
Privacy-Preserving CNN Training with Transfer
Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Privacy-preserving nerual network inference has been well studied while homo-1

morphic CNN training still remains an open challenging task. In this paper, we2

present a practical solution to implement privacy-preserving CNN training based3

on mere Homomorphic Encryption (HE) technique. To our best knowledge, this4

is the first attempt successfully to crack this nut and no work ever before has5

achieved this goal. Several techniques combine to accomplish the task:: (1) with6

transfer learning, privacy-preserving CNN training can be reduced to homomor-7

phic neural network training, or even multiclass logistic regression (MLR) train-8

ing; (2) via a faster gradient variant called Quadratic Gradient, an enhanced9

gradient method for MLR with a state-of-the-art performance in convergence10

speed is applied in this work to achieve high performance; (3) we employ the11

thought of transformation in mathematics to transform approximating Softmax12

function in the encryption domain to the approximation of the Sigmoid function.13

A new type of loss function termed Squared Likelihood Error has been de-14

veloped alongside to align with this change.; and (4) we use a simple but flexible15

matrix-encoding method named Volley Revolver to manage the data flow in16

the ciphertexts, which is the key factor to complete the whole homomorphic CNN17

training. The complete, runnable C++ code to implement our work can be found18

at: https://anonymous.4open.science/r/HE-CNNtraining-B355/.19

We select REGNET_X_400MF as our pre-trained model for transfer learning. We20

use the first 128 MNIST training images as training data and the whole MNIST21

testing dataset as the testing data. The client only needs to upload 6 ciphertexts to22

the cloud and it takes ∼ 21 mins to perform 2 iterations on a cloud with 64 vCPUs,23

resulting in a precision of 21.49%.24

1 Introduction25

1.1 Background26

Applying machine learning to problems involving sensitive data requires not only accurate predictions27

but also careful attention to model training. Legal and ethical requirements might limit the use of28

machine learning solutions based on a cloud service for such tasks. As a particular encryption scheme,29

homomorphic encryption provides the ultimate security for these machine learning applications and30

ensures that the data remains confidential since the cloud does not need private keys to decrypt it.31

However, it is a big challenge to train the machine learning model, such as neural networks or even32

convolution neural networks, in such encrypted domains. Nonetheless, we will demonstrate that33

cloud services are capable of applying neural networks over the encrypted data to make encrypted34

training, and also return them in encrypted form.35

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

https://anonymous.4open.science/r/HE-CNNtraining-B355/

1.2 Related work36

Several studies on machine learning solutions are based on homomorphic encryption in the cloud37

environment. Since Gilad-Bachrach et al. [1] firstly considered privacy-preserving deep learning38

prediction models and proposed the private evaluation protocol CryptoNets for CNN, many other39

approaches [2, 3, 4, 5] for privacy-preserving deep learning prediction based on HE or its combination40

with other techniques have been developed. Also, there are several studies [6, 7, 8, 9] working on41

logistic regression models based on homomorphic encryption.42

However, to our best knowledge, no work ever before based on mere HE techique has presented an43

solution to successfully perform homomorphic CNN training.44

1.3 Contributions45

Our specific contributions in this paper are as follows:46

1. with various techniques, we initiate to propose a practical solution for privacy-preserving47

CNN training, demonstrating the feasibility of homomorphic CNN training.48

2. We suggest a new type of loss function, Squared Likelihood Error (SLE), which is49

friendly to pervacy-perserving manner. As a result, we can use the Sigmoid function to50

replace the Softmax function which is too diffuclt to calculate in the encryption domain due51

to its uncertainty.52

3. We develop a new algorithm with SLE loss function for MLR using quadratic gradient.53

Experiments show that this HE-friendly algorithm has a state-of-the-art performance in54

convergence speed.55

2 Preliminaries56

We adopt “⊗” to denote the kronecker product and “�” to denote the component-wise multiplication57

between matrices.58

2.1 Fully Homomorphic Encryption59

Homomorphic Encryption (HE) is one type of encryption scheme with a special characteristic called60

Homomorphic, which allows to compute on encrypted data without having access to the secret key.61

Fully HE means that the scheme is fully homomorphic, namely, homomorphic with regards to both62

addition and multiplication, and that it allows arbitrary computation on encrypted data. Since Gentry63

proposed the first fully HE scheme [10] in 2009, some technological progress on HE has been made.64

