
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

SPARSE ATTENTION ADAPTATION FOR LONG REASON-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce SeerAttention-R, a sparse attention framework specifically tai-
lored for the long decoding of reasoning models. Extended from SeerAttention,
SeerAttention-R retains the design of learning attention sparsity through a self-
distilled gating mechanism, while removing query pooling to accommodate auto-
regressive decoding. With a lightweight plug-in gating, SeerAttention-R is flexible
and can be easily integrated into existing pretrained model without modifying the
original parameters. We demonstrate that SeerAttention-R, trained on just 0.4B
tokens, maintains near-lossless reasoning accuracy with 4K token budget in AIME
benchmark under large sparse attention block sizes (64/128). Using TileLang, we
develop a highly optimized sparse decoding kernel that achieves near-theoretical
speedups of up to 9x over FlashAttention-3 on H100 GPU at 90% sparsity.

1 INTRODUCTION

Recent reasoning-focused models such as OpenAI o1 Jaech et al. (2024), DeepSeek-R1 Guo et al.
(2025), and Qwen3 Yang et al. (2025a) demonstrate that models’ capabilities improve significantly
through test-time scaling. By generating longer sequences during inference, these models are able
to think and reason more effectively before producing an answer. Empirically, longer generations
correlate with stronger reasoning performance. For instance, Qwen3-14B Yang et al. (2025a)
outperforms DeepSeek-R1-Distill-Qwen-14B Guo et al. (2025) while producing longer responses
on average. Similarly, harder benchmarks such as AIME24 require more tokens per generation than
easier ones like MATH-500 Hendrycks et al. (2020).

However, deeper reasoning introduces increasing efficiency challenges. Due to the auto-regressive
nature of decoding, later tokens must attend to a longer context, increasing compute and memory
demands for the KV cache. As a result, the per-token generation cost grows linearly, while the overall
generation cost increases quadratically.

Sparse attention offers a promising approach to addressing the long-sequence efficiency challenges.
While it has been studied in general language modeling, its application to reasoning models, which
require prolonged decoding, remains underexplored. Our experiment using oracle sparsity (Sec-
tion 4.2) shows that attention in reasoning models is also inherently sparse, activating only a subset
of important tokens is sufficient to maintain the model’s reasoning capability. The key challenge lies
in effectively identifying and leveraging this intrinsic sparsity.

In this work, we extend SeerAttention Gao et al. (2024) to SeerAttention-R, a sparse attention
framework aimed to improve the long decoding efficiency of reasoning models. SeerAttention was
originally designed to improve prefill efficiency by selectively activating important attention blocks
through a lightweight, self-distilled attention gating mechanism at post-training time. SeerAttention-
R retains the core design of self-ditilled attention sparsity and introduces modifications to support
efficient decoding. Specifically, it removes sequence-level pooling of query to accommodate auto-
regressive decoding and adopts a shared sparsity design aligned with Grouped Query Attention (GQA)
to enhance hardware efficiency. SeerAttention-R can be integrated into any standard transformer-
based pretrained model by adding the learnable gate to the attention layer, without fine-tuning original
model parameters.

We apply SeerAttention-R to multiple reasoning-focused open-source models, including Qwen3-4B,
8B, 14B Yang et al. (2025a) and DeepSeek-R1-Distill-Qwen-14B Guo et al. (2025), and evaluate

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

them on several reasoning benchmarks: AIME24, AIME25, MATH-500 Hendrycks et al. (2020), and
GPQA-Diamond Rein et al. (2024). Since SeerAttention-R only requires training the gating module,
the distillation is lightweight with just 0.4B tokens from OpenR1-MATH-220K Face (2025) being
sufficient. Across all models and tasks, SeerAttention-R consistently outperforms the Quest Tang
et al. (2024) baseline and maintains near-lossless accuracy under a 4k token budget. Notably, the
accuracy gap further diminishes as model size increases. More importantly, this learnable approach
enables more coarse-grained sparse attention (e.g., a block size of 64 or 128), which further reduces
the overhead from sparse attention scheme and improve hardware efficiency.

We implement the block sparse flash decoding kernel using both TileLang til and Triton Tillet et al.
(2019), and benchmark it on an H100 GPU with FlashAttention-3 (FA3) Shah et al. (2024) as the
baseline. Across a range of combination of sequence lengths, batch sizes, and sparsity levels, our
TileLang-based kernel consistently outperforms both Triton and FA3. The gains are especially
pronounced at large sequence lengths and batch sizes. For example, at batch size 16 and sequence
length ≥ 32k, our TileLang kernel achieves near-theoretical speedups of up to 8.6× at 90% sparsity
over the FA3 baseline, and delivers a 1.7× speedup compared to the Triton counterpart.

2 SEERATTENTION-R

2.1 A RECAP OF SEERATTENTION

Q

Block Sparse
Flash-Attn (Prefill)

K V

Attention Output

RoPE

Pooling

Sparisfy

Block Indices

Linear

MatMul & Softmax

Pooling

Linear

RoPE

A
ttn

 G
ate

Block Indices

Pooling

Linear

Linear
(reduce to
kv heads)

Sparisfy

MatMul & Softmax

RoPE

A
ttn

 G
ate

(a) SeerAttention (b) SeerAttention-R

Q

Block Sparse
Flash Decoding

K V

RoPE

Attention Output

Figure 1: SeerAttention (Sparse Prefill) and SeerAttention-R (Sparse Decode). In SeerAttention-R,
no sequence dimension compression/pooling operation is applied in Query (Q). Given that modern
architectures predominantly use GQA, a linear layer projects the Q from its original number of heads
down to the number of KV heads, enabling shared sparsity selection in a GQA group.

SeerAttention Gao et al. (2024) introduces self-distilled Attention Gate (AttnGate) that dynamically
activates sparse blocks in attention computation for efficient long-context prefilling. Figure 1a shows
the AttnGate architecture of SeerAttention, where Q, K tensors are both compressed (pooled) in
the sequence dimension per block number of tokens. The compressed Q, K tensors are then passed
through two newly added linear layers, which serve as learnable parameters in the AttnGate. With
the following positional embedding, matrix-multiplication and softmax operation similar to standard
attention, the AttnGate then generates the 2D block-level attention score estimation. Based on the
output, we can selectively activate blocks with higher scores while skipping the rest.

In the distillation process, the AttnGate are trained to mimic the 2D block sparse distribution using
the ground truth generated by the original pretrained model. This self-distillation training is efficient
as the original model weights are frozen. In this way, it brings accurate sparse attention to pretrained
full-attention models without costly fine-tuning or pre-training. Powered by customized block-sparse
flash attention kernels, SeerAttention achieves supreme accuracy-efficiency tradeoff in downstream
long-context benchmarks.

