SPARSE ATTENTION ADAPTATION FOR LONG REASON-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce SeerAttention-R, a sparse attention framework specifically tai-
lored for the long decoding of reasoning models. Extended from SeerAttention,
SeerAttention-R retains the design of learning attention sparsity through a self-
distilled gating mechanism, while removing query pooling to accommodate auto-
regressive decoding. With a lightweight plug-in gating, SeerAttention-R is flexible
and can be easily integrated into existing pretrained model without modifying the
original parameters. We demonstrate that SeerAttention-R, trained on just 0.4B
tokens, maintains near-lossless reasoning accuracy with 4K token budget in AIME
benchmark under large sparse attention block sizes (64/128). Using TileLang, we
develop a highly optimized sparse decoding kernel that achieves near-theoretical
speedups of up to 9x over FlashAttention-3 on H100 GPU at 90% sparsity.

1 INTRODUCTION

Recent reasoning-focused models such as OpenAl ol Jaech et al.| (2024), DeepSeek-R1|Guo et al.
(2025)), and Qwen3 |Yang et al.|(2025a)) demonstrate that models’ capabilities improve significantly
through test-time scaling. By generating longer sequences during inference, these models are able
to think and reason more effectively before producing an answer. Empirically, longer generations
correlate with stronger reasoning performance. For instance, Qwen3-14B |Yang et al.| (2025a)
outperforms DeepSeek-R1-Distill-Qwen-14B |Guo et al.|(2025) while producing longer responses
on average. Similarly, harder benchmarks such as AIME24 require more tokens per generation than
easier ones like MATH-500|Hendrycks et al.| (2020).

However, deeper reasoning introduces increasing efficiency challenges. Due to the auto-regressive
nature of decoding, later tokens must attend to a longer context, increasing compute and memory
demands for the KV cache. As a result, the per-token generation cost grows linearly, while the overall
generation cost increases quadratically.

Sparse attention offers a promising approach to addressing the long-sequence efficiency challenges.
While it has been studied in general language modeling, its application to reasoning models, which
require prolonged decoding, remains underexplored. Our experiment using oracle sparsity (Sec-
tion 4.2)) shows that attention in reasoning models is also inherently sparse, activating only a subset
of important tokens is sufficient to maintain the model’s reasoning capability. The key challenge lies
in effectively identifying and leveraging this intrinsic sparsity.

In this work, we extend SeerAttention |Gao et al.| (2024) to SeerAttention-R, a sparse attention
framework aimed to improve the long decoding efficiency of reasoning models. SeerAttention was
originally designed to improve prefill efficiency by selectively activating important attention blocks
through a lightweight, self-distilled attention gating mechanism at post-training time. SeerAttention-
R retains the core design of self-ditilled attention sparsity and introduces modifications to support
efficient decoding. Specifically, it removes sequence-level pooling of query to accommodate auto-
regressive decoding and adopts a shared sparsity design aligned with Grouped Query Attention (GQA)
to enhance hardware efficiency. SeerAttention-R can be integrated into any standard transformer-
based pretrained model by adding the learnable gate to the attention layer, without fine-tuning original
model parameters.

We apply SeerAttention-R to multiple reasoning-focused open-source models, including Qwen3-4B,
8B, 14B |Yang et al.| (2025a)) and DeepSeek-R1-Distill-Qwen-14B [Guo et al.| (2025), and evaluate

them on several reasoning benchmarks: AIME24, AIME25, MATH-500 Hendrycks et al.|(2020)), and
GPQA-Diamond [Rein et al.| (2024). Since SeerAttention-R only requires training the gating module,
the distillation is lightweight with just 0.4B tokens from OpenR1-MATH-220K |Face| (2025) being
sufficient. Across all models and tasks, SeerAttention-R consistently outperforms the Quest|Tang
et al.| (2024) baseline and maintains near-lossless accuracy under a 4k token budget. Notably, the
accuracy gap further diminishes as model size increases. More importantly, this learnable approach
enables more coarse-grained sparse attention (e.g., a block size of 64 or 128), which further reduces
the overhead from sparse attention scheme and improve hardware efficiency.

We implement the block sparse flash decoding kernel using both TileLang [til| and Triton Tillet et al.
(2019), and benchmark it on an H100 GPU with FlashAttention-3 (FA3)|Shah et al.| (2024) as the
baseline. Across a range of combination of sequence lengths, batch sizes, and sparsity levels, our
TileLang-based kernel consistently outperforms both Triton and FA3. The gains are especially
pronounced at large sequence lengths and batch sizes. For example, at batch size 16 and sequence
length > 32k, our TileLang kernel achieves near-theoretical speedups of up to 8.6 x at 90% sparsity
over the FA3 baseline, and delivers a 1.7x speedup compared to the Triton counterpart.

2 SEERATTENTION-R

2.1 A RECAP OF SEERATTENTION

Q K \ Q K \

& ¥ v
[Pooling] [Pooling | Linear Poolin,
- (reduce to
. RoPE_| » Livhessy | [Tinear I
= =]
o L RoPE] 2
[0} Block Sparse o Block Sparse
& &

Flash-Attn (Prefill) Flash Decoding

MatMul & Softmax

Block Indices Attention Output Block Indices Attention Output

(a) SeerAttention (b) SeerAttention-R

Figure 1: SeerAttention (Sparse Prefill) and SeerAttention-R (Sparse Decode). In SeerAttention-R,
no sequence dimension compression/pooling operation is applied in Query (Q). Given that modern
architectures predominantly use GQA, a linear layer projects the Q from its original number of heads
down to the number of KV heads, enabling shared sparsity selection in a GQA group.

SeerAttention |Gao et al.[(2024) introduces self-distilled Attention Gate (AttnGate) that dynamically
activates sparse blocks in attention computation for efficient long-context prefilling. Figure|lp shows
the AttnGate architecture of SeerAttention, where Q, K tensors are both compressed (pooled) in
the sequence dimension per block number of tokens. The compressed Q, K tensors are then passed
through two newly added linear layers, which serve as learnable parameters in the AttnGate. With
the following positional embedding, matrix-multiplication and softmax operation similar to standard
attention, the AttnGate then generates the 2D block-level attention score estimation. Based on the
output, we can selectively activate blocks with higher scores while skipping the rest.

In the distillation process, the AttnGate are trained to mimic the 2D block sparse distribution using
the ground truth generated by the original pretrained model. This self-distillation training is efficient
as the original model weights are frozen. In this way, it brings accurate sparse attention to pretrained
full-attention models without costly fine-tuning or pre-training. Powered by customized block-sparse
flash attention kernels, SeerAttention achieves supreme accuracy-efficiency tradeoff in downstream
long-context benchmarks.