For example, Brakerski, Gentry and Vaikuntanathan [11] present a novel way of constructing leveled65

fully homomorphic encryption schemes (BGV) and Smart and Vercauteren [12] introduced one of the66

most important features of HE systems, a packing technique based on polynomial-CRT called Single67

Instruction Multiple Data (aka SIMD) to encrypt multiple values into a single ciphertext. Another68

great progress in terms of machine learning applications is the rescaling procedure [13], which can69

manage the magnitude of plaintext effectively.70

Modern fully HE schemes, such as HEAAN, usually support seveal common homomorphic opera-71

tions: the encryption algorithm Enc encrypting a vector, the decryption algorithm Dec decrypting72

a ciphertext, the homomorphic addition Add and multiplication Mult between two ciphertexts, the73

multiplication cMult of a contant vector with a ciphertext, the rescaling operation ReScale to reduce74

the magnitude of a plaintext to an appropriate level, the rotation operation Rot generating a new75

ciphertext encrypting the shifted plaintext vector, and the bootstrapping operation bootstrap to76

refresh a ciphertext usually with a small ciphertext modulus.77

2.2 Database Encoding Method78

For a given database Z, Kim et al. [6] first developed an efficient database encoding method, in order79

to make full use of the HE computation and storage resources. They first expand the matrix database80

to a vector form V in a row-by-row manner and then encrypt this vector V to obtain a ciphertext81

Z = Enc(V). Also, based on this database encoding, they mentioned two simple operations via82

2

shifting the encrypted vector by two different positions, respectively: the complete row shifting83

and the incomplete column shifting. These two operations performing on the matrix Z output the84

matrices Z
′

and Z
′′

, as follows:85

Z =


x10 x11 . . . x1d

x20 x21 . . . x2d

...
...

. . .
...

xn0 xn1 . . . xnd

 , Z
′

= Enc


x20 x21 . . . x2d

...
...

. . .
...

xn0 xn1 . . . xnd
x10 x11 . . . x1d

 ,

Z
′′

= Enc


x11 . . . x1d x20

x21 . . . x2d x30

...
...

. . .
...

xn1 . . . xnd x10

 , Z
′′′

= Enc


x11 . . . x1d x10

x21 . . . x2d x20

...
...

. . .
...

xn1 . . . xnd xn0

 .
The complete column shifting to obtain the matrix Z

′′′
can also be achieved by two Rot, two cMult,86

and an Add.87

Other works [14, 4] using the same encoding method also developed some other procedures, such88

as SumRowVec and SumColVec to calculate the summation of each row and column, respectively.89

Such basic common and simple operations consisting of a series of HE operations are significantly90

important for more complex calculations such as the homomorphic evaluation of gradient.91

2.3 Convolutional Neural Network92

Inspired by biological processes, Convolutional Neural Networks (CNN) are a type of artificial neural93

network most commonly used to analyze visual images. CNNs play a significant role in image94

recognition due to their powerful performance. It is also worth mentioning that the CNN model is95

one of a few deep learning models built with reference to the visual organization of the human brain.96

2.3.1 Transfer Learning97

Transfer learning in machine learning is a class of methods in which a pretrained model can be used98

as an optimization for a new model on a related task, allowing rapid progress in modeling the new99

task. In real-world applications, very few researchers train entire convolutional neural networks100

from scratch for image processing-related tasks. Instead, it is common to use a well-trained CNN101

as a fixed feature extractor for the task of interest. In our case, we freeze all the weights of the102

selected pre-trained CNN except that of the final fully-connected layer. We then replace the last103

fully-connected layer with a new layer with random weights (such as zeros) and only train this layer.104

REGNET_X_400MF To use transfer learning in our privacy-preserving CNN training, we adopt105

a new network design paradigm called RegNet, recently introduced by Facebook AI researchers,106

as our pre-trained model. RegNet is a low-dimensional design space consisting of simple, regular107

networks. In particular, we apply REGNET_X_400MF as a fixed feature extractor and replaced the final108

fully connected layer with a new one of zero weights. CNN training in this case can be simplified109

to multiclass logistic regression training. Since REGNET_X_400MF only receive color images of size110

224×224, the grayscale images will be stacked threefold and images of different sizes will be resized111

to the same size in advance. These two transformations can be done by using PyTorch.112

