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ABSTRACT

We introduce SeerAttention-R, a sparse attention framework specifically tai-
lored for the long decoding of reasoning models. Extended from SeerAttention,
SeerAttention-R retains the design of learning attention sparsity through a self-
distilled gating mechanism, while removing query pooling to accommodate auto-
regressive decoding. With a lightweight plug-in gating, SeerAttention-R is flexible
and can be easily integrated into existing pretrained model without modifying the
original parameters. We demonstrate that SeerAttention-R, trained on just 0.4B
tokens, maintains near-lossless reasoning accuracy with 4K token budget in AIME
benchmark under large sparse attention block sizes (64/128). Using TileLang, we
develop a highly optimized sparse decoding kernel that achieves near-theoretical
speedups of up to 9x over FlashAttention-3 on H100 GPU at 90% sparsity.

1 INTRODUCTION

Recent reasoning-focused models such as OpenAI o1 Jaech et al. (2024), DeepSeek-R1 Guo et al.
(2025), and Qwen3 Yang et al. (2025a) demonstrate that models’ capabilities improve significantly
through test-time scaling. By generating longer sequences during inference, these models are able
to think and reason more effectively before producing an answer. Empirically, longer generations
correlate with stronger reasoning performance. For instance, Qwen3-14B Yang et al. (2025a)
outperforms DeepSeek-R1-Distill-Qwen-14B Guo et al. (2025) while producing longer responses
on average. Similarly, harder benchmarks such as AIME24 require more tokens per generation than
easier ones like MATH-500 Hendrycks et al. (2020).

However, deeper reasoning introduces increasing efficiency challenges. Due to the auto-regressive
nature of decoding, later tokens must attend to a longer context, increasing compute and memory
demands for the KV cache. As a result, the per-token generation cost grows linearly, while the overall
generation cost increases quadratically.

Sparse attention offers a promising approach to addressing the long-sequence efficiency challenges.
While it has been studied in general language modeling, its application to reasoning models, which
require prolonged decoding, remains underexplored. Our experiment using oracle sparsity (Sec-
tion 4.2) shows that attention in reasoning models is also inherently sparse, activating only a subset
of important tokens is sufficient to maintain the model’s reasoning capability. The key challenge lies
in effectively identifying and leveraging this intrinsic sparsity.

In this work, we extend SeerAttention Gao et al. (2024) to SeerAttention-R, a sparse attention
framework aimed to improve the long decoding efficiency of reasoning models. SeerAttention was
originally designed to improve prefill efficiency by selectively activating important attention blocks
through a lightweight, self-distilled attention gating mechanism at post-training time. SeerAttention-
R retains the core design of self-ditilled attention sparsity and introduces modifications to support
efficient decoding. Specifically, it removes sequence-level pooling of query to accommodate auto-
regressive decoding and adopts a shared sparsity design aligned with Grouped Query Attention (GQA)
to enhance hardware efficiency. SeerAttention-R can be integrated into any standard transformer-
based pretrained model by adding the learnable gate to the attention layer, without fine-tuning original
model parameters.

We apply SeerAttention-R to multiple reasoning-focused open-source models, including Qwen3-4B,
8B, 14B Yang et al. (2025a) and DeepSeek-R1-Distill-Qwen-14B Guo et al. (2025), and evaluate
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them on several reasoning benchmarks: AIME24, AIME25, MATH-500 Hendrycks et al. (2020), and
GPQA-Diamond Rein et al. (2024). Since SeerAttention-R only requires training the gating module,
the distillation is lightweight with just 0.4B tokens from OpenR1-MATH-220K Face (2025) being
sufficient. Across all models and tasks, SeerAttention-R consistently outperforms the Quest Tang
et al. (2024) baseline and maintains near-lossless accuracy under a 4k token budget. Notably, the
accuracy gap further diminishes as model size increases. More importantly, this learnable approach
enables more coarse-grained sparse attention (e.g., a block size of 64 or 128), which further reduces
the overhead from sparse attention scheme and improve hardware efficiency.