2.2 SEERATTENTION-R: ATTNGATE FOR SPARSE DECODING

This work introduces SeerAttention-R, an extension of SeerAttention tailored for the long-decoding
phase of reasoning models. The foremost difference of AttnGate design in SeerAttention-R is

that it does not apply compression/pooling in the sequence dimension of Q to accommodate the
token-by-token auto-regressive decoding process (shown in Figure [Ib).

Qgate = ROPE (Wgate reshape(Qnope; [+, g - d])), (1a)
Kgate = RoPE (Wgate concat [Pmax(Knope)7 Pmin (Knope)7 Pavg(Knope)])7 (1b)
S = softmax(Qgate KgateT/\/dgate)‘ (1¢)

where, Prax, Pmin, and Py, stand for Max, Min and Average Pooling in sequence dimension, and g
is the group size of GQA setting. d and dgq¢. are the hidden dimension of the original model and
AttnGate for each head, respectively. S is the output score of each block from AttnGate. The detailed
design are discussed as follows.

Aggregation of Query Heads for Shared Sparsity in GQA Group Query Attention (GQA) Ainslie
et al.| (2023) is widely used in LLMs to reduce KV cache size. In GQA, the query heads are organized
into groups, and each group shares a key-value head. Recent sparse attention works SAAP Mazaré
et al.| (2025b) and NSA [Yuan et al.| (2025) show that using identical attention sparsity choices for
all queries in a group can improve the efficiency while achieving similar or better performance. In
SeerAttention-R, we follow this practice and use an linear layer in the QQ branch of AttnGate to reduce
each subgroup of queries to one single head. For example, with 32 query heads and 8 key-value
heads (group size g = 4), there will be 8 sets of linear weights in shape [dgqtc, 4 X d] applying on
each group of queries heads, resulting only 8 heads of Qgate. Since we keep the number of heads
untouched in K branch of AttnGate, the final output of AttnGate will be key-value heads, achieving a
shared decision of sparsity in a group.

Pooling-based Compression of Key We follow the practice of SeerAttention that uses pooling
operations to compress the sequence dimension of K. The kernel and stride size of pooling are both
equal to block size, which can also be understood as non-overlapping chunk-level pooling. To mitigate
the potential information loss associated with pooling operations, we employ a composition of Max,
Min, and Average pooling operations. The outputs from these pooling operations are concatenated
prior to being fed into the subsequent linear layer, similar to SeerAttention. The intuition behind this
approach is that Max and Min Pooling can effectively capture outlier values, while Average Pooling
helps to keep the overall distribution intact.

Positional Embedding in AttnGate In line with SeerAttention, the decode AttnGate utilizes the
pre-rope Q and K tensors as inputs and reapplies RoPE |Su et al.[(2024) within AttnGate. Given that
the branch is compressed along the sequence dimension, the position index is assigned to the initial
token of each block. In our experiment, we found that the use of positional embedding in AttnGate
can consistently achieve better accuracy compared to the design without positional embedding.

2.3 DISTILLATION/TRAINING

Previous SeerAttention introduces AttnGate distillation method using the ground truth generate by
LLM itself in the prefilling phase. The training process is efficient as only the AttnGate are trained.
In SeerAttention-R, we extend this method to the decoding scenario by slightly changing the form of
the ground truth. Figure[2]shows the overall diagram of the training process.

Ground Truth To train AttnGate for the auto-regressive decoding process, we need to adapt the
ground truth generation method. Instead of performing 2D maxpooling of attention map in the prefill
case, we only do column-wise 1D maxpooling shown in Figure [Zh. This corresponds to the decoding
AttnGate that does not compress in sequence dimension. Moreover, to accommodate the shared
sparsity in GQA, the column-pooled attention map is further maxpooled within each query heads
subgroup, resulting in a ground truth with key-value heads. Finally, the ground truth is normalized to
summation 1. We then use the Kullback-Leibler divergence loss Joyce|(2011)) to train AttnGate in the
distillation process.

Block
<>

<

\ Pooling/ ! Pseudo Code of Customized Flash-Attn Kernel to

1 Generate Ground Truth in FWD !
i Input: Q, K, V; Output: O, GT (Maxpool of Attn Map) !
i for i from 1 to T,]
Linear|Layer ! Load q;

I]]]] for j from 1 to T,
d \]D MaxPooling/

D —

Load kj, vj

Compute s;j = dot(q;,k;), ri; = rowmax(S;;)

Store ryj

Update my; = max(mjcjq), ri;), li; and oy
Compute final 1;, m; and O;
KLdIV LOSS ! for j from 1 to T,
-------- ! Load ryj

Rescale gti; = exp(ry; - my)/1;
tore gty

Return 0 GT

Seq

AttnGate Ouput Ground Truth
(a) (b)

Figure 2: Training Diagram and Training Kernel of SeerAttention-R. (a) Self-distillation training of
AttnGate in SeerAttention-R. It uses 1D maxpooled attention scores from original model as ground
truth to train AttnGate. Query head reduction is not plotted in the diagram for simplicity. (2) Pseudo
code of attention forward kernel for training that directly generates ground truth and attention output.

Efficiently Obtaining Ground Truth during Training Explicitly calculating the full attention map
softmax(QK™T/ v/d) and then perform the block-level pooling can cost huge GPU memory due to the
quadratic complexity. In SeerAttention-R, we also provide an efficient modification of FlashAttention-
2 Dao| (2023)) kernel that directly generates the ground truth along with the attention output. This
kernel largely reuses the intermediate results (e.g. block-level rowmax) in Flash-Attention and thus
increases the efficiency of the distillation process. The pseudo code is shown in Figure Zb.

3 INFERENCE OF SEERATTENTION-R

K Compression Cache AttnGate
Q Crrooeern Linear M Pooling
g
Linear, Update Once Block 5
g COETTA Tokens Generated T
oTo[7] - Recent K Queue
Block Indices
o T]| [TTH vcache
Sparsely Load KV |

g
E—*I Block Sparse Flash Decoding I—’IZI

Figure 3: Inference Diagram of SeerAttention-R. During inference, a K Compression Cache is used
to cache the compressed key representation in AttnGate to speedup sparse block prediction. This K
Compression Cache only updates once per block number of tokens is generated (block=4 in the plots
for illustration). As a result, the last block of sequence is always selected to compensate when the
compression cache has not been updated yet. g is the group size of GQA.