2.3.2 Datasets113

We adopt three common datasets in our experiments: MNIST, USPS, and CIFAR10. Table 1 describes114

the three datasets.115

3 Technical details116

3.1 Multiclass Logistic Regression117

Multiclass Logistic Regression, or Multinomial Logistic Regression, can be seen as an extension of118

logistic regression for multi-class classification problems. Supposing that the matrix X ∈ Rn×(1+d),119

3

Table 1: Characteristics of the several datasets used in our experiments

Dataset No. Samples
(training)

No. Samples
(testing) No. Features No. Classes

USPS 7,291 2,007 16×16 10
MNIST 60,000 10,000 28×28 10

CIFAR-10 50,000 10,000 3×32×32 10

the column vector Y ∈ Nn×1, the matrix Ȳ ∈ Rn×c, and the matrix W ∈ Rc×(1+d) represent120

the dataset, class labels, the one-hot encoding of the class labels, and the MLR model parameter,121

respectively:122

X =


x1

x2

...
xn

 =


x[1][0] x[1][1] · · · x[1][d]

x[2][0] x[2][1] · · · x[2][d]

...
...

. . .
...

x[n][0] x[n][1] · · · x[n][d]

 ,

Y =


y1

y2

...
yn

 one-hot encoding7−−−−−−−−−→ Ȳ =


ȳ1
ȳ2
...

ȳn

 =


y[1][1] y[1][2] · · · y[1][c−1]

y[2][1] y[2][2] · · · y[2][c−1]

...
...

. . .
...

y[n][1] y[n][2] · · · y[n][c−1]

 ,

W =


w[0]

w[1]

...
w[c−1]

 =


w[0][0] w[0][1] · · · w[0][d]

w[1][0] w[1][1] · · · w[1][d]

...
...

. . .
...

w[c−1][0] w[c−1][1] · · · w[c−1][d]

 .
MLR aims to maxsize L or lnL:

L =

n∏
i=1

exp(xi · wᵀ
[yi]

)∑c−1
k=0 exp(xi · wᵀ

[k])
7−−→ lnL =

n∑
i=1

[xi · wᵀ
[yi]
− ln

c−1∑
k=0

exp(xi · wᵀ
[k])].

The loss function lnL is a multivariate function of [(1 + c)(1 + d)] variables, which has its column-123

vector gradient∇ of size [(1 + c)(1 + d)] and Hessian square matrix∇2 of order [(1 + c)(1 + d)] as124

follows:125

∇ =
∂ lnL

∂π
=

[∂ lnL

∂w[0]
,
∂ lnL

∂w[1]
, . . . ,

∂ lnL

∂w[c−1]

]ᵀ
,

∇2 =


∂2 lnL

∂w[0]∂w[0]

∂2 lnL
∂w[0]∂w[1]

· · · ∂2 lnL
∂w[0]∂w[c−1]

∂2 lnL
∂w[1]∂w[0]

∂2 lnL
∂w[1]∂w[1]

· · · ∂2 lnL
∂w[1]∂w[c−1]

...
...

. . .
...

∂2 lnL
∂w[c−1]∂w[0]

∂2 lnL
∂w[c−1]∂w[1]

· · · ∂2 lnL
∂w[c−1]∂w[c−1]

 .

Nesterov’s Accelerated Gradient With ∇ or∇2, first-order gradient algorithms or second-order126

Newton–Raphson method are commonly applied in MLE to maxmise lnL. In particular, Nesterov’s127

Accelerated Gradient (NAG) is a practical solution for homomorphic MLR without frequent inversion128

operations. It seems plausible that the NAG method is probably the best choice for privacy-preserving129

model training.130

3.2 Chiang’s Quadratic Gradient131

Chiang's Quadratic Gradient (CQG) [15, 16, 9] is a faster, promising gradient variant that can132

combine the first-order gradient descent/ascent algorithms and the second-order Newton–Raphson133

method, accelerating the raw Newton–Raphson method with various gradient algorithms and probably134

4

helpful to build super-quadratic algorithms. For a function F (x) with its gradient g and Hessian135

matrix H , to build CQG, we first construct a diagonal matrix B̄ from the Hessian H itself:136

B̄ =


1

ε+
∑d

i=0 |h̄0i|
0 . . . 0

0 1
ε+

∑d
i=0 |h̄1i|

. . . 0

...
...

. . .
...

