f(x), . . . , αm−1f(x)︸ ︷︷ ︸
(padding m− 1 elements)

, f(x)) ∈ R1×m.

The idea of padding a scalar into a row vector again stems from the purpose of utilizing sequence-
to-sequence model to approximate functions that output a scalar.

By the same argument as in the proof of Lemma I.5, the uniform continuity of f guarantees the
uniform continuity of F with respect to the Lp norm.

By Theorem H.2 , for any ϵ > 0, there exist Tmult ∈ T h,s,r
R with R,R−1 being identity map such

that

∥Tmult − F∥p ≤ ϵ.

Clearly, |Tmult[m]− F [m]| ≤ ∥Tmult − F∥p ≤ ϵ.

To extend the input to x′ ∈ Rm with ∥x− x′∥ ≤ ϵerror, we adopt Lemma I.7 and write∣∣∣∣∣CmTmult(ϕclip(x
′;−C,C)/C)−

m∏
i=1

x[i]

∣∣∣∣∣
≤

∣∣∣∣∣CmTmult(ϕclip(x
′;−C,C)/C)−

m∏
i=1

min(C,max(x′[i]],−C))

∣∣∣∣∣+
∣∣∣∣∣
m∏
i=1

min(C,max(x′[i],−C))−
m∏
i=1

x[i]

∣∣∣∣∣
≤ CmC−mϵ+ Cm−1

m∑
i=1

|x[i]− min(C,max(x′[i]],−C))|

= ϵ+mCm−1ϵerror.
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Further details regarding the product approximation are in Appendix F.2 of (Oko et al., 2023).

For the parameter bounds, following the same argument in the proof of Lemma I.5, it suffices to
take O(Cϵ−1) for W1. The rest of bounds for each operation follows Lemma H.5 with d = 1 and
L = m.

This completes the proof.

Next, we introduce the next lemma to approximate the inverse operator.

Lemma I.9 (Approximation of the Reciprocal Function with Transformer.). For any 0 < ϵrec < 1

there exists a Trec(·) ∈ T h,s,r
R such that for all x ∈ [ϵrec, ϵ

−1
rec ] and x′ ∈ R. It holds that∣∣∣∣Trec(x

′)− 1

x

∣∣∣∣ ≤ ϵrec +
|x− x′|
ϵ2rec

.

The parameter bounds in the Transformer network class satisfy

∥WQ∥2, ∥WQ∥2,∞, ∥WK∥2, ∥WK∥2,∞ = O
(
ϵ−3rec

)
;

∥WO∥2, ∥WO∥2,∞ = O (ϵrec) ; ∥WV ∥2, ∥WV ∥2,∞ = O(1);

∥W1∥2, ∥W1∥2,∞ = O
(
ϵ−2rec

)
; ∥W2∥2, ∥W2∥2,∞ = O

(
ϵ−1rec

)
.

Proof. We build our proof on (Oko et al., 2023, Lemma F.7). For any ϵrec ∈ (0, 1), since 1/x is
continuous on x ∈ [ϵrec, ϵ

−1
rec ], by Theorem H.2, there exist a transformer Trec ∈ T h,s,r

R such that∣∣∣∣Trec −
1

x

∣∣∣∣ ≤ ϵrec.

Extending to network with input x′ ∈ R, the sensitivity analysis follows:∣∣∣∣Trec(x
′)− 1

x

∣∣∣∣ ≤ ∣∣∣∣Trec(x
′)− 1

max(x′, ϵ)

∣∣∣∣+ ∣∣∣∣ 1x − 1

max(x′, ϵ)

∣∣∣∣.
This yields the result.

For the parameter bounds, by the same discussion in the proof of Lemma I.8, we scale W1 up by
ϵrec such that the quantization in (H.16) works on normalized [0, 1]. The rest of the bounds follow
Lemma H.5.

This completes the proof.

Next, we state approximation results using Transformer for αt and σt. From (G.2) we have
αt = exp(−t/2) and σt =

√
1− α2

t .

Lemma I.10 (Approximation of αt = exp(−t/2) with Transformer.). For any ϵα ∈ (0, 1), there
exists Transformer Tα(t) ∈ T h,s,r

R such that for all t ≥ 0, we have

|Tα(t)− αt| ≤ ϵα.

The parameter bounds in the Transformer network class satisfy

∥WQ∥2, ∥WQ∥2,∞, ∥WK∥2, ∥WK∥2,∞ = O
(
ϵ−3α

)
;

∥WO∥2, ∥WO∥2,∞ = O
(
ϵ−1α

)
; ∥WV ∥2, ∥WV ∥2,∞ = O(1);

∥W1∥2, ∥W1∥2,∞ = O
(
(log ϵ−1α )ϵ−1α

)
; ∥W2∥2, ∥W2∥2,∞ = O

(
ϵ−1α

)
.

Proof. We build our proof on (Fu et al., 2024b, Lemma F.8). The proof consists of four steps.
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– Step A: Approximate exp(·) with Taylor polynomial for t ∈ [0, T ].
By Taylor theorem, there exist some θ ∈ [0, T ] such that

exp

(
− t

2

)
=

s−1∑
i=0

(−1)i

i!

(
t

2

)i

+
(−1)s

s!

(
θ

2

)s

exp

(
−θ
2

)
.

We further bound the error from the remainder by∣∣∣∣∣exp
(
− t

2

)
−

s−1∑
i=0

(−1)i

i!

(
t

2

)i
∣∣∣∣∣ ≤ T s

2ss!
, (I.18)

with T and s to be chosen later.

– Step B: Approximate Taylor polynomial with transformer for t ∈ [0, T ].
We take t as a sequence with length 1 and one-dimensional token.

For t ∈ [0, T ], Taylor polynomial is a continuous function with compact support.

Therefore, by Theorem H.2. for any ϵ there exist a transformer T ′α ∈ T h,s,r
R such that∣∣∣∣∣T ′α −

s−1∑
i=1

(−1)i

i!

(
t

2

)i
∣∣∣∣∣ ≤ ϵ. (I.19)

– Step C: Extend the two approximation results from Step 1. and Step 2. to t > T .
We define Tα as

(i) Tα(t) = T ′α(t) for t ∈ [0, T ].

(ii)Tα(t) = T ′α(T ) for t ≥ T .

Next, we bound the error for t > T by∣∣∣∣exp(− t

2

)
− Tα(t)

∣∣∣∣ ≤ ∣∣∣∣exp(−T2
)
− exp

(
− t

2

)∣∣∣∣+ ∣∣∣∣Tα(t)− exp

(
−T

2

)∣∣∣∣. (I.20)

– Step D: Select T , s and transformer approximation error such that the result holds for all
t ≥ 0.
For any ϵα > 0, we ensure |Tα − exp(−t/2)| ≤ ϵα holds for all t ≥ 0.

To achieve this, apply Stirling formula to (I.18) and set s = eT , T = 2 log 3ϵ−1α , we have∣∣∣∣∣e− t
2 −

s−1∑
i=0

(−1)i

i!

(
t

2

)i
∣∣∣∣∣ ≤

(
1

2

)eT

=
(ϵα
3

) 2e
log2 e ≤ ϵα

3
.

Next we set the transformer error ϵ = ϵα/3. Combining (I.18) and (I.19), for t ∈ [0, T ] we
obtain ∣∣∣∣Tt − exp

(
− t

2

)∣∣∣∣ ≤ 2

3
ϵα.

Furthermore, since exp(−T/2) = ϵα/3, (I.20) becomes∣∣∣∣exp(− t

2

)
− Tα(t)

∣∣∣∣ ≤ ϵα
3

+
2ϵα
3

= ϵα.
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For the parameter bounds, by the same argument as in the proof of Lemma I.5, we normalize
the domain from [0, T ] to [0, 1] for the quantization, and then the rest of the step follows
Theorem H.2.

This results in parameter bound O(log ϵ−1α ϵ
− 1

d
α ) for ∥W1∥2 and ∥W1∥2,∞, and the rest of the

bounds follow the result in Lemma H.5 with d = 1 and L = 1.

This completes the proof.

Lemma I.11 (Approximation of σt =
√
1− e−t with transformer). For any σσ ∈ (0, 1), there

exists a transformer Tσ(t) ∈ T h,s,r
R such that for any t ∈ [t0, T ] with t0 < 1 we have

|Tσ(t)− σt| ≤ ϵσ.

The parameter bounds in the transformer network class satisfy

∥WQ∥2, ∥WQ∥2,∞, ∥WK∥2, ∥WK∥2,∞ = O
(
ϵ−3σ

)
;

∥WO∥2, ∥WO∥2,∞ = O (ϵσ) ; ∥WV ∥2, ∥WV ∥2,∞ = O(1);

∥W1∥2 = O
(
Tϵ−1σ

)
; ∥W1∥2,∞ = O

(
Tϵ−1σ

)
;

∥W2∥2 = O
(
ϵ−1σ

)
; ∥W2∥2,∞ = O

(
ϵ−1σ

)
.

Proof. We follow the proof structure of (Fu et al., 2024b, Lemma F.10).

Since f(t) =
√
1− e−t with t ∈ [t0, T ] is a continuous on compact domain. The first part of the

proof is complete by applying Theorem H.2.

For the parameter bounds, we take O(Tϵ−1σ ) for ∥W1∥2 and ∥W1∥2∞ in the first feed-forward
layer. This follows from the argument in the proof of Lemma I.5.

The rest of the bounds follow Lemma H.5 with d = 1 and L = 1

This completes the proof.

We have finished the approximation of every key component for the proof of Theorem 3.1. We
now proceed to the detailed assembly and integration of these components to finalize the proof.

• Step 3.3: Unified Transformer-Based Score Function Approximation.
First, we establish a theoretical upper bound for transformer model output by analyzing the upper
bound of the score function in ℓ∞ distance under Assumption 3.1 as follows.

– Bound on pt(x|y):
Recall that the conditional distribution at time t has the form:

pt(x|y) =
1

σd
t (2π)

d
2

∫
p(x0|y) exp

(
−∥x− αtx0∥2

2σ2
t

)
dx0.

dk Applying the light tail property in Assumption 3.1, the upper bound follows:

pt(x|y) ≤
C1

σd
t (2π)

d
2

∫
exp

(
−C2∥x0∥2

2

)
exp

(
−∥x− αtx0∥2

2σ2
t

)
dx0. (I.21)

On the other hand, the lower bound follows:

pt(x|y) ≥
1

σd
t (2π)

d
2

∫
∥x0∥≤1

p(x0|y) exp

(
−∥x− αtx0∥2

2σ2
t

)
dx0. (I.22)
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– Bound on ∇pt(x|y): The first element of the gradient has the form:

|(∇pt)[1]| =
1

σ2
t (2π)

d
2

·

∣∣∣∣∣
∫ (

x[1]− αtx0[1]

σ2
t

)
p(x0|y) exp

(
−∥x− αtx0∥2

2σ2
t

)
dx0

∣∣∣∣∣. (I.23)

The ℓ∞ bound on ∇pt follows by applying light tail property to each coordinate as in (I.21).

Combining (I.21), (I.22) and (I.23), we provide the ℓ∞ bounds on the score.

Lemma I.12 (Bounds on Score, Lemma A.10 of (Fu et al., 2024b)). Assume Assumption 3.1.
There exists a constant K such that

∥∇ log pt(x|y)∥∞ ≤ K

σ2
t

(∥x∥+ 1).

Further details regarding the derivation are in Appendix A.7 of (Fu et al., 2024b).

Next lemma incorporates previous approximation results into an unified transformer architecture.

Lemma I.13 (Approximation Score Function with Transformer on Supported Domain). As-
sume Assumption 3.1. Consider t ∈ [N−Cσ , Cα logN ], for constant Cσ, Cα, and (x, y) ∈
−[Cx

√
logN,Cx

√
logN ]dx × [0, 1]dy , where N ∈ N and Cx depends on d, β,B,C1, C2. There

exist a transformer network Tscore(x, y, t) ∈ T h,s,r
R such that

pt(x|y)∥∇ log pt(x|y)− Tscore(x, y, t)∥∞ ≲
B

σ2
t

N−β(logN)
dx+k1+1

2 .

The parameter bounds in the Transformer network class satisfy

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (7β+6Cσ)

)
;

∥WO∥2, ∥WO∥2,∞ = O
(
N−(3β+6Cσ)(logN)3(dx+β)

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d);

∥∥E⊤∥∥
2,∞ = O

(
d

1
2L

3
2

)
;

∥W1∥2, ∥W1∥2,∞ = O
(
N (2β+4Cσ)

)
;CT = O

(√
logN/σ2

t

)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N (3β+2Cσ)

)
.

Proof of Lemma I.13. Our poof follows the structure of Fu et al. (2024b, Proposition A.3).

Recall that from Lemma I.12, we have ∥∇ log pt(x|y)∥∞ ≤ K(Cx

√
dx logN + 1)/σ2

t , along
with the diffused local polynomial f1 and f2, we define first-step score approximator f3(x, y, t) as

f3(x, y, t) = min

(
f2

σtf1,clip
,
K

σ2
t

(Cx

√
dx logN + 1)

)
,

where we set f1,clip = {f1, ϵlow} to prevent score from blowing up and we set ϵlow later.

We proceed with the following three steps:

– Step A. Approximate Score Function with f3.
Without loss of generality, we first derive error bound on the difference between the first
component in f3 and the score.

|(∇ log pt)[1]− f3[1]| ≤
∣∣∣∣(∇ log pt)[1]−

f2[1]

σtf1,clip

∣∣∣∣
≤
∣∣∣∣ (∇pt)[1]pt

− (∇pt)[1]]
f1,clip

∣∣∣∣+ ∣∣∣∣ (∇pt)[1]f1,clip
− f2[1]

σtf1,clip

∣∣∣∣.
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From Lemma I.12, the bound on the score implies (∇pt)[1] ≤ K(
√
dx logN + 1)pt/σ

2
t .

Therefore,

|(∇ log pt)[1]− f3[1]|

≤ K

σ2
t

(
√
d logN + 1)pt

∣∣∣∣ 1pt − 1

f1,clip

∣∣∣∣+ 1

f1,clip

∣∣∣∣ (∇σtpt)[1]− f2[1]

σt

∣∣∣∣
≲

1

f1,clip

(
1

σ2
t

√
logN |pt − f1,clip|+

(∇σtpt)[1]− f2[1]

σt

)
.

(
By dropping Constant Terms

)
From Lemma I.5, we have

|f1 − pt| ≤ BN−β log
dx+k1

2 N.

We set ϵlow = C3N
−β log(dx+k1)/2N ≤ pt such that f1 ≥ pt/2 by the choice of constant C3.

We further write

|(∇ log pt)[1]− f3[1]|

≲
1

pt

(
1

σ2
t

√
logN |pt − f1,clip|+

(∇σtpt)[1]− f2[1]

σt

) (
By the choice of ϵlow

)
≲

B

σ2
t pt

N−β(logN)
dx+k1+1

2 .
(
By Lemma I.3 and Lemma I.4

)
By the symmetry of each coordinate, the infinity bound for the score holds as well:

∥∇ log pt − f3∥∞ ≲
B

σ2
t pt

N−β(logN)
dx+k1+1

2 . (I.24)

– Step B: Approximate f3 with Transformer Tscore.
In this step, we utilize transformers to approximate f3 to an accuracy of order N−β such that it
aligns with the error order in (I.24).

Since f3 is the minimum between two components, we approximate each of them as follows.

* Step B.1: Approximate 1
σt

· f2
f1,clip

.

First, we utilize Tf1 , Tf2 and Tσ,1 in Lemma I.5, Lemma I.6, and Lemma I.11 for f1, f2, and
σt respectively. This gives error ϵf1 , ϵf2 and ϵσ,1, and we address the clipping of f1 in later
paragraph.

Next, We utilize Trec,1 and Trec,2 in Lemma I.9 for the approximation of the inverse of f1 and
σt.

This gives error ∣∣∣∣Trec,1 −
1

f1

∣∣∣∣ ≤ ϵrec,1 +
|Tf1 − f1|
ϵ2rec,1

≤ ϵrec,1 +
ϵf1
ϵ2rec,1

,

and ∣∣∣∣Trec,2 −
1

σt

∣∣∣∣ ≤ ϵrec,2 +
|Tσ,1 − σt|
ϵ2rec,2

≤ ϵrec,2 +
ϵσ,1
ϵ2rec,2

.

