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ABSTRACT

Diffusion models have emerged as powerful generative frameworks by progres-
sively adding noise to data through a forward process and then reversing this
process to generate realistic samples. While these models have achieved strong
performance across various tasks and modalities, their application to temporal
predictive learning remains underexplored. Existing approaches treat predictive
learning as a conditional generation problem, but often fail to fully exploit the tem-
poral dynamics inherent in the data, leading to challenges in generating temporally
coherent sequences. To address this, we introduce Dynamical Diffusion (DyDiff),
a theoretically sound framework that incorporates temporally aware forward and
reverse processes. Dynamical Diffusion explicitly models temporal transitions at
each diffusion step, establishing dependencies on preceding states to better cap-
ture temporal dynamics. Through the reparameterization trick, Dynamical Dif-
fusion achieves efficient training and inference similar to any standard diffusion
model. Extensive experiments across scientific spatiotemporal forecasting, video
prediction, and time series forecasting demonstrate that Dynamical Diffusion con-
sistently improves performance in temporal predictive tasks, filling a crucial gap
in existing methodologies.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020; Song et al.,
2020) refer to a class of generative models that progressively corrupt data by adding noise through
a “forward process” and then iteratively denoise a random input during inference to generate highly
realistic samples via the “reverse process”. This unique approach has positioned them as a powerful
alternative to traditional generative methods. To date, diffusion models have demonstrated strong
performance across a wide range of tasks (Kingma et al., 2021; Saharia et al., 2022a;b; Dhariwal &
Nichol, 2021) and data modalities (Kong et al., 2021; Chen et al., 2021; Yang et al., 2023; Ho et al.,
2022; Blattmann et al., 2023a).

Due to their strong capability to model data distributions, diffusion models are gaining attention in
the field of temporal predictive learning. Several recent studies (Voleti et al., 2022; Gao et al., 2023)
have explored the application of diffusion models to predictive learning tasks by reinterpreting these
tasks as conditional generation problems. In this approach, the model is trained to predict the future
conditioned on historical data, such as predicting the next video frame based on preceding frames.
Despite yielding promising results, these methods did not explicitly leverage the temporal nature of
the data, which may pose challenges for generating temporally coherent sequences (Blattmann et al.,
2023a;b). While increasing the capacity of deep models can alleviate this issue, the fundamental
challenge of integrating temporal dynamics into diffusion processes remains underexplored.

To this end, we propose Dynamical Diffusion (DyDiff), a framework that defines temporally aware
forward and reverse diffusion processes. Specifically, in the forward process, each latent is not only
modified through the conventional noise addition procedure but is also derived from its temporally
preceding latent. In this way, Dynamical Diffusion explicitly captures temporal transitions at each
diffusion step. Through a theoretical derivation, we establish the existence of the corresponding
reverse process and extend it to generate multi-step predictions simultaneously. By leveraging the
reparameterization trick, the learning of Dynamical Diffusion is formulated into feasible optimiza-
tion objectives. This enables efficient training with no additional computational cost compared to
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standard diffusion models and facilitates efficient sampling similar to the standard DDPM (Ho et al.,
2020) and its variants (Song et al., 2021).

Our contributions can be summarized as follows:

• We investigate temporal predictive learning using diffusion models and highlight the un-
derexplored challenge of integrating temporal dynamics into the diffusion process.

• We introduce Dynamical Diffusion, a theoretically guaranteed framework that explicitly
models temporal transitions at each diffusion step. We outline key design choices that
enable efficient training and inference of Dynamical Diffusion.

• We conduct experiments on various tasks across different modalities, including scien-
tific spatiotemporal forecasting, video prediction, and time series forecasting. The results
demonstrate that the proposed Dynamical Diffusion framework consistently enhances per-
formance in predictive learning.

2 PRELIMINARIES

Diffusion models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) and their vari-
ants (Song & Ermon, 2019; Song et al., 2020) have shown outstanding capabilities in capturing
complex data distributions. The core design of diffusion models involves dual forward and reverse
processes. Formally, the forward process gradually corrupts real data x0 ∼ q(x0) according to a
noise schedule {ᾱt}Tt=1. At timestep t, the corrupted data xt can be sampled as

xt =
√
ᾱtx0 +

√
1− ᾱtϵt, (1)

where ϵt ∼ N (0, I) denotes a random Gaussian noise. Subsequently, in the reverse process, a nerual
network ϵθ is trained to invert forward process corruptions with pθ (xt−1|xt), with the objective of
minimizing the variational lower bound

L(θ) = Et,x0,ϵt∼N (0,I)

[∥∥ϵt − ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵt, t

)∥∥2] . (2)

Once trained, sampling in diffusion models is performed by iterative denoising from xT ∼ N (0, I)
to x0. Similar to other types of generative models, diffusion models are in principle capable of
modeling conditional distributions. This can be achieved by modifying the reverse process to learn
pθ(xt−1|xt, c), where c represents the condition.

Predictive learning with diffusion models. The goal of predictive learning is to predict future
states x1:S based on observations x−P :0. By substituting the condition c with observations x−P :0,
the predictive learning task can be naturally interpreted as a conditional generation task, making
it well-suited for diffusion models to solve. This approach requires minimal modifications to the
original diffusion process and has been adopted by several recent works (Voleti et al., 2022; Gao
et al., 2023).

3 METHOD

We observe that, when integrating diffusion models into predictive learning, there are two notable
axes along which the model must learn simultaneously. The first axis, referred to as the “prediction
axis”, requires the model to learn the temporal dynamics of the data. The second axis, termed the
“denoising axis”, necessitates that the model distinguishes noise from corrupted states.

From this perspective, we identify a mismatch in previous methodologies. As shown in Figure 1a,
the forward process in standard diffusion models progresses solely along the denoising axis. In
particular, historical observations x−P :0

0 serve only as conditions for denoising networks, with no
temporal dependency considered between temporally adjacent latents xs

t and xs−1
t . This modeling

strategy isolates the predictive task along the denoising axis, while overlooking the internal continu-
ity and forecasting capabilities of the dynamics that could potentially enhance the diffusion process.

In contrast, an alternative process in DYffusion (Rühling Cachay et al., 2023), as depicted in Fig-
ure 1b, progressively generates intermediates between two states. The forward and reverse processes
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Figure 1: Comparison of diffusion modeling approaches in predictive learning.

are modeled as temporal interpolation and extrapolation, respectively. In this approach, the diffusion
process is applied on the prediction axis. While this addresses the mismatch issue, it requires the
predictability of the intermediate states. Furthermore, the ability to generate high-quality samples
has not been fully validated, as the core mechanism of adding and removing noise in DPMs has been
eliminated.

Building on the aforementioned considerations, we propose Dynamical Diffusion (DyDiff), de-
signed to concurrently model both the denoising and prediction axes. As illustrated in Figure 1c,
Dynamical Diffusion explicitly introduces the mixture of historical states in the diffusion process.
By controlling different mixing manners with respect to the timestep t, Dynamical Diffusion en-
ables temporal-aware forward and reverse processes, which we present in Subsections 3.1 and 3.2,
respectively.