2.2 SEERATTENTION-R: ATTNGATE FOR SPARSE DECODING

This work introduces SeerAttention-R, an extension of SeerAttention tailored for the long-decoding
phase of reasoning models. The foremost difference of AttnGate design in SeerAttention-R is

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

that it does not apply compression/pooling in the sequence dimension of Q to accommodate the
token-by-token auto-regressive decoding process (shown in Figure 1b).

Qgate = RoPE
(
Wq

gate reshape(Qnope, [..., g · d])
)
, (1a)

Kgate = RoPE
(
Wk

gate concat[Pmax(Knope),Pmin(Knope),Pavg(Knope)]
)
, (1b)

S = softmax(Qgate Kgate
⊤/

√
dgate). (1c)

where, Pmax, Pmin, and Pavg stand for Max, Min and Average Pooling in sequence dimension, and g
is the group size of GQA setting. d and dgate are the hidden dimension of the original model and
AttnGate for each head, respectively. S is the output score of each block from AttnGate. The detailed
design are discussed as follows.

Aggregation of Query Heads for Shared Sparsity in GQA Group Query Attention (GQA) Ainslie
et al. (2023) is widely used in LLMs to reduce KV cache size. In GQA, the query heads are organized
into groups, and each group shares a key-value head. Recent sparse attention works SAAP Mazaré
et al. (2025b) and NSA Yuan et al. (2025) show that using identical attention sparsity choices for
all queries in a group can improve the efficiency while achieving similar or better performance. In
SeerAttention-R, we follow this practice and use an linear layer in the Q branch of AttnGate to reduce
each subgroup of queries to one single head. For example, with 32 query heads and 8 key-value
heads (group size g = 4), there will be 8 sets of linear weights in shape [dgate, 4× d] applying on
each group of queries heads, resulting only 8 heads of Qgate. Since we keep the number of heads
untouched in K branch of AttnGate, the final output of AttnGate will be key-value heads, achieving a
shared decision of sparsity in a group.

Pooling-based Compression of Key We follow the practice of SeerAttention that uses pooling
operations to compress the sequence dimension of K. The kernel and stride size of pooling are both
equal to block size, which can also be understood as non-overlapping chunk-level pooling. To mitigate
the potential information loss associated with pooling operations, we employ a composition of Max,
Min, and Average pooling operations. The outputs from these pooling operations are concatenated
prior to being fed into the subsequent linear layer, similar to SeerAttention. The intuition behind this
approach is that Max and Min Pooling can effectively capture outlier values, while Average Pooling
helps to keep the overall distribution intact.

Positional Embedding in AttnGate In line with SeerAttention, the decode AttnGate utilizes the
pre-rope Q and K tensors as inputs and reapplies RoPE Su et al. (2024) within AttnGate. Given that
the branch is compressed along the sequence dimension, the position index is assigned to the initial
token of each block. In our experiment, we found that the use of positional embedding in AttnGate
can consistently achieve better accuracy compared to the design without positional embedding.

2.3 DISTILLATION/TRAINING

Previous SeerAttention introduces AttnGate distillation method using the ground truth generate by
LLM itself in the prefilling phase. The training process is efficient as only the AttnGate are trained.
In SeerAttention-R, we extend this method to the decoding scenario by slightly changing the form of
the ground truth. Figure 2 shows the overall diagram of the training process.

Ground Truth To train AttnGate for the auto-regressive decoding process, we need to adapt the
ground truth generation method. Instead of performing 2D maxpooling of attention map in the prefill
case, we only do column-wise 1D maxpooling shown in Figure 2a. This corresponds to the decoding
AttnGate that does not compress in sequence dimension. Moreover, to accommodate the shared
sparsity in GQA, the column-pooled attention map is further maxpooled within each query heads
subgroup, resulting in a ground truth with key-value heads. Finally, the ground truth is normalized to
summation 1. We then use the Kullback-Leibler divergence loss Joyce (2011) to train AttnGate in the
distillation process.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Block

d

AttnGate Ouput

Pooling

Q

KT

S
e
q

d

Q

1D MaxPooling

Ground Truth

KLdiv Loss

Linear Layer

KT

Pseudo Code of Customized Flash-Attn Kernel to
Generate Ground Truth in FWD
Input: Q, K, V; Output: O, GT (Maxpool of Attn Map)
for i from 1 to Tr
 Load qi
 for j from 1 to Tc
 Load kj, vj
 Compute sij = dot(qi,kj), rij = rowmax(Sij)
 Store rij
 Update mij = max(mi(j−1), rij), lij and oij
 Compute final li, mi and Oi

for j from 1 to Tc
 Load rij
 Rescale gtij = exp(rij − mi)/li
 Store gtij

Return O, GT

(a) (b)

Figure 2: Training Diagram and Training Kernel of SeerAttention-R. (a) Self-distillation training of
AttnGate in SeerAttention-R. It uses 1D maxpooled attention scores from original model as ground
truth to train AttnGate. Query head reduction is not plotted in the diagram for simplicity. (2) Pseudo
code of attention forward kernel for training that directly generates ground truth and attention output.

Efficiently Obtaining Ground Truth during Training Explicitly calculating the full attention map
softmax(QKT/

√
d) and then perform the block-level pooling can cost huge GPU memory due to the

quadratic complexity. In SeerAttention-R, we also provide an efficient modification of FlashAttention-
2 Dao (2023) kernel that directly generates the ground truth along with the attention output. This
kernel largely reuses the intermediate results (e.g. block-level rowmax) in Flash-Attention and thus
increases the efficiency of the distillation process. The pseudo code is shown in Figure 2b.

3 INFERENCE OF SEERATTENTION-R

K Compression Cache

Block Sparse Flash Decoding

Sparsely Load KV

Block Indices
K Cache

V Cache

Recent K Queue

PoolingLinear

Update Once Block

Tokens Generated

Q

AttnGate

O

Linear
g

Q
g

1 1 0 10

Figure 3: Inference Diagram of SeerAttention-R. During inference, a K Compression Cache is used
to cache the compressed key representation in AttnGate to speedup sparse block prediction. This K
Compression Cache only updates once per block number of tokens is generated (block=4 in the plots
for illustration). As a result, the last block of sequence is always selected to compensate when the
compression cache has not been updated yet. g is the group size of GQA.