Note that all the approximation error propagates to the next approximation.

Next, we utilize Tmult,1 in Lemma I.8 for the approximation of the product of f−11 , f2 and
σ−1t .
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This gives error of∣∣∣∣Tmult,1 −
f2
σtf1

∣∣∣∣ ≤ ϵmult,1 + 3K2
2 max

(
ϵrec,1 +

ϵf1
ϵ2rec,1

, ϵf2 , ϵrec,2 +
ϵσ,1
ϵ2rec,2

)
︸ ︷︷ ︸

:=ϵ1

= ϵmult,1 + 3K2
2ϵ1,

and K2 is a positive constant. From Lemma I.8 we require that [−K2,K2] covers the domain
for all of f−11 , f2 and f−1σ .

To be more specific, we reiterate three facts that determines the choice of K2.

· Recall that in the Step A., we set f1,clip = {f1, ϵlow}.

· Lemma I.12 states K(Cx

√
dx logN + 1)/σ2

t is the ℓ∞ bound on the score.

· The maximum value of σ−1t happens at t = t0.

As a result, we set K2 as

K2 = max

(
1

ϵlow
,
K

σt0
(Cx

√
dx logN + 1),

1

σt0

)
.

By the earlier choice of ϵlow, we have ϵ−1low = O(Nβ logN−(dx+k1)/2), and next we expand
σt0 .

σt0 =
√

1− exp(N−Cσ ) = 1−
(
1−O(N−Cσ )

)
.

Therefore we have σ−1t0 = O(NCσ ). Putting all together, we have

K2 = O
(
Nβ+Cσ log−

dx+β
2 N

)
, (I.25)

where we use k1 ≤ β.

* Step B.2 : Approximate K(Cx

√
dx logN + 1)/σ2

t .
We invoke Tσ,2 in Lemma I.11 for the approximation of σt, and this gives error ϵσ,2.

Next, we utilize Trec,3 in Lemma I.8 for the approximation of the inverse of σt.

This gives error ∣∣∣∣Trec,3 −
1

σt

∣∣∣∣ ≤ ϵrec,3 +
|Tσ,3 − σt|
ϵ2rec,3

≤ ϵrec,3 +
ϵσ,2
ϵ2rec,3

.

Next, we utilize Tmult,2 for the approximation of the square of σ−1t .

This gives error of ∣∣∣∣∣Tmult,2 −
(

1

σt

)2
∣∣∣∣∣ ≤ ϵmult,2 + 2K1

(
ϵrec,3 +

ϵσ,2
ϵ2rec,3

)
,

and K1 is constant to be chosen such that σt ∈ [−K1,K1].

With the same argument for K2, it suffices to take O(σ−1t ):

K1 = O
(
NCσ

)
. (I.26)
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* Step B.3: Error Bound on Every Approximation Combined.
Combining Step B.1 and Step B.2, the total error is bounded by

ϵscore ≤ max

(
ϵmult,2 + 2K1

(
ϵrec,3 +

ϵσ,2
ϵ2rec,3

)
, ϵmult,1 + 3K2

2ϵ1

)
.

The goal is to guarantee the final error ϵscore ≤ N−β such that it matches the order of the
approximation error in Step A. We list all the error choice to achieve the goal.9

· For the Error of the First Two Inverse Operators:

ϵrec,1, ϵrec,2 = O
(
N−(3β+2Cσ)(logN)(dx+β)

)
.

· For the Error of the Last Inverse Operator:

ϵrec,3 = O
(
N−(β+2Cσ)

)
.

· For the Error of f1:

ϵf1 = O
(
N−(9β+6Cσ)(logN)3(dx+β)

)
.

· For the Error of f2:

ϵf2 = O
(
N−(3β+2Cσ)(logN)(dx+β)

)
.

· For the Error of the First Variance:

ϵσ,1 = O
(
N−(9β+6Cσ)(logN)3(dx+β)

)
.

· For the Error of the Second Variance:

ϵσ,2 = O
(
N−(7β+5Cσ)(logN)2(dx+β)

)
.

· For the Error of the Two Product Operators:

ϵmult,1, ϵmult,2 = O(N−β).

The above error choice renders ϵscore ≤ N−β .

Therefore we conclude that there exist a transformer Tscore ∈ T h,s,r
R such that

∥Tscore(x, y, t)− f3(x, y, t)∥∞ ≤ N−β . (I.27)

Combining (I.24) and (I.27) we obtain

∥∇ log pt − Tscore(x, y, t)∥∞ ≲
1

pt

B

σ2
t

N−β(logN)
dx+k1+1

2 .

9Further details regarding the choice of each one of ϵ are in Appendix F.4 of (Fu et al., 2024b).
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We have completed the first part of the proof. We next give the norm bounds for the transformer
parameters. Specifically, we select the parameter bounds that are consistent across all operations.
including Lemma I.5, Lemma I.6, Lemma I.8, Lemma I.9 and Lemma I.11.

– Step C: Transformer Parameter Bound.
Our result highlights the influence of N under varying dx. Therefore, for the transformer
parameter bounds, we keep terms with dx, d, L appearing in the exponent of N and logN .

Note that the following parameter selection is based on high-dimensional case where logN term
dominates N term.

* Parameter Bound on WQ and WK .
Given error ϵ, the bound on each operation follows:

· For ϵf1 : By Lemma I.5, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (9β+6Cσ)· 2dL+4d+1

d · (logN)−3(dx+β)· 2dL+4d+1
d

)
.

· For ϵf2 : By Lemma I.6, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (3β+2Cσ)· 2dL+4d+1

d · (logN)−(dx+β)· 2dL+4d+1
d

)
.

· For ϵmult,1: By Lemma I.8 with m = 3, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N7β

)
.

· For ϵmult,2: By Lemma I.8 with m = 2, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N5β

)
.

· For ϵrec,1, ϵrec,2: By Lemma I.9, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (9β+6Cσ)(logN)−3(dx+β)

)
.

· For ϵrec,3: By Lemma I.9, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (3β+6Cσ)

)
.

· For ϵσ1
: By Lemma I.11, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WQ∥2,∞ = O
(
N (27β+18Cσ)(logN)−9(dx+β)

)
.

· For ϵσ2 : By Lemma I.11, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WQ∥2,∞ = O
(
N (21β+15Cσ)(logN)−6(dx+β)

)
.

We select the largest parameter bound from ϵmult,1 and ϵrec,3 that remains valid across all other
approximations. That is, we take N (7β+6Cσ ) as the upper-bound.

* Parameter Bound on WO and WV .
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Given error ϵ, the bound on each operation follows:

· For ϵf1 : By Lemma I.5, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−

(9β+6Cσ)
d (logN)

3(dx+β)
d

)
.

· For ϵf2 : By Lemma I.6, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−

(3β+2Cσ)
d (logN)

(dx+β)
d

)
.

· For ϵmult,1: By Lemma I.8 with m = 3, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−3β

)
.

· For ϵmult,2: By Lemma I.8 with m = 2, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−2β

)
.

· For ϵrec,1, ϵrec,2: By Lemma I.9, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(3β+Cσ)(logN)dx+β

)
.

· For ϵrec,3: By Lemma I.9, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(β+2Cσ)

)
.

· For ϵσ1
: By Lemma I.11, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(9β+6Cσ)(logN)3(dx+β)

)
.

· For ϵσ2
: By Lemma I.11, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(7β+5Cσ)(logN)2(dx+β)

)
.

Note that only ϵf1 and ϵf2 involve the reshape operation. From Lemma H.5, we take
O(

√
d) and O(d) ∥WV ∥2 and ∥WV ∥2,∞. Moreover, We select the largest parameter bound

from ϵrec,1 and ϵσ1
that remains valid across all other approximations. That is, we take

N−(3β+6Cσ)(logN)3(dx+β) as the upper-bound.

* Parameter Bound on W1.
Given error ϵ, the bound on each operation follows:

· For ϵf1 : By Lemma I.5, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N

(9β+6Cσ)
d (logN)−

3(dx+β)
d · (logN)

)
.

· For ϵf2 : By Lemma I.6, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N

(3β+2Cσ)
d (logN)−

(dx+β)
d · (logN)

)
.
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· For ϵmult,1: By Lemma I.8 with m = 3 and C = K2 in (I.25), we have

∥W1∥2, ∥W1∥2,∞ = O
(
K2 ·N3β

)
= O

(
N (4β+Cσ)(logN)−

1
2 (dx+β)

)
.

· For ϵmult,2: By Lemma I.8 with m = 2 and C = K1 in (I.26), we have

∥W1∥2, ∥W1∥2,∞ = O
(
K1 ·N2β

)
= O

(
N (2β+Cσ)

)
.

· For ϵrec,1 , ϵrec,2: By Lemma I.9, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (6β+4Cσ)(logN)−2(dx+β)

)
.

· For ϵrec,3: By Lemma I.9, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (2β+4Cσ)

)
.

· For ϵσ1
: By Lemma I.11, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (9β+6Cσ)(logN)−3(dx+β) · logN

)
.

· For ϵσ2 : By Lemma I.11, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (7β+5Cσ)(logN)−2(dx+β) · logN

)
.

We select the largest parameter bound from ϵrec,3 that remains valid across all other approxi-
mations. That is, we take N (2β+4Cσ) as the upper-bound.

* Parameter Bound for W2.
Given error ϵ, the bound on each operation follows:

· For ϵf1 : By Lemma I.5, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N

(9β+6Cσ)
d (logN)−3

(dx+β)
d

)
.

· For ϵf2 : By Lemma I.6, we have For ϵf1 : By Lemma I.5, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N

(3β+2Cσ)
d (logN)−

(dx+β)
d

)
.

· For ϵmult,1: By Lemma I.8 with m = 3, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N3β

)
.

· For ϵmult,2: By Lemma I.8 with m = 2, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N2β

)
.
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· For ϵrec,1, ϵrec,2: By Lemma I.9, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (3β+2Cσ)(logN)−(dx+β)

)
.

· For ϵrec,3: By Lemma I.9, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (β+2Cσ)

)
.

· For ϵσ1 : By Lemma I.11, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (9β+6Cσ)(logN)−3(dx+β)

)
.

· For ϵσ2
: By Lemma I.11, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (7β+5Cσ)(logN)−2(dx+β)

)
.

We select the largest parameter bound from ϵmult,1 and ϵrec,3 that remains valid across all other
approximations. That is, we take N (3β+2Cσ) as the upper-bound.

* Parameter Bound for E.
Since only ϵf1 and ϵf2 involve the reshape operation. From Lemma H.5, we take O(d

1
2L

3
2 )

for
∥∥E⊤∥∥

2,∞.

By integrating results above, we derive the following parameter bounds for the transformer
network, ensuring valid approximation across all nine approximations.

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (7β+6Cσ)

)
;

∥WO∥2, ∥WO∥2,∞ = O
(
N−(3β+6Cσ)(logN)3(dx+β)

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d);

∥∥E⊤∥∥
2,∞ = O

(
d

1
2L

3
2

)
;

∥W1∥2, ∥W1∥2,∞ = O
(
N (2β+4Cσ)

)
;CT = O

(√
logN/σ2

t

)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N (3β+2Cσ)

)
.

The last network output bound CT = O(
√
dx logN/σ

2
t ) follows the entry-wise minimum

bounds K(Cx

√
d logN + 1)/σ2

t in ℓ∞ distance by Lemma I.12.

This completes the proof.

I.2 MAIN PROOF OF THEOREM 3.1

In Lemma I.13, we establish the score approximation with transformer that incorporates every
essential components and encodes the Hölder smoothness in the final result. However, it is only valid
within the input domain [Cx

√
logN,Cx

√
logN ]dx × [0, 1]dy , and we also excludes region pt < ϵlow

where the problem of score explosion remains unaddressed.

To combat this, we introduce two additional lemmas. The first lemma gives us the error caused by
the truncation of Rdx within a radius R1 in ℓ2 distance.
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Lemma I.14 (Truncate x for Score Function, Lemma A.1 of (Fu et al., 2024b)). Assume Assump-
tion 3.1. For any R1 > 1, y, t > 0 we have∫

∥x∥∞≥R1

pt(x|y)dx ≤ R1 exp
(
−C ′2R2

1

)
,∫

∥x∥∞≥R1

∥∇ log pt(x|y)∥22pt(x|y)dx ≤ R3
1

σ4
t

exp
(
−C ′2R2

1

)
,

where C ′2 = C2/(2max(C2, 1)).

Remark I.9. Because we only impose assumption on the light tail property of the conditional
distribution in Assumption 3.1, the unboundedness of x necessitates a truncation for integrals
regarding x, or else the result would diverge.

Furthermore, we address the explosion of score function with the second lemma.

Lemma I.15 (Lemma A.2 of (Fu et al., 2024b)). Assume Assumption 3.1. For any R2, y, ϵlow > 0
we have ∫

∥x∥∞≤R2

1{|pt(x|y)| < ϵlow} · pt(x|y)dx ≤ Rdx
2 ϵlow,∫

∥x∥∞≤R2

1{|pt(x|y)| < ϵlow} · ∥∇ log pt(x|y)∥22pt(x|y)dx ≤ 1

σ4
t

Rdx+2
2 ϵlow.

Remark I.10. Recall that the score function has the form ∇ log pt(x|y) = ∇pt(x|y)/pt(x|y). It is
essential to set a threshold for pt(x|y) prevents the explosion of the score function.

We begin the proof of Theorem 3.1.

Proof Sketch of Theorem 3.1. In the following proof, we give error bound for the three terms:

• (A.1): The approximation for ∥x∥∞ > R1.

This step controls the error from truncation of Rdx with radius R1 in ℓ2 distance. We approximate
the error with Lemma I.14

• (A.2): The approximation for 1{pt(x|y) < ϵlow} and {∥x∥∞ ≤ R1}.
This step controls the error from setting a threshold to prevent score explosion within the bounded
domain ∥x∥∞ ≤ R1. We approximate the error with Lemma I.15.

• (A.3) The approximation for 1{pt(x|y) ≥ ϵlow} and {∥x∥∞ ≤ R1}.
With previous two steps ensuring the bounded domain and preventing the divergence of score
function, we approximate with Lemma I.13.

Proof of Theorem 3.1. We apply N = N1/(dx+dy) in Lemma I.13. Throughout the proof, we use N
as a notational simplification, with the understanding that N represents N1/(dx+dy) in full form. At
the end of of the proof we replace N by N1/(dx+dy).

To begin with, we set R1 = R2 =
√
2β logN/C ′2 in Lemma I.14 and Lemma I.15, and we expand

the target into three parts (A1), (A2), and (A3):∫
Rdx

∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx
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=

∫
∥x∥∞>

√
2β

C′
2
logN

∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx︸ ︷︷ ︸
(A1)

,

+

∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| < ϵlow}∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx︸ ︷︷ ︸
(A2)

+

∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| ≥ ϵlow}∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx︸ ︷︷ ︸
(A3)

.

We derive the bound for (A1), (A2), (A3) and combine these results.

• Bounding (A1). We apply Lemma I.14. Note that we have ∥s(x, y, t)∥∞ ≲
√
logN/σ2

t from the
construction of the score estimator in Lemma I.13.∫

∥x∥∞>

√
2β

C′
2
logN

∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx
(
By expanding the ℓ2 norm

)
≤ 2

∫
∥x∥∞>

√
2β

C′
2
logN

∥s(x, y, t)∥22 · pt(x|y)dx+ 2

∫
∥x∥∞>

√
2β

C′
2
logN

∥∇ log pt(x|y)∥22 · pt(x|y)dx(
By ∥·∥22 ≤ dx∥·∥2∞

)
≤ 2dx

∫
∥x∥∞>

√
2β

C′
2
logN

∥s(x, y, t)∥2∞ · pt(x|y)dx+ 2

∫
∥x∥∞>

√
2β

C′
2
logN

∥∇ log pt(x|y)∥22 · pt(x|y)dx(
By the ℓ∞ bound on the score function

)
≲ 2dx

(√
logN

σ2
t

)2 ∫
∥x∥∞>

√
2β

C′
2
logN

pt(x|y)dx+ 2

∫
∥x∥∞>

√
2β

C′
2
logN

∥∇ log pt(x|y)∥22 · pt(x|y)dx(
By Lemma I.14 and dropping constant

)
≲ 2dx

(√
logN

σ2
t

)2
(√

2β

C ′2
logNN−2β

)
+

2

σ4
t

(
2β

C ′2
logN

) 3
2

N−2β(
By dropping constant and lower order term

)
≲

1

σ4
t

N−2β(logN)
3
2 .