3.1 SPARSIFY METHODS: TOKEN BUDGET VS THRESHOLD

During training, the AttnGate output S are distilled to mimic the distribution of the block-wise
attention maps from the original model in real-valued (floating-point) form. During inference,
important key-value blocks can be selectively activated based on the predictions of AttnGate. In
SeerAttention-R, we apply two sparsity methods to convert the soft AttnGate outputs into binary
block masks (or block indices). The first method is the foken budget approach, which is widely
adopted in sparse attention methods. Given a fixed token budget, it is first translated into a block
budget by dividing the token budget by the block size. The AttnGate outputs are then sorted using a
Top-k kernel, where k corresponds to the block budget. While this method introduces an additional
Top-k operation, it eliminates the need for a softmax operation in AttnGate. The second method is
the threshold approach, which simply selects blocks whose scores exceed a given threshold. The

threshold method is more self-adaptive as different heads may automatically infer different sparsity
ratios. While these two methods involve different trade-offs between efficiency and accuracy, the
token budget approach is better suited for direct comparisons with other methods.

3.2 K COMPRESSION CACHE

Similar to KV cache, in SeerAttention-R, we use a K Compression Cache to store the compressed
representation of K (after pooling plus linear) to speedup AttnGate prediction. Thus, AttnGate does
not need to recompute K branch for past seen tokens. The update of K Compression Cache is consist
of two phases. First, when the sequence length is not the multiplies of block size b, the new entry of
K Compression Cache may not be accurate. During this time, the last block is always activated to
eliminate unnecessary accuracy loss. Second, as long as b number of new tokens are generated, the
most recent b tokens will pass through the pooling and linear layer and update the K Compression
Cache. In this way, the overhead of AttnGate can be minimized.

In practice, SeerAttention-R utilizes a relatively large block size b, such as 64, which significantly
reduces the overhead of the K Compression Cache. Specifically when b = 64, the additional memory
required for the K Compression Cache amounts to only 1/128 (<1%) of the original KV cache size.
This minimal overhead makes it highly efficient. Moreover, it introduces the possibility of offloading
the larger KV cache to CPU or other storage. During inference, only the activated blocks need
to be retrieved and transferred back to GPU memory on demand. Alternatively, sparse attention
computations can even be performed on heterogeneous resources, such as the CPU, further optimizing
memory usage and enabling efficient handling of long-context decoding tasks.

3.3 BLOCK SPARSE FLASH DECODING KERNEL

To accelerate decoding under block-sparse attention, we design a specialized kernel that extends the
FlashAttention decoding pattern to support dynamic block sparsity in the key/value memory. Our
kernel adopts the grid scheduling strategy of flash decoding for GQA, using a three-dimensional
launch space over (batch, heads_kv, num_split). This design supports concurrent computation across
multiple query groups and key/value shards, maximizing block-level parallelism.

Our block sparse version of the decoding kernel takes the activated block indices from AttnGate
(shape [batch, heads_kv, max_selected_blocks]), which encodes the selected key/value blocks for each
group of query heads. During execution, the kernel only traverses the selected indices and thus skips
invalid entries, avoiding unnecessary computation and memory access. To improve load/compute
balancing across Streaming Multiprocessors (SMs), we partition the key/value blocks along the
num_split dimension using max_selected_blocks rather than the total number of blocks. This strategy
ensures a more uniform work distribution in the presence of sparsity-induced irregularity.

On H100 GPUs, our kernel leverages the wgmma instructions for better Tensor Core usage by
padding the number of query head groups to 64. We implement the kernel using TileLang [til, which
automatically applies computation optimizations like tiling|Zhu et al.|(2022])), warp specialization and
pipelining (Cheng et al.|(2025), and memory layout optimizations such as tensorization, rasterization
and swizzling [Wang et al.| (2024) based on the target architecture. Additionally, we provide a
Triton-based implementation with the same scheduling strategy, allowing for comparative evaluation.

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

Benchmarks, Models, and Baselines We evaluate SeerAttention-R on three math reasoning
benchmarks: the American Invitational Mathematics Examination: AIME24, AIME25, and MATH-
500 Hendrycks et al.| (2020), as well as GPQA-Diamond Rein et al.| (2024)). For model evaluation, we
select four open-source pre-trained language models with strong reasoning capabilities: Qwen3-4B,
8B, 14B |Yang et al.| (2025a)), and DeepSeek-R1-Distill-Qwen-14B |Guo et al.|(2025). All models are
based on the standard Transformer architecture with Grouped Query Attention (GQA). We compare
SeerAttention-R against standard full attention and Quest|Tang et al.|(2024). Quest is a training-free
sparse attention algorithm applied during decoding, employing a query-aware key-value (KV) cache

selection strategy. Specifically, Quest estimates the upper bound of attention scores within each KV
block (or “page”) to select the most relevant blocks. By default, Quest uses a block size of 16, and
keeps the first two layers fully dense to minimize error. In Section[d.3] we set the block size to 64 for
both Quest and SeerAttention-R, and apply sparse attention to all layers to enable a direct comparison.
We also conduct ablation studies to analyze the impact of varying block sizes (Appendix [A.T]) and
incorporating hybrid dense layers (Appendix [A.2). Note that SeerAttention-R enables shared sparsity
selection within each GQA group, whereas Quest does not. Across all experiments, we set the max
output length to 32,768 tokens. While Qwen3 series of models extends this length to 38,912 for
AIME?24 and AIME?2S in their official report, we fix this output length to ensure consistency and
fair comparison across all settings. For SeerAttention-R and the full attention baseline, we report
average pass@1 accuracy over 64 samples for AIME24 and AIME25, 8 samples for MATH-500, and
16 samples for GPQA-Diamond.

Training Setup for SeerAttention-R To distill AttnGate, we use the OpenR1-MATH-220k |[Face
(2025)) dataset for training. Importantly, only the AttnGate is trained, and the original model weights
remain unchanged. Inputs are packed into sequences of up to 32k tokens with our variable-length
Flash-Attention training kernel that also generates ground truth (Section[2.3). Training is performed
with a global batch size of 16 for 800 steps on AMD MI300x GPUs, utilizing DeepSpeed ZeRO-2
optimization. We use AdamW optimizer and a learning rate of 1e-3 with cosine decay schedule.

4.2 ORACLE SPARSE ACCURACY: HOW SPARSE IS ATTENTION IN REASONING MODELS?

AIME24 AIME25 MATH-500 GPQA-Diamond

=
(=3
o

e
o———eo—0 e mm e

—8— Oracle Sparse) —&— Oracle Sparse) —8— Oracle Sparse) —— Oracle Sparse)
—-=- Dense Baseline —--- Dense Baseline —-=- Dense Baseline —-=- Dense Baseline

Block Size 32
Accuracy (%)
1%

o

o

=
o
o

mmmeme—
F=——————8———8 —— o

—8— Oracle Sparse) —&— Oracle Sparse) —8— Oracle Sparse) —e— Oracle Sparse)
—-=- Dense Baseline —-- Dense Baseline —-=- Dense Baseline —-=- Dense Baseline

Block Size 64
Accuracy (%)
w1
o

o

.
o
o

0~

g '/*_'—"‘ Go==————————
h o 501]

ﬁ a —8— Oracle Sparse) —@— Oracle Sparse) —8— Oracle Sparse) —@— Oracle Sparse)

o g ——-- Dense Baseline ——-- Dense Baseline ——- Dense Baseline ——- Dense Baseline
o T T

1k 2k 4k 8k 1k 2k 4k 8k 1k 2k 4k 8k 1k 2k 4k 8k
Token budget Token budget Token budget Token budget

Figure 4: Oracle Sparse Results of Qwen3-14B with block size 32, 64, 128.