3.1 FORWARD PROCESS

In the standard forward process, the corrupted latent at diffusion step t is constructed as xt =√
ᾱtx0 +

√
1− ᾱtϵt. Inspired by recurrent neural networks (Hochreiter, 1997; Chung et al., 2014)

and state-space models (Gu et al., 2022) that capture temporal transitions through iterative structures,
in Dynamical Diffusion, we define each latent xs

t by the combination with its previous latent xs−1
t ,

formalized as follows:

xs
t =
√
γ̄t ·

(√
ᾱtx

s
0 +
√
1− ᾱtϵ

s
t

)
+
√
1− γ̄t · xs−1

t , (3)

where {γ̄t}Tt=1 are the newly introduced timestep-aware schedule hyperparameters to control the
dependence of the previous latent. By expanding the above equation along the prediction axis, we
obtain

xs
t =
√
ᾱt · Dynamics

(
x−P :s
0 ; γ̄t

)
+
√
1− ᾱt · ϵ̃st , (4)

where

Dynamics
(
x−P :s
0 , γ̄t

)
=
√
γ̄t · xs

0 +
√
1− γ̄t · Dynamics

(
x−P :s−1
0 , γ̄t

)
, (5)

and

ϵ̃st =
√
γ̄t · ϵst +

√
1− γ̄t · ϵ̃s−1

t ∼ N (0, I) (6)

represents non-independent random Gaussian noise (proof in Appendix A.1). The definition of
Dynamics refers to a timestep-aware mixture of all historical states, and further achieves temporal
dynamics by adequately controlling the factor γ̄t. Notably, the noise factor

√
1− ᾱt remains un-

changed regardless of the choice of γ̄t and is identical to that in the standard diffusion process. As a
result, the signal-to-noise ratio (SNR) in the diffusion model is preserved.

Discussion on γ̄t Based on Equation (5), when γ̄t → 1, all prior information is ignored, and the
forward process approximates the one in standard diffusion models. Conversely, as γ̄t decreases,
earlier historical observations are given greater weight. In designing the schedule for {γ̄t}Tt=1, it
is advisable for γ̄t to be a non-increasing function, ensuring that larger values of t correspond to
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a stronger emphasis on historical states. Additionally, setting γ̄0 = 1 guarantees that xs
0 = xs,

preserving the initial state. Notably, unlike ᾱT ≈ 0 in standard diffusion models, it is not necessary
for γ̄T ≈ 0. If γ̄T approaches zero, the reverse process would start from Dynamics(x−P :s

0 ) = xP
0

for all s, which might be less relevant than utilizing recent states. In practice, we adopt the schedule
γ̄t = ηᾱt + (1− η), where η ∈ [0, 1] is a time-independent factor. By default, we set η = 0.5. We
will further analyze the effect of η in Section 4.4.

3.2 REVERSE PROCESS

The forward process defines a marginal distribution q(xs
t |x−P :s

0 ) that is composed of both random
noises and historical states. Next, we discuss the posterior distribution and the reverse process for
Dynamical Diffusion.

3.2.1 SINGLE-STEP PREDICTION CASE

We begin with the single-step prediction case, i.e. S = 1. In this scenario, all the previous states
x−P :S−1
0 involved in the diffusion process are fully known. We formulate the following theorems,

with proof attached in Appendix A.2.
Theorem 1. In a manner akin to DDIM (Song et al., 2021), there exists a non-Markovian forward
process with the following marginal distribution

q
(
x1
t |x−P :1

0

)
= N (

√
ᾱt · Dynamics(x−P :1

0 ; γ̄t), (1− ᾱt)I). (7)

Furthermore, learning of the reverse process can be reparameterized into the following denoising
objective

L(θ) = Et,x−P :1
0 ,ϵt∼N (0,I)

[∥∥ϵt − ϵθ
(√

ᾱt · Dynamics(x−P :1
0 ; γ̄t) +

√
1− αt · ϵt, t

)∥∥2] , (8)

with a DDIM-like sampler

pθ(x
1
t−1|x1

t ,x
−P :0
0 ) = N

(
√
ᾱt−1 · Dynamics(x−P :0

0 ,x1
pred; γ̄t−1) +

√
1− ᾱt−1 − σ2

t ϵθ, σ
2
t I

)
(9)

where

x1
pred =

(
x1
t −
√
1− ᾱtϵθ(x

1
t ,x

−P :0
0 , t)√

ᾱt
−
√
1− γ̄t · Dynamics

(
x−P :0
0 , γ̄t

))
/
√
γ̄t (10)

refers to the predicted ground truth.
Theorem 2. (Informal) There exists a DDPM-like (Ho et al., 2020) Markovian forward process
which shares the same marginal distribution as Equation (7), and the reverse process can be learned
using the same objective function as Equation (8) and inferred using a DDPM-like sampler

pθ(x
1
t−1|x1

t ,x
−P :0
0 ) = N (µ̃t(x

1
t ,x

1
pred,x

−P :0
0 ), σ2

t I) (11)

with µ̃t referring to the posterior mean derived by the forward process.

Remarks. Theorems 1,2 indicate that when S = 1, it is feasible to learn a denoiser network
similar to standard diffusion models. This denoiser serves as a reparameterization of the reverse
process and minimizes the variational lower bound on the posterior distribution. The main differ-
ence is that the denoiser in Dynamical Diffusion aims to distinguish from the noisy disturbance of
Dynamics(x−P :1

0 ) instead of x1
0.

3.2.2 EXTENTION TO MULTI-STEP PREDICTION

We now extend the proposed reverse process to the multi-step prediction scenario, i.e., S > 1.
Compared with the case when S = 1, the forward process additionally introduces dependencies
among multiple latents, and the reverse process must consider the absence of previous ground truth
x1:s−1
0 for a given s. The following theorem presents the reparameterized objective, with detailed

proof in Appendix A.3.
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Theorem 3. (Informal) There exists a DDIM-like and a DDPM-like forward process satisfying the
marginal distribution

q
(
x1:S
t |x−P :S

0

)
= N (

√
ᾱt · Dynamics(x−P :S

0 ; γ̄t), (1− ᾱt)Jt), (12)

where Jt is a non-identity covariance matrix with (Jt)ik = (
√
γ̄t)

i−k. Additionally, the reverse
process can be reparameterized into the following denoising objective

L(θ) = Et,x−P :S
0 ,ϵ̃t∼N (0,Jt)

[∥∥ϵ̃t − ϵθ
(√

ᾱt · Dynamics(x−P :S
0 ) +

√
1− ᾱt · ϵ̃t, t

)∥∥2] (13)

with DDIM/DDPM-like samplers which are extensions of Equations (9) and (11).