We implement the block sparse flash decoding kernel using both TileLang til and Triton Tillet et al.
(2019), and benchmark it on an H100 GPU with FlashAttention-3 (FA3) Shah et al. (2024) as the
baseline. Across a range of combination of sequence lengths, batch sizes, and sparsity levels, our
TileLang-based kernel consistently outperforms both Triton and FA3. The gains are especially
pronounced at large sequence lengths and batch sizes. For example, at batch size 16 and sequence
length ≥ 32k, our TileLang kernel achieves near-theoretical speedups of up to 8.6× at 90% sparsity
over the FA3 baseline, and delivers a 1.7× speedup compared to the Triton counterpart.

2 SEERATTENTION-R

2.1 A RECAP OF SEERATTENTION
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Figure 1: SeerAttention (Sparse Prefill) and SeerAttention-R (Sparse Decode). In SeerAttention-R,
no sequence dimension compression/pooling operation is applied in Query (Q). Given that modern
architectures predominantly use GQA, a linear layer projects the Q from its original number of heads
down to the number of KV heads, enabling shared sparsity selection in a GQA group.

SeerAttention Gao et al. (2024) introduces self-distilled Attention Gate (AttnGate) that dynamically
activates sparse blocks in attention computation for efficient long-context prefilling. Figure 1a shows
the AttnGate architecture of SeerAttention, where Q, K tensors are both compressed (pooled) in
the sequence dimension per block number of tokens. The compressed Q, K tensors are then passed
through two newly added linear layers, which serve as learnable parameters in the AttnGate. With
the following positional embedding, matrix-multiplication and softmax operation similar to standard
attention, the AttnGate then generates the 2D block-level attention score estimation. Based on the
output, we can selectively activate blocks with higher scores while skipping the rest.

In the distillation process, the AttnGate are trained to mimic the 2D block sparse distribution using
the ground truth generated by the original pretrained model. This self-distillation training is efficient
as the original model weights are frozen. In this way, it brings accurate sparse attention to pretrained
full-attention models without costly fine-tuning or pre-training. Powered by customized block-sparse
flash attention kernels, SeerAttention achieves supreme accuracy-efficiency tradeoff in downstream
long-context benchmarks.

2.2 SEERATTENTION-R: ATTNGATE FOR SPARSE DECODING

This work introduces SeerAttention-R, an extension of SeerAttention tailored for the long-decoding
phase of reasoning models. The foremost difference of AttnGate design in SeerAttention-R is

2
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that it does not apply compression/pooling in the sequence dimension of Q to accommodate the
token-by-token auto-regressive decoding process (shown in Figure 1b).

Qgate = RoPE
(
Wq

gate reshape(Qnope, [..., g · d])
)
, (1a)

Kgate = RoPE
(
Wk

gate concat[Pmax(Knope),Pmin(Knope),Pavg(Knope)]
)
, (1b)

S = softmax(Qgate Kgate
⊤/

√
dgate). (1c)

where, Pmax, Pmin, and Pavg stand for Max, Min and Average Pooling in sequence dimension, and g
is the group size of GQA setting. d and dgate are the hidden dimension of the original model and
AttnGate for each head, respectively. S is the output score of each block from AttnGate. The detailed
design are discussed as follows.

Aggregation of Query Heads for Shared Sparsity in GQA Group Query Attention (GQA) Ainslie
et al. (2023) is widely used in LLMs to reduce KV cache size. In GQA, the query heads are organized
into groups, and each group shares a key-value head. Recent sparse attention works SAAP Mazaré
et al. (2025b) and NSA Yuan et al. (2025) show that using identical attention sparsity choices for
all queries in a group can improve the efficiency while achieving similar or better performance. In
SeerAttention-R, we follow this practice and use an linear layer in the Q branch of AttnGate to reduce
each subgroup of queries to one single head. For example, with 32 query heads and 8 key-value
heads (group size g = 4), there will be 8 sets of linear weights in shape [dgate, 4× d] applying on
each group of queries heads, resulting only 8 heads of Qgate. Since we keep the number of heads
untouched in K branch of AttnGate, the final output of AttnGate will be key-value heads, achieving a
shared decision of sparsity in a group.

Pooling-based Compression of Key We follow the practice of SeerAttention that uses pooling
operations to compress the sequence dimension of K. The kernel and stride size of pooling are both
equal to block size, which can also be understood as non-overlapping chunk-level pooling. To mitigate
the potential information loss associated with pooling operations, we employ a composition of Max,
Min, and Average pooling operations. The outputs from these pooling operations are concatenated
prior to being fed into the subsequent linear layer, similar to SeerAttention. The intuition behind this
approach is that Max and Min Pooling can effectively capture outlier values, while Average Pooling
helps to keep the overall distribution intact.