• Bounding (A2). We apply Lemma I.15. Note that we set ϵlow = C3N
−β(logN)(dx+k1)/2 in

Lemma I.13.∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| < ϵlow}∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx(
By expanding the ℓ2 norm

)
≤
∫
∥x∥∞≤

√
2β

C′
2
logN

21{|pt(x|y)| < ϵlow}
(
∥s(x, y, t)∥22 + ∥∇ log pt(x|y)∥22

)
· pt(x|y)dx

(
By ∥·∥22 ≤ dx∥·∥2∞

)
≤
∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| < ϵlow}
(
dx∥s(x, y, t)∥2∞ + ∥∇ log pt(x|y)∥22

)
· pt(x|y)dx(

By the ℓ∞ bound on the score function
)
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≲
∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| < ϵlow}

(
dx

(√
logN

σ2
t

)2

+ ∥∇ log pt(x|y)∥22

)
· pt(x|y)dx(

By Lemma I.15 and dropping constant
)

≲ dx

(√
logN

σ2
t

)2(
2β

C ′2
logN

) dx
2

ϵlow +

(
2β

C ′2
logN

) dx+2
2 ϵlow

σ4
t(

By dropping constant and lower order term
)

≲
1

σ4
t

(logN)
dx+2

2 ϵlow.

• Bounding (A3). We apply Lemma I.13.∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| ≥ ϵlow}∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx(
By ∥·∥22 ≤ dx∥·∥2∞

)
≤
∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| ≥ ϵlow}dx∥s(x, y, t)−∇ log pt(x|y)∥2∞ · pt(x|y)dx(
Multiply with pt/pt

)
=

∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| ≥ ϵlow}
pt(x|y)

dx∥s(x, y, t)−∇ log pt(x|y)∥2∞ · p2t (x|y)dx(
By Lemma I.13

)
≲
B2dx
σ2
t

N−2β(logN)dx+k1+1

∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| ≥ ϵlow}pt(x|y)dx(
Multiply with ϵlow/ϵlow

)
=
B2dx
σ2
t ϵlow

N−2β(logN)dx+k1+1

∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| ≥ ϵlow}
ϵlow

pt(x|y)
dx

(
By Lemma I.15

)
≲
B2dx
σ2
t ϵlow

N−2β(logN)dx+k1+1 ·
(
2β

C ′2
logN

) dx
2

(
By the choice of ϵlow and dropping lower order term

)
≲
B2dx
σ4
t ϵlow

N−2β(logN)
3dx
2 +k1+1.

• Combining the Results.
Combining (A1), (A2) and (A3), we have∫

Rd

∥s(x, y, t)−∇ log pt(x|y)∥22pt(x|y)dx

≲
N−2β(logN)

3
2

σ4
t︸ ︷︷ ︸

(A1)

+
ϵlow(logN)

dx+2
2

σ4
t︸ ︷︷ ︸

(A2)

+
B2d

σ4
t ϵlow

N−2β(logN)
3dx
2 +k1+1︸ ︷︷ ︸

(A3)

.
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By replacing ϵlow with C3N
−β(logN)dx+k1/2 and using the relation k1 ≤ β,10 we obtain∫

Rd

∥s(x, y, t)−∇ log pt(x|y)∥22pt(x|y)dx = O
(
B2

σ4
t

N−β(logN)dx+
β
2 +1

)
.

Replacing N with N1/(dx+dy) completes the first part of the proof.

The transformer parameter norm bounds follow Lemma I.13, with the replacement of N with
N1/(dx+dy ) as well. Note that this results in t ∈ [N−Cα/(dx+dy), Cσ/((dx + dy)) logN ]. For better
interpretation of the cutoff and early stopping time parameter, we reset Cα as (dx + dy)Cα and Cσ

as (dx + dy)Cσ such that t ∈ [N−Cα , Cσ logN ].

This completes the proof.

10Recall the definition of the Hölder smoothness from Definition 3.1.
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J PROOF OF THEOREM 3.2

We provide the formal version of Theorem 3.2 at the end of Appendix J.2.

• Step 0. We decompose the density function and the score function under Assumption 3.2. In
Lemma J.1, we provide details regarding the decomposed form of the score function presented in
(3.2). We specify the upper and lower bound on h and ∇h in Lemma J.2.

• Step 1. Similar to the domain discretization in the proof of previous main result, we discretize the
input domain of the decomposed density function in Lemma J.3.

• Step 2. We construct polynomial approximation based on Taylor expansion of h and ∇h in
Lemmas J.4 and J.5. The approximation result captures the local Hölder smoothness, with
improved precision relative to the analogous step in Lemma I.3 and Lemma I.4.

• Step 3. We approximate h and ∇h with transformer in Lemmas J.6 and J.7. In order to construct
the score approximator with transformer, we approximate several additional algebraic operators
with transformer in Lemma J.8, Lemma J.9 and Lemma J.10. We incorporate these results into a
unified transformer architecture in Lemma J.11.

Organization. Appendix J.1 includes the four steps and auxiliary lemmas supporting our proof.
Appendix J.2 includes the formal version and main proof of Theorem 3.2.

J.1 AUXILIARY LEMMAS

Step 0: Decompose the Score with Stronger Hölder Smoothness Assumption. We utilize the
condition assumed in Assumption 3.2 to achieve the decomposition.

Lemma J.1 (Lemma B.1 of Fu et al. (2024b)). Assume Assumption 3.2. The conditional distribution
at time t has the following expression:

pt(x|y) =
1

(α2
t + C2σ2

t )
dx/2

exp

(
−

C2∥x∥22
2(α2

t + C2σ2
t )

)
h(x, y, t).

Moreover, the score function has the following expression:

∇ log pt(x|y) =
−C2x

α2
t + C2σ2

t

+
∇h(x, y, t)
h(x, y, t)

,

where h(x, y, t) =
∫ f(x0,y)

σ̂d
t (2π)

d/2 exp
(
−∥x0−α̂tx∥2

2σ̂2
t

)
dx0, σ̂t = σt

(α2
t+C2σ2

t )
1/2 , and α̂t =

αt

α2
t+C2σ2

t
.

Proof. From Assumption 3.2, we have the initial conditional density with the form: p(z|y) =

exp
(
−C2∥z∥22/2

)
· f(z, y).

This allows the decomposition:

pt(x|y) =
∫

1

σd
t (2π)

d/2
p(z|y) exp

(
−∥x− αtz∥2

2σ2
t

)
dz, (J.1)

=
1

σd
t (2π)

d/2

∫
exp

(
−
C2∥z∥22

2

)
f(z, y) exp

(
−∥x− αtz∥2

2σ2
t

)
dz. (J.2)

We rearrange the two exponential terms in (J.2) into

exp

(
−
C2∥z∥22

2

)
exp

(
−∥x− αtz∥2

2σ2
t

)
= exp

(
− 1

2σ2
t

d∑
i=1

(x[i]2 − 2αtx[i]z[i] + α2
t z[i]

2 + C2σ
2
t z[i]

2)

)
.
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Note that, we replace the summation in the exponents by first focusing on one coordinate and then do
the product for all d components.

Without loss of generality, we derive the first coordinate of the fucntion:

exp

(
− 1

2σ2
t

(x[1]2 − 2αtx[1]z[1] + α2
t z[1]

2 + C2σ
2
t z[1]

2)

)
,

= exp

(
− 1

2σ2
t

(α2
t + C2σ

2
t )

(
z[1]2 − 2αt

α2
t + C2σ2

t

x[1]z[1] +
x[1]2

α2
t + C2σ2

t

))
,

= exp

(
− 1

2σ2
t

(α2
t + C2σ

2
t )

(
z[1]− αtx[1]

α2
t + C2σ2

t

)2

− 1

2σ2
t

(
−α2

t

α2
t + C2σ2

t

+ 1

)
x[1]2

)
,

= exp

(
− 1

2σ2
t

(α2
t + C2σ

2
t )

(
z[1]− αtx[1]

α2
t + C2σ2

t

)2
)
exp

(
− C2x[1]

2

2(α2
t + C2σ2

t )

)
.

The other dx − 1 coordinates abide by the same derivation. Consider the product of them, we have:

exp

(
−
C2∥z∥22

2

)
exp

(
−∥x− αtz∥2

2σ2
t

)
, (J.3)

= exp

(
− 1

2σ2
t

(α2
t + C2σ

2
t )

∥∥∥∥z − αtx

α2
t + C2σ2

t

∥∥∥∥2
)
exp

(
− C2

2(α2
t + C2σ2

t )
∥x∥22

)
. (J.4)

Following (Fu et al., 2024b), we plug (J.3) into (J.1) and set α̂t =
αt

α2
t+C2σ2

t
and σ̂2

t =
σ2
t

α2
t+C2σ2

t
for

simplicity. Then we get:

pt(x|y)

=
1

σd
t (2π)

d/2
exp

(
−

C2∥x∥22
2(α2

t + C2σ2
t )

)∫
f(z, y) exp

(
− 1

2σ2
t

(α2
t + C2σ

2
t )

∥∥∥∥z − αtx

α2
t + C2σ2

t

∥∥∥∥2
)
dz,

=
1

σd
t (2π)

d/2
exp

(
−

C2∥x∥22
2(α2

t + C2σ2
t )

)∫
f(z, y) exp

(
−∥z − α̂tx∥2

2σ̂2
t

)
dz.

Finally, we define h(x, y, t) =
∫

1
σ̂d
t (2π)

d/2 f(z, y) exp
(
−∥z−α̂tx∥2

2σ̂2
t

)
dz and plug it back to the

equation above.

The form of the score function is proved by simply implementing the logarithm and the gradient to
the result of pt(x|y)
This completes the proof.

Next, we provide lemma that provides bound on h(x, y, t) and ∇h(x, y, t) in Lemma J.1

Lemma J.2 (Lemma B.8 of (Fu et al., 2024b)). Under Assumption 3.2, we have the following bounds
for h(x, y, t) and σ̂t

α̂t
∇h(x, y, t)

C1 ≤ h(x, y, t) ≤ B,

∥∥∥∥ σ̂tα̂t
∇h(x, y, t)

∥∥∥∥
∞

≤
√

2

π
B,

where C1 and B are the hyperparameters of Hβ(Rdx × [0, 1]dy , B) in Assumption 3.2.

Remark J.1 (Bound on h and ∇h). We reiterate that Lemma J.2 drives the key distinction between
the analyses in Theorem 3.1 and Theorem 3.2. Specifically, in Appendix I.2, the decomposed term
containing the threshold ϵlow results in lower approximation rate, while bounds on h and ∇h eliminate
the need of the threshold with h’s lower bound C1, rendering faster approximation rate.
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Step 1: Discretize Rdx × [0, 1]dy for h(x, y, t). This step parallels Lemma I.1; however, the
discretization differs due to the structure of h.

Lemma J.3 (Clipping Integral, Lemma B.10 of Fu et al. (2024b)). Assume Assumption 3.2. Consider
any integer vector κ ∈ Zdx

+ with ∥κ∥1 ≤ n. There exists a constant C(n, dx), such that for any
x ∈ Rdx and 0 < ϵ ≤ 0.99, it holds∫

Rdx\Bx

∣∣∣∣( α̂tx0 − x

σ̂t

)κ∣∣∣∣ · p(x0|y) · 1

σ̂d
t (2π)

d/2
exp

(
−∥α̂tx0 − x∥2

2σ̂2
t

)
dx0 ≤ ϵ, (J.5)

where
(

α̂tx0−x
σ̂t

)κ
:= (( α̂tx0[1]1−x[1]

σ̂t
)κ[1], ( α̂tx0[2]−x[2]

σ̂t
)κ[2], . . . , ( α̂tx0[dx]−x[dx]

σ̂t
)κ[dx]) and

Bx :=
[
α̂tx− C(n, d)σ̂t

√
log ϵ−1, α̂tx+ C(n, d)σ̂t

√
log ϵ−1

]dx

.

Step 2: Approximate h and ∇h with Polynomials. Similar to the construction of the diffused
local polynomials in Lemma I.5 and Lemma I.6, the following two lemmas render the first step
approximation for h(x, y, t) and ∇h(x, y, t) that captures the local smoothness.

Lemma J.4 (Approximation with Diffused Local Polynomials, Lemma B.4 of (Fu et al., 2024b)).
Assume Assumption 3.2. For sufficiently larger N > 0 and constant C2, there exists a diffused local
polynomial f1(x, y, t) with at most Nd+dy (d+ dy)

k1 monomials such that

|f1(x, y, t)− h(x, y, t)| ≲ BN−β log
k1
2 N,

for any x ∈ [−Cx

√
logN,Cx

√
logN ]dx , y ∈ [0, 1]dy and t > 0.

Lemma J.5 (Counterpart of Lemma J.4, Lemma B.6 of (Fu et al., 2024b)). Assume Assumption 3.2.
For sufficiently larger N > 0 and constant C2, there exists a diffused local polynomial f2(x, y, t) ∈
T h,s,r
R with at most Ndx+dy (dx + dy)

k1 monomials f2[i](x, y, t) such that∣∣∣∣f2[i](x, y, t)− ( σ̂tα̂t
∇h(x, y, t)

)
[i]

∣∣∣∣ ≲ BN−β log
k1+1

2 N,

for any x ∈ Rdx , y ∈ [0, 1]dy and t > 0.

Step 3: Approximate Diffused Local Polynomials and Algebraic Operators with Transformers.
First, we apply the universal approximation theory of transformers to f1 and f2. Second, we adopt a
comparable approach to approximate the algebraic operators essential for the final score computation.
Last, we introduce Lemma J.11 that outlines how these components fit into a single transformer
architecture with a specified parameter configuration.

• Step 3.1: Approximate the Diffused Local Polynomials f1 and f2.
We invoke the universal approximation theorem of transformer Theorem H.2. We utilize network
consisting of one transformer block and one feed-forward layer (see Figure 1 and Definition 2.2).

Lemma J.6 (Approximate Scalar Polynomials with Transformers). Assume Assumption 3.1.
Consider the diffused local polynomial f1 in Lemma J.4. For any ϵ > 0, there exists a trans-
former Tf1 ∈ T h,s,r

R , such that for any x ∈ [−Cx

√
logN,Cx

√
logN ]dx , y ∈ [0, 1]dy and

t ∈ [N−Cσ , Cα logN ], it holds

|f1(x, y, t)− Tf1(x, y, t)[dx]| ≤ ϵ,

The parameter bounds in the transformer network class follows Lemma I.5.

Proof of Lemma J.6. The proof closely follows Lemma I.5
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Lemma J.7 (Approximate Vector-Valued Polynomials with Transformers). Assume Assump-
tion 3.1 and consider f2(x, y, t) ∈ Rdx in Lemma J.5. For any ϵ > 0, there exists a transformer
Tf2 ∈ T h,s,r

R such that

∥f2(x, y, t)− Tf2∥∞ ≤ ϵ,

for any x ∈ [−Cx

√
logN,Cx

√
logN ]dx , y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN ]. The parameter

bounds in the transformer network class follows Lemma I.5.

Proof of Lemma J.7. The proof closely follows Lemma I.6

• Step 3.2: Approximate Algebraic Operators with Transformers.
Next, we introduce lemmas regarding the function of time. These are also key components to the
proof of Theorem J.1.

Lemma J.8 (Approximation of α2 with Transformer). For t ∈ [t0, T ] with t0 < 1, there exists
Transformer Tα2(t) ∈ T h,s,r

R such that ∣∣Tα2 − α2
∣∣ ≤ ϵα̂.

The parameter bounds in the Transformer network class follow Lemma I.11.

Proof. The proof closely follows Lemma I.11.

Also, we approximate α̂ and σ̂t as well.

Lemma J.9 (Approximation of α̂ with Transformer). Consider α̂t =
αt

α2
t+C2σ2

t
, for t ∈ [t0, T ]

with t0 < 1, there exists Transformer Tα̂(t) ∈ T h,s,r
R such that

|Tα̂ − α̂| ≤ ϵα̂.