0 0 . . . 1
ε+

∑d
i=0 |h̄di|

 ,
where h̄ji is the elements of the matrix H and ε is a small constant positive number.137

CQG for the function F (x), defined as G = B̄ · g, has the same dimension as the raw gradient g. To138

apply CQG in practice, we can use it in the same way as the first-order gradient algorithms, except139

that we need to replace the naive gradient with the quadratic gradient and adopt a new learning rate140

(usually by increasing 1 to the original learning rate).141

For efficiency in applying CQG, a good bound matrix should be attempted to obtain in order to142

replace the Hessian itself. Chiang has proposed the enhanced NAG method via CQG for MLR with a143

fixed Hessian [17, 7, 18] substitute built from 1
2X

ᵀX .144

3.3 Approximating Softmax Function145

It might be impractical to perfectly approximate Softmax function in the privacy-preserving domain146

due to its uncertainty. To address this issue, we employ the thought of transformation from mathemat-147

ics: transforming one tough problem into another easier one. That is, instead of trying to approximate148

the Softmax function, we attempt to approximate the Sigmoid function in the encryption domain,149

which has been well-studied by several works using the least-square method.150

In line with standard practice of the log-likelihood loss function involving the Softmax function, we
should try to maximize the new loss function

L1 =

n∏
i=1

1

1 + exp(−xi · wᵀ
[yi]

)
.

We can prove that lnL1 is concave and deduce that 1
4E ⊗XᵀX can be used to build the CQG for151

lnL1. However, the performance of this loss function lnL1 is not ideal, probably because for the152

individual example its gradient and Hessian contain no information about any other class weights not153

related to this example.154

Squared Likelihood Error After many attempts to finding a proper loss function, we develop
a novel loss function that can have a competitive performance to the log-likelihood loss function,
which we term Squared Likelihood Error (SLE):

L2 =

n∏
i=1

c−1∏
j=0

(ȳi − Sigmoid(xi · wᵀ
[yi]

)2 7−−→ lnL2 =

n∑
i=1

c−1∑
j=0

ln |ȳi − Sigmoid(xi · wᵀ
[yi]

)|.

We can also prove that lnL2 is concave and that 1
4E ⊗XᵀX can be used to build the CQG for lnL2.155

The loss function SLE might be related to Mean Squared Error (MSE): the MSE loss function sums156

all the squared errors while SLE calculates the cumulative product of all the squared likelihood errors.157

Combining together all the techniques above, we now have the enhanced NAG method with the SLE158

loss function for MLR training, described in detail in Algorithm 1.159

Performance Evaluation We test the convergence speed of the raw NAG method with log-160

likelihood loss function (denoted as RawNAG), the NAG method with SLE loss function (denoted161

as SigmoidNAG), and the enhanced NAG method via CQG with SLE loss function (denoted as162

SigmoidNAGQG) on the three datasets described above: USPS, MNIST, and CIFAR10. Since two163

different types of loss functions are used in these three methods, the loss function directly measuring164

the performance of various methods will not be selected as the indicator. Instead, we select precision165

as the only indicator in the following Python experiments. Note that we use REGNET_X_400MF to in166

5

Algorithm 1 The Enhanced NAG method with the SLE loss function for MLR Training

Input: training dataset X ∈ Rn×(1+d); one-hot encoding training label Y ∈ Rn×c; and the number
κ of iterations;

Output: the parameter matrix V ∈ Rc×(1+d) of the MLR
1: Set H̄ ← − 1

4X
ᵀX . H̄ ∈ R(1+d)×(1+d)

2: Set V ← 0, W ← 0, B̄ ← 0 . V ∈ Rc×(1+d), W ∈ Rc×(1+d), B̄ ∈ Rc×(1+d)

3: for j := 0 to d do
4: B̄[0][j]← ε . ε is a small positive constant such as 1e− 10
5: for i := 0 to d do
6: B̄[0][j]← B̄[0][j] + |H̄[i][j]|
7: end for
8: for i := 1 to c− 1 do
9: B̄[i][j]← B̄[0][j]

10: end for
11: for i := 0 to c− 1 do
12: B̄[i][j]← 1.0/B̄[i][j]
13: end for
14: end for
15: Set α0 ← 0.01, α1 ← 0.5× (1 +