3.1 SPARSIFY METHODS: TOKEN BUDGET VS THRESHOLD

During training, the AttnGate output S are distilled to mimic the distribution of the block-wise
attention maps from the original model in real-valued (floating-point) form. During inference,
important key-value blocks can be selectively activated based on the predictions of AttnGate. In
SeerAttention-R, we apply two sparsity methods to convert the soft AttnGate outputs into binary
block masks (or block indices). The first method is the token budget approach, which is widely
adopted in sparse attention methods. Given a fixed token budget, it is first translated into a block
budget by dividing the token budget by the block size. The AttnGate outputs are then sorted using a
Top-k kernel, where k corresponds to the block budget. While this method introduces an additional
Top-k operation, it eliminates the need for a softmax operation in AttnGate. The second method is
the threshold approach, which simply selects blocks whose scores exceed a given threshold. The

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

threshold method is more self-adaptive as different heads may automatically infer different sparsity
ratios. While these two methods involve different trade-offs between efficiency and accuracy, the
token budget approach is better suited for direct comparisons with other methods.

3.2 K COMPRESSION CACHE

Similar to KV cache, in SeerAttention-R, we use a K Compression Cache to store the compressed
representation of K (after pooling plus linear) to speedup AttnGate prediction. Thus, AttnGate does
not need to recompute K branch for past seen tokens. The update of K Compression Cache is consist
of two phases. First, when the sequence length is not the multiplies of block size b, the new entry of
K Compression Cache may not be accurate. During this time, the last block is always activated to
eliminate unnecessary accuracy loss. Second, as long as b number of new tokens are generated, the
most recent b tokens will pass through the pooling and linear layer and update the K Compression
Cache. In this way, the overhead of AttnGate can be minimized.

In practice, SeerAttention-R utilizes a relatively large block size b, such as 64, which significantly
reduces the overhead of the K Compression Cache. Specifically when b = 64, the additional memory
required for the K Compression Cache amounts to only 1/128 (<1%) of the original KV cache size.
This minimal overhead makes it highly efficient. Moreover, it introduces the possibility of offloading
the larger KV cache to CPU or other storage. During inference, only the activated blocks need
to be retrieved and transferred back to GPU memory on demand. Alternatively, sparse attention
computations can even be performed on heterogeneous resources, such as the CPU, further optimizing
memory usage and enabling efficient handling of long-context decoding tasks.

3.3 BLOCK SPARSE FLASH DECODING KERNEL

To accelerate decoding under block-sparse attention, we design a specialized kernel that extends the
FlashAttention decoding pattern to support dynamic block sparsity in the key/value memory. Our
kernel adopts the grid scheduling strategy of flash decoding for GQA, using a three-dimensional
launch space over (batch, heads_kv, num_split). This design supports concurrent computation across
multiple query groups and key/value shards, maximizing block-level parallelism.

Our block sparse version of the decoding kernel takes the activated block indices from AttnGate
(shape [batch, heads_kv, max_selected_blocks]), which encodes the selected key/value blocks for each
group of query heads. During execution, the kernel only traverses the selected indices and thus skips
invalid entries, avoiding unnecessary computation and memory access. To improve load/compute
balancing across Streaming Multiprocessors (SMs), we partition the key/value blocks along the
num_split dimension using max_selected_blocks rather than the total number of blocks. This strategy
ensures a more uniform work distribution in the presence of sparsity-induced irregularity.

On H100 GPUs, our kernel leverages the wgmma instructions for better Tensor Core usage by
padding the number of query head groups to 64. We implement the kernel using TileLang til, which
automatically applies computation optimizations like tiling Zhu et al. (2022), warp specialization and
pipelining Cheng et al. (2025), and memory layout optimizations such as tensorization, rasterization
and swizzling Wang et al. (2024) based on the target architecture. Additionally, we provide a
Triton-based implementation with the same scheduling strategy, allowing for comparative evaluation.

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

Benchmarks, Models, and Baselines We evaluate SeerAttention-R on three math reasoning
benchmarks: the American Invitational Mathematics Examination: AIME24, AIME25, and MATH-
500 Hendrycks et al. (2020), as well as GPQA-Diamond Rein et al. (2024). For model evaluation, we
select four open-source pre-trained language models with strong reasoning capabilities: Qwen3-4B,
8B, 14B Yang et al. (2025a), and DeepSeek-R1-Distill-Qwen-14B Guo et al. (2025). All models are
based on the standard Transformer architecture with Grouped Query Attention (GQA). We compare
SeerAttention-R against standard full attention and Quest Tang et al. (2024). Quest is a training-free
sparse attention algorithm applied during decoding, employing a query-aware key-value (KV) cache

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

selection strategy. Specifically, Quest estimates the upper bound of attention scores within each KV
block (or “page”) to select the most relevant blocks. By default, Quest uses a block size of 16, and
keeps the first two layers fully dense to minimize error. In Section 4.3, we set the block size to 64 for
both Quest and SeerAttention-R, and apply sparse attention to all layers to enable a direct comparison.
We also conduct ablation studies to analyze the impact of varying block sizes (Appendix A.1) and
incorporating hybrid dense layers (Appendix A.2). Note that SeerAttention-R enables shared sparsity
selection within each GQA group, whereas Quest does not. Across all experiments, we set the max
output length to 32,768 tokens. While Qwen3 series of models extends this length to 38,912 for
AIME24 and AIME25 in their official report, we fix this output length to ensure consistency and
fair comparison across all settings. For SeerAttention-R and the full attention baseline, we report
average pass@1 accuracy over 64 samples for AIME24 and AIME25, 8 samples for MATH-500, and
16 samples for GPQA-Diamond.

Training Setup for SeerAttention-R To distill AttnGate, we use the OpenR1-MATH-220k Face
(2025) dataset for training. Importantly, only the AttnGate is trained, and the original model weights
remain unchanged. Inputs are packed into sequences of up to 32k tokens with our variable-length
Flash-Attention training kernel that also generates ground truth (Section 2.3). Training is performed
with a global batch size of 16 for 800 steps on AMD MI300x GPUs, utilizing DeepSpeed ZeRO-2
optimization. We use AdamW optimizer and a learning rate of 1e-3 with cosine decay schedule.

4.2 ORACLE SPARSE ACCURACY: HOW SPARSE IS ATTENTION IN REASONING MODELS?

0

50

100

Bl
oc

k
Si

ze
 3

2
Ac

cu
ra

cy
 (%

)

AIME24

Oracle Sparse)
Dense Baseline

AIME25

Oracle Sparse)
Dense Baseline

MATH-500

Oracle Sparse)
Dense Baseline

GPQA-Diamond

Oracle Sparse)
Dense Baseline

0

50

100

Bl
oc

k
Si

ze
 6

4
Ac

cu
ra

cy
 (%

)

Oracle Sparse)
Dense Baseline

Oracle Sparse)
Dense Baseline

Oracle Sparse)
Dense Baseline

Oracle Sparse)
Dense Baseline

1k 2k 4k 8k
Token budget

0

50

100

Bl
oc

k
Si

ze
 1

28
Ac

cu
ra

cy
 (%

)

Oracle Sparse)
Dense Baseline

1k 2k 4k 8k
Token budget

Oracle Sparse)
Dense Baseline

1k 2k 4k 8k
Token budget

Oracle Sparse)
Dense Baseline

1k 2k 4k 8k
Token budget

Oracle Sparse)
Dense Baseline

Figure 4: Oracle Sparse Results of Qwen3-14B with block size 32, 64, 128.