The parameter bounds in the transformer network class follow Lemma I.11.

Proof. The proof closely follows Lemma I.11.

Lemma J.10 (Approximation of σ̂ with Transformer). Consider σ̂t = σt

(α2
t+C2σ2

t )
1/2 , for t ∈ [t0, T ]

with t0 < 1, there exists Transformer Tσ̂(t) ∈ T h,s,r
R such that

|Tσ̂ − σ̂| ≤ ϵσ̂.

The parameter bounds in the transformer network class follow Lemma I.11.

Proof. The proof closely follows Lemma I.11.

We have finished establishing the approximation with transformer for every key component for the
proof of Theorem 3.2.

• Step 3.3: Unified Transformer-Based Score Function Approximation.
We introduce the counterpart of Lemma I.13. It is the core of the proof for Theorem J.1.

Lemma J.11 (Score Approximation with Transformer). Assume Assumption 3.2. For sufficiently
large integer N , there exists a mapping from transformer Tscore ∈ T h,s,r

R such that∥∥∥∥Tscore −∇ log h(x, y, t) +
C2x

α2
t + C2σ2

t

∥∥∥∥
∞

≤ B

σt
N−β(logN)

k1+1
2 ,
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for any x ∈ [−Cx

√
logN,Cx

√
logN ]dx , y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN ].

The parameter bounds in the transformer network class satisfy

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (3β+9Cσ)

2dL+4d+1
d

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d); ∥WO∥2, ∥WO∥2,∞ = O

(
N−β

)
;

∥W1∥2, ∥W1∥2,∞ = O
(
N4β+9Cσ+

3Cα
2 · logN

)
;
∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N4β+9Cσ+

3Cα
2

)
;CT = O

(√
logN/σt

)
.

Proof. Our proof follows the proof structure of (Fu et al., 2024b, Proposition B.3).

Recall the decomposed score function presented in Step 0, we establish the the first-step approxi-
mator f3 with the form:

f3(x, y, t) :=
α̂t

σ̂t
· f2(x, y, t)
f1(x, y, t)

− C2x

α2
t + C2σ2

t

.

We derive the error bound on the approximation of the first term containing Taylor polynomials
in f3. We incorporate second term containing the linear function in x into the the transformer
architecture.

We proceed as follows:

1. Step A: Approximate ∇ log pt(x|y) with f3.

2. Step B: Approximate f3 with Tscore ∈ T h,s,r
R .

3. Step C: Derive the final Parameter Configuration

– Step A. Approximate Scroe Function with f3.
We first construct f1(x, y, t) and f2(x, y, t) from Lemma J.4 and Lemma J.5 to approximate
h(x, y, t) and ∇h(x, y, t) respectively.

From Lemma J.2, we have C1 ≤ h ≤ B and
∥∥∥ σ̂t∇h

α̂t

∥∥∥
∞

≤
√

2
πB.

Next, by Lemma J.4 and Lemma J.5, we select a sufficiently large N such that C1

2 ≤ f1 ≤ 2B
and f2 ≤ B.

Without loss of generality, we begin by bounding the first coordinate of ∇h, denoted as ∇h[1]:∣∣∣∣∇h[1]h
− α̂t

σ̂t

f2[1]

f1

∣∣∣∣ ≤ ∣∣∣∣∇h[1]h
− ∇h[1]]

f1

∣∣∣∣+ ∣∣∣∣∇h[1]f1
− α̂t

σ̂t

f2[1]]

f1

∣∣∣∣,
≤
∣∣∣∣∇h[1]]h · f1

∣∣∣∣|f1 − h|+ α̂t

σ̂t

∣∣∣∣ 1f1
∣∣∣∣∣∣∣∣f2 − σ̂t

α̂t
∇h[1]]

∣∣∣∣,
≲
α̂t

σ̂t

(
|f1 − h|+

∣∣∣∣f2 − σ̂t
α̂t

∇h[1]
∣∣∣∣) , (

By bounds on h, ∇h, f1, f2
)

≲
α̂t

σ̂t

(
BN−β(logN

k1
2 +BN−β(logN

k1+1
2 )
)
,(

By Lemma J.4 and Lemma J.5
)

≲
1

σt

(
BN−β(logN

k1+1
2 )
)
.
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Tscore

sum

product
Lemma I.8

product
Lemma I.8

x

α̂t

Lemma J.9

inverse
Lemma I.9

inverse
Lemma I.9

σ̂t

Lemma I.11

f1
Lemma I.5

α̂t

Lemma J.9

f2
Lemma I.6

C2×

C2 + (1− C2)×

Figure 5: Approximate Score Function under Assumption 3.2 with Transformer Tscore. The construction of
the final score function consists of the approximation of diffused local polynomials f1 and f2 with transformer
and transformer-approximate operators. We highlight the overall pipeline and related lemmas to ensemble the
Transformer network.

Note that in the last line, we utilize

α̂t

σ̂t
=
αt

σt

1√
α2
t + C2σ2

t

=
1

σt

1√
1 + C2 (σt/αt)

2
=

1

σt

1√
1 + C2

σ2
t

1−σ2
t

= O(σ−1t ).

By the symmetry of each coordinate in ∇h, we obtain the ℓ∞ bounds:∥∥∥∥∇h(x, y, t)h(x, y, t)
− α̂t

σ̂t

f2(x, y, t)

f1(x, y, t)

∥∥∥∥
∞

≲
B

σt
N−β(logN)

k1+1
2 . (J.6)

– Step B. Approximate f3 with Transformer Tscore.

Next, we prove that there exist Transformer networks Tscore ∈ T h,s,r
R that approximates

f3(x, y, t) with error of order N−β . We illustrate the overall approximation of f3 in Figure 5.

In the following, we construct a transformer approximating the two terms in f3, and incorporate
the result into a unified network architecture.

* Step B.1: Approximation for α̂tf2
σ̂tf1

.

We utilize Tf1 , Tf2 , Tα̂ and Tσ̂ in Lemma I.5, Lemma I.6, Lemma J.9 and Lemma J.10 to
approximate each one of the component. This gives error ϵf1 , ϵf2 , ϵα̂ and ϵσ̂ respectively.

Next we utilize Trec,2 and Trec,3 in Lemma I.9 for the approximation of the inverse of f1 and
σ̂t. This gives error ∣∣∣∣Trec,2 −

1

f1

∣∣∣∣ ≤ ϵrec,2 +
|Tf1 − f1|
ϵ2rec,2

≤ ϵrec,2 +
ϵf1
ϵ2rec,2

,

and ∣∣∣∣Trec,3 −
1

σ̂t

∣∣∣∣ ≤ ϵrec,3 +
|Tσ̂ − σ̂t|
ϵ2rec,2

≤ ϵrec,3 +
ϵσ̂
ϵ2rec,3

.
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Next we utilize Tmult,1 in Lemma I.8 for the approximation of the product of f−11 , f2, α̂t and
σ̂−1t . This gives error∣∣∣∣Tmult,1 −

α̂tf2
σ̂tf1

∣∣∣∣
≤ ϵmult,1 + 4K3

4 max

(
ϵrec,2 +

ϵf1
ϵ2rec,2

, ϵf2 , ϵα̂, ϵrec,3 +
ϵσ̂
ϵ2rec,3

)
︸ ︷︷ ︸

:=ϵ2

:= ϵmult,1 + 4K3
4ϵ2,

and K3 is a positive constant.

From Lemma I.8, we require [−K4,K4] to cover the domain of f−11 , f2, α̂, and σ̂t. Recall
that we give the upper and lower bounds for f−11 and f2 in the beginning of Step 1. Thus, we
set K4 = max

(
σ̂−1t , α̂t

)
.

To derive the asymptotic behavior of K4, we set the positive constant C2 = 2 without loss of
generality and note that the maximum occurs at t = t0. We then expand σ̂t0 and α̂−1t0 :

σ̂t0 =

(
1− exp(−t0)
2− exp(−t0)

) 1
2

=

(
1− 1

2− exp(−t0)

) 1
2

= O
(
N−Cσ

)
.

and

α̂−1t0 =

(
2− exp(−t0)
exp
(
− t0

2

) )
= 2 exp

(
t0
2

)
− exp

(
− t0

2

)
= O

(
N−Cσ

)
.

So we take K4 = O(NCσ ).

* Step B.2: Approximation for −C2x/(α
2
t + C2σ

2
t ).

We use α2
t + σ2

t = 1 to rewrite (α2
t + C2σ

2
t )
−1 as (C2 + (1− C2)α

2
t )
−1.

We first utilize Tα2 in Lemma J.8 for the approximation of α2
t . This gives error ϵα2 .

Next, we utilize Trec,1 in Lemma I.8 for the approximation of the inverse of α2
t .

This gives error

∣∣∣∣Trec,1 −
1

α2
t

∣∣∣∣ ≤ ϵrec,1 +

∣∣∣Tα2
t
− α2

t

∣∣∣
ϵ2rec,1

≤ ϵrec,1 +
ϵα2

ϵ2rec,1
.

Next, we utilize Tmult,2 for the approximation of the product of (C2 + (1− C2)α
2
t )
−1 and x.

This gives error∣∣∣∣Tmult,2 −
(

x

C2 + (1− C2)α2
t

)∣∣∣∣ ≤ ϵmult,2 + 2K3

(
ϵrec,1 +

ϵα2

ϵ2rec,1

)
,

and from Lemma I.8, K3 is positive constant such that x ∈ [−K3,K3] and α−1t ∈ [−K3,K3].
Since x ∈ [−Cx

√
logN,Cx

√
logN ] and α−1T = (exp(−Cα logN/2))−1 = NCα/2, we

take K3 = NCα/2.

* Step B.3: Error Bound on Every Approximation Combined.
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Combining Step B.1 and Step B.2, we obtain the total network with error bounded by

ϵscore ≤ ϵmult,2 + 2K3

(
ϵrec,1 +

ϵα2

ϵ2rec,1

)
+ ϵmult,1 + 4K3

4ϵ2.

Next, we specify on the choice of ϵ in each approximation to attain a final approximation
error of order N−β .

· For the Error of the First Inverse Operator:

ϵrec,1 = O
(
N−(β+

1
2Cα)

)
.

· For the Error of the Second and Third Inverse Operator:

ϵrec,2, ϵrec,3 = O
(
N−(β+3Cσ)

)
.

· For the Error of f1:

ϵf1 = O
(
N−(3β+9Cσ)

)
.

· For the Error of f2:

ϵf2 = O
(
N−(β+3Cσ)

)
.

· For the Error of σ̂:

ϵσ̂ = O
(
N−(3β+9Cσ)

)
.

· For the Error of α̂:

ϵα̂ = O
(
N−(β+3Cσ)

)
.

· For the Error of α2:

ϵα2 = O
(
N−(3β+

3
2Cα)

)
.

· For the Error of the Two Product Operators:

ϵmult,1, ϵmult,2 = O(N−β).

With above error choice, we have

|Tscore(x, y, t)− f3(x, y, t)| ≤ N−β . (J.7)

Combining (J.6), (J.7) and dropping lower order term, we obtain

∥Tscore −∇ log pt(x|y)∥∞ ≲
B

σt
N−β(logN)

k1+1
2 .
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We have completed the first part of the proof. Next, we select the parameter bounds based on all
the above approximations.

Step C: Transformer Parameter Bound.
Our result highlights the influence ofN under varying dx. Therefore, for the transformer parameter
bounds, we keep terms with dx, d, L appearing in the exponent of N and logN .

– Parameter Bound on WQ and WK .
Given error ϵ, the bound on each operation follows:

* For ϵf1 : By Lemma I.5, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (3β+9Cσ)

2dL+4d+1
d

)
.

* For ϵf2 : By Lemma I.6, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (β+3Cσ)

2dL+4d+1
d

)
.

* For ϵmult,1: By Lemma I.8 with m = 4, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N9β

)
.

* For ϵmult,2: By Lemma I.8 with m = 2, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N5β

)
.

* For ϵrec,1: By Lemma I.9, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N3β+ 3Cα

2

)
.

* For ϵrec,2 and ϵrec,3: By Lemma I.9, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N3β+9Cσ

)
.

* For ϵα̂: By Lemma I.11, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WQ∥2,∞ = O
(
N3β+9Cσ

)
.

* For ϵα2 : By Lemma I.11, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WQ∥2,∞ = O
(
N9β+ 9Cα

2

)
.

* For ϵσ̂: By Lemma I.11, we have

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WQ∥2,∞ = O
(
N9β+27Cσ

)
.

We select the largest parameter bound from ϵf1 that remains valid across all other approximations.

– Parameter Bound on WO and WV .
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Given error ϵ, the bound on each operation follows:

* For ϵf1 : By Lemma I.5, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−

(3β+9Cσ)
d

)
.

* For ϵf2 : By Lemma I.6, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−

(β+3Cσ)
d

)
.

* For ϵmult,1: By Lemma I.8 with m = 4, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−4β

)
.

* For ϵmult,2: By Lemma I.8 with m = 2, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−2β

)
.

* For ϵrec,1: By Lemma I.9, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(β+

Cα
2 )
)
.

* For ϵrec,2 and ϵrec,3: By Lemma I.9, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(β+3Cσ)

)
.

* For ϵα̂: By Lemma I.11, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(β+3Cσ)

)
.

* For ϵα2 : By Lemma I.11, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(3β+

3Cα
2 )
)
.

* For ϵσ̂: By Lemma I.11, we have

∥WO∥2, ∥WO∥2,∞ = O
(
N−(3β+9Cσ)

)
.

Since we do not impose any relation on Cσ, Cα and β, we simply take looser bound
∥WO∥2, ∥WO∥2,∞ = N−β . Moreover, since only ϵf1 and ϵf2 involve the reshape operation.
From Lemma H.5, we take O(

√
d) and O(d) ∥WV ∥2 and ∥WV ∥2,∞.

– Parameter Bound for W1.
Given error ϵ, the bound on each operation follows:

* For ϵf1 : By Lemma I.5, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N

(3β+9Cσ)
d · logN

)
.
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* For ϵf2 : By Lemma I.6, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N

(β+3Cσ)
d · logN

)
.

* For ϵmult,1: By Lemma I.8 with m = 4 and C = K4 in (I.25), we have

∥W1∥2, ∥W1∥2,∞ = O
(
K4 ·N4β

)
= O

(
N (4β+Cσ)

)
.

* For ϵmult,2: By Lemma I.8 with m = 2 and C = K3 in (I.26), we have

∥W1∥2, ∥W1∥2,∞ = O
(
K3 ·N2β

)
= O

(
N (2β+Cα

2 )
)
.

* For ϵrec,1: By Lemma I.9, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N2β+Cα

)
.

* For ϵrec,2 and ϵrec,3: By Lemma I.9, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (2β+6Cσ)

)
.

* For ϵα̂: By Lemma I.11, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (β+3Cσ) · logN

)
.

* For ϵα2 : By Lemma I.11, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (3β+ 3Cα

2 ) · logN
)
.

* For ϵσ̂: By Lemma I.11, we have

∥W1∥2, ∥W1∥2,∞ = O
(
N (3β+9Cσ) · logN

)
.

We select the largest parameter bound from ϵf1 that remains valid across all other approximations.

– Parameter Bound for W2.
Given error ϵ, the bound on each operation follows:

* For ϵf1 : By Lemma I.5, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N

(3β+9Cσ)
d

)
.

* For ϵf2 : By Lemma I.6, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N

(β+3Cσ)
d

)
.
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* For ϵmult,1: By Lemma I.8 with m = 4, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N4β

)
.

* For ϵmult,2: By Lemma I.8 with m = 2, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N2β

)
.

* For ϵrec,1: By Lemma I.9, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (β+Cα

2 )
)
.

* For ϵrec,2 and ϵrec,3: By Lemma I.9, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (β+3Cσ)

)
.

* For ϵα̂: By Lemma I.11, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (β+3Cσ)

)
.

* For ϵα2 : By Lemma I.11, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (3β+ 3Cα

2 )
)
.

* For ϵσ̂: By Lemma I.11, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (3β+9Cσ)

)
.

We select the largest parameter bound from ϵf1 that remains valid across all other approximations.