√
1 + 4× α2

0)
16: for count := 1 to κ do
17: Set Z ← X × V ᵀ . Z ∈ Rn×c and V ᵀ means the transpose of matrix V
18: for i := 1 to n do . Z is going to store the inputs to the Sigmoid function
19: for j := 0 to d do
20: Z[i][j]← 1/(1 + e−Z[i][j])
21: end for
22: end for
23: Set g ← (Y − Z)ᵀ ×X . g ∈ Rc×(1+d)

24: Set G← 0
25: for i := 0 to c− 1 do
26: for j := 0 to d do
27: G[i][j]← B̄[i][j]× g[i][j]
28: end for
29: end for
30: Set η ← (1− α0)/α1, γ ← 1/(n× count) . n is the size of training data
31: wtemp ←W + (1 + γ)×G
32: W ← (1− η)× wtemp + η × V
33: V ← wtemp

34: α0 ← α1, α1 ← 0.5× (1 +
√

1 + 4× α2
0)

35: end for
36: return W

advance extract the features of USPS, MNIST, and CIFAR10, resulting in a new same-size dataset167

with 401 features of each example. Figure 1 shows that our enhanced methods all converge faster168

than other algorithms on the three datasets.169

3.4 Double Volley Revolver170

Unlike those efficient, complex encoding methods [3], Volley Revolver is a simple, flexible171

matrix-encoding method specialized for privacy-preserving machine-learning applications, whose172

basic idea in a simple version is to encrypt the transpose of the second matrix for two matrices to173

perform multiplication. Figure 2 describes a simple case for the algorithm adopted in this encoding174

method.175

The encoding method actually plays a significant role in implementing privacy-preserving CNN176

training. Just as Chiang mentioned in [4], we show that Volley Revolver can indeed be used to177

implement homomorphic CNN training. This simple encoding method can help to control and178

manage the data flow through ciphertexts.179

6

0 100 200 300

0.5

1

Iteration Number

RawNAG
SigmoidNAG
SigmoidNAGQG

(a) USPS Training

0 100 200 300
0

0.2

0.4

0.6

0.8

1

Iteration Number

RawNAG
SigmoidNAG
SigmoidNAGQG

(b) USPS Testing

0 100 200 300

0.2

0.4

0.6

0.8

1

Iteration Number

RawNAG
SigmoidNAG
SigmoidNAGQG

(c) MNIST Training

0 100 200 300

0.2

0.4

0.6

0.8

1

Iteration Number

RawNAG
SigmoidNAG
SigmoidNAGQG

(d) MNIST Testing

0 100 200 300

0.2

0.4

0.6

0.8

Iteration Number

RawNAG
SigmoidNAG
SigmoidNAGQG

(e) CIFAR10 Training

0 100 200 300

0.2

0.4

0.6

0.8

Iteration Number

RawNAG
SigmoidNAG
SigmoidNAGQG

(f) CIFAR10 Testing

Figure 1: Training and Testing precision results for raw NAG vs. NAG with SLE vs. The enhanced
NAG with SLE

7

·

a0 a1 b0 b2

a2 a3 b1 b3

a4 a5 b0 b2

a6 a7 b1 b3

×

a0 a1

a2 a3 b0 b1

a4 a5 b2 b3

a6 a7

0 0

0 0

0 0

0 0

·

a0 a1 b0 b2

a2 a3 b1 b3

a4 a5 b0 b2

a6 a7 b1 b3

c0 = a0 · b0 + a1 · b2 c3 = a2 · b1 + a3 · b3

c0 c0

c3 c3

c4 c4

c7 c7

c4 = a4 · b0 + a5 · b2 c7 = a6 · b1 + a7 · b3

c0 0

0 c3

c4 0

0 c7

·

a0 a1 b1 b3

a2 a3 b0 b2

a4 a5 b1 b3

a6 a7 b0 b2

c1 = a0 · b1 + a1 · b3 c2 = a2 · b0 + a3 · b2

c1 c1

c2 c2

c5 c5

c6 c6

c5 = a4 · b1 + a5 · b3 c6 = a6 · b0 + a7 · b2

0 c1

c2 0

0 c5

c6 0

Encrypt

Encoding

R
o
t
(0)

R
o
t(2)

SumColVec(·) Clean up the

redundant values

SumColVec(·) Clean up the

redundant values

⊕
⊕

Figure 2: The matrix multiplication algorithm of Volley Revolver for the 4× 2 matrix A and the
matrix B of size 2× 2