Remarks. Equation (12) naturally generalizes the case when S = 1. Specifically, for each state
s, the marginal distribution q(xs

t |x−P :s
0 ) retains exactly the same form as Equation (7). When con-

sidering all latents xs
t collectively as a joint distribution, Dynamical Diffusion differs from standard

diffusion models in both the forward and reverse processes.

• In the forward process, as discussed in Equation (3), the latents are dependently defined.
This dependency leads to a non-identity covariance matrix when combining all states into
a joint distribution. Consequently, the denoiser must learn from non-independent sampled
noises ϵ̃, accommodating the correlations introduced by the dependent states.

• In the reverse process, when reconstructing x1:S
pred from the current latents x1:S

t and the
predicted noises ϵ̃1:St , the addition of noises to the dynamics necessitates computing the
inverse dynamics function (see Appendix B). The sampler must then reapply noises to the
recalculated dynamics to accurately recover the predicted states. Similar algorithms are
employed on ϵ̃1:St to obtain ϵ1:St , ensuring consistency in the reverse diffusion steps.

Algorithm. The pseudocode for the training and inference processes of Dynamical Diffusion is
provided in Algorithms 1 and 2, respectively. Compared with standard diffusion models, Dynamical
Diffusion differs only in its preparation of inputs and outputs for the denoiser ϵθ, without introducing
any additional forward or backward passes. Consequently, the computational cost remains similar
to that of standard approaches.

Algorithm 1 Training of Dynamical Diffusion

1: procedure Dynamics(xL:R
0 , γ̄)

2: xL
dyn ← xL

0

3: for s in [L+ 1, R] do
4: xs

dyn ←
√
1− γ̄xs−1

dyn +
√
γ̄xs

0

5: end for
6: return xL:R

dyn
7: end procedure
8:
9: while not converged do

10: Sample x−P :S ∼ X
11: Sample ϵ1:S ∼ N (0, I), t ∼ U [1, T ]
12: x1:S

dyn ←Dynamics(x−P :S
0 , γ̄t)1:S

13: ϵ1:Sdyn ←Dynamics(ϵ1:S , γ̄t)
14: L(θ)←

[∥∥ϵ1:Sdyn − ϵθ(
√
ᾱtx

1:S
dyn

+
√
1− ᾱtϵ

1:S
dyn ,x

−P :0
0 , t)

∥∥2]
15: Backprop with L(θ) and update θ
16: end while
17: return θ

Algorithm 2 Inference of Dynamical Diffusion

Require:
procedure InverseDynamics (Algorithm 3)

1: Sample x1:S
pred ∼ N (0, I)

2: x1:S
T ←Dynamics(x1:S

t , γ̄t)
3:
4: for t in [T, 1] do
5: ϵ1:St ← ϵθ(x

1:S
t ,x−P :0

0 , t)
6: x1:S

dyn ←
(
x1:S
t −

√
1− ᾱtϵ

1:S
t

)
/
√
ᾱt

7: x−P :0
dyn ←Dynamics(x−P :0

0 , γ̄t)
8: x−P :S

pred ←InverseDynamics(x−P :S
dyn , γ̄t)

9: ϵ1:Spred ←InverseDynamics(ϵ1:St , γ̄t)
10: ϵ1:St−1 ←Dynamics(ϵ1:Spred, γ̄t−1)
11: x1:S

t−1 ←
√
ᾱt−1·Dynamics(x−P :S

pred , γ̄t−1)1:S

+
√
1− ᾱt−1ϵ

1:S
t−1

12: end for
13: return x1:S

0

5
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4 EXPERIMENTS

In this section, we evaluate Dynamical Diffusion (DyDiff) in three different settings and compare
its performance against the standard diffusion model (DPM). We demonstrate that DyDiff is ver-
satile to provide competitive performance across a range of tasks (Section 4.1, 4.2, and 4.3) and
conduct in-depth analysis to understand the prediction process of DyDiff (Section 4.4). Unless
specifically mentioned, we use the framework of Stable Video Diffusion (Blattmann et al., 2023a),
which achieves the state-of-the-art performance on video generation tasks. We provide experimental
details in Appendix C, along with additional comparisons presented in Appendix D.

4.1 SCIENTIFIC SPATIOTEMPORAL FORECASTING

Setup. We begin by evaluating the models’ performance in scientific spatiotemporal forecasting
using the Turbulence Flow dataset (Wang et al., 2020) and the SEVIR dataset (Veillette et al., 2020).
This scenario requires the model to learn the underlying physical dynamics. Turbulence Flow is a
simulated dataset governed by partial differential equations (PDEs), capturing spatiotemporal dy-
namics of turbulent fluid flows, specifically the velocity fields. Each frame contains two channels
representing turbulent flow velocity along the x and y directions. The task is to predict future ve-
locity fields based on prior observations. Following the configuration of Wang et al., we generate
sequences of 15 frames at a spatial resolution of 64×64 grids, using 4 input frames to predict the sub-
sequent 11 frames. SEVIR is a large-scale dataset curated specifically for meteorology and weather
forecasting research. Each sample in SEVIR represents 384km×384km observation sequences over
4 hours. Following (Gao et al., 2023), we select the task of predicting Vertically Integrated Liquid
(VIL), where the model learns to forecast future precipitation levels. For this dataset, 7 input frames
are used to predict the next 6 frames, with each frame having a resolution of 128× 128 grids.

For evaluation, we report the neighborhood-based Continuous Ranked Probability Score
(CRPS) (Gneiting & Raftery, 2007) and Critical Success Index (CSI) (Schaefer, 1990; Jolliffe &
Stephenson, 2012), following (Ravuri et al., 2021; Zhang et al., 2023). The CRPS metric empha-
sizes the model’s ensemble forecasting capabilities, while the CSI metric evaluates the accuracy of
the model’s predictions in peak regions. Lower CRPS values and higher CSI scores indicate better
performance.

Table 1: Scientific spatiotemporal forecasting results on the SEVIR and Turbulence Flow datasets.
w, avg, and max represent hyperparameters in evaluation metrics (see Appendix C).

Method
SEVIR Turbulence

CRPS ↓ CSI ↑
(w5)

CRPS ↓ CSI ↑
(w5)(w8, avg) (w8,max) (w8, avg) (w8,max)

DPM 8.67 15.41 0.285 0.0313 0.0364 0.8960
DyDiff (ours) 7.62 13.56 0.319 0.0275 0.0315 0.8998

Results. Table 1 presents the numerical results. On both datasets, DyDiff consistently outperforms
the standard DPM, achieving over a 12% reduction in CRPS on the Turbulence dataset. Further, fig-
ures 2 and 3 illustrate qualitative analyses. It is evident that DyDiff outputs more accurate predictions
than standard DPM, particularly over longer time horizons.