– Parameter Bound for E.
Since only ϵf1 and ϵf2 involve the reshape operation. From Lemma H.5, we take O(d1/2L3/2).

By integrating results above, we derive the following parameter bounds for the transformer network,
ensuring valid approximation across all ten approximations.

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (3β+9Cσ)

2dL+4d+1
d

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d); ∥WO∥2, ∥WO∥2,∞ = O

(
N−β

)
;

∥W1∥2, ∥W1∥2,∞ = O
(
N4β+9Cσ+

3Cα
2 · logN

)
;
∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N4β+9Cσ+

3Cα
2

)
;CT = O

(√
logN/σt

)
.

This completes the proof.
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J.2 MAIN PROOF OF THEOREM 3.2

We state the formal version of Theorem 3.2.

Next, similar to the proof of Theorem 3.1, we need the truncation of x due to the unboundedness as
well.

Lemma J.12 (Truncate x, Lemma B.2 of (Fu et al., 2024b).). Assume Assumption 3.2. For any
R3 > 1, we have: ∫

∥x∥∞≥R3

pt(x|y)dx ≲ R3 exp
(
−C ′2R2

2

)
.

∫
∥x∥∞≥R3

∥∇ log pt(x|y)∥22pt(x|y)dx ≲ R3 exp
(
−C ′2R2

3

)
≲

1

σ2
t

R3
3 exp

(
−C ′2R2

3

)
,

where C ′2 = C2/(2max(1, C2)).

Again, unlike result under Assumption 3.1, the explicit form of pt(x|y) in (J.1) and the upper and the
lower bound of the joint distribution Lemma J.2 automatically allow us to skip the threshold ϵlow as
in Lemma I.15.

Theorem J.1 (Approximation Score Function with Transformer under Stronger Hölder Assumption
(Formal Version of Theorem 3.2)). Assume Assumption 3.2 and dx = Ω( logN

log logN ). For any precision
parameter 0 < ϵ < 1 and smoothness parameter β > 0, let ϵ ≤ O(N−β) for some N ∈ N. For
some positive constants Cα, Cσ > 0, for any y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN ], there exists a
Tscore(x, y, t) ∈ T h,s,r

R such that the conditional score approximation satisfies∫
Rdx

∥Tscore(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx = O
(
B2

σ2
t

·N−
2β

dx+dy · (logN)β+1

)
.

Notably, for ϵ = O(N−β), the approximation error has the upper bound Õ(ϵ2/(dx+dy)/σ2
t ).

The parameter bounds in the transformer network class satisfy

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N

3β(2dx+4d+1)
d(dx+dy)

+
9Cα(2dx+4d+1)

d

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d); ∥WO∥2, ∥WO∥2,∞ = O

(
N
− β

dx+dy

)
;

∥W1∥2, ∥W1∥2,∞ = O
(
N

4β
dx+dy

+9Cσ+
3Cα

2 · logN
)
;
∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N

4β
dx+dy

+9Cσ+
3Cα

2

)
;CT = O

(√
logN/σt

)
.

Proof Sketch of Theorem J.1. We decompose the integral into two terms based on Lemma J.12.

• (A.1): The approximation for region outside of the truncation ∥x∥ > R3:
We give the error bound via Lemma J.12.

• (A.2): The approximation for region within the truncation ∥x∥∞ ≤ R3:
We give the error bound via Lemma J.11.

Proof of Theorem 3.2. For simplicity, we change the variable N to N
1

dx+dy in the following subsec-
tion. We put the original form back at the end of the proof.
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We take Cx =
√

2β
C′

2
in Lemma J.11 and R3 = Cx

√
logN in Lemma J.12.

With the transformer parameter bounds in Lemma J.11, we have ∥Tscore∥2 ≤
√
logN/σt for any

x ∈ Rdx , y ∈ Rdy and t > 0. We start with the truncation on x∫
Rdx

∥Tscore −∇ log pt∥22ptdx

≤
∫
∥x∥∞>

√
2β

C′
2
logN

(
2∥Tscore∥22 + 2∥∇ log pt∥22

)
ptdx

︸ ︷︷ ︸
(A.1)

+

∫
∥x∥∞≤

√
2β

C′
2
logN

(
∥Tscore −∇ log pt∥22

)
ptdx

︸ ︷︷ ︸
A.2(

By expanding ℓ2 norm
)

≲
∫
∥x∥∞>

√
2β

C′
2
logN

(
2

(√
logN

σt

)2

+ 2∥∇ log pt∥22

)
ptdx+

B2

σ2
t

N−2β(logN)k1+1

(
By ℓ2 bound on Tscore and Lemma J.11

)
≲ 2dx

√
logN

σ2
t

(
2β

C ′2
logN

) 1
2

N−2β +
2

σ2
t

(
2β

C ′2
logN

) 3
2

N−2β +
B2

σ2
t

N−2β(logN)k1+1(
By Lemma J.12

)
≲
B2

σ2
t

N−2β(logN)β+1.
(
By dropping lower order term

)
The transformer parameter norm bounds follow Lemma J.11, with the replacement of N with
N1/dx+dy . This gives in t ∈ [N−Cα/(dx+dy), Cσ(logN)1/(dx+dy)]. For a better interpretation of the
cutoff and early stopping time parameter, we reset Cα = (dx + dy)Cα and Cσ = (dx + dy)Cσ such
that t ∈ [N−Cα , Cσ logN ].

This completes the proof.
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K PROOF OF THE ESTIMATION RESULTS FOR CONDITIONAL DITS

Overview of Our Proof Strategy of Theorem 3.3.

Step 0. Preliminaries. We introduce the mixed risk that accounts for risk with the distribution of the
mask signal in Definition K.1. We restate the loss function and the score matching technique
in Definition K.2.

Step 1. Truncate the Domain of the Risk. We truncate the domain of the loss function in order
to obtain finite covering number of transformer network class. Precise definition of the
truncated loss function class is in Definition K.4. We bound the error from the truncation
from the assumed light tail condition in Lemma K.1.

Step 2. Derive the Covering Number of Transformer Network. We introduce the covering number
of a given function class in Definition K.5. We provide lemma detailing the calculation of
the covering number for transformer architecture in Lemma K.2. We derive the covering
numbers under the respective parameter configurations for our two previous main results in
Lemma K.3.

Step 3. Bound the True Risk on Truncated Domain. With the previous steps, we present the
upper-bound of the mixed risk in Lemma K.4.

Overview of Our Proof Strategy of Theorem 3.4. We decompose the total variation into three
components and we bound the separately.

Step 1. We bound the total variation distance between the true distributions evaluated at t = 0 and
early-stopping time t = t0.

Step 2. We bound the total variation between the true distribution at t0 and the reverse process
distribution using the true score function.

Step 3. We bound the total variation between the reverse process distributions using the true and
estimated score functions at t0.

Organization. Appendix K.1 includes auxiliary lemmas for supporting our proof of Theorem 3.3.
Appendix K.2 includes the main proof of Theorem 3.3. Appendix K.5 includes auxiliary lemmas for
supporting our proof of Theorem 3.4. Appendix K.6 includes the main proof of Theorem 3.4.

K.1 AUXILIARY LEMMAS FOR THEOREM 3.3

Step 0: Preliminary Framework. We evaluate the quality of the estimator sW through the risk:

R(sW ) :=

∫ T

t0

1

T − t0
Ext,y∥sW (xt, y, t)−∇ log pt(xt|y)∥22dt. (K.1)

Definition K.1 (Mixed Risk). The risk (K.1) considers guidance y throughout whole the diffusion
process. We refer to it as the conditional score risk. In contrast, we have the mixed risk Rm that
accounts for the distribution of the mask signal τ = {∅, id} with P (τ = ∅) = P (τ = id) = 0.5:

Rm(sW ) :=

∫ T

t0

1

T − t0
E(xt,y,τ)

[
∥sW (xt, τy, t)−∇ log pt(xt|τy)∥22

]
dt, (K.2)

Remark K.1. Given the score estimator ŝ trained from the empirical loss (G.8), the conditional score
risk is upper-bounded by twice of the mixed risk. That is, we have R(ŝ) ≤ 2Rm(ŝ). This follows
from direct calculation:

Rm(ŝ) =
1

2

∫ T

t0

1

T − t0
Ext

[
∥ŝ(xt, ∅, t)−∇ log pt(xt)∥22

]
dt+

1

2
R(ŝ).
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Definition K.2 (Loss Function and Score Matching). Let x = xt|x0 denote the random variable
following Gaussian distribution N(αtx0, σ

2
t Idx

), we define loss function and score matching loss:

ℓ(x, y; sW ) :=

∫ T

T0

1

T − T0
Eτ,x

[
∥sW (xt, τy, t)−∇ log pt (xt|x0)∥22

]
dt,

L(sW ) :=

∫ T

t0

1

T − t0
Ex0,y

[
Eτ,x

[
∥s(xt, τy, t)−∇ log pt(xt|x0)∥22

]]
dt.

Remark K.2. Given i.i.d samples {x0,i, yi}ni=1, we write ℓ(xi, yi; sW ) with the understanding that
xi = xt|x0,i. When context is clear, we use ℓ(xi, yi; sW ) and ℓ(x0,i, yi; sW ); {x0,i, yi}ni=1 and
{xi, yi}ni=1 interchangeably.

Remark K.3. By (Vincent, 2011), L(sW ) and Rm(sW ) differ by a constant that is inconsequential
to the minimization. Therefore, minimizing the mixed risk is equivalent to minimizing the score
matching loss

Definition K.3 (Empirical Risk). Consider a score estimator sW ∈ T h,s,r
R . Recall the definition of

empirical loss: L̂(sW ) =
∑n

i=1
1
nℓ(xi, yi; sW ). Let s◦ := ∇ log pt(x|y), we define the empirical

risk:

R̂m(sW ) := L̂(sW )− L̂(s◦) =
n∑

i=1

1

n
ℓ(xi, yi; sW )−

n∑
i=1

1

n
ℓ(xi, yi; s

◦).

Remark K.4. The key distinction between Rm and L lies in their formulations. Specifically, Rm

takes input xt and compares sW to the ground truth ∇ log pt(x|y). In contrast, the score matching
loss L provides an explicit calculation based on the sample. It averages the squared difference
between sW and ∇ log pt(x|x0) over the sample and time interval.

Remark K.5. Observe (I): s◦ = ∇ log pt(x|y) is the ground truth of score function with Rm(s◦) = 0,
and (II): By (Vincent, 2011), Rm and L differ by a constant. Based on (I) and (II), we define the
empirical risk R̂m using the score matching loss as an intermediary: Rm(sW ) = Rm(sW ) −
Rm(s◦) = L(sW ) − L(s◦). This leads to the definition of the empirical risk R̂m as a practical
approximation of the true risk difference Rm(sW )−Rm(s◦).

Remark K.6. For any score estimator sW ∈ T h,s,r
R obtained from the training with i.i.d. samples

{xi, yi}ni=1, it holds E{xi,yi}ni=1
[R̂m(sW )] = Rm(sW ). This follows from direct calculation with

Definition K.3 and the i.i.d. assumption.

Step 1: Domain Truncation of the Risk. We define the loss function with truncated domain. This
is essential for obtaining finite covering number for transformer network class.

Definition K.4 (Truncated Loss). We define the truncated domain of the score function by D :=
[−RT , RT ]dx × [0, 1]dy ∪ ∅. Given loss function ℓ(x, y; sW ), we define the truncated loss:

ℓtrunc(x, y; sW ) := ℓ(x, y; sW )1{∥x∥∞ ≤ RT }. (K.3)

Similarly, we define Ltrunc(sW ) := L(sW )1{∥x∥∞ ≤ RT } , Rtrunc
m (sW ) := Rm(sW )1{∥x∥∞ ≤

RT } and R̂trunc
m (sW ) := R̂m(sW )1{∥x∥∞ ≤ RT }. We define the function class of the truncated

loss by

S(RT ) := {ℓ(·, ·; sW ) : D → R | sW ∈ T h,s,r
R }. (K.4)

Next, we introduce the following lemma dealing with the error bound for the truncation of the loss.

Lemma K.1 (Truncation Error, Lemma D.1 of (Fu et al., 2024b)). Consider the truncated loss
ℓtrunc(x, y; sW ) and t ∈ [n−O(1),O(log n)]. Under Assumption 3.1, we have |ℓ(x, y; sW )| ≲ 1/t0.
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Consider the parameter configuration in Theorem 3.1, it holds:

Ex,y

[∣∣ℓ(x, y, t)− ℓtrunc(x, y, s)
∣∣] ≲ exp

(
−C2R

2
T
)
RT

(
1

t0

)
.

Moreover, under Assumption 3.2, we have |ℓ(x, y; sW )| ≲ log(1/t0). Consider the parameter
configuration in Theorem J.1, it holds:

Ex,y

[∣∣ℓ(x, y, t)− ℓtrunc(x, y, s)
∣∣] ≲ exp

(
−C2R

2
T
)
RT log

(
1

t0

)
.

Step 2: Covering Number of Transformer Network Class. We begin with the definition.

Definition K.5 (Covering Number). Given a function class F and a data distribution P . Sample n
data points {Xi}ni=1 from P , then the covering number N (ϵ,F , {Xi}ni=1, ∥·∥) is the smallest size of
a collection (a cover) C ∈ F such that for any f ∈ F , there exist f̂ ∈ C satisfying

max
i

∥∥∥f(Xi)− f̂(Xi)
∥∥∥ ≤ ϵ.

Further, we define the covering number with respect to the data distribution as

N (ϵ,F , ∥·∥) = sup
{Xi}ni=1∼P

N (ϵ,F , {Xi}ni=1, ∥·∥).

Next, we introduce the following lemma that provides results for the calculation of the covering
number for transformer networks.

Lemma K.2 (Modified from Theorem A.17 of Edelman et al. (2022)).

Let T h,s,r
R (CT , C

2,∞
Q , CQ, C

2,∞
K , CK , C

2,∞
V , CV , C

2,∞
O , CO, CE , C

2,∞
f1

, Cf1 , C
2,∞
f2

, Cf2 , LT )

represent the class of functions of one transformer block satisfying the norm bound for matrix and
Lipsichitz property for feed-forward layers. Then for all data point ∥X∥2,∞ ≤ RT we have

logN (ϵc, T h,s,r
R , ∥·∥2)

≤ log(nLT )

ϵ2c
·
(
α

2
3

(
d

2
3

(
C2,∞

F

) 4
3

+ d
2
3

(
2(CF )

2COV C
2,∞
KQ

) 2
3

+ 2
(
(CF )

2C2,∞
OV

) 2
3

))3

,

where α := (CF )
2COV (1 + 4CKQ)(RT + CE).

Remark K.7. We modify (Edelman et al., 2022, Theorem A.17) in seven aspects:

1. We do not consider the last linear layer in the model: converting each column vector of the
transformer output to a scalar. Therefore, we ignore the item related to the last linear layer in
Edelman et al. (2022, Theorem A.17).

2. We do not consider the normalization layer in our model. Because the normalization layer in the
original proof only applies ∥

∏
norm(X1)−

∏
norm(X2)∥2,∞ ≤ ∥X1 −X2∥2,∞, ignoring this

layer does not change the result.

3. Our activation function is ReLU, we replace the Lipschitz upper bound of the activate function
by 1.

4. We consider the positional encoding in our work, we need to replace the upper bound RT for
the inputs with the upper bound RT + CE . Besides, for multi-layer transformer, the original
conclusion in Edelman et al. (2022, Theorem A.17) considers the upper bound for the 2,∞-norm
of inputs is 1, we add the upper bound for the inputs in Lemma K.2.
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5. We use the feed-forward layer, including two linear layers and a residual layer. Thus, in
Lemma K.2, we replace the original upper bound for the norm of the weight matrix with the
upper bound for the norm of Id +W2W1. In the following, we use O to estimate the log-covering
number, thus we ignore the item for Id here for convenience. This is the same for the self-attention
layer.

6. We use multi-head attention, and we add the number of heads τ in our result, similar to (Edelman
et al., 2022, Theorem A.12).