In the first experiment, we aim to answer the question: How sparse is attention in reasoning models?
To investigate this, we employ oracle block sparse selection, which utilizes the ground truth in
SeerAttention-R training to select sparse key-value (KV) blocks. While this approach basically means
compute attention twice and does not provide any speedup, it allows us to evaluate the accuracy upper
bound achievable by SeerAttention-R under ideal sparse selection.

We evaluate Qwen3-14B with three different sparse block sizes: 32, 64, and 128. The token budgets
range from 1k to 8k. As shown in Figure[d] using oracle sparsity achieves lossless performance on all
tasks when the token budgets reach 2k. For the more challenging AIME24 and AIME2S5 tasks, some
accuracy degradation is observed with 1k token budget, particularly with the largest block size (128).
However, this degradation is negligible when using block sizes of 32 or 64. These results indicate
that attention sparsity exists in the reasoning process. Based on this, we select a block size of 64 as
the default for SeerAttention-R.

4.3 RESULTS OF SEERATTENTION-R AND QUEST

Fi gureE] shows the results of all the models and benchmarks of Full Attention baseline, SeerAttention-
R and Quest. As mentioned above, we modify the configuration of Quest to be the same as

AIME24 AIME25 MATH-500 GPQA-Diamond

-
o
S

Qwen3-4B
Accuracy (%)
A O ®
o o o

N
o
!

o

—
o ® o
o o o

P

Qwen3-8B
Accuracy (%)
S
o

N
o
!

o

=
A 00 ®» O
o © o ©
P

Qwen3-14B
Accuracy (%)

N
o
!

o

DeepSeek-R1-Distill-Qwen-14B
Accuracy (%)
A O
o o
| n |
1
1
1
1
g]

T T T T T T T T T T T T
2k a4k 6k 8k 2k 4k 6k 8k 1k 2k 4k 6k 1k 2k 4k 6k

v T T T T T T v T T T T T T
2k 4k 6k 8k 2k 4k 6k 8k 1k 2k 4k 6k 1k 2k ak 6k
Token Budget Token Budget Token Budget Token Budget

-
© o
o o

N
o
!

o

—e— SeerAttention-R —@— Quest --- Dense Baseline

Figure 5: Accuracy Results of Full Attention, SeerAttention-R, and Quest. The Quest sparse
configuration is set to be the same as SeerAttention-R for fair comparison, which uses a block size of
64 and sparse attention in all layers.

SeerAttention-R (block size 64 and using sparse attention in all layers). We use token budgets
from 2k, 4k, 6k, and 8k for AIME24 and AIME2S5, and 1k, 2k, 4k, and 6k for MATH-500 and GPQA-
Diamond. This is mainly because the typical averaged reasoning length from different benchmark is
not the same. For the more challenging AIME24 and AIME2S5, the averaged generated lengths of
these models are around 11k-18k. While for the easier MATH-500 and GPQA, the averaged lengths
are reduced to 4k-9k. However, it is critical to note that across all combinations, the maximum
generation lengths all reached the 32k token cap, underscoring the consistent demand for efficient
long-context processing.

The results show that SeerAttention-R achieves consistently better performance compared to Quest.
This trend holds true across every benchmark and computational budget, underscoring the robustness
and effectiveness of SeerAttention-R. For the AIME24 benchmark, SeerAttention-R typically achieves
lossless performance with 4k token budget on while the previous oracle sparse only requires 2k. This
is within expectation as SeerAttention-R is only an approximation of ground truth with much less
computation required. However, Quest fails achieve lossless accuracy even using 8k token budgets
under identical setting. For MATH-500 and GPQA-Diamond, the lossless token budgets reduce to 2k
for SeerAttention-R while Quest requires around 8k to approach the full attention baseline.

A key trend observed across the results is the relationship between model scale and tolerance for
sparse attention. Larger models, such as the 14B variants, exhibit greater robustness to the information
loss inherent in sparsity compared to their 4B and 8B counterparts. This phenomenon is particularly
pronounced for Quest, where the accuracy gap at lower budgets shrinks significantly as the model
size increases. For SeerAttention-R, the effect is also present. The 14B models close the final gap
to the dense baseline more easily than smaller models on challenging benchmarks like AIME2S5.
This indicates that as reasoning models continue to scale, the viability of sparse attention methods
increases.

In conclusion, the results demonstrate the superiority of SeerAttention-R’s self-distilled approach
over the training-free heuristics of Quest, especially in the challenging large block size configuration.
Previous work Lserve Yang et al.| (2025b) also mentions the accuracy degradation of Quest over larger
block sizes. They resolve this challenge by introducing Hierarchical Paging, a system approach that
uses an additional level of block(page) abstraction called virtual logical page, which decouples the
sparsity selection page size and physical page size. With SeerAttention-R, we can possibly simplify
the sparse attention system design by using a larger block size.

4.4 KERNEL SPEEDUP

seqlen=8192 seqlen=16384 seqlen=32768 seqlen=65536 seqlen=131072

K
N/
LA
NN
K

=
I
1
1
I
I
1
1
I
I
I
1
1
I
I
|
|
I
(
I
I
I
|
I
1
|
I
I
|
)
1
|
I
I
|
)
1
|

Batch 4
Speedup
w U3 ©

Batch 1
Speedup
W Uy o

05 06 07 0.8 0.9 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9 05 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9
Sparsity Sparsity Sparsity Sparsity Sparsity

—s=— TileLang Sparse —e— Triton Sparse --- FA3 Baseline

Figure 6: Kernel Speedup of our Block Sparse Flash-Decoding Kernel on H100 GPU. Our TileLang
implementation of the kernel achieves higher speedup ratio compared to Triton implementation. For
longer sequence length or larger batch size cases, the speedups approach the theoretical upper bound
compared to FA3 basline.

This section evaluates our customized block sparse flash decoding kernel described in Section 3.3}
We implement the kernel with both TileLang [til and Triton and we use FlashAttention-3 (FA3)[Shah|
as baseline. The experiments are run on Nvidia H100 GPU with different input sequence
lengths (8k to 128k), batch sizes(1 to 16) and sparsity ratios (0.5 to 0.9). In terms of GQA setting, we
use a setting of 64 attention heads with 8 key-value heads, and head dimension 128.