4.2 VIDEO PREDICTION

Setup. Next, we evaluate the performance of different methods on the BAIR (Ebert et al., 2017)
and RoboNet (Dasari et al., 2019) datasets, which serve as benchmarks for assessing the model’s
ability to predict object movements in real-world scenarios. The BAIR robot pushing dataset consists
of 43k training videos and 256 test videos. Each video records the motion of a robot as it pushes
objects in a tabletop setting. The goal is to predict 15 future frames based on a single initial frame.
The RoboNet dataset consists of 162k videos captured across 7 different robotic arms interacting
with hundreds of objects in diverse environments and viewpoints. Following previous work (Yu
et al., 2023), we use 256 videos for testing and predict 10 future frames based on 2 input frames.

6
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DPM Predictions

DPM Residuals

DyDiff Predictions

DyDiff Residuals

s = 0s = -2 s = 2 s = 4 s = 6 s = 8 s = 10

Figure 2: Visualization of predicted velocity fields on the Turbulence dataset. The top row dis-
plays the ground truth values. Residuals highlight the discrepancies between predictions and ground
truths. Standard DPM predictions, characterized by two distinct positive regions (colored in red), do
not align with physical laws. In contrast, Dynamical Diffusion yields more accurate predictions.

s = -4s = -5 s = 0s = -3 s = -2 s = -1

Observations

Ground Truth

DPM Predictions

DyDiff Predictions

s = 2s = 1 s = 6s = 3 s = 4 s = 5

s = -4s = -5 s = 0s = -3 s = -2 s = -1

Observations

Ground Truth

DPM Predictions

DyDiff Predictions

s = 2s = 1 s = 6s = 3 s = 4 s = 5

s = -4s = -5 s = 0s = -3 s = -2 s = -1

Observations

Ground Truth

DPM Predictions

DyDiff Predictions

s = 2s = 1 s = 6s = 3 s = 4 s = 5

s = -4s = -5 s = 0s = -3 s = -2 s = -1

Observations

Ground Truth

DPM Predictions

DyDiff Predictions

s = 2s = 1 s = 6s = 3 s = 4 s = 5

Figure 3: Visualization of predictions on the SEVIR dataset. The first row displays observational
states, while the second row shows the corresponding ground truth. For longer prediction times, such
as s = 4, standard diffusion models struggle to capture heavy-precipitation regions, particularly
noticeable in the top right corner. In contrast, Dynamical Diffusion consistently provides more
accurate predictions for these critical areas.

For both datasets, each frame has a resolution of 64 × 64 pixels. We report performance using
four commonly adopted metrics: FVD (Unterthiner et al., 2018), PSNR (Huynh-Thu & Ghanbari,
2008), SSIM (Wang et al., 2004), and LPIPS (Zhang et al., 2018). Among these metrics, FVD
measures video-level consistency, while the other three are computed per image and reflect the
average prediction accuracy.

Results. We present the experimental results in Table 2, covering both action-free and action-
conditioned scenarios. Dynamical Diffusion consistently surpasses the standard DPM in all evalu-
ated metrics, showing greater improvements in FVD, verifying its ability to make temporally con-
sistent predictions. Qualitative outputs in Figure 4 illustrates that Dynamical Diffusion effectively
addresses the artifact issues present in DPM for both background and foreground objects.
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Table 2: Video prediction results on the BAIR robot pushing and RoboNet dataset. LPIPS and SSIM
scores are scaled by 100 for convenient display.

BAIR FVD↓ PSNR↑ SSIM↑ LPIPS↓
action-free & 64×64 resolution

DPM 72.0 21.0 83.8 9.2
DyDiff (ours) 67.4 21.0 84.0 9.0

action-conditioned & 64×64 resolution

DPM 48.5 25.9 92.0 4.5
DyDiff (ours) 45.0 26.2 92.4 4.2

RoboNet FVD↓ PSNR↑ SSIM↑ LPIPS↓
action-free & 64×64 resolution

DPM 92.9 24.9 83.9 8.2
DyDiff (ours) 81.7 25.1 84.2 7.9

action-conditioned & 64×64 resolution

DPM 77.0 26.4 87.3 6.0
DyDiff (ours) 67.7 26.5 87.5 5.9

BAIR

Ground 
Truth

s = 0 s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8 s = 9 s = 10 s = 11 s = 12 s = 13 s = 14 s = 15

DPM Predictions 

DyDiff Predictions

Figure 4: Visualization of action-conditioned predictions the BAIR dataset. Zoom in for details.
The positions of robot arms under Dynamical Diffusion are more precise than standard DPM.

RoboNet

Ground 
Truth

s = -1 s = 0 s = 2 s = 4 s = 6 s = 8 s = 10 s = -1 s = 0 s = 2 s = 4 s = 6 s = 8 s = 10

(Observations) (Observations)
DPM Predictions 

DyDiff Predictions

Figure 5: Visualization of action-conditioned predictions the RoboNet dataset. Zoom in for details.
For standard diffusion models, (left) the pink shovel is missing, and (right) the red bottle is distorted.
This indicates the potential temporal inconsistency of standard diffusion models. On the contrary,
Dynamical Diffusion can generate consistent frames, especially for the background.

4.3 TIME SERIES FORECASTING

Setup. We further evaluate the model on six multivariate time series datasets: Exchange, Solar,
Electricity, Traffic, Taxi, and Wikipedia. These datasets encompass time series with varying dimen-
sionalities, domains, and sampling frequencies. We benchmark Dynamical Diffusion against the
diffusion-based method TimeGrad (Rasul et al., 2021a), using TimeGrad’s backbone and experi-
mental setup. For evaluation, we employ the Summed CRPS (Matheson & Winkler, 1976).

Table 3: Time series forecasting results on six benchmark datasets. CRPSsum is measured for its
mean and standard deviation across five runs trained with different seeds.

CRPSsum ↓
Method Exchange Solar Electricity Traffic Taxi Wikipedia

w/ DPM 0.007±0.000 0.372±0.064 0.021±0.002 0.042±0.003 0.122±0.012 0.070±0.007

w/ DyDiff 0.007±0.000 0.316±0.010 0.023±0.001 0.040±0.002 0.120±0.006 0.066±0.015

Results. We present the experimental results in Table 3. Dynamical Diffusion significantly out-
performs standard diffusion models in terms of CRPSsum on four out of six datasets (Solar, Traffic,
Taxi, Wikipedia). For the remaining two datasets (Exchange, Electricity), the performance aligns
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with the variance range of the baseline models. Overall, these results highlight the effectiveness of
Dynamical Diffusion as a versatile predictive model across diverse datasets.