In the first experiment, we aim to answer the question: How sparse is attention in reasoning models?
To investigate this, we employ oracle block sparse selection, which utilizes the ground truth in
SeerAttention-R training to select sparse key-value (KV) blocks. While this approach basically means
compute attention twice and does not provide any speedup, it allows us to evaluate the accuracy upper
bound achievable by SeerAttention-R under ideal sparse selection.

We evaluate Qwen3-14B with three different sparse block sizes: 32, 64, and 128. The token budgets
range from 1k to 8k. As shown in Figure 4, using oracle sparsity achieves lossless performance on all
tasks when the token budgets reach 2k. For the more challenging AIME24 and AIME25 tasks, some
accuracy degradation is observed with 1k token budget, particularly with the largest block size (128).
However, this degradation is negligible when using block sizes of 32 or 64. These results indicate
that attention sparsity exists in the reasoning process. Based on this, we select a block size of 64 as
the default for SeerAttention-R.

4.3 RESULTS OF SEERATTENTION-R AND QUEST

Figure 5 shows the results of all the models and benchmarks of Full Attention baseline, SeerAttention-
R and Quest. As mentioned above, we modify the configuration of Quest to be the same as

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

2k 4k 6k 8k
0

20
40
60
80

100

Qw
en

3-
4B

Ac
cu

ra
cy

 (%
)

AIME24

2k 4k 6k 8k

AIME25

1k 2k 4k 6k

MATH-500

1k 2k 4k 6k

GPQA-Diamond

2k 4k 6k 8k
0

20
40
60
80

100

Qw
en

3-
8B

Ac
cu

ra
cy

 (%
)

2k 4k 6k 8k 1k 2k 4k 6k 1k 2k 4k 6k

2k 4k 6k 8k
0

20
40
60
80

100

Qw
en

3-
14

B
Ac

cu
ra

cy
 (%

)

2k 4k 6k 8k 1k 2k 4k 6k 1k 2k 4k 6k

2k 4k 6k 8k
Token Budget

0
20
40
60
80

100

De
ep

Se
ek

-R
1-

Di
st

ill-
Qw

en
-1

4B
Ac

cu
ra

cy
 (%

)

2k 4k 6k 8k
Token Budget

1k 2k 4k 6k
Token Budget

1k 2k 4k 6k
Token Budget

SeerAttention-R Quest Dense Baseline

Figure 5: Accuracy Results of Full Attention, SeerAttention-R, and Quest. The Quest sparse
configuration is set to be the same as SeerAttention-R for fair comparison, which uses a block size of
64 and sparse attention in all layers.

SeerAttention-R (block size 64 and using sparse attention in all layers). We use token budgets
from 2k, 4k, 6k, and 8k for AIME24 and AIME25, and 1k, 2k, 4k, and 6k for MATH-500 and GPQA-
Diamond. This is mainly because the typical averaged reasoning length from different benchmark is
not the same. For the more challenging AIME24 and AIME25, the averaged generated lengths of
these models are around 11k-18k. While for the easier MATH-500 and GPQA, the averaged lengths
are reduced to 4k-9k. However, it is critical to note that across all combinations, the maximum
generation lengths all reached the 32k token cap, underscoring the consistent demand for efficient
long-context processing.

The results show that SeerAttention-R achieves consistently better performance compared to Quest.
This trend holds true across every benchmark and computational budget, underscoring the robustness
and effectiveness of SeerAttention-R. For the AIME24 benchmark, SeerAttention-R typically achieves
lossless performance with 4k token budget on while the previous oracle sparse only requires 2k. This
is within expectation as SeerAttention-R is only an approximation of ground truth with much less
computation required. However, Quest fails achieve lossless accuracy even using 8k token budgets
under identical setting. For MATH-500 and GPQA-Diamond, the lossless token budgets reduce to 2k
for SeerAttention-R while Quest requires around 8k to approach the full attention baseline.

A key trend observed across the results is the relationship between model scale and tolerance for
sparse attention. Larger models, such as the 14B variants, exhibit greater robustness to the information
loss inherent in sparsity compared to their 4B and 8B counterparts. This phenomenon is particularly
pronounced for Quest, where the accuracy gap at lower budgets shrinks significantly as the model
size increases. For SeerAttention-R, the effect is also present. The 14B models close the final gap
to the dense baseline more easily than smaller models on challenging benchmarks like AIME25.
This indicates that as reasoning models continue to scale, the viability of sparse attention methods
increases.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

In conclusion, the results demonstrate the superiority of SeerAttention-R’s self-distilled approach
over the training-free heuristics of Quest, especially in the challenging large block size configuration.
Previous work Lserve Yang et al. (2025b) also mentions the accuracy degradation of Quest over larger
block sizes. They resolve this challenge by introducing Hierarchical Paging, a system approach that
uses an additional level of block(page) abstraction called virtual logical page, which decouples the
sparsity selection page size and physical page size. With SeerAttention-R, we can possibly simplify
the sparse attention system design by using a larger block size.

4.4 KERNEL SPEEDUP

1
3
5
7
9

Ba
tc

h
16

Sp
ee

du
p

seqlen=8192 seqlen=16384 seqlen=32768 seqlen=65536 seqlen=131072

1
3
5
7
9

Ba
tc

h
8

Sp
ee

du
p

1
3
5
7
9

Ba
tc

h
4

Sp
ee

du
p

0.5 0.6 0.7 0.8 0.9
Sparsity

1
3
5
7
9

Ba
tc

h
1

Sp
ee

du
p

0.5 0.6 0.7 0.8 0.9
Sparsity

0.5 0.6 0.7 0.8 0.9
Sparsity

0.5 0.6 0.7 0.8 0.9
Sparsity

0.5 0.6 0.7 0.8 0.9
Sparsity

TileLang Sparse Triton Sparse FA3 Baseline

Figure 6: Kernel Speedup of our Block Sparse Flash-Decoding Kernel on H100 GPU. Our TileLang
implementation of the kernel achieves higher speedup ratio compared to Triton implementation. For
longer sequence length or larger batch size cases, the speedups approach the theoretical upper bound
compared to FA3 basline.