Positional Embedding in AttnGate In line with SeerAttention, the decode AttnGate utilizes the
pre-rope Q and K tensors as inputs and reapplies RoPE Su et al. (2024) within AttnGate. Given that
the branch is compressed along the sequence dimension, the position index is assigned to the initial
token of each block. In our experiment, we found that the use of positional embedding in AttnGate
can consistently achieve better accuracy compared to the design without positional embedding.

2.3 DISTILLATION/TRAINING

Previous SeerAttention introduces AttnGate distillation method using the ground truth generate by
LLM itself in the prefilling phase. The training process is efficient as only the AttnGate are trained.
In SeerAttention-R, we extend this method to the decoding scenario by slightly changing the form of
the ground truth. Figure 2 shows the overall diagram of the training process.

Ground Truth To train AttnGate for the auto-regressive decoding process, we need to adapt the
ground truth generation method. Instead of performing 2D maxpooling of attention map in the prefill
case, we only do column-wise 1D maxpooling shown in Figure 2a. This corresponds to the decoding
AttnGate that does not compress in sequence dimension. Moreover, to accommodate the shared
sparsity in GQA, the column-pooled attention map is further maxpooled within each query heads
subgroup, resulting in a ground truth with key-value heads. Finally, the ground truth is normalized to
summation 1. We then use the Kullback-Leibler divergence loss Joyce (2011) to train AttnGate in the
distillation process.
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Input: Q, K, V; Output: O, GT (Maxpool of Attn Map)
for i from 1 to Tr
 Load qi
 for j from 1 to Tc
  Load kj, vj
  Compute sij = dot(qi,kj), rij = rowmax(Sij)
  Store rij
  Update mij = max(mi(j−1), rij), lij and oij 
 Compute final li, mi and Oi

for j from 1 to Tc 
 Load rij
 Rescale gtij = exp(rij  − mi)/li
 Store gtij

Return O, GT

(a) (b)

Figure 2: Training Diagram and Training Kernel of SeerAttention-R. (a) Self-distillation training of
AttnGate in SeerAttention-R. It uses 1D maxpooled attention scores from original model as ground
truth to train AttnGate. Query head reduction is not plotted in the diagram for simplicity. (2) Pseudo
code of attention forward kernel for training that directly generates ground truth and attention output.

Efficiently Obtaining Ground Truth during Training Explicitly calculating the full attention map
softmax(QKT/

√
d) and then perform the block-level pooling can cost huge GPU memory due to the

quadratic complexity. In SeerAttention-R, we also provide an efficient modification of FlashAttention-
2 Dao (2023) kernel that directly generates the ground truth along with the attention output. This
kernel largely reuses the intermediate results (e.g. block-level rowmax) in Flash-Attention and thus
increases the efficiency of the distillation process. The pseudo code is shown in Figure 2b.

3 INFERENCE OF SEERATTENTION-R
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Figure 3: Inference Diagram of SeerAttention-R. During inference, a K Compression Cache is used
to cache the compressed key representation in AttnGate to speedup sparse block prediction. This K
Compression Cache only updates once per block number of tokens is generated (block=4 in the plots
for illustration). As a result, the last block of sequence is always selected to compensate when the
compression cache has not been updated yet. g is the group size of GQA.

3.1 SPARSIFY METHODS: TOKEN BUDGET VS THRESHOLD

During training, the AttnGate output S are distilled to mimic the distribution of the block-wise
attention maps from the original model in real-valued (floating-point) form. During inference,
important key-value blocks can be selectively activated based on the predictions of AttnGate. In
SeerAttention-R, we apply two sparsity methods to convert the soft AttnGate outputs into binary
block masks (or block indices). The first method is the token budget approach, which is widely
adopted in sparse attention methods. Given a fixed token budget, it is first translated into a block
budget by dividing the token budget by the block size. The AttnGate outputs are then sorted using a
Top-k kernel, where k corresponds to the block budget. While this method introduces an additional
Top-k operation, it eliminates the need for a softmax operation in AttnGate. The second method is
the threshold approach, which simply selects blocks whose scores exceed a given threshold. The
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threshold method is more self-adaptive as different heads may automatically infer different sparsity
ratios. While these two methods involve different trade-offs between efficiency and accuracy, the
token budget approach is better suited for direct comparisons with other methods.