4.4 ANALYSIS

Analysis on latents. Dynamical Diffusion introduces novel forward and reverse processes, which
affect the latents during inference stages. In Figure 6, we visualize and compare the latents of
Dynamical Diffusion and the standard DPM. We also calculate the error between latents and final
frames and plot the curve in Figure 7a. It is observed that DyDiff generates less noisy samples in an
earlier denosing steps compared with standard diffusion model, especially for larger s.

t = 50 40 35 32 30 28 26 25 24 22 20 18 15 10 t = 0

DPM, s = 1

DPM, s = 15

DyDiff, s = 1

DyDiff, s = 15

Timestep t

Figure 6: Visualization of latents during the inference process of the BAIR dataset, with timestep
t divided by 20. At the same timestep (such as t = 22), the backgrounds of frames generated by
Dynamical Diffusion are consistent with the final predictions, while standard diffusion models hold
noisier latents. Similar comparisons (such as t = 28) on Dynamical Diffusion show that frames
with s = 15 are less noisy than s = 1 at a single timestep.

Effect of dependent noises. When using Dynamical Diffusion to predict multiple steps simulta-
neously, the forward process use non-independent noises ϵ̃st =

√
γ̄tϵ

s
t +
√
1− γ̄tϵ̃

s
t−1, as illustrated

in Theorem 3 and Algorithm 1. To further explore its necessity, we design an ablation study that uses
independent noises ϵst instead of ϵ̃st . Results are shown in Figure 7b. It is observed that when using
independent noises ϵst , the performance gets worse and even underperforms the baseline. Therefore,
using non-independent noises is necessary for Dynamical Diffusion.

Different gamma schedules. For simplicity, Dynamical Diffusion adopt η = 0.5 as the default
setting for the gamma schedule γ̄t = ηᾱt + (1 − η). To further explore the sensitivity to hyper-
parameters, we conduct experiments using various η with values in the set {0, 0.1, 0.5, 0.9, 1}, and
report the results on the Turbulence dataset. Notably, η = 0 corresponds to the baseline of standard
diffusion. Results are shown in Figure 7c. It is observed that η ∈ {0.1, 0.5, 0.9} demonstrate similar
performance and all significantly surpass the standard diffusion model, indicating the robustness of
hyperparameter design in Dynamical Diffusion. Yet at η = 1.0, the model performance signifi-
cantly drops and even underperforms the baseline, indicating that a schedule with γ̄T ≈ 0 may not
be effective, as discussed in Section 3.1.

50 40 30 20 10 00.00

0.02

0.04

0.06

0.08

0.10

M
SE

DPM, s = 1
DPM, s = 15
DyDiff, s = 1
DyDiff, s = 15

(a) Error of intermediate latents.

DPM DyDiff w/ i.i.d. noise0.02

0.03

0.04

0.05

0.06

C
R

PS

(b) Ablation study.

0.0 0.1 0.5 0.9 1.0
0.025

0.030

0.035

0.040

C
R

PS

(c) Values of η.

Figure 7: Analysis experiments of Dynamical Diffusion.
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5 RELATED WORK

Studies on diffusion framework. This paper proposes a modification to the diffusion equations,
a topic extensively explored in the literature. Previous research on foundational diffusion equations
has primarily concentrated on noise schedules (Nichol & Dhariwal, 2021; Karras et al., 2022; Liu
et al., 2023), training objectives (Salimans & Ho, 2021; Karras et al., 2022), and efficient sampling
techniques (Song et al., 2021; Lu et al., 2022). These methods aim to enhance the modeling of
general data distributions, including non-temporal modalities such as images and text. In contrast,
our work presents a novel approach that explicitly incorporates temporal dynamics by modifying the
diffusion equations.

Deep predictive learning methods. Predictive learning aims to forecast a system’s future be-
havior by learning the underlying dynamics that drive its evolution. One common approach is to
train the model to predict one step at a time and then unroll it autoregressively to make multi-step
predictions. However, this method can be prone to compounding errors as the forecast horizon
increases (de Bezenac et al., 2018; Scher & Messori, 2019; Chattopadhyay et al., 2020; Keisler,
2022; Bi et al., 2023). To address this, existing approaches focus on improving model architec-
tures (Yan et al., 2021; Wang et al., 2022; Lam et al., 2022; Yu et al., 2023), unrolling models during
training (Brandstetter et al., 2022; Pathak et al., 2022; HAN et al., 2022; Bi et al., 2023), or incor-
porating domain-specific knowledge (de Bezenac et al., 2018; Kochkov et al., 2021; Mamakoukas
et al., 2023). Despite these efforts, performance in long-horizon prediction remains limited (Pathak
et al., 2022). Alternatively, some methods forecast multiple steps simultaneously (Weyn et al., 2019;
Brandstetter et al., 2022; Ravuri et al., 2021; Zhang et al., 2023), showing advantages over autore-
gressive methods in several contexts (Voleti et al., 2022; Gao et al., 2023). In both lines of work,
generative models, such as generative adversarial networks (GANs) and diffusion models, have been
leveraged for their superior ability to model distributions, enhancing prediction quality (Rasul et al.,
2021a; Zhang et al., 2023; Mardani et al., 2023; Gao et al., 2023; Pathak et al., 2024). Our work
specifically focuses on generating multi-step predictions simultaneously with diffusion models, a
topic that has gained increasing attention in the research community.

Predictive learning with diffusion models. To enhance predictive learning with diffusion models,
Ho et al. (2022); Blattmann et al. (2023a); Voleti et al. (2022); Gao et al. (2023); Rasul et al. (2021a)
design specific predictive model architectures for different modalities. Wu et al. (2023); Ruhe et al.
(2024); Chen et al. (2024a) propose state-wise timestep schedules. Notably, in these methods, both
the forward and reverse processes remain consistent with standard formulations. Therefore, our
work serves as a complement to existing approaches.

6 CONCLUSION

In this paper, we investigate temporal predictive learning using diffusion models and highlight the
underexplored challenge of integrating temporal dynamics into the diffusion process. For this pur-
pose, we introduce Dynamical Diffusion, a theoretically guaranteed framework that explicitly mod-
els temporal transitions at each diffusion step. Dynamical Diffusion introduces a simple yet efficient
design that adds noises to the combination of the current state and historical states, which is further
learned by a denoising process. Experiments on various tasks, including scientific spatiotemporal
forecasting, video prediction, and time series forecasting, demonstrate that Dynamical Diffusion
consistently enhances performance in general predictive learning.
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A MATHEMATICAL PROOF

A.1 DERIVATION OF FORWARD PROCESS

In this subsection we give the proof of the form of xt
s in Equation (4).