7. In our work, we use transformer T 1,4,1
R , i.e., with h = 1 head, r = 4 MLP dimension, and s = 1

hidden dimension, following the configuration for transformers’ universality in Theorem H.2
and Corollary H.2.1. We remark that this configuration is minimally sufficient to achieve DiTs’
score approximation result Theorem 3.1 but not necessary. More complex configurations can also
achieve transformer universality, as reported in (Hu et al., 2024; Kajitsuka and Sato, 2024; Yun
et al., 2020).

With Lemma K.2, we derive the covering number under transformer weights configuration in
Theorem 3.1 and Theorem J.1.

Lemma K.3 (Covering Number for S(RT )). Given ϵc > 0 and consider ∥x∥∞ ≤ RT . With
sample {xi, yi}ni=1, the ϵc-covering number for S(RT ) with respect to ∥·∥L∞

under the network
configuration in Theorem 3.1 satisfies

logN (ϵc,S(RT ), ∥·∥∞) ≲
log n

ϵ2c
Nν1(logN)ν2(RT )

2,

where ν1 = 172β/(dx + dy) + 104Cσ and ν2 = 12dx + 12β + 2. Moreover, under network
configuration in Theorem J.1, we have

logN (ϵc, S(RT ), ∥·∥∞) ≲
log n

ϵ2c
Nν3(logN)10(RT )

2,

where ν3 = 48dβ(L+ 2)(dx + 2d+ 1)/(dx + dy) + 144dCσ(L+ 2)− 8β.

Proof. Applying Lemma K.2, we have

logN (ϵc, T h,s,r
R , ∥·∥2)

≤ log n

ϵ2c
· α2

(
2
(
(CF )

2C2,∞
OV

) 2
3︸ ︷︷ ︸

(I)

+(d
2
3

(
C2,∞

F

) 4
3︸ ︷︷ ︸

(II)

+ d
2
3

(
2(CF )

2COV C
2,∞
KQ

) 2
3︸ ︷︷ ︸

(III)

)3

, (K.5)

where α := (CF )
2COV (1 + 4CKQ)(RT + CE).

Note that we drop LT because it is inconsequential under Assumptions 3.1 and 3.2.

• Step A: Covering Number for Transformer with Network Configuration in Theorem 3.1
(under Assumption 3.1).
Recall that from the network configuration in Theorem 3.1:

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N

7β
dx+dy

+6Cσ

)
;

∥WO∥2, ∥WO∥2,∞ = O
(
N
− 3β

dx+dy
+6Cσ (logN)3(dx+β)

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d);

∥W1∥2, ∥W1∥2,∞ = O
(
N

2β
dx+dy

+4Cσ

)
;
∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
;
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∥W2∥2, ∥W2∥2,∞ = O
(
N

3β
dx+dy

+2Cσ

)
;CT = O

(√
logN/σ2

t

)
.

Note that WK,Q =WQW
⊤
K , we take ∥WQ∥2,∞ · ∥WK∥2,∞ as the upper bound for ∥WKQ∥2,∞.

Since WQ, WK share identical upper-bound, we calculate (C2,∞
K )4 for (C2,∞

K,Q)
2. Similarly

we use ∥WO∥2,∞ · ∥WV ∥2,∞ as the upper bound for ∥WOV ∥2,∞. Moreover, we take CF =

max{Cf1 , Cf2}. Since we do not impose any relation on β andCσ here, we takeN3β/(dx+dy)+4Cσ

such that the upper-bound holds for both W1 and W2.

Our result highlights the influence ofN under varying dx. Therefore, for the transformer parameter
bounds, we keep terms with dx, d, L appearing in the exponent of N and logN .

Among three terms, it is obvious that (III) dominates the other two. so we begin with:

(III) ≲
(
(CF )

4(COV )
2(C2,∞

KQ )2
) 1

3

≲

(
N

12β
dx+dy

+16Cσ︸ ︷︷ ︸
(CF )4

N
− 6β

dx+dy
+12Cσ (logN)6(dx+β)︸ ︷︷ ︸

(COV )2

N
28β

dx+dy
+24Cσ︸ ︷︷ ︸

(C2,∞
K )4

) 1
3

,

≲
(
N

34β
dx+dy

+52Cσ (logN)6(dx+β)
) 1

3

.

Recall α := (CF )
2COV (1 + 4CKQ)(RT + CE),

α2 ≲ (CF )
4(COV )

2(CKQ)
2(RT + CE)

2,

≲ N
12β

dx+dy
+16Cσ︸ ︷︷ ︸

(CF )4

N
− 6β

dx+dy
+12Cσ (logN)6(dx+β)︸ ︷︷ ︸

(COV )2

N
28β

dx+dy
+24Cσ︸ ︷︷ ︸

(C2,∞
K )4

R2
T dL

3︸ ︷︷ ︸
(R2

T C2
E)

,

≲

N 34β
dx+dy

+52Cσ (logN)6(dx+β)︸ ︷︷ ︸
(III)3

(RT )
2

 .

Putting all together, we obtain

logN
(
ϵc, T h,s,r

R , ∥·∥2
)
≲

log n

ϵ2c
N

68β
dx+dy

+104Cσ (logN)12dx+12β(RT )
2. (K.6)

• Step B: Covering Number for Transformer with Network Configuration in Theorem J.1
(under Assumption 3.2).
Recall that from the network configuration in Theorem J.1

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N

3β(2dx+4d+1)
d(dx+dy)

+
9Cα(2dx+4d+1)

d

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d); ∥WO∥2, ∥WO∥2,∞ = O

(
N
− β

dx+dy

)
;

∥W1∥2, ∥W1∥2,∞ = O
(
N

4β
dx+dy

+9Cσ+
3Cα

2 · logN
)
;
∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N

4β
dx+dy

+9Cσ+
3Cα

2

)
;CT = O

(√
logN/σt

)
.

We derive the covering number for result under second assumption by the same procedure.

Similar to previous step, we bound (III) in (K.5). First, we calculate:
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– Bound on (CF )
4 = (Cf1)

4.

(Cf1)
4 ≲ O

(
N

16β
dx+dy

+36Cσ+6Cα · (logN)4
)

– Bound on (C2,∞
K )4.

(C2,∞
K )4 ≲ N

12β(2dx+4d+1)
d(dx+dy)

+
36Cα(2dx+4d+1)

d

The upper-bound on (III) follows:

(III) ≲
(
d2(Cf1)

4(COV )
2(C2,∞

KQ )2
) 1

3

,

≲

N 24βdx+64βd+12β
d(dx+dy)

+ 72Cαdx+150Cαd+36Cα
d +36Cσ (logN)4︸ ︷︷ ︸

(Cf1
)4·(C2,∞

K )4

N
− 2β

dx+dy︸ ︷︷ ︸
(COV )2


1
3

(
N

24βdx+62βd+12β
d(dx+dy)

+ 72Cαdx+150Cαd+36Cα
d +36Cσ (logN)4

)
Second we bound α in (K.5).

α2 ≲ (Cf1)
4(COV )

2(CKQ)
2(RT + CE)

2 ≲ (III)3 · (RT )2.

Combining (III) and α2 for network configuration in Theorem J.1, we obtain

logN
(
ϵc, T h,s,r

R , ∥·∥2
)
≲

log n

ϵ2c
N

4(12βdx+31βd+6β)
d(dx+dy)

+
12(12Cαdx+25Cα·d+6Cα)

d +72Cσ (logN)8 · (RT )2.

(K.7)

• Step C: Covering Number under Domain Truncation.
We extend the result to the covering number for S(RT ) defined in (K.4).

First note that we obtain the score estimator from T2 by virtue of arranging x, y, t into a row vector
and treating them as a sequence for execution, so we convert our ℓ2,∞ case into ℓ∞ as stated in Fu
et al. (2024b) without loss of generality.

For two score estimator s1(x, y, t), s2(x, y, t) ∈ T h,s,r
R such that ∥s1 − s2∥L∞,D ≤ ϵ, Proof of

lemma D.3 in Fu et al. (2024b) shows the difference between the loss ℓ(·, ·, s1) and ℓ(·, ·, s2) in
L∞ is bounded by

|ℓ(·, ·, s1)− ℓ(·, ·, s2)| ≲ ϵ logN. (K.8)

Therefore, by replacing ϵc with ϵc/ logN in (K.6) we obtain the log-covering number for trans-
former under Assumption 3.1

logN (ϵc,S(RT ), ∥·∥∞) ≲
log n

ϵ2c
N

172β
dx+dy

+104Cσ (logN)12dx+12β+2(RT )
2

:=
log n

ϵ2c
Nν1(logN)ν2(RT )

2,

where ν1 = 68β/(dx + dy) + 104Cσ and ν2 = 12dx + 12β + 2.
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Moreover, by replacing ϵc with ϵc/ logN in (K.7)we obtain the log-covering number for trans-
former under Assumption 3.2

logN (ϵc,S(RT ), ∥·∥∞) =
log n

ϵ2c
Nν3(logN)10(RT )

2.

where ν3 = 4(12βdx+31βd+6β)
d(dx+dy)

+ 12(12Cαdx+25Cα·d+6Cα)
d + 72Cσ .

This completes the proof.

Step 3: Bound the True Risk on Truncated Domain. We begin with the definition.

Definition K.6. Let s◦ := ∇ log pt(x|y) denote the ground truth of score function for simplicity.
Given i.i.d samples {xi, yi}ni=1 and a score estimator sW ∈ T h,s,r

R , we define the difference function:

∆n(sW , s◦) :=
∣∣∣E{xi,yi}ni=1

[
R̂trunc

m (sW )−Rtrunc
m (sW )

]∣∣∣.
Remark K.8. Note that the difference function ∆n(sW , s◦) measures the expected difference
between the truncated empirical risk and the truncated mixed risk with respect to the training sample.
Since the true risk is unattainable, we construct ∆n(sW , s◦) serving as an intermediate that allows us
to derive the upper-bound on the mixed risk. Surprisingly, we are able to handle the upper-bound of
the difference function, presented in Lemma K.4.

Definition K.7. Given the truncated loss function class S(RT ), we define its ϵc-covering with the
minimum cardinality in the L∞ metric as LN := {ℓ1, ℓ2, . . . , ℓN }. Moreover, we define ℓJ ∈ LN
with random variable J . By definition, there exist ℓJ ∈ LN such that ∥ℓJ − ℓ(xi, yi; sW )∥∞ ≤ ϵc.

Note that Lemma K.3 provides the upper-bound on the ϵc-covering number of S(RT ) for score
estimator trained from transformer network class. Next, we bound the difference function.

Lemma K.4 (Bound on Difference Function). Consider i.i.d training samples {x0,i, yi}ni=1 and score
estimator ŝ from (2.1). Under Assumption 3.1 and parameter configuration in Theorem 3.1, it holds:

∆n(ŝ, s
◦) ≲ E{xi,yi}ni=1

[
R̂m(ŝ)

]
+

1

t0

(
RT exp

(
−C2R

2
T
)
+

1

n
logN

)
+ 7ϵc,

where N (ϵc, T h,s,r
R , ∥·∥2) is the covering number of transformer network class. Moreover, Under

Assumption 3.2 and parameter configuration in Theorem J.1, it holds:

∆n(ŝ, s
◦) ≲ E{xi,yi}ni=1

[
R̂m(ŝ)

]
+ log

1

t0

(
RT exp

(
−C2R

2
T
)
+

1

n
logN

)
+ 7ϵc.

Proof. In this proof, we let zi := (x0i , yi), ℓ̂(zi) := ℓtrunc(zi; ŝ) and ℓ◦(zi) := ℓtrunc(zi; s
◦). For

simplicity, we use κ = 1/t0 for the case in Theorem 3.1 and κ = log(1/t0) for the case in
Theorem J.1.

• Step A: Rewrite the true risk.
To derive the upper-bound of the true risk, we introduce a different set of i.i.d samples {x′0,i, y′i}ni=1
independent of the training data drawn from the same distribution.

This allows us to rewrite the true risk as:

Rm(ŝ)−Rm(s◦) = L(ŝ)− L(s◦) = E{x′
i,y

′
i}ni=1

[
1

n

n∑
i=1

(ℓ(x′i, y
′
i, ŝ)− ℓ(x′i, y

′
i, s
◦))

]
. (K.9)
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With (K.9), we rewrite the difference function:

∆n(ŝ, s
◦) =

∣∣∣∣∣ 1nE{zi,z′
i}ni=1

[
n∑

i=1

((
ℓ̂(zi)− ℓ◦(zi)

)
−
(
ℓ̂(z′i)− ℓ◦(z′i)

))]∣∣∣∣∣. (K.10)

• Step B: Introduce the ϵc-covering.
Before further decomposing (K.10), we introduce three definitions.

– ωJ(z) := ℓJ(z)− ℓ◦(z) and ω̂(z) := ℓ̂(z)− ℓ◦(z).

– Ω := max
1≤J≤N

∣∣∣∣ n∑
i=1

ωJ (zi)−ωJ (z
′
i)

hJ

∣∣∣∣.
– hJ := max{A,

√
Ez′ [ℓJ(z′)− ℓ◦(z′)]} with constant A to be chosen later.

With hj , ωj and Ω, we start bounding (K.10) by writing

∆n(ŝ, s
◦) =

∣∣∣∣∣ 1nE{zi,z′
i}ni=1

[
n∑

i=1

((
ℓ̂(zi)− ℓ◦(zi)

)
−
(
ℓ̂(z′i)− ℓ◦(z′i)

))]∣∣∣∣∣
≤

∣∣∣∣∣ 1nE{zi,z′
i}ni=1

[
n∑

i=1

(ωJ(zi)− ωJ(z
′
i))

]∣∣∣∣∣+ 2ϵc
(
By Replacing ℓ̂ with ℓJ

)
≤ 1

n
E{zi,z′

i}ni=1
[hJΩ] + 2ϵc

(
By introducing Ω and hJ

)
≤ 1

n

√
E{zi,z′

i}ni=1
[h2J ]E{zi,z′

i}ni=1
[Ω2] + 2ϵc

(
By Cauchy-Schwarz inequality

)
≤ 1

n

(
n

2
E{zi,z′

i}ni=1
[h2J ] +

1

2n
E{zi,z′

i}ni=1
[Ω2]

)
+ 2ϵc

(
By AM-GM inequality

)
=

1

2
E{zi,z′

i}ni=1
[h2J ]︸ ︷︷ ︸

(I)

+
1

2n2
E{zi,z′

i}ni=1
[Ω2]︸ ︷︷ ︸

(II)

+2ϵc. (K.11)

– Step B.1: Bounding (I).
By the definition of hJ ,

E{zi,z′
i}ni=1

[h2J ] ≤ A2 + E{zi,z′
i}ni=1

[
Ez′ [ω2

J(z)]
]

≤ A2 + Ez′ [ω̂2(z′)] + 2ϵc

= A2 + E{zi}ni=1

[
Rtrunc

m (ŝ)
]
+ 2ϵc. (K.12)

– Step B.2: Bounding (II).
By Lemma K.1, we have |ℓ(z; sW )| ≲ κ, and by the definition of Ω2, we write

E{zi,z′
i}ni=1

[
n∑

i=1

(
ωJ(zi)− ωJ(z

′
i)

hJ

)2
]
≤

n∑
i=1

E{zi,z′
i}ni=1

[(
ωJ(zi)

hJ

)2

+

(
ωJ(z

′
J)

hJ

)2
]

(
By the independence between zi and z′i

)
≤ κ

n∑
i=1

E{zi,z′
i}ni=1

[
ω2
J(zi)

hJ
+
ω2
J(z
′
i)

hJ

]
≤ 2nκ.
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From the following two facts

* (1)
∣∣∣ωJ (zi)−ωJ (z

′
i)

hJ

∣∣∣ ≤ κ/A

* (2)
n∑

i=1

ωJ (zi)−ωJ (z
′
i)

hJ
is centered

we further write

P

( n∑
i=1

ωJ(zi)− ωJ(z
′
i)

hJ

)2

≥ ω

 = 2P

((
n∑

i=1

ωJ(zi)− ωj(z
′
i)

hj

)
≥

√
ω

)
≤ 2 exp

− ω/2

κ
(
2n+

√
ω

3A

)
 ,

(
By Bernstein’s inequality

)
for any J and ω ≥ 0. Therefore, we have

P
(
Ω2 ≥ ω

)
≤
N∑

J=1

P

( n∑
i=1

ωJ(zi)− ωJ(z
′
i)

hJ

)2

≥ ω

 ≤ 2N exp

− ω/2

κ
(
2n+

√
ω

3A

)
 .