3.2 K COMPRESSION CACHE

Similar to KV cache, in SeerAttention-R, we use a K Compression Cache to store the compressed
representation of K (after pooling plus linear) to speedup AttnGate prediction. Thus, AttnGate does
not need to recompute K branch for past seen tokens. The update of K Compression Cache is consist
of two phases. First, when the sequence length is not the multiplies of block size b, the new entry of
K Compression Cache may not be accurate. During this time, the last block is always activated to
eliminate unnecessary accuracy loss. Second, as long as b number of new tokens are generated, the
most recent b tokens will pass through the pooling and linear layer and update the K Compression
Cache. In this way, the overhead of AttnGate can be minimized.

In practice, SeerAttention-R utilizes a relatively large block size b, such as 64, which significantly
reduces the overhead of the K Compression Cache. Specifically when b = 64, the additional memory
required for the K Compression Cache amounts to only 1/128 (<1%) of the original KV cache size.
This minimal overhead makes it highly efficient. Moreover, it introduces the possibility of offloading
the larger KV cache to CPU or other storage. During inference, only the activated blocks need
to be retrieved and transferred back to GPU memory on demand. Alternatively, sparse attention
computations can even be performed on heterogeneous resources, such as the CPU, further optimizing
memory usage and enabling efficient handling of long-context decoding tasks.

3.3 BLOCK SPARSE FLASH DECODING KERNEL

To accelerate decoding under block-sparse attention, we design a specialized kernel that extends the
FlashAttention decoding pattern to support dynamic block sparsity in the key/value memory. Our
kernel adopts the grid scheduling strategy of flash decoding for GQA, using a three-dimensional
launch space over (batch, heads_kv, num_split). This design supports concurrent computation across
multiple query groups and key/value shards, maximizing block-level parallelism.

Our block sparse version of the decoding kernel takes the activated block indices from AttnGate
(shape [batch, heads_kv, max_selected_blocks]), which encodes the selected key/value blocks for each
group of query heads. During execution, the kernel only traverses the selected indices and thus skips
invalid entries, avoiding unnecessary computation and memory access. To improve load/compute
balancing across Streaming Multiprocessors (SMs), we partition the key/value blocks along the
num_split dimension using max_selected_blocks rather than the total number of blocks. This strategy
ensures a more uniform work distribution in the presence of sparsity-induced irregularity.

On H100 GPUs, our kernel leverages the wgmma instructions for better Tensor Core usage by
padding the number of query head groups to 64. We implement the kernel using TileLang til, which
automatically applies computation optimizations like tiling Zhu et al. (2022), warp specialization and
pipelining Cheng et al. (2025), and memory layout optimizations such as tensorization, rasterization
and swizzling Wang et al. (2024) based on the target architecture. Additionally, we provide a
Triton-based implementation with the same scheduling strategy, allowing for comparative evaluation.

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

Benchmarks, Models, and Baselines We evaluate SeerAttention-R on three math reasoning
benchmarks: the American Invitational Mathematics Examination: AIME24, AIME25, and MATH-
500 Hendrycks et al. (2020), as well as GPQA-Diamond Rein et al. (2024). For model evaluation, we
select four open-source pre-trained language models with strong reasoning capabilities: Qwen3-4B,
8B, 14B Yang et al. (2025a), and DeepSeek-R1-Distill-Qwen-14B Guo et al. (2025). All models are
based on the standard Transformer architecture with Grouped Query Attention (GQA). We compare
SeerAttention-R against standard full attention and Quest Tang et al. (2024). Quest is a training-free
sparse attention algorithm applied during decoding, employing a query-aware key-value (KV) cache
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selection strategy. Specifically, Quest estimates the upper bound of attention scores within each KV
block (or “page”) to select the most relevant blocks. By default, Quest uses a block size of 16, and
keeps the first two layers fully dense to minimize error. In Section 4.3, we set the block size to 64 for
both Quest and SeerAttention-R, and apply sparse attention to all layers to enable a direct comparison.
We also conduct ablation studies to analyze the impact of varying block sizes (Appendix A.1) and
incorporating hybrid dense layers (Appendix A.2). Note that SeerAttention-R enables shared sparsity
selection within each GQA group, whereas Quest does not. Across all experiments, we set the max
output length to 32,768 tokens. While Qwen3 series of models extends this length to 38,912 for
AIME24 and AIME25 in their official report, we fix this output length to ensure consistency and
fair comparison across all settings. For SeerAttention-R and the full attention baseline, we report
average pass@1 accuracy over 64 samples for AIME24 and AIME25, 8 samples for MATH-500, and
16 samples for GPQA-Diamond.