Proof. By mathematical induction on s. With definitions in Equation (3)

xs
t =
√
γ̄t ·

(√
ᾱtx

s
0 +
√
1− ᾱtϵ

s
t

)
+
√
1− γ̄t · xs−1

t ,

Equation (5)

Dynamics
(
x−P :s
0 , γ̄t

)
=
√
γ̄t · xs

0 +
√
1− γ̄t · Dynamics

(
x−P :s−1
0 , γ̄t

)
,

and the boundary condition as the start state,

x−P
t =

√
ᾱtx

−P
0 +

√
1− ᾱtϵ

−P
t ,

it holds

xs
t =
√
γ̄t ·

(√
ᾱtx

s
0 +
√
1− ᾱtϵ

s
t

)
+
√

1− γ̄t · xs−1
t

=
√
γ̄t ·

(√
ᾱtx

s
0 +
√
1− ᾱtϵ

s
t

)
+
√
1− γ̄t ·

(√
ᾱt · Dynamics

(
x−P :s−1
0 ; γ̄t

)
+
√
1− ᾱt · ϵ̃s−1

t

)
=
√
ᾱt ·

(√
γ̄t · xs

0 +
√
1− γ̄t · Dynamics

(
x−P :s−1
0 ; γ̄t

))
+
√
1− ᾱt ·

(√
γ̄t · ϵst +

√
1− γ̄t · ϵ̃s−1

t

)
=
√
ᾱt · Dynamics

(
x−P :s
0 ; γ̄t

)
+
√
1− ᾱt · ϵ̃st .

Since ϵ̃s−1
t and ϵst are independent normal noise, it satisfies

ϵ̃st =
√
γ̄tϵ

s
t +

√
1− γ̄tϵ̃

s−1
t ∼ N (0, I),

which completes the proof.

A.2 CASE WHEN S = 1

DDIM-like sampler. We follow the proof in DDIM (Song et al., 2021)

Proof. Define the following non-Markovian forward process:

q(x1
1:T |x−P :1

0 ) = q(x1
T |x−P :1

0 )

T∏
t=2

q(x1
t−1|x1

t ,x
−P :1
0 )

with q(x1
T |x

−P :1
0 ) = N

(√
ᾱT · Dynamics(x−P :1

0 , γ̄T ), (1− ᾱT )I
)
,

q(x1
t−1|x1

t ,x
−P :1
0 ) = N

(
√
ᾱt−1 · Dynamics(x−P :1

0 , γ̄t−1)+

√
1− ᾱt−1 − σ2

t ·
xt −

√
ᾱt · Dynamics(x−P :1

0 , γ̄t)√
1− ᾱt

, σ2
t I

)
,

then it suffies to prove q(x1
t |x−P :0

0 ) = N
(√

ᾱt · Dynamics(x−P :1
0 , γ̄t), (1− ᾱt)I

)
. By mathemat-

ical induction on t from T − 1 to 1, we have

q(x1
t |x−P :1

0 ) = N
(√

ᾱt · Dynamics(x−P :1
0 , γ̄t), (1− ᾱt)I

)
,

q(x1
t−1|x1

t ,x
−P :1
0 ) = N

(
√
ᾱt−1 · Dynamics(x−P :1

0 , γ̄t−1)+

√
1− ᾱt−1 − σ2

t ·
xt −

√
ᾱt · Dynamics(x−P :1

0 , γ̄t)√
1− ᾱt

, σ2
t I

)
,
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then by letting a ← x1
t , b ← x1

t−1, and c ← x−P :1
0 as a global condition, according to Eq.

(2.115) (Bishop, 2006),

q(x1
t−1|x−P :1

0 ) =

∫
x1
t

q(x1
t |x−P :1

0 )q(x1
t−1|x1

t ,x
−P :1
0 )dx1

t

qc(b) =

∫
a

qc(a)qc(b|a)da

is also a Gaussian with

µt−1 =
√
ᾱt−1 · Dynamics(x−P :1

0 , γ̄t−1)

+
√
1− ᾱt−1 − σ2

t ·
√
ᾱt · Dynamics(x−P :1

0 , γ̄t)−
√
ᾱt · Dynamics(x−P :1

0 , γ̄t)√
1− ᾱt

=
√
ᾱt−1 · Dynamics(x−P :1

0 , γ̄t−1),

Σt−1 = σ2
t I+

1− ᾱt−1 − σ2
t

1− ᾱt
(1− ᾱt)I = (1− ᾱt−1)I,

which completes the proof.

DDPM-like sampler. We follow the proof in DDPM (Ho et al., 2020).

Proof. The proof is structured in two steps. First, define the following Markovian forward process:

q
(
x1
t |x1

t−1,x
−P :1
0

)
∼ N (µt,Σt)

µt =
√
αtγt · xt−1 +

√
ᾱt

(√
1− γ̄t · Dynamics(x−P :0

0 ; γ̄t)−
√
γt − γ̄t · Dynamics(x−P :0

0 ; γ̄t−1)
)

Σt = (1− αtγt − ᾱt(1− γt)) I

where ᾱt =
∏t

i=1 αi, γ̄t =
∏t

i=1 γi. It suffies to prove the marginal distribution

q(x1
t |x−P :1

0 ) = N
(√

ᾱt · Dynamics(x−P :1
0 , γ̄t), (1− ᾱt)I

)
.

By mathematical induction on t from 1 to T − 1, we have q(x1
t+1|x1

t ,x
−P :0
0 ) and q(x1

t |x−P :1
0 ) are

Gaussian distributions, and thus by letting a← x1
t , b← x1

t+1, and c← x−P :1
0 as a global condition,

according to Eq. (2.115) (Bishop, 2006),

q(x1
t+1|x−P :1

0 ) =

∫
x1
t

q(x1
t |x−P :1

0 )q(x1
t+1|x1

t ,x
−P :1
0 )dx1

t

qc(b) =

∫
a

qc(a)qc(b|a)da

is also a Gaussian distribution with

µt+1 =
√
ᾱt+1γt · Dynamics(x−P :1

0 , γ̄t)

+
√
ᾱt+1

(√
1− γ̄t+1 · Dynamics(x−P :0

0 ; γ̄t+1)−
√
γt+1 − γ̄t+1 · Dynamics(x−P :0

0 ; γ̄t)
)

=
√
ᾱt · Dynamics(x−P :1

0 , γ̄t)

Σt+1 = (1− αt+1γt+1 − ᾱt+1(1− γt+1))I+ αt+1γt+1(1− ᾱt)I = (1− ᾱt+1)I.

Next, we consider the posterior distribution for the reverse process. Since q(x1
t |x1

t−1,x
−P :1
0 ) and

q(x1
t−1|x−P :1

0 ) are both Gaussians, by letting a ← x1
t−1, b ← x1

t , and c ← x−P :1
0 as a global

condition, according to Eq. (2.116) (Bishop, 2006),

q(x1
t−1|x1

t ,x
−P :1
0 ) =

q(x1
t |x1

t−1,x
−P :0
0 )q(x1

t |x−P :1
0 )

q(x1
t−1|x

−P :1
0 )

qc(a|b) =
qc(b|a)qc(a)

qc(b)

is also a Gaussian distribution. Therefore, the existence of the reverse process is proved, where the
mean and variance could be derived accordingly.
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A.3 CASE WHEN S > 1

Proof. For S > 1, by definition in Equation (3), let

y1
t = x1

t ,

ys
t =

xs
t −
√
1− γ̄t · xs−1

t√
γ̄t

, ∀1 < s ≤ S,

then ys
t =

√
ᾱtx

s
0 +
√
1− ᾱtϵ

s
t , satisfying the same Guassian distribution as standard diffusion

models and independent with ys′

t , ∀s′ ̸= s. Thus

q(y1:S
t |x−P :S

0 ) = q(x1
t |x−P :1

0 )

S∏
s=2

q(ys
t |xs

0).