Figure[6] presents the detailed results. Each subplot corresponds to a specific combination of input
sequence length (seqlen) and batch size (bs), with the x-axis showing different sparsity ratios and the
y-axis indicating speedup. The TileLang implementation consistently outperforms the FA3 baseline
and achieves greater speedup than the Triton implementation. In general, the sparse kernel delivers
higher speedup when the input sequence length is longer or the batch size is larger. This is expected,
as the decoding kernel is primarily I/O-bound. When the KV cache size is sufficient to saturate
the bandwidth, such as when bs=16 and seqlen > 32k, our sparse kernel achieves near-theoretical
speedup (up to 9x at 0.9 sparsity). Even for moderate KV cache sizes, e.g. bs=4 and seqlen=32k, the
kernel demonstrates significant speedup (up to 6x at 0.9 sparsity).

5 RELATED WORKS

5.1 TRAINING-FREE VS. TRAINING-BASED SPARSE ATTENTION

Sparse attention research generally follows two directions: training-free (pre-defined or heuristic) and
training-based methods. Training-free approaches adopt static patterns |Xiao et al.|(2023)); [Fu et al.
(2024); [Xiao et al.|(2024b) or heuristic-based algorithms Zhang et al.[(2023); Tang et al.[(2024);|Jiang
et al.| (2024);|Yang et al.| (2025b); [Lai et al.|(2025)); /Chen et al.|(2024b); |[Liu et al.| (2024c); |Li et al.
(2024a);|Yang et al.| (2024a); Hu et al.|(2025));|Zhang et al.[(2025)); Xu et al.|(2025)); |Chen et al.| (2025)),
relying on prior knowledge such as fixed patterns or head characteristics. In contrast, training-based
methods integrate sparse attention into models to reduce complexity with minimal accuracy loss.
Early work explored local/global/block patterns (Child et al.|(2019); Beltagy et al.| (2020); Zaheer et al.
(2020), while recent methods like NSA |Yuan et al.| (2025), MoBA [Lu et al.| (2025), ACP |[Lin et al.
(2025b)), MiniCPM4 Team| (2025) train dynamic sparse modules during pre-training. SeerAttention
offers a middle ground, learning sparsity post-training without modifying model weights.

5.2 KV CACHE COMPRESSION

KV cache optimization is key for efficient inference, as smaller caches reduce bandwidth and memory
costs. Eviction-based methods |Ge et al.| (2023)); [Li et al.| (2024b); Zeng et al.| (2024); Zhang et al.
(2023); [L1u et al.| (2023)); |Adnan et al.[(2024); Chen et al. (2024a); |Behnam et al.| (2025) permanently
remove tokens, risking accuracy loss. Alternatively, dynamic selection methods Tang et al.| (2024);
Zhang et al.| (2024); [Hooper et al.[(2024)); |Chen et al.| (2025); |Liu et al.| (2024c)); Hu et al.[(2025)); (Cai
et al.| (2025); [Hao et al.| (2025); Mazaré et al.| (2025a) retain all tokens but select subsets at each step.

5.3 OTHER EFFICIENT ATTENTION ALGORITHMS

Beyond sparsity, efficient variants of multi-head attention include GQA |Ainslie et al.| (2023)),
MOQA |Shazeer| (2019)), latent-based designs |Liu et al.| (2024a); |[Zadour1 et al.| (2025)), and cross-
layer sharing approaches like YOCO [Sun et al| (2024) and CLA Brandon et al. (2024)). Linear
attention |[Katharopoulos et al.| (2020); |Sun et al.| (2023); [Beck et al.| (2024); |[Yang et al.| (2024b);
Gu and Daol (2023); |Dao and Gu| (2024); Peng et al.| (2023); |Yang et al.| (2023) enables parallel
training and constant inference memory, though it struggles in long-context reasoning. Hybrid models
combining linear and full attention show stronger performance |Dong et al.| (2024); L1 et al.| (2025).

6 CONCLUSION AND DISCUSSION

This paper introduces SeerAttention-R, a lightweight sparse attention framework that accelerates
long decoding in reasoning models. As a plug-in gating module, it integrates into pretrained models
without altering original parameters and requires only lightweight training. Despite coarse-grained
block sizes, SeerAttention-R preserves near-lossless reasoning accuracy, while its TileLang kernel
achieves near-theoretical speedup at high sparsity ratios.

Several challenges remain. Achieving full end-to-end speedup will require integration with inference
frameworks (e.g., vllm Kwon et al.| (2023), sglang [Zheng et al.| (2024)) and compatibility with
PagedAttention, possibly combined with KV cache offloading [Xiao et al.|(2024a); Liu et al.| (2024c);
Chen et al.|(2024b); [Hao et al| (2025). Another open problem is adaptive sparsity, as the trade-
off between accuracy and efficiency varies by task and sequence length. Top-p based sparsity
selection |Lin et al.| (2025a); (Chen et al.| (2024b) offers one promising direction. Finally, unifying
sparse prefill and decoding remains challenging: prefill benefits from parallelism while decoding
does not. Approaches such as multi-token prediction (Gloeckle et al.|(2024); Liu et al.| (2024b) or
speculative decoding [Leviathan et al.|(2023) may help align them under a single gating mechanism.

In summary, SeerAttention-R shows that post-training sparse attention can deliver efficiency with
minimal accuracy loss, while future work lies in adaptive sparsity, unified prefill/decoding, and
system-level integration.

REFERENCES
TileLang. URL https://github.com/tile—ai/tilelang.

Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant J Nair, Ilya Soloveychik, and Pu-
rushotham Kamath. Keyformer: Kv cache reduction through key tokens selection for efficient
generative inference. Proceedings of Machine Learning and Systems, 6:114—127, 2024.

Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrén, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245, 2023.

Maximilian Beck, Korbinian Poppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Giinter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. arXiv preprint arXiv:2405.04517, 2024.

Payman Behnam, Yaosheng Fu, Ritchie Zhao, Po-An Tsai, Zhiding Yu, and Alexey Tumanov.
Rocketkv: Accelerating long-context 1lm inference via two-stage kv cache compression. arXiv
preprint arXiv:2502.14051, 2025.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan Ragan-
Kelley. Reducing transformer key-value cache size with cross-layer attention. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems, 2024.

Zefan Cai, Wen Xiao, Hanshi Sun, Cheng Luo, Yikai Zhang, Ke Wan, Yucheng Li, Yeyang Zhou,
Li-Wen Chang, Jiuxiang Gu, Zhen Dong, Anima Anandkumar, Abedelkadir Asi, and Junjie Hu.
R-kv: Redundancy-aware kv cache compression for training-free reasoning models acceleration.
arXiv preprint arXiv:2505.24133, 2025.