Training Setup for SeerAttention-R To distill AttnGate, we use the OpenR1-MATH-220k Face
(2025) dataset for training. Importantly, only the AttnGate is trained, and the original model weights
remain unchanged. Inputs are packed into sequences of up to 32k tokens with our variable-length
Flash-Attention training kernel that also generates ground truth (Section 2.3). Training is performed
with a global batch size of 16 for 800 steps on AMD MI300x GPUs, utilizing DeepSpeed ZeRO-2
optimization. We use AdamW optimizer and a learning rate of 1e-3 with cosine decay schedule.

4.2 ORACLE SPARSE ACCURACY: HOW SPARSE IS ATTENTION IN REASONING MODELS?
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Figure 4: Oracle Sparse Results of Qwen3-14B with block size 32, 64, 128.

In the first experiment, we aim to answer the question: How sparse is attention in reasoning models?
To investigate this, we employ oracle block sparse selection, which utilizes the ground truth in
SeerAttention-R training to select sparse key-value (KV) blocks. While this approach basically means
compute attention twice and does not provide any speedup, it allows us to evaluate the accuracy upper
bound achievable by SeerAttention-R under ideal sparse selection.

We evaluate Qwen3-14B with three different sparse block sizes: 32, 64, and 128. The token budgets
range from 1k to 8k. As shown in Figure 4, using oracle sparsity achieves lossless performance on all
tasks when the token budgets reach 2k. For the more challenging AIME24 and AIME25 tasks, some
accuracy degradation is observed with 1k token budget, particularly with the largest block size (128).
However, this degradation is negligible when using block sizes of 32 or 64. These results indicate
that attention sparsity exists in the reasoning process. Based on this, we select a block size of 64 as
the default for SeerAttention-R.

4.3 RESULTS OF SEERATTENTION-R AND QUEST

Figure 5 shows the results of all the models and benchmarks of Full Attention baseline, SeerAttention-
R and Quest. As mentioned above, we modify the configuration of Quest to be the same as
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Figure 5: Accuracy Results of Full Attention, SeerAttention-R, and Quest. The Quest sparse
configuration is set to be the same as SeerAttention-R for fair comparison, which uses a block size of
64 and sparse attention in all layers.

SeerAttention-R (block size 64 and using sparse attention in all layers). We use token budgets
from 2k, 4k, 6k, and 8k for AIME24 and AIME25, and 1k, 2k, 4k, and 6k for MATH-500 and GPQA-
Diamond. This is mainly because the typical averaged reasoning length from different benchmark is
not the same. For the more challenging AIME24 and AIME25, the averaged generated lengths of
these models are around 11k-18k. While for the easier MATH-500 and GPQA, the averaged lengths
are reduced to 4k-9k. However, it is critical to note that across all combinations, the maximum
generation lengths all reached the 32k token cap, underscoring the consistent demand for efficient
long-context processing.

The results show that SeerAttention-R achieves consistently better performance compared to Quest.
This trend holds true across every benchmark and computational budget, underscoring the robustness
and effectiveness of SeerAttention-R. For the AIME24 benchmark, SeerAttention-R typically achieves
lossless performance with 4k token budget on while the previous oracle sparse only requires 2k. This
is within expectation as SeerAttention-R is only an approximation of ground truth with much less
computation required. However, Quest fails achieve lossless accuracy even using 8k token budgets
under identical setting. For MATH-500 and GPQA-Diamond, the lossless token budgets reduce to 2k
for SeerAttention-R while Quest requires around 8k to approach the full attention baseline.