For some ω0 > 0, we bound Ω2 by

E{zi,zn
i }ni=1

[
Ω2
]
=

∫ ω0

0

P
(
Ω2 ≥ ω

)
dω +

∫ ∞
ω0

P
(
Ω2 ≥ ω

)
dω,

(
By integral identity

)
≤ ω0 +

∫ ∞
ω0

2N exp

− ω/2

κ
(
2n+

√
ω

3A

)
dω,

≤ ω0 + 2N
∫ ∞
ω0

{
exp

(
− ω

8nκ

)
+ exp

(
−3A

√
ω

4κ

)}
dω,

≤ ω0 + 2N
{
8nκ exp

(
− ω0

8nκ

)
+

(
8κ

√
ω0

3A
+

32κ

9A2

)
exp

(
−
3A√

ω0

4κ

)}
.

Taking A =
√
ω0/6n and ω0 = 8nκ logN , we have

E{zi,zn
i }ni=1

[Ω2] ≤ nκ logN . (K.13)

• Step C: Altogether.
Combining (K.12) and (K.13), we obtain:

∆n(ŝ, s
◦) ≤ 1

2
E{zi,z′

i}ni=1
[h2J ] +

1

2n2
E{zi,z′

i}ni=1
[Ω2] + 2ϵc

≲
1

2
E{zi}ni=1

[
Rtrunc

m (ŝ)
]
+

κ

2n
logN +

7

2
ϵc.

Recall Definition K.6 and multiply the above inequality with 2, we have

E{zi}ni=1

[
Rtruncŝ

m

]
≲ 2E{zi}ni=1

[
R̂trunc

m (ŝ)
]
+
κ

n
logN + 7ϵc.

110



5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993

Under review as a conference paper at ICLR 2025

Therefore,

∆n(ŝ, s
◦) ≲ E{zi}ni=1

[
R̂trunc

m (ŝ)
]
+
κ

n
logN + 7ϵc

(
By Lemma K.1

)
≲ E{xi,yi}ni=1

[
R̂m(ŝ)

]
+ κ

(
RT exp

(
−C2R

2
T
)
+

1

n
logN

)
+ 7ϵc,

This completes the proof.

K.2 PROOF OF THEOREM 3.3

Proof of Theorem 3.3. For simplicity, we use κ = 1/t0 for the case in Theorem 3.1 and κ =
log(1/t0) for the case in Theorem J.1. The proof proceeds through the following three steps.

• Step A: Decompose the mixed risk.
We denote the ground truth by s◦(x, y, t) = ∇ log pt(x|y). Moreover, if y = ∅ we set s◦(x, y, t) =
∇ log pt(x).

Recall Definition K.3 and Lemma K.4. By introducing a different set of i.i.d. samples {x′i, y′i}ni=1
from the initial data distribution P0(x, y) independent of the training samples, we rewrite the
mixed risk:

Rm(ŝ) = E{x′
i,y

′
i}ni=1

[
1

n

n∑
i=1

(ℓ(x′i, y
′
i, ŝ)− ℓ(x′i, y

′
i, s
◦))

]
= E{x′

i,y
′
i}ni=1

[
R̂′m(ŝ)

]
,

where we use R̂′m(ŝ) to denote the empirical risk of the score estimator ŝ trained from the i.i.d
samples {x′i, y′i}ni=1 .

This allows us to do the decomposition of E{xi,yi}ni=1
[Rm(ŝ)] as follows.

E{xi,yi}ni=1
[Rm(ŝ)] = E{xi,yi}ni=1

[
E{x′

i,y
′
i}ni=1

[
R̂′m(ŝ)− R̂′ trunc

m (ŝ)
]]

︸ ︷︷ ︸
(I)

+ E{xi,yi}ni=1

[
E{x′

i,y
′
i}ni=1

[
R̂′ trunc

m (ŝ)− R̂trunc
m (ŝ)

]]
︸ ︷︷ ︸

(II)

+ E{xi,yi}ni=1

[
R̂trunc

m (ŝ)− R̂m(ŝ)
]

︸ ︷︷ ︸
(III)

+E{xi,yi}ni=1

[
R̂m(ŝ)

]
︸ ︷︷ ︸

(IV)

• Step B: Derive the Upper Bound.

– Step B.1: Bound Each Term.

* By Lemma K.1, we have both (I), (III) ≲ κ exp
(
−C2R

2
T
)
RT .

* By Lemma K.4, we have (II) ≲ (IV) + κ
(
RT exp

(
−C2R

2
T
)
+ 1

n logN
)
+ 7ϵc,

* By the following, we have (IV)≤ minsW∈T h,s,r
R

Rm(s).

(IV) = E{zi}ni=1

[
R̂(ŝ)

]
≤ E{zi}ni=1

[
R̂m(s)

]
= Rm(s).

The inequality holds because ŝ is the minimizer of the empirical risk.

– Step B.2: Combine (I), (II), (III), (IV).
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Combining these results we obtain

E{xi,yi}ni=1
[Rm(ŝ)] ≤ 2 min

sW∈T h,s,r
R

∫ T

t0

1

T − t0
Ext,y,τ

[
∥s(xt, τy, t)−∇ log pt(xt|τy)∥22

]
dt

+O
(κ
n
logN

)
+O(exp

(
−C2R

2
T
)
κ) +O (ϵc) . (K.14)

By taking RT =
√

(Cσ+2β) logN
C2(dx+dy)

along with the result in Lemma K.3, we further write

E{xi,yi}ni=1
[Rm(ŝ)] ≤ 2 min

s∈T h,s,r
R

∫ T

t0

1

T − t0
Eτ,xt,y

[
∥s(x, τy, t)−∇ log pt(x|y)∥22

]
dt

O
(κ
n
logN

)
+O

(
N
− 2β

dx+dy

)
+O (ϵc) . (K.15)

where we invoke κ ≲ 1
t0

= NCσ to obtain the second term on the RHS.

Step C: Altogether.
To apply the previous approximation theorems (Theorem 3.1 and Theorem J.1) to the first term on
the RHS of (K.14), we rewrite the expectation as

Ext,y,τ

[
∥s(xt, τy, t)−∇ log pt(xt|τy)∥22

]
(K.16)

=
1

2

∫
Rdx

∥s(x, ∅, t)−∇ log pt(x|y)∥22pt(x)dx+
1

2
Ey

[∫
Rdx

∥s(x, y, t)−∇ log pt(x|y)∥22pt(x|y)dx
]
.

Since the marginal distribution pt(x) also satisfies the subgaussian property, the previous result
of the conditional score estimation applies to its unconditional counterpart by removing the label
throughout the whole process.

– Step C.1: Result under Assumption 3.1.
From Theorem 3.1, we rewrite (K.15) as

E{zi}ni=1
[Rm(ŝ)] ≲ O

(
N
− β

dx+dy (logN)dx+
β
2 +1
)

︸ ︷︷ ︸
(i)

+O
(
N
− 2β

dx+dy

)
︸ ︷︷ ︸

(ii)

+O
(κ
n
logN

)
︸ ︷︷ ︸

(iii)

+O (ϵc)︸ ︷︷ ︸
(iv)

.

Moreover, from Lemma K.1 we have κ = O(1/t0) and from Lemma K.3 we have

logN (ϵc,S(RT ), ∥·∥∞) ≲
log n

ϵ2c
N

172β
dx+dy

+104Cσ (logN)12dx+12β+2(RT )
2

:=
log n

ϵ2c
Nν1(logN)ν2(RT )

2,

where ν1 = 68β/(dx + dy) + 104Cσ and ν2 = 12dx + 12β + 2.

Taking N = n
1
ν1

dx+dy
(dx+dy+β) and ϵc = N

− 1
4

ν1β

(dx+dy) renders error

* (i) = O
(

1
t0
(log n)dx+

β
2 +1n

− β
ν1(dx+dy+β)

)
from (K.16) and Theorem 3.1

* (ii) = O
(
n
− 2β

ν1(dx+dy+β)

)
* (iii) = O

(
κn−1n

1
2

β
dx+dy+β (log n)n

dx+dy
dx+dy+β (log n)ν2(log n)

)
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Rearranging the expression, we have (iii) = O
(

1
t0
n
− 1

2
β

dx+dy+β (log n)ν2+2
)

* (iv) = O
(
n
− 1

4
β

dx+dy+β

)
The total error is bounded by

E{xi,yi}ni=1
[R(ŝ)] = O

(
1

t0
n
− β

ν1(dx+dy+β) (log n)ν2+2

)
.

Step C.2: Result under Assumption 3.2.
With Theorem J.1, we further write (K.15) as

E{zi}ni=1
[Rm(ŝ)] ≲ O

(
N
− 2β

dx+dy (logN)β+1
)

︸ ︷︷ ︸
(i)

+O
(
N
− 2β

dx+dy

)
︸ ︷︷ ︸

(ii)

+O
(κ
n
logN

)
︸ ︷︷ ︸

((iii)

+O (ϵc)︸ ︷︷ ︸
(iv)

.

Moreover, from Lemma K.1 we have κ = O(log 1
t0
) and from Lemma K.3

logN (ϵc,S(RT ), ∥·∥∞) =
log n

ϵ2c
Nν3(logN)10(RT )

2.

where ν3 = 4(12βdx+31βd+6β)
d(dx+dy)

+ 12(12Cαdx+25Cα·d+6Cα)
d + 72Cσ .

Taking N = n
(dx+dy)

ν3(dx+dy+2β) and ϵc = N
− 1

4
ν3β

(dx+dy) renders error

* (i) = O
(
log 1

t0
(log n)β+1n

− 1
ν3

2β
(dx+dy+2β)

)
from (K.16) and Theorem 3.1

* (ii) = O
(
n
− 2β

ν3(dx+dy+2β )
)

* (iii) = O
(

κ
nn

1
2

β
dx+dy+2β (log n)n

dx+dy
dx+dy+2β (log n)10(log n)

)
Rearranging the expression we have (iii) = O

(
log 1

t0
n
− 3

2
β

dx+dy+2β (log n)12
)

* (iv) = O
(
n
− 1

4
β

dx+dy+2β

)
The total error is bounded by

E{xi,yi}ni=1
[R(ŝ)] = O

(
log

1

t0
n
− 1

ν3

β
dx+dy+2β (log n)max(12,β+1)

)
.

This completes the proof.
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K.3 DOMINANCE TRANSITION BETWEEN N AND logN FOR ALL NORM BOUNDS UNDER
ASSUMPTION 3.1

Here we show that there is a sharp transition between the dominance of N and logN in all norm
bounds for using transformers to approximate score function under Assumption 3.1 (in Theorem 3.1).

We remark that this sharp transition necessitates separate analyses for the low-dimensional region
(dx ≪ n) in Corollaries 3.3.1 and 3.4.1.

Lemma K.5 (Dominance Transition between N and logN for All Norm Bounds). Let dx be
the feature dimension of the data. Let N be the discretization resolution of the locally diffused
polynomial defined in Lemma I.1 and Remark I.1. Under Assumption 3.1, dx = Θ

(
logN

log logN

)
divides the dependence of N and logN into two regions for the required norm bounds on attention
weights WK ,WQ,WO,W1,W2 in score approximation using transformer networks (Theorem 3.1):

• High-Dimensional Region: If dx = Ω
(

logN
log logN

)
, N dominates over logN .

• Mild and Low-Dimensional Region: If dx = o
(

logN
log logN

)
, logN dominates over N .

Proof of Lemma K.5. Recall the required parameter norm bounds for approximating score function
with transformer networks from Step C of Lemma I.13. We provide a comprehensive summary of all
parameter bounds involving terms dependent on N and logN from each respective operation.

• Bound on WQ and WK .

– For ϵf1 :

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (9β+6Cσ)· 2dL+4d+1

d · (logN)−3(dx+β)· 2dL+4d+1
d

)
.

Since dx = dL, N and logN balance at

NO(dx) = (logN)O(d2
x),

and hence

dx = O
(

logN

log logN

)
.

– For ϵf2 :

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (3β+2Cσ)· 2dL+4d+1

d · (logN)−(dx+β)· 2dL+4d+1
d

)
.

Since dx = dL, N and logN balance at

NO(dx) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

– For ϵrec,1 and ϵrec,2:

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (9β+6Cσ)(logN)−3(dx+β)

)
.
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N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

– For ϵσ,1:

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WQ∥2,∞ = O
(
N (27β+18Cσ)(logN)−9(dx+β)

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

– For ϵσ,3:

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WQ∥2,∞ = O
(
N (21β+15Cσ (logN)−6(dx+β)

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

• Bound on WO.

– For ϵf1

∥WO∥2, ∥WO∥2,∞ = O
(
N−

(9β+6Cσ)
d (logN)

3(dx+β)
d

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

– For ϵf2

∥WO∥2, ∥WO∥2,∞ = O
(
N−

(3β+2Cσ)
d (logN)

(dx+β)
d

)
.
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N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

– For ϵrec,1 and ϵrec,2:

∥WO∥2, ∥WO∥2,∞ = O
(
N−(3β+6Cσ)(logN)dx+β

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

– For ϵσ1 :

∥WO∥2, ∥WO∥2,∞ = O
(
dN−(9β+6Cσ)(logN)3(dx+β)

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

– For ϵσ2
:

∥WO∥2, ∥WO∥2,∞ = O
(
dN−(7β+5Cσ)(logN)2(dx+β)

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

• Bound on W1.

– For ϵf1 :

∥W1∥2, ∥W1∥2,∞ = O
(
N

(9β+6Cσ)
d (logN)−

3(dx+β)
d · (logN)

)
.
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N and logN balance at

No(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

– For ϵf2 :

∥WO∥2, ∥WO∥2,∞ = O
(
N−

(3β+2Cσ)
d (logN)

(dx+β)
d

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

– For ϵmult,1:

∥W1∥2, ∥W1∥2,∞ = O
(
N (4β+Cσ)(logN)−

1
2 (dx+β)

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

– For ϵrec,1, ϵrec,2:

∥W1∥2, ∥W1∥2,∞ = O
(
N (6β+4Cσ)(logN)−2(dx+β)

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

– For ϵσ1
:

∥W1∥2, ∥W1∥2,∞ = O
(
N (9β+6Cσ)(logN)−3(dx+β) · logN

)
.
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N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

– For ϵσ2
:

∥W1∥2, ∥W1∥2,∞ = O
(
N (7β+5Cσ)(logN)−2(dx+β) · logN

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

• Bound on W2.

– For ϵf1 and ϵf2 :

∥W2∥2, ∥W2∥2,∞ = O
(
N

(9β+6Cσ)
d (logN)−3

(dx+β)
d

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

– For ϵf2 and ϵf2 :

∥W2∥2, ∥W2∥2,∞ = O
(
N

(3β+2Cσ)
d (logN)−

(dx+β)
d

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.
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– For ϵrec,1 and ϵrec,2:

∥W2∥2, ∥W2∥2,∞ = O
(
N (3β+2Cσ)(logN)−(dx+β)

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

For ϵσ1 :

∥W1∥2, ∥W1∥2,∞ = O
(
N (9β+6Cσ)(logN)−3(dx+β)

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

For ϵσ2
:

∥W1∥2, ∥W1∥2,∞ = O
(
N (7β+5Cσ)(logN)−2(dx+β)

)
.

N and logN balance at

NO(1) = (logN)O(dx),

and hence

dx = O
(

logN

log logN

)
.

This completes the proof.

K.4 PROOF OF COROLLARY 3.3.1

By brute force, we know N = O(nd
κ
x ) with11 κ = −2, 1 under Assumption 3.1. This indicates the

positive proportionality between the sample size n and the resolution N .

By Lemma K.5, we conclude:

• High-Dimension: dx = Ω( logN
log logN ), and κ = 1.

• Mild and Low-Dimensional Region: dx = o( logN
log logN ) and κ = −2.