This section evaluates our customized block sparse flash decoding kernel described in Section 3.3.
We implement the kernel with both TileLang til and Triton and we use FlashAttention-3 (FA3) Shah
et al. (2024) as baseline. The experiments are run on Nvidia H100 GPU with different input sequence
lengths (8k to 128k), batch sizes(1 to 16) and sparsity ratios (0.5 to 0.9). In terms of GQA setting, we
use a setting of 64 attention heads with 8 key-value heads, and head dimension 128.

Figure 6 presents the detailed results. Each subplot corresponds to a specific combination of input
sequence length (seqlen) and batch size (bs), with the x-axis showing different sparsity ratios and the
y-axis indicating speedup. The TileLang implementation consistently outperforms the FA3 baseline
and achieves greater speedup than the Triton implementation. In general, the sparse kernel delivers
higher speedup when the input sequence length is longer or the batch size is larger. This is expected,
as the decoding kernel is primarily I/O-bound. When the KV cache size is sufficient to saturate
the bandwidth, such as when bs=16 and seqlen ≥ 32k, our sparse kernel achieves near-theoretical
speedup (up to 9× at 0.9 sparsity). Even for moderate KV cache sizes, e.g. bs=4 and seqlen=32k, the
kernel demonstrates significant speedup (up to 6× at 0.9 sparsity).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

5 RELATED WORKS

5.1 TRAINING-FREE VS. TRAINING-BASED SPARSE ATTENTION

Sparse attention research generally follows two directions: training-free (pre-defined or heuristic) and
training-based methods. Training-free approaches adopt static patterns Xiao et al. (2023); Fu et al.
(2024); Xiao et al. (2024b) or heuristic-based algorithms Zhang et al. (2023); Tang et al. (2024); Jiang
et al. (2024); Yang et al. (2025b); Lai et al. (2025); Chen et al. (2024b); Liu et al. (2024c); Li et al.
(2024a); Yang et al. (2024a); Hu et al. (2025); Zhang et al. (2025); Xu et al. (2025); Chen et al. (2025),
relying on prior knowledge such as fixed patterns or head characteristics. In contrast, training-based
methods integrate sparse attention into models to reduce complexity with minimal accuracy loss.
Early work explored local/global/block patterns Child et al. (2019); Beltagy et al. (2020); Zaheer et al.
(2020), while recent methods like NSA Yuan et al. (2025), MoBA Lu et al. (2025), ACP Lin et al.
(2025b), MiniCPM4 Team (2025) train dynamic sparse modules during pre-training. SeerAttention
offers a middle ground, learning sparsity post-training without modifying model weights.

5.2 KV CACHE COMPRESSION

KV cache optimization is key for efficient inference, as smaller caches reduce bandwidth and memory
costs. Eviction-based methods Ge et al. (2023); Li et al. (2024b); Zeng et al. (2024); Zhang et al.
(2023); Liu et al. (2023); Adnan et al. (2024); Chen et al. (2024a); Behnam et al. (2025) permanently
remove tokens, risking accuracy loss. Alternatively, dynamic selection methods Tang et al. (2024);
Zhang et al. (2024); Hooper et al. (2024); Chen et al. (2025); Liu et al. (2024c); Hu et al. (2025); Cai
et al. (2025); Hao et al. (2025); Mazaré et al. (2025a) retain all tokens but select subsets at each step.

5.3 OTHER EFFICIENT ATTENTION ALGORITHMS

Beyond sparsity, efficient variants of multi-head attention include GQA Ainslie et al. (2023),
MQA Shazeer (2019), latent-based designs Liu et al. (2024a); Zadouri et al. (2025), and cross-
layer sharing approaches like YOCO Sun et al. (2024) and CLA Brandon et al. (2024). Linear
attention Katharopoulos et al. (2020); Sun et al. (2023); Beck et al. (2024); Yang et al. (2024b);
Gu and Dao (2023); Dao and Gu (2024); Peng et al. (2023); Yang et al. (2023) enables parallel
training and constant inference memory, though it struggles in long-context reasoning. Hybrid models
combining linear and full attention show stronger performance Dong et al. (2024); Li et al. (2025).

6 CONCLUSION AND DISCUSSION

This paper introduces SeerAttention-R, a lightweight sparse attention framework that accelerates
long decoding in reasoning models. As a plug-in gating module, it integrates into pretrained models
without altering original parameters and requires only lightweight training. Despite coarse-grained
block sizes, SeerAttention-R preserves near-lossless reasoning accuracy, while its TileLang kernel
achieves near-theoretical speedup at high sparsity ratios.

Several challenges remain. Achieving full end-to-end speedup will require integration with inference
frameworks (e.g., vllm Kwon et al. (2023), sglang Zheng et al. (2024)) and compatibility with
PagedAttention, possibly combined with KV cache offloading Xiao et al. (2024a); Liu et al. (2024c);
Chen et al. (2024b); Hao et al. (2025). Another open problem is adaptive sparsity, as the trade-
off between accuracy and efficiency varies by task and sequence length. Top-p based sparsity
selection Lin et al. (2025a); Chen et al. (2024b) offers one promising direction. Finally, unifying
sparse prefill and decoding remains challenging: prefill benefits from parallelism while decoding
does not. Approaches such as multi-token prediction Gloeckle et al. (2024); Liu et al. (2024b) or
speculative decoding Leviathan et al. (2023) may help align them under a single gating mechanism.

In summary, SeerAttention-R shows that post-training sparse attention can deliver efficiency with
minimal accuracy loss, while future work lies in adaptive sparsity, unified prefill/decoding, and
system-level integration.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

TileLang. URL https://github.com/tile-ai/tilelang.

Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant J Nair, Ilya Soloveychik, and Pu-
rushotham Kamath. Keyformer: Kv cache reduction through key tokens selection for efficient
generative inference. Proceedings of Machine Learning and Systems, 6:114–127, 2024.

Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245, 2023.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. arXiv preprint arXiv:2405.04517, 2024.

Payman Behnam, Yaosheng Fu, Ritchie Zhao, Po-An Tsai, Zhiding Yu, and Alexey Tumanov.
Rocketkv: Accelerating long-context llm inference via two-stage kv cache compression. arXiv
preprint arXiv:2502.14051, 2025.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan Ragan-
Kelley. Reducing transformer key-value cache size with cross-layer attention. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems, 2024.

Zefan Cai, Wen Xiao, Hanshi Sun, Cheng Luo, Yikai Zhang, Ke Wan, Yucheng Li, Yeyang Zhou,
Li-Wen Chang, Jiuxiang Gu, Zhen Dong, Anima Anandkumar, Abedelkadir Asi, and Junjie Hu.
R-kv: Redundancy-aware kv cache compression for training-free reasoning models acceleration.
arXiv preprint arXiv:2505.24133, 2025.