A key trend observed across the results is the relationship between model scale and tolerance for
sparse attention. Larger models, such as the 14B variants, exhibit greater robustness to the information
loss inherent in sparsity compared to their 4B and 8B counterparts. This phenomenon is particularly
pronounced for Quest, where the accuracy gap at lower budgets shrinks significantly as the model
size increases. For SeerAttention-R, the effect is also present. The 14B models close the final gap
to the dense baseline more easily than smaller models on challenging benchmarks like AIME25.
This indicates that as reasoning models continue to scale, the viability of sparse attention methods
increases.
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In conclusion, the results demonstrate the superiority of SeerAttention-R’s self-distilled approach
over the training-free heuristics of Quest, especially in the challenging large block size configuration.
Previous work Lserve Yang et al. (2025b) also mentions the accuracy degradation of Quest over larger
block sizes. They resolve this challenge by introducing Hierarchical Paging, a system approach that
uses an additional level of block(page) abstraction called virtual logical page, which decouples the
sparsity selection page size and physical page size. With SeerAttention-R, we can possibly simplify
the sparse attention system design by using a larger block size.

4.4 KERNEL SPEEDUP
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Figure 6: Kernel Speedup of our Block Sparse Flash-Decoding Kernel on H100 GPU. Our TileLang
implementation of the kernel achieves higher speedup ratio compared to Triton implementation. For
longer sequence length or larger batch size cases, the speedups approach the theoretical upper bound
compared to FA3 basline.

This section evaluates our customized block sparse flash decoding kernel described in Section 3.3.
We implement the kernel with both TileLang til and Triton and we use FlashAttention-3 (FA3) Shah
et al. (2024) as baseline. The experiments are run on Nvidia H100 GPU with different input sequence
lengths (8k to 128k), batch sizes(1 to 16) and sparsity ratios (0.5 to 0.9). In terms of GQA setting, we
use a setting of 64 attention heads with 8 key-value heads, and head dimension 128.

Figure 6 presents the detailed results. Each subplot corresponds to a specific combination of input
sequence length (seqlen) and batch size (bs), with the x-axis showing different sparsity ratios and the
y-axis indicating speedup. The TileLang implementation consistently outperforms the FA3 baseline
and achieves greater speedup than the Triton implementation. In general, the sparse kernel delivers
higher speedup when the input sequence length is longer or the batch size is larger. This is expected,
as the decoding kernel is primarily I/O-bound. When the KV cache size is sufficient to saturate
the bandwidth, such as when bs=16 and seqlen ≥ 32k, our sparse kernel achieves near-theoretical
speedup (up to 9× at 0.9 sparsity). Even for moderate KV cache sizes, e.g. bs=4 and seqlen=32k, the
kernel demonstrates significant speedup (up to 6× at 0.9 sparsity).
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5 RELATED WORKS

5.1 TRAINING-FREE VS. TRAINING-BASED SPARSE ATTENTION

Sparse attention research generally follows two directions: training-free (pre-defined or heuristic) and
training-based methods. Training-free approaches adopt static patterns Xiao et al. (2023); Fu et al.
(2024); Xiao et al. (2024b) or heuristic-based algorithms Zhang et al. (2023); Tang et al. (2024); Jiang
et al. (2024); Yang et al. (2025b); Lai et al. (2025); Chen et al. (2024b); Liu et al. (2024c); Li et al.
(2024a); Yang et al. (2024a); Hu et al. (2025); Zhang et al. (2025); Xu et al. (2025); Chen et al. (2025),
relying on prior knowledge such as fixed patterns or head characteristics. In contrast, training-based
methods integrate sparse attention into models to reduce complexity with minimal accuracy loss.
Early work explored local/global/block patterns Child et al. (2019); Beltagy et al. (2020); Zaheer et al.
(2020), while recent methods like NSA Yuan et al. (2025), MoBA Lu et al. (2025), ACP Lin et al.
(2025b), MiniCPM4 Team (2025) train dynamic sparse modules during pre-training. SeerAttention
offers a middle ground, learning sparsity post-training without modifying model weights.