By defining the distribution of x1
t as Appendix A.2 and ys

t , 1 < s ≤ S as DDPM/DDIM for
standard diffusion models, the reverse process gets proved by combining these independent latents
together.

Remark. Following the proof, seemingly there is no need to add noise on dynamics for s > 1
in theoretical view. In practice, the manner that remains dynamics could potentially help model
generalization.

B ALGORITHM FOR INVERSE DYNAMICS

In this section we discuss the calculation of the inverse dynamics used in the inference process, i.e.,
calculate xs

0 when given Dynamics(x−P :k
0 ; γ̄) for −P ≤ k ≤ s. From Equation (5), we have

xs
0 =

Dynamics(x−P :s
0 ; γ̄)−

√
1− γ̄ · Dynamics(x−P :s−1

0 ; γ̄)√
γ̄

.

The pseudo code of calculating inverse dynamics is shown in Algorithm 3.

Algorithm 3 Inverse Dynamics

1: procedure InverseDynamics(xL:R
dyn , γ̄)

2: xL
0 ← xL

dyn
3: for s in [L+ 1, R] do
4: xs

0 ←
(
xs

dyn −
√
1− γ̄xs−1

dyn

)
/
√
γ̄

5: end for
6: return xL:R

0
7: end procedure

C IMPLEMENTATION DETAILS

C.1 SPATIOTEMPORAL FORECASTING AND VIDEO PREDICTION

Training details. For the benchmark datasets, including BAIR, RoboNet, Turbulence, and SE-
VIR, we utilize the state-of-the-art architecture of Stable Video Diffusion (Blattmann et al., 2023a).
Specifically, we first train frame-wise VAEs from scratch. In line with Blattmann et al., we also
incorporate an adversarial discriminator during VAE training to enhance reconstruction quality. The
spatial downsampling ratio for the VAE is set to 4 × 4 across all datasets. Once trained, the VAE
encodes the original data into a latent space with a channel size of 3, and all diffusion processes are
carried out in this latent space. We adopt a 3D UNet as the diffusion model. All diffusion models
are also trained from scratch. Table 4 presents the detailed hyperparameters on these datasets.
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Table 4: Hyperparameters of DyDiff training.

Low-resolution (64 × 64) High-resolution (128 × 128)

DyDiff BAIR RoboNet Turbulence SEVIR

Input channel 3 3 2 1
Prediction length 15 10 11 6
Observation length 1 2 4 7
Training steps 5× 105 5× 105 3× 105 4× 105

VAE channels [128, 256, 512]
VAE downsampling ratio 4× 4
VAE kl weighting 1× 10−6

Latent channel 3
SVD channels [64, 128, 256, 256]
Batch size 16
Learning rate 1× 10−4

LR Schedule Constant
Optimizer Adam

Evaluation metrics. We evaluate each method using commonly employed metrics, as outlined
below:

• Critical Success Index (CSI) (Schaefer, 1990) quantifies the accuracy of binary predictive
decisions. Following (Chen et al., 2024b), we apply a spatial window around each grid for
neighborhood-based evaluation (Jolliffe & Stephenson, 2012) to evaluate the “closeness”
of the forecasts. The window size (w) is set to 5, and average pooling (avg) is used within
the window.

• Continuous Ranked Probability Score (CRPS) (Gneiting & Raftery, 2007) measures
the alignment between probabilistic forecasts and ground truth data. To compute CRPS,
the model generates multiple forecasts, allowing the score to capture the entire probability
distribution. Following (Chen et al., 2024b), we calculate the neighborhood-based CRPS
using a window size of 8, and report results for two pooling modes: average pooling (avg)
and max pooling (max).

• The Peak Signal-to-Noise Ratio (PSNR) (Huynh-Thu & Ghanbari, 2008) measures the
ratio between the maximum possible signal power (in this case, an image or video) and the
power of the noise or distortion affecting it. A higher PSNR indicates less distortion and a
closer match to the original image.

• The Structural Similarity Index Measure (SSIM) (Wang et al., 2004) is a widely used
metric for evaluating the quality of images and video frames by assessing their perceived
structural similarity. The SSIM score ranges from -1 to 1, with 1 indicating perfect struc-
tural similarity and lower values indicating greater dissimilarity. To better present the re-
sults, we scale the SSIM score by a factor of 100.

• The Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018) evaluates
the similarity between two images by passing them through a pretrained neural network.
The network extracts features from both images, and the LPIPS score is calculated based
on the distance between these feature representations. A smaller LPIPS score indicates
higher similarity. Similar to SSIM, we also scale the LPIPS score by 100.

• The Fréchet Video Distance (FVD) (Unterthiner et al., 2018) is based on the Fréchet dis-
tance, a mathematical measure that computes the distance between two distributions. For
FVD, these distributions represent the feature space of real and generated videos extracted
by a neural network. Unlike the metrics mentioned above, FVD incorporates the temporal
dimension of videos, making it more suitable for evaluating video generation models.

Sampling protocals. During inference, we use DDIM sampler with 50 steps for both the stan-
dard DPM and our proposed Dynamical Diffusion. For video prediction benchmarks, including
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BAIR and RoboNet, following prior works (Gupta et al., 2023; Wu et al., 2024), we account for the
stochastic nature of video prediction by sampling 100 future trajectories per test video and selecting
the best one for the final PSNR, SSIM, and LPIPS scores. For FVD, we use all 100 samples. For sci-
entific spatiotemporal forecasting tasks, including Turbulence and SEVIR, we generate 8 predictions
for each test sample to compute CRPS and CSI, in line with prior work (Chen et al., 2024b).

C.2 TIME SERIES FORECASTING

Training details. For time series forecasting tasks, we follow the benchmark of TimeGrad (Ra-
sul et al., 2021a), which is a framework to apply diffusion models with the next-token prediction
paradiam in time series forecasting. For implementation of Dynamical Diffusion, we set P = 0,
i.e., apply dynamics on only the latest state to match the Markovian properties in the RNN used
in TimeGrad. Since time series have greater volatility, we set 1 − γt = 0.3(1 − αt) for training
and inference stability. We use exactly the same model architecture as TimeGrad. Since TimeGrad
does not provide publically available reproducible setups, we carefully tune the baselines and Dy-
namical Diffusion for the best performance on each dataset. All datasets are available through
GluonTS (Alexandrov et al., 2019), with detailed information shown in Table 5.

Table 5: Properties of time series forecasting datasets.