Guoxuan Chen, Han Shi, Jiawei Li, Yihang Gao, Xiaozhe Ren, Yimeng Chen, Xin Jiang, Zhenguo
Li, Weiyang Liu, and Chao Huang. Sepllm: Accelerate large language models by compressing one
segment into one separator. arXiv preprint arXiv:2412.12094, 2024a.

Yaoqi Chen, Jinkai Zhang, Baotong Lu, Qianxi Zhang, Chengruidong Zhang, Jingjia Luo, Di Liu,
Huiqiang Jiang, Qi Chen, Jing Liu, Bailu Ding, Xiao Yan, Jiawei Jiang, Chen Chen, Mingxing
Zhang, Yuqing Yang, Fan Yang, and Mao Yang. Retroinfer: A vector-storage approach for scalable
long-context llm inference, 2025. URL https://arxiv.org/abs/2505.02922.

Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang Zhou, Jianyu Zhang, Niklas Nolte, Yuandong
Tian, Matthijs Douze, Leon Bottou, Zhihao Jia, et al. Magicpig: Lsh sampling for efficient llm
generation. arXiv preprint arXiv:2410.16179, 2024b.

Yu Cheng, Lei Wang, Yining Shi, Yuqing Xia, Lingxiao Ma, Jilong Xue, Yang Wang, Zhiwen Mo,
Feiyang Chen, Fan Yang, Mao Yang, and Zhi Yang. PipeThreader: Software-defined pipelining
for efficient dnn execution. In 19th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 25), 2025. URL https://www.usenix.org/conference/osdi25/
presentation/cheng.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. 2023. URL
https://arxiv.org/abs/2307.08691.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Xin Dong, Yonggan Fu, Shizhe Diao, Wonmin Byeon, Zijia Chen, Ameya Sunil Mahabaleshwarkar,
Shih-Yang Liu, Matthijs Van Keirsbilck, Min-Hung Chen, Yoshi Suhara, et al. Hymba: A hybrid-
head architecture for small language models. arXiv preprint arXiv:2411.13676, 2024.

10

https://github.com/tile-ai/tilelang
https://arxiv.org/abs/2505.02922
https://www.usenix.org/conference/osdi25/presentation/cheng
https://www.usenix.org/conference/osdi25/presentation/cheng
https://arxiv.org/abs/2307.08691

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL https:
//github.com/huggingface/open-r1.

Tianyu Fu, Haofeng Huang, Xuefei Ning, Genghan Zhang, Boju Chen, Tianqi Wu, Hongyi Wang,
Zixiao Huang, Shiyao Li, Shengen Yan, et al. Moa: Mixture of sparse attention for automatic large
language model compression. arXiv preprint arXiv:2406.14909, 2024.

Yizhao Gao, Zhichen Zeng, Dayou Du, Shijie Cao, Peiyuan Zhou, Jiaxing Qi, Junjie Lai, Hayden
Kwok-Hay So, Ting Cao, Fan Yang, et al. Seerattention: Learning intrinsic sparse attention in your
llms. arXiv preprint arXiv:2410.13276, 2024.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801, 2023.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, and Gabriel Synnaeve.
Better & faster large language models via multi-token prediction. arXiv preprint arXiv:2404.19737,
2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jitai Hao, Yuke Zhu, Tian Wang, Jun Yu, Xin Xin, Bo Zheng, Zhaochun Ren, and Sheng Guo.
Omnikv: Dynamic context selection for efficient long-context llms. In The Thirteenth International
Conference on Learning Representations, 2025.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Monishwaran Maheswaran, June Paik,
Michael W Mahoney, Kurt Keutzer, and Amir Gholami. Squeezed attention: Accelerating long
context length llm inference. arXiv preprint arXiv:2411.09688, 2024.

Junhao Hu, Wenrui Huang, Weidong Wang, Zhenwen Li, Tiancheng Hu, Zhixia Liu, Xusheng Chen,
Tao Xie, and Yizhou Shan. Efficient long-decoding inference with reasoning-aware attention
sparsity. arXiv preprint arXiv:2502.11147, 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
for long-context llms via dynamic sparse attention. arXiv preprint arXiv:2407.02490, 2024.

James M Joyce. Kullback-leibler divergence. In International encyclopedia of statistical science,
pages 720–722. Springer, 2011.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pages 5156–5165. PMLR, 2020.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Xunhao Lai, Jianqiao Lu, Yao Luo, Yiyuan Ma, and Xun Zhou. Flexprefill: A context-aware sparse
attention mechanism for efficient long-sequence inference. arXiv preprint arXiv:2502.20766,
2025.

11

https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pages 19274–19286. PMLR, 2023.

Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao
Guo, Da Chen, Dong Li, et al. Minimax-01: Scaling foundation models with lightning attention.
arXiv preprint arXiv:2501.08313, 2025.

Yucheng Li, Huiqiang Jiang, Qianhui Wu, Xufang Luo, Surin Ahn, Chengruidong Zhang, Amir H
Abdi, Dongsheng Li, Jianfeng Gao, Yuqing Yang, et al. Scbench: A kv cache-centric analysis of
long-context methods. arXiv preprint arXiv:2412.10319, 2024a.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation.
Advances in Neural Information Processing Systems, 37:22947–22970, 2024b.

Chaofan Lin, Jiaming Tang, Shuo Yang, Hanshuo Wang, Tian Tang, Boyu Tian, Ion Stoica, Song Han,
and Mingyu Gao. Twilight: Adaptive attention sparsity with hierarchical top-p pruning. arXiv
preprint arXiv:2502.02770, 2025a.

Zhixuan Lin, Johan Obando-Ceron, Xu Owen He, and Aaron Courville. Adaptive computation
pruning for the forgetting transformer. arXiv preprint arXiv:2504.06949, 2025b.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-of-
experts language model. arXiv preprint arXiv:2405.04434, 2024a.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024b.

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-
gruidong Zhang, Bailu Ding, Kai Zhang, et al. Retrievalattention: Accelerating long-context llm
inference via vector retrieval. arXiv preprint arXiv:2409.10516, 2024c.

Ruikang Liu, Yuxuan Sun, Manyi Zhang, Haoli Bai, Xianzhi Yu, Tiezheng Yu, Chun Yuan, and
Lu Hou. Quantization hurts reasoning? an empirical study on quantized reasoning models. arXiv
preprint arXiv:2504.04823, 2025.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36:52342–52364, 2023.