5.2 KV CACHE COMPRESSION

KV cache optimization is key for efficient inference, as smaller caches reduce bandwidth and memory
costs. Eviction-based methods Ge et al. (2023); Li et al. (2024b); Zeng et al. (2024); Zhang et al.
(2023); Liu et al. (2023); Adnan et al. (2024); Chen et al. (2024a); Behnam et al. (2025) permanently
remove tokens, risking accuracy loss. Alternatively, dynamic selection methods Tang et al. (2024);
Zhang et al. (2024); Hooper et al. (2024); Chen et al. (2025); Liu et al. (2024c); Hu et al. (2025); Cai
et al. (2025); Hao et al. (2025); Mazaré et al. (2025a) retain all tokens but select subsets at each step.

5.3 OTHER EFFICIENT ATTENTION ALGORITHMS

Beyond sparsity, efficient variants of multi-head attention include GQA Ainslie et al. (2023),
MQA Shazeer (2019), latent-based designs Liu et al. (2024a); Zadouri et al. (2025), and cross-
layer sharing approaches like YOCO Sun et al. (2024) and CLA Brandon et al. (2024). Linear
attention Katharopoulos et al. (2020); Sun et al. (2023); Beck et al. (2024); Yang et al. (2024b);
Gu and Dao (2023); Dao and Gu (2024); Peng et al. (2023); Yang et al. (2023) enables parallel
training and constant inference memory, though it struggles in long-context reasoning. Hybrid models
combining linear and full attention show stronger performance Dong et al. (2024); Li et al. (2025).

6 CONCLUSION AND DISCUSSION

This paper introduces SeerAttention-R, a lightweight sparse attention framework that accelerates
long decoding in reasoning models. As a plug-in gating module, it integrates into pretrained models
without altering original parameters and requires only lightweight training. Despite coarse-grained
block sizes, SeerAttention-R preserves near-lossless reasoning accuracy, while its TileLang kernel
achieves near-theoretical speedup at high sparsity ratios.

Several challenges remain. Achieving full end-to-end speedup will require integration with inference
frameworks (e.g., vllm Kwon et al. (2023), sglang Zheng et al. (2024)) and compatibility with
PagedAttention, possibly combined with KV cache offloading Xiao et al. (2024a); Liu et al. (2024c);
Chen et al. (2024b); Hao et al. (2025). Another open problem is adaptive sparsity, as the trade-
off between accuracy and efficiency varies by task and sequence length. Top-p based sparsity
selection Lin et al. (2025a); Chen et al. (2024b) offers one promising direction. Finally, unifying
sparse prefill and decoding remains challenging: prefill benefits from parallelism while decoding
does not. Approaches such as multi-token prediction Gloeckle et al. (2024); Liu et al. (2024b) or
speculative decoding Leviathan et al. (2023) may help align them under a single gating mechanism.

In summary, SeerAttention-R shows that post-training sparse attention can deliver efficiency with
minimal accuracy loss, while future work lies in adaptive sparsity, unified prefill/decoding, and
system-level integration.
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A APPENDIX

A.1 BLOCK SIZE FOR SPARSE ATTENTION
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Figure 7: AIME24 results using different block sizes with 4k token budget. SeerAttention-R achieves
almost consistent performances on different block sizes. However, Quest gets lower accuracy when
block size gets larger. Note that in this experiment, SeerAttention-R enables shared sparsity selection
within each GQA group, whereas Quest does not.

The token block size for sparse attention is a critical factor that affects overall system performance.
If the block size is too small, it incurs significant overhead in sparse block prediction, including
increased computational cost and larger metadata requirements such as compression caches and block
indices. While a larger block size can also potentially improve the utilization of GPUs.

Figure 7 presents AIME24 results on the Qwen3-4B and Qwen3-8B models across block sizes
ranging from 16 to 128. By default, Quest uses a block size of 16. The results indicate that Quest’s
performance decreases as the block size increases. However, SeerAttention-R achieves consistent
accurate sparse block selection at different block sizes. Remarkably, this robustness lies under the
assumption of the additional mask sharing in the GQA group dimension. We excluded a block size of
16 from our experiments due to its inefficiency during both training and inference. It often leads to
out-of-memory errors because of the large intermediate attention maps generated during training.

A.2 HYBRID DENSE ATTENTION IN THE FIRST TWO LAYERS
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Figure 8: AIME24 results of whether using dense attention in first two layers (Qwen3-4B).