Guoxuan Chen, Han Shi, Jiawei Li, Yihang Gao, Xiaozhe Ren, Yimeng Chen, Xin Jiang, Zhenguo
Li, Weiyang Liu, and Chao Huang. Sepllm: Accelerate large language models by compressing one
segment into one separator. arXiv preprint arXiv:2412.12094, 2024a.

Yaoqi Chen, Jinkai Zhang, Baotong Lu, Qianxi Zhang, Chengruidong Zhang, Jingjia Luo, Di Liu,
Huiqgiang Jiang, Qi Chen, Jing Liu, Bailu Ding, Xiao Yan, Jiawei Jiang, Chen Chen, Mingxing
Zhang, Yuqing Yang, Fan Yang, and Mao Yang. Retroinfer: A vector-storage approach for scalable
long-context 1lm inference, 2025. URL https://arxiv.org/abs/2505.02922.

Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang Zhou, Jianyu Zhang, Niklas Nolte, Yuandong
Tian, Matthijs Douze, Leon Bottou, Zhihao Jia, et al. Magicpig: Lsh sampling for efficient llm
generation. arXiv preprint arXiv:2410.16179, 2024b.

Yu Cheng, Lei Wang, Yining Shi, Yuqing Xia, Lingxiao Ma, Jilong Xue, Yang Wang, Zhiwen Mo,
Feiyang Chen, Fan Yang, Mao Yang, and Zhi Yang. PipeThreader: Software-defined pipelining
for efficient dnn execution. In 19th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 25), 2025. URL https://www.usenix.org/conference/osdi25/
presentation/chendgl

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. 2023. URL
https://arxiv.org/abs/2307.08691.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Xin Dong, Yonggan Fu, Shizhe Diao, Wonmin Byeon, Zijia Chen, Ameya Sunil Mahabaleshwarkar,
Shih-Yang Liu, Matthijs Van Keirsbilck, Min-Hung Chen, Yoshi Suhara, et al. Hymba: A hybrid-
head architecture for small language models. arXiv preprint arXiv:2411.13676, 2024.

10

https://github.com/tile-ai/tilelang
https://arxiv.org/abs/2505.02922
https://www.usenix.org/conference/osdi25/presentation/cheng
https://www.usenix.org/conference/osdi25/presentation/cheng
https://arxiv.org/abs/2307.08691

Hugging Face. Open rl: A fully open reproduction of deepseek-rl, January 2025. URL https:
//github.com/huggingface/open—rll

Tianyu Fu, Haofeng Huang, Xuefei Ning, Genghan Zhang, Boju Chen, Tianqi Wu, Hongyi Wang,
Zixiao Huang, Shiyao Li, Shengen Yan, et al. Moa: Mixture of sparse attention for automatic large
language model compression. arXiv preprint arXiv:2406.14909, 2024.

Yizhao Gao, Zhichen Zeng, Dayou Du, Shijie Cao, Peiyuan Zhou, Jiaxing Qi, Junjie Lai, Hayden
Kwok-Hay So, Ting Cao, Fan Yang, et al. Seerattention: Learning intrinsic sparse attention in your
llms. arXiv preprint arXiv:2410.13276, 2024.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801, 2023.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Roziere, David Lopez-Paz, and Gabriel Synnaeve.
Better & faster large language models via multi-token prediction. arXiv preprint arXiv:2404.19737,
2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jitai Hao, Yuke Zhu, Tian Wang, Jun Yu, Xin Xin, Bo Zheng, Zhaochun Ren, and Sheng Guo.
Omnikv: Dynamic context selection for efficient long-context llms. In The Thirteenth International
Conference on Learning Representations, 2025.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Monishwaran Maheswaran, June Paik,
Michael W Mahoney, Kurt Keutzer, and Amir Gholami. Squeezed attention: Accelerating long
context length llm inference. arXiv preprint arXiv:2411.09688, 2024.

Junhao Hu, Wenrui Huang, Weidong Wang, Zhenwen Li, Tiancheng Hu, Zhixia Liu, Xusheng Chen,
Tao Xie, and Yizhou Shan. Efficient long-decoding inference with reasoning-aware attention
sparsity. arXiv preprint arXiv:2502.11147, 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024.

Huiqgiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
for long-context llms via dynamic sparse attention. arXiv preprint arXiv:2407.02490, 2024.

James M Joyce. Kullback-leibler divergence. In International encyclopedia of statistical science,
pages 720-722. Springer, 2011.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Frangois Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pages 5156-5165. PMLR, 2020.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Xunhao Lai, Jianqiao Lu, Yao Luo, Yiyuan Ma, and Xun Zhou. Flexprefill: A context-aware sparse
attention mechanism for efficient long-sequence inference. arXiv preprint arXiv:2502.20766,
2025.

11

https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pages 19274—19286. PMLR, 2023.

Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao
Guo, Da Chen, Dong Li, et al. Minimax-01: Scaling foundation models with lightning attention.
arXiv preprint arXiv:2501.08313, 2025.

Yucheng Li, Huiqiang Jiang, Qianhui Wu, Xufang Luo, Surin Ahn, Chengruidong Zhang, Amir H
Abdi, Dongsheng Li, Jianfeng Gao, Yuqing Yang, et al. Scbench: A kv cache-centric analysis of
long-context methods. arXiv preprint arXiv:2412.10319, 2024a.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: LIm knows what you are looking for before generation.
Advances in Neural Information Processing Systems, 37:22947-22970, 2024b.

Chaofan Lin, Jiaming Tang, Shuo Yang, Hanshuo Wang, Tian Tang, Boyu Tian, Ion Stoica, Song Han,
and Mingyu Gao. Twilight: Adaptive attention sparsity with hierarchical top-p pruning. arXiv
preprint arXiv:2502.02770, 2025a.

Zhixuan Lin, Johan Obando-Ceron, Xu Owen He, and Aaron Courville. Adaptive computation
pruning for the forgetting transformer. arXiv preprint arXiv:2504.06949, 2025b.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-of-
experts language model. arXiv preprint arXiv:2405.04434, 2024a.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024b.

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-
gruidong Zhang, Bailu Ding, Kai Zhang, et al. Retrievalattention: Accelerating long-context llm
inference via vector retrieval. arXiv preprint arXiv:2409.10516, 2024c.

Ruikang Liu, Yuxuan Sun, Manyi Zhang, Haoli Bai, Xianzhi Yu, Tiezheng Yu, Chun Yuan, and
Lu Hou. Quantization hurts reasoning? an empirical study on quantized reasoning models. arXiv
preprint arXiv:2504.04823, 2025.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for 1lm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36:52342-52364, 2023.