However, we don’t need to stick to encrypting the transpose of the second matrix. Instead, either of180

the two matrices is transposed would do the trick: we could also encrypt the transpose of the first181

matrix, and the corresponding multiplication algorithm due to this change is similar to the Algorithm182

2 from [4].183

Also, if each of the two matrices are too large to be encrypted into a single ciphertext, we could also184

encrypt the two matrices into two teams A and B of multiple ciphertexts. In this case, we can see this185

encoding method as Double Volley Revolver, which has two loops: the outside loop deals with186

the calculations between ciphertexts from two teams while the inside loop literally calculates two187

sub-matrices encrypted by two ciphertexts A[i] and B[j] using the raw algorithm of Volley Revolver.188

4 Privacy-preserving CNN Training189

4.1 Polynomial Approximation190

Although Algorithm 1 enables us to avoid computing the Softmax function in the encryption domain,191

we still need to calculate the Sigmoid function using HE technique. This problem has been well192

studied by several works and we adopt a simple one [19], that is (1) we first use the least-square method193

to perfectly approximate the sigmoid function over the range [−8,+8], obtaining a polynomial Z11194

of degree 11; and (2) we use a polynomial Z3 of degree 3 to approximate the Sigmoid by minimizing195

the cost function F including the squared gradient difference:196

F = λ0 ·
∫ +8

−8

(Z11 − Z3)2dx+ λ1 ·
∫ +8

−8

(Z
′

11 − Z
′

3)2dx,

where λ0 and λ1 are two positive float numbers to control the shape of the polynomial to approximate.197

Setting λ0 = 128 and λ1 = 1 would result in the polynomial we used in our privacy-preserving CNN198

training:Z3 = 0.5 + 0.106795345032 · x− 0.000385032598 · x3.199

8

4.2 Homomorphic Evaluation200

Before the homomorphic CNN training starts, the client needs to encrypt the dataset X , the data201

labels Ȳ , the matrix B̄ and the weight W into ciphertexts Enc(X), Enc(Ȳ), Enc(B̄) and Enc(W),202

respectively, and upload them to the cloud. For simplicity in presentation, we can just regard203

the whole pipeline of homomorphic evaluation of Algorithm 1 as updating the weight ciphertext:204

W = W + B̄ � (Ȳ − Z3(X ×W ᵀ))ᵀ ×X , regardless of the subtle control of the enhanced NAG205

method with the SLE loss function.206

Since Volley Revolver only needs one of the two matrices to be transposed ahead before en-207

cryption and (Ȳ − Z3(X × W ᵀ))ᵀ × X happened to suffice this situation between any matrix208

multiplication, we can complete the homomorphic evaluation of CQG for MLR.209

5 Experiments210

The C++ source code to implement the experiments in this section is openly available at:211

https://anonymous.4open.science/r/HE-CNNtraining-B355/ .212

Implementation We implement the enhanced NAG with the SLE loss function based on HE with213

the library HEAAN. All the experiments on the ciphertexts were conducted on a public cloud with 64214

vCPUs and 192 GB RAM.215

We adopt the first 128 MNIST training images as the training data and the whole test dataset as the216

testing data. Both the training images and testing images have been processed in advance with the217

pre-trained model REGNET_X_400MF, resulting in a new dataset with each example of size 401.218

5.1 Parameters219

The parameters of HEAAN we selected are: logN = 16, logQ = 990, logp = 45, slots = 32768,220

which ensure the security level λ = 128. Refer [6] for the details of these parameters. We didn’t221

use bootstrapping to refresh the weight ciphertexts and thus it can only perform 2 iterations of our222

algorithm. Each iteration takes ∼ 11mins. The maximum runtime memory in this case is ∼ 18 GB.223

The 128 MNIST training images are encrypted into 2 ciphertexts. The client who own the private data224

has to upload these two ciphertexts, two ciphertexts encrypting the one-hot labels Ȳ , one ciphertext225

encrypting the B̄ and one ciphertext encrypting the weight W to the cloud. The inticial weight matrix226