Some post-training sparse attention algorithms employ hybrid dense attention in certain layers to
mitigate accuracy loss. By default, Quest applies dense attention in its first two layers. However, for
a fair comparison, we evaluate both Quest and SeerAttention-R using purely sparse attention across
all layers in previous evaluation. This approach allows us to isolate and analyze the effects of sparse
attention without the confounding influence of hybrid attention.
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To further investigate the impact of hybrid dense attention, we conduct an ablation study using
the Qwen3-4B model on the AIME24 benchmark with a block size of 64. As shown in Figure 8,
incorporating hybrid dense attention in Quest yields a significant improvement in accuracy, whereas
SeerAttention-R only sees marginal benefits. This difference may be due to the already accurate sparse
prediction by SeerAttention-R in the first two layers, reducing the potential gains from hybridization.

A.3 THRESHOLD VS TOKEN BUDGETS
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Figure 9: Threshold vs. Token Budget. Results are obtained using Qwen3-4B models on AIME24
benchmark. (a) Difference of activated tokens distribution of two methods. (b) Sparsity vs Accuracy
tradeoff of two methods. Thresholds: 2e-3, 3e-3, 4e-3, 5e-3, 6e-3. Token Budget: 8k, 6k, 4k, 2k.

In SeerAttention-R, we employ two AttnGate sparsification strategies, threshold and token budget, to
convert real-valued gate scores into discrete block selections. The token budget method offers an
straightforward way to align sparsity and compare with different methods. However, the threshold
method is extremely simple to implement and avoids the need of sorting. Figure 9a illustrates the
distribution of activated tokens across varying sequence lengths using a threshold of 4e-3 and a token
budget of 4K on the AIME24 benchmark with Qwen3-4B model. The token budget approach results
in a strict piecewise linear activation pattern, whereas the threshold method yields a smoother, curved
distribution. Figure 9b compares the sparsity–accuracy trade-offs of the two methods. The threshold
method shows slightly better accuracy in high sparsity region.

A.4 IMPACT OF SPARSE ATTENTION ON GENERATE LENGTH

Table 1: Qwen3-8B AIME24 Accuracy vs. Reasoning Length.

Token Budgets
2k 4k 6k 8k

Quest Accuracy 13.3 44.2 52.5 59.6
Gen. Length(k) 30.0 22.9 19.6 17.2

SeerAttention-R Accuracy 56.6 72.3 74.2 75.1
Gen. Length(k) 19.8 16.3 15.3 15.1

We observed that using inaccurate sparse attention (too small budget or low recall) can increase
output token lengths in reasoning tasks. Table 1 shows the AIME accuracy and reasoning length
using Qwen3-8B model. The baseline accuracy of full attention and the generated length are 74.5
and 15.1 k, respectively. We can see that Quest, and SeerAttention-R with 2k budget cases, all incur
much longer reasoning paths compared to full attention. A similar phenomenon has been reported
in quantization Liu et al. (2025), where inaccurate quantization algorithms lead to longer reasoning
paths. We believe this effect is universal across different post-training efficiency optimizations of
reasoning model, as such methods can introduce errors that accumulate over the long reasoning chains.
These additional reasoning steps potentially undermine the original goal of improving efficiency.
Therefore, an accurate sparse attention selection algorithm is crucial to mitigate this effect. Another
promising approach to eliminate the accumulated errors is to use Rectified Sparse Attention Sun et al.
(2025), which periodically performs dense rectification of the KV cache.
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A.5 TRAINING BUDGET

Table 2: Training Budgets

Training Tokens GPU Hours

0.4B Qwen3-4B Qwen3-8B Qwen3-14B
10.9 12.2 18.6

As a lightweight distillation process where only the AttnGate parameters are trained, SeerAttention-R
is also highly efficient in terms of training. In our experiments, we set the global batch size to 16 and
trained for just 800 steps, utilizing DeepSpeed Stage 2 optimization on MI300x GPUs. Each data
batch is packed to a sequence length of 32k with our custom variable-length FlashAttention forward
kernel, as described in Section 2.3. Table 2 summarizes the GPU hours required for training models
of various sizes. Notably, distilling an 8B model requires only 12 GPU hours, demonstrating the
efficiency of our approach. Increasing the quantity, quality, and diversity of training data may lead to
further improvements.
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