Enzhe Lu, Zhejun Jiang, Jingyuan Liu, Yulun Du, Tao Jiang, Chao Hong, Shaowei Liu, Weiran He,
Enming Yuan, Yuzhi Wang, Zhiqi Huang, Huan Yuan, Suting Xu, Xinran Xu, Guokun Lai, Yanru
Chen, Huabin Zheng, Junjie Yan, Jianlin Su, Yuxin Wu, Yutao Zhang, Zhilin Yang, Xinyu Zhou,
Mingxing Zhang, and Jiezhong Qiu. Moba: Mixture of block attention for long-context llms. arXiv
preprint arXiv:2502.13189, 2025.

Pierre-Emmanuel Mazaré, Gergely Szilvasy, Maria Lomeli, Francisco Massa, Naila Murray, Hervé
Jégou, and Matthijs Douze. Inference-time sparse attention with asymmetric indexing. arXiv
preprint arXiv:2502.08246, 2025a.

Pierre-Emmanuel Mazaré, Gergely Szilvasy, Maria Lomeli, Francisco Massa, Naila Murray, Hervé
Jégou, and Matthijs Douze. Inference-time sparse attention with asymmetric indexing. arXiv
preprint arXiv:2502.08246, 2025b.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi
Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for the transformer
era. arXiv preprint arXiv:2305.13048, 2023.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. Advances
in Neural Information Processing Systems, 37:68658–68685, 2024.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. arXiv preprint
arXiv:2307.08621, 2023.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui Wang, Shuming Ma, Quanlu Zhang, Jianyong
Wang, and Furu Wei. You only cache once: Decoder-decoder architectures for language models.
Advances in Neural Information Processing Systems, 37:7339–7361, 2024.

Yutao Sun, Tianzhu Ye, Dong Li, Yuqing Xia, Jian Chen, Yizhao Gao, Shijie Cao, Jianyong Wang,
and Furu Wei. Rectified sparse attention. arXiv preprint arXiv:2506.04108, 2025.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024.

MiniCPM Team. Minicpm4: Ultra-efficient llms on end devices. 2025.

Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate language and compiler
for tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, pages 10–19, 2019.

Lei Wang, Lingxiao Ma, Shijie Cao, Quanlu Zhang, Jilong Xue, Yining Shi, Ningxin Zheng,
Ziming Miao, Fan Yang, Ting Cao, Yuqing Yang, and Mao Yang. Ladder: Enabling efficient
low-precision deep learning computing through hardware-aware tensor transformation. In 18th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 24), pages 307–323,
Santa Clara, CA, July 2024. USENIX Association. ISBN 978-1-939133-40-3. URL https:
//www.usenix.org/conference/osdi24/presentation/wang-lei.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan
Liu, and Maosong Sun. Infllm: Training-free long-context extrapolation for llms with an efficient
context memory. arXiv preprint arXiv:2402.04617, 2024a.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu, and
Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming heads.
arXiv preprint arXiv:2410.10819, 2024b.

Ruyi Xu, Guangxuan Xiao, Haofeng Huang, Junxian Guo, and Song Han. Xattention: Block sparse
attention with antidiagonal scoring. arXiv preprint arXiv:2503.16428, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025a.

Shang Yang, Junxian Guo, Haotian Tang, Qinghao Hu, Guangxuan Xiao, Jiaming Tang, Yujun Lin,
Zhijian Liu, Yao Lu, and Song Han. Lserve: Efficient long-sequence llm serving with unified
sparse attention. arXiv preprint arXiv:2502.14866, 2025b.

Shuo Yang, Ying Sheng, Joseph E Gonzalez, Ion Stoica, and Lianmin Zheng. Post-training sparse
attention with double sparsity. arXiv preprint arXiv:2408.07092, 2024a.

13

https://www.usenix.org/conference/osdi24/presentation/wang-lei
https://www.usenix.org/conference/osdi24/presentation/wang-lei

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. arXiv preprint arXiv:2312.06635, 2023.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers
with the delta rule over sequence length. arXiv preprint arXiv:2406.06484, 2024b.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
trainable sparse attention. arXiv preprint arXiv:2502.11089, 2025.

Ted Zadouri, Hubert Strauss, and Tri Dao. Hardware-efficient attention for fast decoding. arXiv
preprint arXiv:2505.21487, 2025.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

Zihao Zeng, Bokai Lin, Tianqi Hou, Hao Zhang, and Zhijie Deng. In-context kv-cache eviction for
llms via attention-gate. arXiv preprint arXiv:2410.12876, 2024.

Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu, Xupeng Miao, Xiaonan Nie, Weipeng Chen,
and Bin Cui. Pqcache: Product quantization-based kvcache for long context llm inference. arXiv
preprint arXiv:2407.12820, 2024.

Jintao Zhang, Chendong Xiang, Haofeng Huang, Jia Wei, Haocheng Xi, Jun Zhu, and Jianfei
Chen. Spargeattn: Accurate sparse attention accelerating any model inference. In International
Conference on Machine Learning (ICML), 2025.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Re, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o: Heavy-
hitter oracle for efficient generative inference of large language models. In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=RkRrPp7GKO.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of
structured language model programs. Advances in Neural Information Processing Systems, 37:
62557–62583, 2024.

Hongyu Zhu, Ruofan Wu, Yijia Diao, Shanbin Ke, Haoyu Li, Chen Zhang, Jilong Xue, Lingxiao Ma,
Yuqing Xia, Wei Cui, Fan Yang, Mao Yang, Lidong Zhou, Asaf Cidon, and Gennady Pekhimenko.
ROLLER: Fast and efficient tensor compilation for deep learning. In 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 22), pages 233–248, Carlsbad, CA, July
2022. USENIX Association. ISBN 978-1-939133-28-1. URL https://www.usenix.org/
conference/osdi22/presentation/zhu.

14

https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO
https://www.usenix.org/conference/osdi22/presentation/zhu
https://www.usenix.org/conference/osdi22/presentation/zhu

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A APPENDIX

A.1 BLOCK SIZE FOR SPARSE ATTENTION

16 32 64 128
Block Size

0

20

40

60

80

100

AI
M

E2
4

Ac
cu

ra
cy

 (%
)

Qwen3-4B
Quest
SeerAttention-R

16 32 64 128
Block Size

Qwen3-8B
Quest
SeerAttention-R

Figure 7: AIME24 results using different block sizes with 4k token budget. SeerAttention-R achieves
almost consistent performances on different block sizes. However, Quest gets lower accuracy when
block size gets larger. Note that in this experiment, SeerAttention-R enables shared sparsity selection
within each GQA group, whereas Quest does not.