11The options of κ values are from the hindsight. One must compute all norm bounds to identify the available
values
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Low-Dimension Approximation Result. For dx = o (logN/(log logN)), since the dominant
term in the norm bounds differs (Lemma K.5), we obtain a distinct score approximation result from
Theorem 3.1:

Theorem K.1 (Conditional Score Approximation under Assumption 3.1 and
dx = o (logN/(log logN))). Assume Assumption 3.1 and dx = o (logN/(log logN)).
For any precision parameter 0 < ϵ < 1 and smoothness parameter β > 0, let ϵ ≤ O(N−β) for some
N ∈ N. For some positive constants Cα, Cσ > 0, for any y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN ],
there exists a Tscore(x, y, t) ∈ T h,s,r

R such that the conditional score approximation satisfies∫
Rdx

∥Tscore(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y) dx = O
(
B2

σ2
t

·N−
β

dx+dy · (logN)dx+
β
2 +1

)
.

Notably, for ϵ = O(N−β), the approximation error has the upper bound Õ(ϵ1/(dx+dy)/σ2
t ).

The parameter bounds for the transformer network class are as follows:

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞

= O
(
N

9β(2dx+4d+1)
d(dx+dy)

+
6Cσ(2dx+4d+1)

d · (logN)−3(dx+β)· 2dL+4d+1
d

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d); ∥WO∥2, ∥WO∥2,∞ = O

(
N
− β

dx+dy

)
;

∥W1∥2, ∥W1∥2,∞ = O
(
N

9β
dx+dy

+6Cσ (logN)−2(dx+β)+1
)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N

9β
dx+dy

+6Cσ (logN)−2(dx+β)
)
;∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
;CT = O

(√
logN/σ2

t

)
.

Proof of Theorem K.1. We show the proof by the following two steps.

• Step A: Upper-Bound Selection.
For dx = o (logN/(log logN)), N dominates the logN term. We set the parameter based on the
order of N when N and logN coexist. By Step C in the proof of Lemma I.13, we have:

– Bound on WQ and WK .
We set the parameter to the largest upper bound determined by the approximation error ϵf1 :

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞ = O
(
N (9β+6Cσ)· 2dL+4d+1

d · (logN)−3(dx+β)· 2dL+4d+1
d

)
.

– Parameter Bound on WO and WV .
We set the parameter to the largest upper bound determined by the approximation error ϵmult,2
and ϵrec,3:

∥WO∥2, ∥WO∥2,∞ = O
(
N−β

)
.

Note that only ϵf1 and ϵf2 involve the reshape operation. That is, approximation other than f1
and f2 has ∥WV ∥2, ∥WV ∥2,∞ = O(1). Therefore, we take O(

√
d) and O(d) for ∥WV ∥2 and

∥WV ∥2,∞ by Lemma H.5 respectively.

– Parameter Bound on W1.
We set the parameter to the largest upper bound determined by the approximation error ϵσ,1 and
ϵσ,2. That is, we take N (9β+6Cσ) from the former and we take (logN)−2(dx+β) from the latter.

∥W1∥2, ∥W1∥2,∞ = O
(
N (9β+6Cσ)(logN)−2(dx+β) · logN

)
.
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– Parameter Bound on W2.
Following the same argument for W1, we have

∥W2∥2, ∥W2∥2,∞ = O
(
N (9β+6Cσ)(logN)−2(dx+β)

)
.

• Step B: Change of Variables.
Recalling from the last step in the proof of Theorem 3.1 (in Appendix I), we replace N with
N1/(dx+dy) and Cσ with (dx + dy)Cσ to obtain the final approximation result. Here we perform
the same change of variables.

This completes the proof.

We compute the covering number for the function class of truncated loss S(RT ) (defined in Defini-
tion K.4) under Assumption 3.1 in low-dimensional region dx = o (logN/(log logN)) .

Lemma K.6 (Covering Number for S(RT )). Given ϵc > 0 and consider ∥x∥∞ ≤ RT . With
sample {xi, yi}ni=1, the ϵc-covering number for S(RT ) with respect to ∥·∥L∞

under the network
configuration in Theorem 3.1 satisfies

logN (ϵc,S(RT ), ∥·∥2) ≲
log n

ϵ2c
Nν4(logN)ν5(RT )

2,

where ν4 = 144dβ(L + 2)(dx + 2d + 1)/(dx + dy) + 96dCσ(L + 2)(dx + 2d + 1) − 8β and
ν5 = −16d(dx + β)(L+ 2)(3dx + 6d+ 2) + 2.

Proof of Lemma K.6. The proof closely follows Lemma K.3. Applying Lemma K.2, we calculate

logN (ϵc, T h,s,r
R , ∥·∥2)

≤ log n

ϵ2c
· α2

(
2
(
(CF )

2C2,∞
OV

) 2
3︸ ︷︷ ︸

(I)

+(d
2
3

(
C2,∞

F

) 4
3︸ ︷︷ ︸

(II)

+ d
2
3

(
2(CF )

2COV C
2,∞
KQ

) 2
3︸ ︷︷ ︸

(III)

)3

,

where (III) dominates (I) and (II).
Plug in the network configuration from Theorem K.1:

∥WQ∥2, ∥WK∥2, ∥WQ∥2,∞, ∥WK∥2,∞

= O
(
N

9β(2dx+4d+1)
d(dx+dy)

+
6Cσ(2dx+4d+1)

d · (logN)−3(dx+β)· 2dL+4d+1
d

)
;

∥WV ∥2 = O(
√
d); ∥WV ∥2,∞ = O(d); ∥WO∥2, ∥WO∥2,∞ = O

(
N
− β

dx+dy

)
;

∥W1∥2, ∥W1∥2,∞ = O
(
N

9β
dx+dy

+6Cσ (logN)−2(dx+β)+1
)
;

∥W2∥2, ∥W2∥2,∞ = O
(
N

9β
dx+dy

+6Cσ (logN)−2(dx+β)
)
;∥∥E⊤∥∥

2,∞ = O
(
d

1
2L

3
2

)
;CT = O

(√
logN/σ2

t

)
.

Note that WK,Q = WQW
⊤
K , we take ∥WQ∥2,∞ · ∥WK∥2,∞ as the upper bound for ∥WKQ∥2,∞.

Since WQ, WK share identical upper-bound, we calculate (C2,∞
K )4 for (C2,∞

K,Q)
2. Similarly we use

∥WO∥2,∞ ·∥WV ∥2,∞ as the upper bound for ∥WOV ∥2,∞. Moreover, we take CF = max{Cf1 , Cf2}.
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• Bound on C4
F = (Cf2)

4:

(Cf2)
4 ≲ N

36β
dx+dy

+24Cσ (logN)−8(dx+β).

• Bound on (C2,∞
K )4:

(C2,∞
K )4 ≲ N

36β(2dx+4d+1)
d(dx+dy)

+
24Cσ(2dx+4d+1)

d · (logN)−12(dx+β)· 2dL+4d+1
d .

The bound on (III) follows:

(III) ≲
(
(Cf2)

4(COV )
2(C2,∞

KQ )2
) 1

3

≲

N 36β(2dx+5d+1)
d(dx+dy)

+
24Cσ(2dx+5d+1)

d (logN)−
(dx+β)(24dL+56d+12)

d︸ ︷︷ ︸
(Cf2

)4·(C2,∞
K )4

· N−2β︸ ︷︷ ︸
(COV )2


1
3

.

Moreover, α := (CF )
2COV (1 + 4CKQ)(RT + CE), we have:

α2 ≲ (Cf1)
4(COV )

2(CKQ)
2(RT + CE)

2 ≲ (III)3 ·R2
T .

By the Step C in Lemma K.3, we extend the log-covering number of transformer to the truncated
loss S(RT ) with ∥x∥∞ ≤ RT by replacing ϵc with ϵc/ logN .

Combining (III) and α2 for network configuration in Theorem J.1, we obtain:

logN (ϵc,S(RT ), ∥·∥2) ≲ N
72β(2dx+5d+1)

d(dx+dy)
+

48Cσ(2dx+5d+1)
d −4β

(logN)−
8(dx+β)(6dL+14d+3)

d +2 · (RT )2

:=
log n

ϵ2c
Nν4(logN)ν5(RT )

2,

where ν4 = 72β(2dx+5d+1)
d(dx+dy)

+ 48Cσ(2dx+5d+1)
d − 4β and ν5 = − 8(dx+β)(6dL+14d+3)

d + 2.

This completes the proof.

Proof of Corollary 3.3.1. The proof closely follows the high-dimensional result where dx =
Ω(logN/(log logN)) in Appendix K.2. The only distinction lies in the covering number with
transformer network (defined in Definition K.5), characterized by νi with i ∈ [5]. Therefore, we
replace ν1, ν2 in Theorem 3.3 with ν4 and ν5.

Specifically, for score estimation under Assumption 3.1, by taking N = n
1
ν4
· dx+dy
β+dx+dy , t0 = N−Cσ <

1 and T = Cα log n, it holds

E{xi,yi}ni=1
[R(ŝ)] = O

(
1

t0
n
− 1

ν4
· β
dx+dy+β (log n)ν5+2

)
= O

(
1

t0
n
− 1

ν4
· β
dx+dy+β

)
,

(
n term surpasses logn term

)
ν4 = 72β(2dx+5d+1)

d(dx+dy)
+ 48Cσ(2dx+5d+1)

d − 4β and ν5 = − 8(dx+β)(6dL+14d+3)
d + 2.

This completes the proof.
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K.5 AUXILIARY LEMMAS FOR THEOREM 3.4.

We give the following two lemmas serving as the key components in the proof of Theorem 3.4.

Lemma K.7 (Proposition D.1 of Oko et al. (2023), Lemma D.4 of Fu et al. (2024b) and also Chen
et al. (2022)). Consider probability distribution p0 and two stochastic processes h = {ht}t∈[0,T ] and
h′ = {h′t}t∈[0,T ] that satisfy the following SDE respectively

dht = b(ht, t)dt+ dWt h0 ∼ p0

dh′t = b′(h′t, t)dt+ dWt h′0 ∼ p0.

Plus denote the distribution of the two processes at time t as pt and p′t. Then suppose∫
x

pt(x)∥(b− b′)(x, t)∥dx ≤ C (K.17)

holds for any t ∈ [0, T ], then we have

KL(pT || p′T ) =
∫ T

0

1

2

∫
x

pt(x)∥(b− b′)(x, t)∥dxdt

The bound for KL divergence stems from Girsanov’s Theorem, with the extension to the case where
the Novikov’s condition is replaced with (K.17) by Chen et al. (2022). Moreover, we need the
following lemma to bound to total variation.

Lemma K.8 (Lemma D.5 of Fu et al. (2024b)). Assume Assumption 3.1 or Assumption 3.2. For any
y ∈ [0, 1]dy we have

TV (P0(·|y), Pt0(·|y)) = O
(√

t0 log
dx+1

2

(
1

t0

))
.

With the above lemmas and discussion, we begin the proof of Theorem 3.4.

K.6 MAIN PROOF OF THEOREM 3.4

Proof of Theorem 3.4. Given label y, we let P̂t0(·|y) denote the data distribution with early-stopped
time t0 generated by the reverse process with the score estimator from transformer network class.

The decomposition of the total variation between the processes driven by the ground truth and the
score estimator follows

TV
(
P (·|y), P̂t0(·|y)

)
≲ TV (P (·|y), Pt0(·|y))︸ ︷︷ ︸

(I)

+TV
(
Pt0(·|y), P̃t0(·|y)

)
︸ ︷︷ ︸

(II)

+TV
(
P̃t0(·|y), P̂t0(·|y)

)
︸ ︷︷ ︸

(III)

• Step A: Derive the Upper Bound

– Step A.1: Bounding (I).

From Lemma K.8 we have TV
(
P (·|y), P̃t0(·|y)

)
= O

(√
t0 log

dx+1
2

(
1
t0

))
.

– Step A.2: Bounding (II).
We use the following process that represents the reverse process starting with standard Gaussian.

dX̃←t =

[
1

2
dX̃←t +∇ log pT−t(X̃

←
t |y)

]
dt+ dW t X̃←0 ∼ N(0, Idx

).

The distribution of X̃←t conditioned on the label y is denoted by P̃T−t(·|y).
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Next, by Data Processing Inequality and Pinsker’s Inequality (Canonne, 2022, Lemma 2) we
have

TV
(
Pt0(·|y), P̃t0(·|y)

)
≲
√

KL(Pt0(·|y) || P̃t0(·|y))

≲
√

KL(PT (·|y) || N(0, Idx
))

≲
√

KL(P (·|y) || N(0, Idx)) exp(−T ). (K.18)

Therefore for (II), from (K.18) we have

TV
(
Pt0(·|y), P̃t0(·|y)

)
≲
√

KL(P (·|y) || N(0, Idx
)) exp(−T )

≲ exp(−T )

– Step A.3: Bounding (III).
From (K.18) and Lemma K.7, we have

TV
(
P̃t0(·|y), P̂t0(·|y)

)
≲

√∫ T

t0

1

2

∫
x

pt(x|y)∥ŝ(x, y, t)−∇ log pt(x|y)∥2dxdt.

• Step B: Altogether.
Combining (I) (II) and (III), we take the expectation to the total variation with respect to y

Ey

[
TV
(
P (·|y), P̂t0(·|y)

)]
≲
√
t0 log

dx+1
2

(
1

t0

)
+ exp(−T ) +

√∫ T

t0

1

2

∫
x

pt(x|y)∥ŝ(x, y, t)−∇ log pt(x|y)∥2dxdt(
By Jensen’s inequality

)
≲
√
t0 log

dx+1
2

(
1

t0

)
+ exp(−T ) +

√
T

2
R(ŝ).

Lastly, take the expectation with respect to the sample {xi, yi}ni=1 and take T = Cα log n we have

E{xi,yi}ni=1

[
Ey

[
TV
(
P (·|y), P̂t0(·|y)

)]]
≲
√
t0 log

dx+1
2

(
1

t0

)
+ n−Cα +

√
log nE{xi,yi}ni=1

[√
R(ŝ)

] (
By Jenson’s Inequality

)
≲
√
t0 log

dx+1
2

(
1

t0

)
︸ ︷︷ ︸

(i)

+n−Cα +
√
log n

√
E{xi,yi}ni=1

[R(ŝ)]︸ ︷︷ ︸
(ii)

– Step B.1: Result under Assumption 3.1.

We apply Theorem 3.3 and setting Cα = 2β
dx+dy+2β and t0 = n−β/(dx+dy+β), we further write

the above expression into

E{xi,yi}ni=1

[
Ey

[
TV
(
P (·|y), P̂t0(·|y)

)]]
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≲ n
− β

2(dx+dy+β) (log n)(
dx+1

2 )︸ ︷︷ ︸
(i)

+n
− 2β

dx+dy+2β + (log n)
1
2

(
1

t0
n
− β

ν1(dx+dy+β) (log n)ν2+2

) 1
2

︸ ︷︷ ︸
(ii)

Therefore, under Assumption 3.1 we have

E{xi,yi}ni=1

[
Ey

[
TV
(
P (·|y), P̂t0(·|y)

)]]
= O

(
n
− β

2(ν1−1)(dx+dy+β) (log n)
ν2
2 + 3

2

)
– Step B.2: Result under Assumption 3.2.

We apply Theorem 3.3 and set t0 = n
− 4β

dx+dy+2β−1. Note that we have

√
t0

(
log

1

t0

) dx+1
2

≲ n
− 2β

dx+dy+2β .

We further write

E{xi,yi}ni=1

[
Ey

[
TV
(
P (·|y), P̂t0(·|y)

)]]
≲ n

− 2β
dx+dy+2β︸ ︷︷ ︸

(i)

+n
− 2β

dx+dy+2β + (log n)
1
2

(
log

1

t0
n
− 1

ν3

β
dx+dy+2β (log n)max(10,β+1)

) 1
2

︸ ︷︷ ︸
(ii)

.

Therefore we have

E{xi,yi}ni=1

[
Ey

[
TV
(
P (·|y), P̂t0(·|y)

)]]
= O

(
n
− 1

2ν3

β
dx+dy+2β (log n)max(6,(β+3)/2)

)

This completes the proof.

K.7 PROOF OF COROLLARY 3.4.1

Proof of Corollary 3.4.1. The proof closely follows the high-dimensional result where dx =
Ω(logN/(log logN)) in Appendix K.2. The only distinction lies in the covering number with
transformer network (defined in Definition K.5), characterized by νi with i ∈ [5]. Therefore, we
replace ν1, ν2 in Theorem 3.4 with ν4 and ν5. This completes the proof.
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