Enzhe Lu, Zhejun Jiang, Jingyuan Liu, Yulun Du, Tao Jiang, Chao Hong, Shaowei Liu, Weiran He,
Enming Yuan, Yuzhi Wang, Zhiqi Huang, Huan Yuan, Suting Xu, Xinran Xu, Guokun Lai, Yanru
Chen, Huabin Zheng, Junjie Yan, Jianlin Su, Yuxin Wu, Yutao Zhang, Zhilin Yang, Xinyu Zhou,
Mingxing Zhang, and Jiezhong Qiu. Moba: Mixture of block attention for long-context llms. arXiv
preprint arXiv:2502.13189, 2025.

Pierre-Emmanuel Mazaré, Gergely Szilvasy, Maria Lomeli, Francisco Massa, Naila Murray, Hervé
Jégou, and Matthijs Douze. Inference-time sparse attention with asymmetric indexing. arXiv
preprint arXiv:2502.08246, 2025a.

Pierre-Emmanuel Mazaré, Gergely Szilvasy, Maria Lomeli, Francisco Massa, Naila Murray, Hervé
Jégou, and Matthijs Douze. Inference-time sparse attention with asymmetric indexing. arXiv
preprint arXiv:2502.08246, 2025b.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi
Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for the transformer
era. arXiv preprint arXiv:2305.13048, 2023.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqga: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

12

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. Advances
in Neural Information Processing Systems, 37:68658—68685, 2024.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. arXiv preprint
arXiv:2307.08621, 2023.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui Wang, Shuming Ma, Quanlu Zhang, Jianyong
Wang, and Furu Wei. You only cache once: Decoder-decoder architectures for language models.
Advances in Neural Information Processing Systems, 37:7339-7361, 2024.

Yutao Sun, Tianzhu Ye, Dong Li, Yuqing Xia, Jian Chen, Yizhao Gao, Shijie Cao, Jianyong Wang,
and Furu Wei. Rectified sparse attention. arXiv preprint arXiv:2506.04108, 2025.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024.

MiniCPM Team. Minicpm4: Ultra-efficient 1lms on end devices. 2025.

Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate language and compiler
for tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, pages 10-19, 2019.

Lei Wang, Lingxiao Ma, Shijie Cao, Quanlu Zhang, Jilong Xue, Yining Shi, Ningxin Zheng,
Ziming Miao, Fan Yang, Ting Cao, Yuqing Yang, and Mao Yang. Ladder: Enabling efficient
low-precision deep learning computing through hardware-aware tensor transformation. In /8th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 24), pages 307-323,
Santa Clara, CA, July 2024. USENIX Association. ISBN 978-1-939133-40-3. URL https:
//www.usenix.org/conference/osdi24/presentation/wang-lei.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan
Liu, and Maosong Sun. Infllm: Training-free long-context extrapolation for llms with an efficient
context memory. arXiv preprint arXiv:2402.04617, 2024a.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu, and
Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming heads.
arXiv preprint arXiv:2410.10819, 2024b.

Ruyi Xu, Guangxuan Xiao, Haofeng Huang, Junxian Guo, and Song Han. Xattention: Block sparse
attention with antidiagonal scoring. arXiv preprint arXiv:2503.16428, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025a.

Shang Yang, Junxian Guo, Haotian Tang, Qinghao Hu, Guangxuan Xiao, Jiaming Tang, Yujun Lin,
Zhijian Liu, Yao Lu, and Song Han. Lserve: Efficient long-sequence llm serving with unified
sparse attention. arXiv preprint arXiv:2502.14866, 2025b.

Shuo Yang, Ying Sheng, Joseph E Gonzalez, Ion Stoica, and Lianmin Zheng. Post-training sparse
attention with double sparsity. arXiv preprint arXiv:2408.07092, 2024a.

13

https://www.usenix.org/conference/osdi24/presentation/wang-lei
https://www.usenix.org/conference/osdi24/presentation/wang-lei

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. arXiv preprint arXiv:2312.06635, 2023.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers
with the delta rule over sequence length. arXiv preprint arXiv:2406.06484, 2024b.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
trainable sparse attention. arXiv preprint arXiv:2502.11089, 2025.

Ted Zadouri, Hubert Strauss, and Tri Dao. Hardware-efficient attention for fast decoding. arXiv
preprint arXiv:2505.21487, 2025.

Mangzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283-17297, 2020.

Zihao Zeng, Bokai Lin, Tiangi Hou, Hao Zhang, and Zhijie Deng. In-context kv-cache eviction for
llms via attention-gate. arXiv preprint arXiv:2410.12876, 2024.

Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu, Xupeng Miao, Xiaonan Nie, Weipeng Chen,
and Bin Cui. Pqcache: Product quantization-based kvcache for long context 1lm inference. arXiv
preprint arXiv:2407.12820, 2024.

Jintao Zhang, Chendong Xiang, Haofeng Huang, Jia Wei, Haocheng Xi, Jun Zhu, and Jianfei
Chen. Spargeattn: Accurate sparse attention accelerating any model inference. In International
Conference on Machine Learning (ICML), 2025.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Re, Clark Barrett, Zhangyang Wang, and Beidi Chen. H20: Heavy-
hitter oracle for efficient generative inference of large language models. In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?i1d=RkRrPp7GKO.

Lianmin Zheng, Liangsheng Yin, Zhigiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of
structured language model programs. Advances in Neural Information Processing Systems, 37:
62557-62583, 2024.

Hongyu Zhu, Ruofan Wu, Yijia Diao, Shanbin Ke, Haoyu Li, Chen Zhang, Jilong Xue, Lingxiao Ma,
Yuqing Xia, Wei Cui, Fan Yang, Mao Yang, Lidong Zhou, Asaf Cidon, and Gennady Pekhimenko.
ROLLER: Fast and efficient tensor compilation for deep learning. In 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 22), pages 233-248, Carlsbad, CA, July
2022. USENIX Association. ISBN 978-1-939133-28-1. URL https://www.usenix.orqg/
conference/osdi22/presentation/zhul

14

https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO
https://www.usenix.org/conference/osdi22/presentation/zhu
https://www.usenix.org/conference/osdi22/presentation/zhu

A APPENDIX

A.1 BLOCK SIZE FOR SPARSE ATTENTION

Qwen3-4B Qwen3-8B
100
—&— Quest —— Quest
$ 804 —® SeerAttention-R | —#— SeerAttention-R
P . . - ————n
o
C 60 b
=}
o
2
« 401 1
o
g
S 204 \\\ |
0 -+ T T T T T T T
16 32 64 128 16 32 64 128
Block Size Block Size

Figure 7: AIME24 results using different block sizes with 4k token budget. SeerAttention-R achieves
almost consistent performances on different block sizes. However, Quest gets lower accuracy when
block size gets larger. Note that in this experiment, SeerAttention-R enables shared sparsity selection
within each GQA group, whereas Quest does not.

The token block size for sparse attention is a critical factor that affects overall system performance.
If the block size is too small, it incurs significant overhead in sparse block prediction, including
increased computational cost and larger metadata requirements such as compression caches and block
indices. While a larger block size can also potentially improve the utilization of GPUs.