The token block size for sparse attention is a critical factor that affects overall system performance.
If the block size is too small, it incurs significant overhead in sparse block prediction, including
increased computational cost and larger metadata requirements such as compression caches and block
indices. While a larger block size can also potentially improve the utilization of GPUs.

Figure 7 presents AIME24 results on the Qwen3-4B and Qwen3-8B models across block sizes
ranging from 16 to 128. By default, Quest uses a block size of 16. The results indicate that Quest’s
performance decreases as the block size increases. However, SeerAttention-R achieves consistent
accurate sparse block selection at different block sizes. Remarkably, this robustness lies under the
assumption of the additional mask sharing in the GQA group dimension. We excluded a block size of
16 from our experiments due to its inefficiency during both training and inference. It often leads to
out-of-memory errors because of the large intermediate attention maps generated during training.

A.2 HYBRID DENSE ATTENTION IN THE FIRST TWO LAYERS

2k 4k 6k 8k
Token Budget

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Quest
All Sparse Layers
Hybrid Dense First Two Layers

2k 4k 6k 8k
Token Budget

SeerAttention-R
All Sparse Layers
Hybrid Dense First Two Layers

Figure 8: AIME24 results of whether using dense attention in first two layers (Qwen3-4B).

Some post-training sparse attention algorithms employ hybrid dense attention in certain layers to
mitigate accuracy loss. By default, Quest applies dense attention in its first two layers. However, for
a fair comparison, we evaluate both Quest and SeerAttention-R using purely sparse attention across
all layers in previous evaluation. This approach allows us to isolate and analyze the effects of sparse
attention without the confounding influence of hybrid attention.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

To further investigate the impact of hybrid dense attention, we conduct an ablation study using
the Qwen3-4B model on the AIME24 benchmark with a block size of 64. As shown in Figure 8,
incorporating hybrid dense attention in Quest yields a significant improvement in accuracy, whereas
SeerAttention-R only sees marginal benefits. This difference may be due to the already accurate sparse
prediction by SeerAttention-R in the first two layers, reducing the potential gains from hybridization.

A.3 THRESHOLD VS TOKEN BUDGETS

0 10 20 30
Generate Length (k)

0

1

2

3

4

5

Ac
tiv

at
e

To
ke

ns
 (k

)

4k Token Budgets
Threshold 4e-3

(a)

0.65 0.70 0.75 0.80 0.85 0.90 0.95
32k Sparsity

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Threshold
Token Budget
Dense Baseline

(b)

Figure 9: Threshold vs. Token Budget. Results are obtained using Qwen3-4B models on AIME24
benchmark. (a) Difference of activated tokens distribution of two methods. (b) Sparsity vs Accuracy
tradeoff of two methods. Thresholds: 2e-3, 3e-3, 4e-3, 5e-3, 6e-3. Token Budget: 8k, 6k, 4k, 2k.

In SeerAttention-R, we employ two AttnGate sparsification strategies, threshold and token budget, to
convert real-valued gate scores into discrete block selections. The token budget method offers an
straightforward way to align sparsity and compare with different methods. However, the threshold
method is extremely simple to implement and avoids the need of sorting. Figure 9a illustrates the
distribution of activated tokens across varying sequence lengths using a threshold of 4e-3 and a token
budget of 4K on the AIME24 benchmark with Qwen3-4B model. The token budget approach results
in a strict piecewise linear activation pattern, whereas the threshold method yields a smoother, curved
distribution. Figure 9b compares the sparsity–accuracy trade-offs of the two methods. The threshold
method shows slightly better accuracy in high sparsity region.

A.4 IMPACT OF SPARSE ATTENTION ON GENERATE LENGTH

Table 1: Qwen3-8B AIME24 Accuracy vs. Reasoning Length.

Token Budgets
2k 4k 6k 8k

Quest Accuracy 13.3 44.2 52.5 59.6
Gen. Length(k) 30.0 22.9 19.6 17.2

SeerAttention-R Accuracy 56.6 72.3 74.2 75.1
Gen. Length(k) 19.8 16.3 15.3 15.1

We observed that using inaccurate sparse attention (too small budget or low recall) can increase
output token lengths in reasoning tasks. Table 1 shows the AIME accuracy and reasoning length
using Qwen3-8B model. The baseline accuracy of full attention and the generated length are 74.5
and 15.1 k, respectively. We can see that Quest, and SeerAttention-R with 2k budget cases, all incur
much longer reasoning paths compared to full attention. A similar phenomenon has been reported
in quantization Liu et al. (2025), where inaccurate quantization algorithms lead to longer reasoning
paths. We believe this effect is universal across different post-training efficiency optimizations of
reasoning model, as such methods can introduce errors that accumulate over the long reasoning chains.
These additional reasoning steps potentially undermine the original goal of improving efficiency.
Therefore, an accurate sparse attention selection algorithm is crucial to mitigate this effect. Another
promising approach to eliminate the accumulated errors is to use Rectified Sparse Attention Sun et al.
(2025), which periodically performs dense rectification of the KV cache.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

A.5 TRAINING BUDGET

Table 2: Training Budgets

Training Tokens GPU Hours

0.4B Qwen3-4B Qwen3-8B Qwen3-14B
10.9 12.2 18.6

As a lightweight distillation process where only the AttnGate parameters are trained, SeerAttention-R
is also highly efficient in terms of training. In our experiments, we set the global batch size to 16 and
trained for just 800 steps, utilizing DeepSpeed Stage 2 optimization on MI300x GPUs. Each data
batch is packed to a sequence length of 32k with our custom variable-length FlashAttention forward
kernel, as described in Section 2.3. Table 2 summarizes the GPU hours required for training models
of various sizes. Notably, distilling an 8B model requires only 12 GPU hours, demonstrating the
efficiency of our approach. Increasing the quantity, quality, and diversity of training data may lead to
further improvements.

17

	Introduction
	SeerAttention-R
	A Recap of SeerAttention
	SeerAttention-R: AttnGate for Sparse Decoding
	Distillation/Training

	Inference of SeerAttention-R
	Sparsify Methods: Token Budget vs Threshold
	K Compression Cache
	Block Sparse Flash Decoding Kernel

	Experiments
	Experiments Setup
	Oracle Sparse Accuracy: How Sparse is Attention in Reasoning Models?
	Results of SeerAttention-R and Quest
	Kernel Speedup

	Related Works
	Training-free vs. Training-based Sparse Attention
	KV Cache Compression
	Other Efficient Attention Algorithms

	Conclusion and Discussion
	Appendix
	Block Size for Sparse Attention
	Hybrid Dense Attention in the First Two Layers
	Threshold VS Token Budgets
	Impact of Sparse Attention on Generate Length
	Training Budget