W0 we adopted is the zero matrix. The resulting MLR model after 2-iteration training has reached a227

pricision of 21.49% and obtain the loss of −147206, which are consistent with the Python simulation228

experiment.229

6 Conclusion230

In this work, we initiated to implement privacy-persevering CNN training based on mere HE tech-231

niques by presenting a faster HE-friendly algorithm.232

The HE operation bootstrapping could be adopted to refresh the weight ciphertexts. Python exper-233

iments imitating the privacy-preserving CNN training using Z3 as Sigmoid substitution showed234

that using a large amount of data such as 8,192 images to train the MLE model for hundreds of235

iterations would finally reach 95% precision. The real experiments over ciphertexts conducted on a236

high-performance cloud with many vCPUs would take weeks to complete this test, if not months.237

References238

[1] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John239

Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput and240

accuracy. In International conference on machine learning, pages 201–210. PMLR, 2016.241

[2] Hervé Chabanne, Amaury De Wargny, Jonathan Milgram, Constance Morel, and Emmanuel242

Prouff. Privacy-preserving classification on deep neural network. Cryptology ePrint Archive,243

2017.244

9

https://anonymous.4open.science/r/HE-CNNtraining-B355/

[3] Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yongsoo Song. Secure outsourced matrix245

computation and application to neural networks. In Proceedings of the 2018 ACM SIGSAC246

Conference on Computer and Communications Security, pages 1209–1222, 2018.247

[4] John Chiang. A novel matrix-encoding method for privacy-preserving neural networks (infer-248

ence). arXiv preprint arXiv:2201.12577, 2022.249

[5] Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. Fast homomorphic250

evaluation of deep discretized neural networks. In Advances in Cryptology–CRYPTO 2018:251

38th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19–23,252

2018, Proceedings, Part III 38, pages 483–512. Springer, 2018.253

[6] Andrey Kim, Yongsoo Song, Miran Kim, Keewoo Lee, and Jung Hee Cheon. Logistic regression254

model training based on the approximate homomorphic encryption. BMC medical genomics,255

11(4):83, 2018.256

[7] Charlotte Bonte and Frederik Vercauteren. Privacy-preserving logistic regression training. BMC257

medical genomics, 11(4):86, 2018.258

[8] Miran Kim, Yongsoo Song, Shuang Wang, Yuhou Xia, and Xiaoqian Jiang. Secure logistic259

regression based on homomorphic encryption: Design and evaluation. JMIR medical informatics,260

6(2):e19, 2018.261

[9] John Chiang. Privacy-preserving logistic regression training with a faster gradient variant. arXiv262

preprint arXiv:2201.10838, 2022.263

[10] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the264

forty-first annual ACM symposium on Theory of computing, pages 169–178, 2009.265

[11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic266

encryption without bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):1–267

36, 2014.268

[12] N.P. Smart and F. Vercauteren. Fully homomorphic simd operations. Cryptology ePrint Archive,269

Report 2011/133, 2011. https://ia.cr/2011/133.270

[13] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for271

arithmetic of approximate numbers. In International Conference on the Theory and Application272

of Cryptology and Information Security, pages 409–437. Springer, 2017.273

[14] Kyoohyung Han, Seungwan Hong, Jung Hee Cheon, and Daejun Park. Logistic regression on274

homomorphic encrypted data at scale. In Proceedings of the AAAI Conference on Artificial275

Intelligence, volume 33, pages 9466–9471, 2019.276

[15] John Chiang. Multinomial logistic regression algorithms via quadratic gradient, 2023.277

[16] John Chiang. Quadratic gradient: Uniting gradient algorithm and newton method as one. arXiv278

preprint arXiv:2209.03282, 2022.279

[17] Dankmar Böhning and Bruce G Lindsay. Monotonicity of quadratic-approximation algorithms.280

Annals of the Institute of Statistical Mathematics, 40(4):641–663, 1988.281

[18] Dankmar Böhning. Multinomial logistic regression algorithm. Annals of the institute of282

Statistical Mathematics, 44(1):197–200, 1992.283

[19] John Chiang. On polynomial approximation of activation function. arXiv preprint284

arXiv:2202.00004, 2022.285

10

https://ia.cr/2011/133

	Introduction
	Background
	Related work
	Contributions

	Preliminaries
	Fully Homomorphic Encryption
	Database Encoding Method
	Convolutional Neural Network
	Transfer Learning
	Datasets

	Technical details
	Multiclass Logistic Regression
	Chiang's Quadratic Gradient
	Approximating Softmax Function
	Double Volley Revolver

	Privacy-preserving CNN Training
	Polynomial Approximation
	Homomorphic Evaluation

	Experiments
	Parameters

	Conclusion