Figure [7] presents AIME24 results on the Qwen3-4B and Qwen3-8B models across block sizes
ranging from 16 to 128. By default, Quest uses a block size of 16. The results indicate that Quest’s
performance decreases as the block size increases. However, SeerAttention-R achieves consistent
accurate sparse block selection at different block sizes. Remarkably, this robustness lies under the
assumption of the additional mask sharing in the GQA group dimension. We excluded a block size of
16 from our experiments due to its inefficiency during both training and inference. It often leads to
out-of-memory errors because of the large intermediate attention maps generated during training.

A.2 HYBRID DENSE ATTENTION IN THE FIRST TWO LAYERS

Quest SeerAttention-R
100
—8— All Sparse Layers —8— All Sparse Layers
80 4 —®— Hybrid Dense First Two Layers | —#— Hybrid Dense First Two Layers
S
= 60+ R
1®)
c
S 40+ 1
Q
<
20 A k
0 y T T T T T T T
2k 4k 6k 8k 2k 4k 6k 8k
Token Budget Token Budget

Figure 8: AIME24 results of whether using dense attention in first two layers (Qwen3-4B).

Some post-training sparse attention algorithms employ hybrid dense attention in certain layers to
mitigate accuracy loss. By default, Quest applies dense attention in its first two layers. However, for
a fair comparison, we evaluate both Quest and SeerAttention-R using purely sparse attention across
all layers in previous evaluation. This approach allows us to isolate and analyze the effects of sparse
attention without the confounding influence of hybrid attention.

15

To further investigate the impact of hybrid dense attention, we conduct an ablation study using
the Qwen3-4B model on the AIME24 benchmark with a block size of 64. As shown in Figure [8]
incorporating hybrid dense attention in Quest yields a significant improvement in accuracy, whereas
SeerAttention-R only sees marginal benefits. This difference may be due to the already accurate sparse
prediction by SeerAttention-R in the first two layers, reducing the potential gains from hybridization.

A.3 THRESHOLD VS TOKEN BUDGETS

5 0.8
< 4 P atiiin
3 ““'\“
25 B A e e o i
Q ¢}
X ©
(s} o
= =1
w2 S
© <
£ 0.6 1 —e— Threshold
< — 4k Token Budgets —=— Token Budget
0 - —e— Threshold 4e-3 —==- Dense Baseline
T T T T 0.5 T T T T T
0 10 20 30 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Generate Length (k) 32k Sparsity
(@) (b)

Figure 9: Threshold vs. Token Budget. Results are obtained using Qwen3-4B models on AIME24
benchmark. (a) Difference of activated tokens distribution of two methods. (b) Sparsity vs Accuracy
tradeoff of two methods. Thresholds: 2e-3, 3e-3, 4e-3, 5e-3, 6e-3. Token Budget: 8k, 6k, 4k, 2k.

In SeerAttention-R, we employ two AttnGate sparsification strategies, threshold and token budget, to
convert real-valued gate scores into discrete block selections. The token budget method offers an
straightforward way to align sparsity and compare with different methods. However, the threshold
method is extremely simple to implement and avoids the need of sorting. Figure [9a]illustrates the
distribution of activated tokens across varying sequence lengths using a threshold of 4e-3 and a token
budget of 4K on the AIME24 benchmark with Qwen3-4B model. The token budget approach results
in a strict piecewise linear activation pattern, whereas the threshold method yields a smoother, curved
distribution. Figure [Ob]compares the sparsity—accuracy trade-offs of the two methods. The threshold
method shows slightly better accuracy in high sparsity region.

A.4 IMPACT OF SPARSE ATTENTION ON GENERATE LENGTH

Table 1: Qwen3-8B AIME24 Accuracy vs. Reasoning Length.

Token Budgets
2k 4k 6k 8k
Accuracy 133 442 525 59.6
Gen. Length(k) | 30.0 229 19.6 17.2
Accuracy 56.6 723 742 751
Gen. Length(k) | 19.8 163 153 15.1

Quest

SeerAttention-R

We observed that using inaccurate sparse attention (too small budget or low recall) can increase
output token lengths in reasoning tasks. Table [I] shows the AIME accuracy and reasoning length
using Qwen3-8B model. The baseline accuracy of full attention and the generated length are 74.5
and 15.1 k, respectively. We can see that Quest, and SeerAttention-R with 2k budget cases, all incur
much longer reasoning paths compared to full attention. A similar phenomenon has been reported
in quantization |Liu et al.| (2025)), where inaccurate quantization algorithms lead to longer reasoning
paths. We believe this effect is universal across different post-training efficiency optimizations of
reasoning model, as such methods can introduce errors that accumulate over the long reasoning chains.
These additional reasoning steps potentially undermine the original goal of improving efficiency.
Therefore, an accurate sparse attention selection algorithm is crucial to mitigate this effect. Another
promising approach to eliminate the accumulated errors is to use Rectified Sparse Attention Sun et al.
(2025), which periodically performs dense rectification of the KV cache.

16

A.5 TRAINING BUDGET

Table 2: Training Budgets

Training Tokens GPU Hours
04B Qwen3-4B Qwen3-8B Qwen3-14B
‘ 10.9 12.2 18.6

As a lightweight distillation process where only the AttnGate parameters are trained, SeerAttention-R
is also highly efficient in terms of training. In our experiments, we set the global batch size to 16 and
trained for just 800 steps, utilizing DeepSpeed Stage 2 optimization on MI300x GPUs. Each data
batch is packed to a sequence length of 32k with our custom variable-length FlashAttention forward
kernel, as described in Section[2.3] Table [2]summarizes the GPU hours required for training models
of various sizes. Notably, distilling an 8B model requires only 12 GPU hours, demonstrating the
efficiency of our approach. Increasing the quantity, quality, and diversity of training data may lead to
further improvements.

17

	Introduction
	SeerAttention-R
	A Recap of SeerAttention
	SeerAttention-R: AttnGate for Sparse Decoding
	Distillation/Training

	Inference of SeerAttention-R
	Sparsify Methods: Token Budget vs Threshold
	K Compression Cache
	Block Sparse Flash Decoding Kernel

	Experiments
	Experiments Setup
	Oracle Sparse Accuracy: How Sparse is Attention in Reasoning Models?
	Results of SeerAttention-R and Quest
	Kernel Speedup

	Related Works
	Training-free vs. Training-based Sparse Attention
	KV Cache Compression
	Other Efficient Attention Algorithms

	Conclusion and Discussion
	Appendix
	Block Size for Sparse Attention
	Hybrid Dense Attention in the First Two Layers
	Threshold VS Token Budgets
	Impact of Sparse Attention on Generate Length
	Training Budget