Dataset Dimension Domain Frequency Steps Prediction length

Exchange 8 R+ BUSINESS DAY 6,071 30
Solar 137 R+ HOUR 7,009 24
Electricity 370 R+ HOUR 5,833 24
Traffic 963 (0,1) HOUR 4,001 24
Taxi 1,214 N 30-MIN 1,488 24
Wikipedia 2,000 N DAY 792 30

Evaluation metrics. Following TimeGrad (Rasul et al., 2021a), we employ the Summed
CRPS (Matheson & Winkler, 1976) to capture the joint effect, where score is evaluated based on the
sum of predicted distribution.

Sampling protocals. We use DDIM sampler with 50 steps for the standard DPM and Dynamical
Diffusion. For calculating the Summed CRPS, we generate 100 predictions for each test sample.

D MORE EXPERIMENT RESULTS

D.1 SCIENTIFIC SPATIOTEMPORAL FORECASTING

In this section, we further experiment with Diffusion Transformers (DiT) (Peebles & Xie, 2023).
Table 6 presents the results of the Turbulence Flow dataset. We follow the same evaluation protocols
outlined in Appendix C for these experiments. The results demonstrate that DyDiff significantly
outperforms standard diffusion models, confirming its general applicability.

Table 6: Scientific spatiotemporal forecasting results on the Turbulence Flow dataset.

Backbone Method CRPS ↓ CSI ↑
(w5)(w8, avg) (w8,max)

SVD DPM 0.0313 0.0364 0.8960
DyDiff (ours) 0.0275 0.0315 0.8998

DiT DPM 0.0434 0.0480 0.8403
DyDiff (ours) 0.0358 0.0395 0.8548
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D.2 VIDEO PREDICTION

In this section, we provide additonal comparisons with state-of-the-art deterministic models, in-
cluding VideoGPT (Yan et al., 2021), MaskViT (Gupta et al., 2023), FitVid (Babaeizadeh et al.,
2021), MAGVIT (Yu et al., 2023), SVG (Villegas et al., 2019), GHVAE (Wu et al., 2021), and
iVideoGPT (Wu et al., 2024) on video prediction benchmarks. Table 7 and 8 present the results
on RoboNet and BAIR datasets, respectively. On the BAIR dataset, DyDiff demonstrates compa-
rable performance in the action-free scenario and significantly outperforms previous deterministic
methods in the action-conditioned scenario. However, the RoboNet dataset, characterized by its di-
verse object motion trajectories, poses a substantial challenge for both DPM and DyDiff, with both
methods falling short in performance. Notably, these methods employ networks with significantly
more parameters than ours—for instance, iVideoGPT contains 114M parameters, and MaskViT con-
tains 189M, compared to our model’s 63M parameters. Besides, some methods involve an addition
pretraining process (Wu et al., 2024).

Table 7: Addition comparison with deterministic methods on BAIR dataset. “-” marks that the value
is not reported in the original papers. LPIPS and SSIM scores are scaled by 100 for convenient
display.

BAIR FVD↓ PSNR↑ SSIM↑ LPIPS↓
action-free & 64×64 resolution

VideoGPT 2021 103.3 - - -
MaskViT 2023 93.7 - - -
FitVid 2021 93.6 - - -
MCVD 2022 89.5 16.9 78.0 -
MAGVIT 2023 62.0 19.3 78.7 12.3
iVideoGPT 2024 75.0 20.4 82.3 9.5
DPM 72.0 21.0 83.8 9.2
DyDiff (ours) 67.4 21.0 84.0 9.0

action-conditioned & 64×64 resolution

MaskViT 2023 70.5 - - -
iVideoGPT 2024 60.8 24.5 90.2 5.0
DPM 48.5 25.9 92.0 4.5
DyDiff (ours) 45.0 26.2 92.4 4.2

Table 8: Addition comparison with deterministic methods on RoboNet dataset. LPIPS and SSIM
scores are scaled by 100 for convenient display.

RoboNet FVD↓ PSNR↑ SSIM↑ LPIPS↓
action-conditioned & 64×64 resolution

MaskViT 2023 133.5 23.2 80.5 4.2
SVG 2019 123.2 23.9 87.8 6.0
GHVAE 2021 95.2 24.7 89.1 3.6
FitVid 2021 62.5 28.2 89.3 2.4
iVideoGPT 2024 63.2 27.8 90.6 4.9
DPM 92.9 24.9 83.9 8.2
DyDiff (ours) 81.7 25.1 84.2 7.9

D.3 TIME SERIES FORECASTING

This section shows additonal comparisons with the standard diffusion model baseline
(TimeGrad (Rasul et al., 2021a)) and the state-of-the-art time series forecasting models, includ-
ing VES (Hyndman et al., 2008), VAR (Lütkepohl, 2005)(-Lasso), GARCH (van der Weide, 2002),
DeepAR (Salinas et al., 2020), LSTP/GP-Copula (Salinas et al., 2019), KVAE (Krishnan et al.,
2017), NKF (de Bézenac et al., 2020) and Transformer-MAF (Rasul et al., 2021b). As demonstrated
in Table 9, diffusion-based forecasting models fundamentally achieve similar or better performance
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compared with deterministic models. Furthermore, Dynamical Diffusion generally outperforms
standard diffusion baselines.

Table 9: Addition comparison with deterministic methods on Time Series dataset. CRPSsum (lower
indicates better) is measured for its mean and standard deviation across five runs trained with differ-
ent seeds. “-” marks that the value is not reported in the original papers.

Method Exchange Solar Electricity Traffic Taxi Wikipedia

VES 2008 0.005±0.000 0.900±0.003 0.880±0.004 0.350±0.002 - -
VAR 2005 0.005±0.000 0.830±0.006 0.039±0.001 0.290±0.001 - -
VAR-Lasso 2005 0.012±0.000 0.510±0.006 0.025±0.000 0.150±0.002 - 3.100±0.004

GARCH 2002 0.023±0.000 0.880±0.002 0.190±0.001 0.370±0.001 - -
DeepAR 2020 - 0.336±0.014 0.023±0.001 0.055±0.003 - 0.127±0.042

LSTM-Copula 2019 0.007±0.000 0.319±0.011 0.064±0.008 0.103±0.006 0.326±0.007 0.241±0.033

GP-Copula 2019 0.007±0.000 0.337±0.024 0.025±0.002 0.078±0.002 0.208±0.183 0.086±0.004

KVAE 2017 0.014±0.002 0.340±0.025 0.051±0.019 0.100±0.005 - 0.095±0.012

NKF 2020 - 0.320±0.020 0.016±0.001 0.100±0.002 - -
Transformer-MAF 2021b 0.005±0.003 0.301±0.014 0.021±0.000 0.056±0.001 0.179±0.002 0.063±0.003

TimeGrad w/ DPM 0.007±0.000 0.372±0.064 0.021±0.002 0.042±0.003 0.122±0.012 0.070±0.007

TimeGrad w/ DyDiff 0.007±0.000 0.316±0.010 0.023±0.001 0.040±0.002 0.120±0.006 0.066±0.015
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