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ABSTRACT

In Federated Reinforcement Learning (FRL), agents aim to collab-
oratively learn a common task, while each agent is acting in its
local environment without exchanging raw trajectories. Existing
approaches for FRL either (a) do not provide any fault-tolerance
guarantees (against misbehaving agents), or (b) rely on a trusted
central agent (a single point of failure) for aggregating updates. We
provide the first decentralized Byzantine fault-tolerant FRL method.
Towards this end, we first propose a new centralized Byzantine
fault-tolerant policy gradient (PG) algorithm that improves over
existing methods by relying only on assumptions standard for non-
fault-tolerant PG. Then, as our main contribution, we show how a
combination of robust aggregation and Byzantine-resilient agree-
ment methods can be leveraged in order to eliminate the need for a
trusted central entity. Since our results represent the first sample
complexity analysis for Byzantine fault-tolerant decentralized fed-
erated non-convex optimization, our technical contributions may
be of independent interest. Finally, we corroborate our theoretical
results experimentally1 for common RL environments, demonstrat-
ing the speed-up of decentralized federations w.r.t. the number
of participating agents and resilience against various Byzantine
attacks.
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1 INTRODUCTION

Many real-world reinforcement learning (RL) systems consist of
a group of agents (e.g. a fleet of autonomous vehicles), in which
all agents aim to learn the same task, each in its local environ-
ment. Since RL models often suffer from poor sample complexity,
collaboration is highly desirable. However, as in the autonomous
driving example, trajectories of environment interactions may be
made up of large amounts of video and sensor data (too large to
transfer between agents), and possibly also with privacy restric-
tions. This motivates the need for distributed algorithms that can
leverage the power of collaboration without sharing raw trajecto-
ries. In the broader machine learning context, this setting has been
widely studied under the name Federated Learning (FL) [1, 2], and

1Our code is available at https://github.com/philip-jordan/decentralized-byzantine-RL.

has inspired Federated Reinforcement Learning (FRL) [3–6] as an
analogous concept in RL.

Policy gradient methods are among the most popular algorithms
in model-free RL. Existing work studies how to generalize such
approaches to FRL in a fully trusted setting [7]. In many practical
situations, however, there may not be any guarantee on the trust-
worthiness of information provided by the participating agents,
be it due to e.g. communication failure, or malicious attempts at
trying to prevent the system from learning. Methods that tolerate
the presence of some fraction of Byzantine agents have previously
been proposed and demonstrated to defend against some attacks in
practice [5]. As we are going to discuss in related work, so far, FRL
algorithms need additional non-standard assumptions regarding
gradient estimation noise.

Moreover, a crucial limitation of previous methods for achieving
Byzantine fault-tolerance is the need for one trusted party respon-
sible for aggregating updates, filtering out potentially malicious
inputs, and broadcasting results back to all participants. Introduc-
ing such a single point of failure seems like a high price to pay
for achieving Byzantine resilience—and is going against the very
idea of a trustless and robust design. Hence we are aiming for a
decentralized system, i.e., a system in which Byzantine behavior of
any participant can be tolerated, as long as only a reasonable num-
ber of such bad actors occur simultaneously. Algorithms achieving
both Byzantine fault-tolerance and decentralization have previ-
ously been proposed for general non-convex optimization [8] but
analyzed only w.r.t. infinite-time asymptotic behavior. We propose
a novel method and give finite-time sample complexity guarantees
for decentralized federated PG with Byzantine fault-tolerance.

More concretely, our contributions can be summarized as fol-
lows:

• As a starting point, we provide a new centralized Byzan-
tine fault-tolerant federated PG algorithm ByzPG, and prove
competitive sample complexity guarantees under assump-
tions that are standard in non-fault-tolerant PG literature.
In particular, unlike previous approaches, we do not rely on
deterministic bounds on gradient estimation noise.
• For our main contribution, we extend the above (centralized)
approach to the significantly more challenging decentralized
setting: With DecByzPG, we propose a decentralized Byzan-
tine fault-tolerant PG method. To the best of our knowledge,
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this is the first decentralized Byzantine fault-tolerant algo-
rithm for non-convex optimization with sample complexity
guarantee.
• Technically, we leverage the favorable interplay of fault-
tolerant aggregation and agreement mechanisms that so far
have only been studied in separation. Key to our analysis is
a novel lemma on the concentration of random parameter
vectors that helps control the bias incurred from agreement.
• To corroborate our theoretical results regarding both ByzPG
and DecByzPG experimentally, we demonstrate speed-up as
more agents join a federation, as well as tolerance against
different Byzantine attack scenarios.

The rest of this paper is organized as follows: In Section 2, we
provide the necessary background on RL while covering related
work on FRL and fault-tolerance. Section 3 introduces our setup re-
garding communication, the Byzantine failure model, and technical
assumptions needed for the sample complexity analysis. As a warm-
up, in Section 4, we introduce our centralized algorithm ByzPG
which in Section 5 is generalized to the decentralized DecByzPG.
Finally, our experiments are described and evaluated in Section 6.

2 BACKGROUND & RELATEDWORK

Reinforcement learning (RL) and policy gradient (PG). The
RL setup is commonly modeled as a Markov Decision Process
(MDP, see also [9]) M := {S,A,P,R, 𝛾, 𝜌} with state space S,
action space A, transition dynamics P(𝑠′ | 𝑠, 𝑎), and reward R :
S × A ↦→ [0, 𝑅] where 𝑅 > 0, 𝛾 ∈ (0, 1) is the discount factor, and
𝜌 is the initial state distribution. Let 𝜋 denote the policy controlling
an agent’s behavior, i.e., 𝜋 (𝑎 | 𝑠) is the probability that the agent
chooses action 𝑎 at state 𝑠 . A trajectory 𝜏 := {𝑠0, 𝑎0, . . . , 𝑠𝐻−1, 𝑎𝐻−1}
is a sequence of state-action pairs followed by an agent accord-
ing to a stationary policy 𝜋 , where 𝑠0 ∼ 𝜌 . We define R(𝜏) :=∑𝐻−1
𝑡=0 𝛾𝑡R (𝑠𝑡 , 𝑎𝑡 ) as the cumulative discounted reward for a trajec-

tory 𝜏 . Note that here we study episodic MDPs with fixed trajectory
horizon 𝐻 .

PG methods are popular in model-free RL [10, 11]. Compared to
deterministic value-function-based methods, PG is more effective
when applied to tasks with high-dimensional or infinite action
spaces. Let 𝜋𝜃 denote the policy parameterized by 𝜃 ∈ R𝑑 , and
𝑝 (𝜏 | 𝜋𝜃 ) the trajectory distribution induced by policy 𝜋𝜃 . The
expected discounted future reward when following 𝜋𝜃 is given
by 𝐽 (𝜃 ) := E𝜏∼𝑝 ( · |𝜃 ) [R(𝜏) | M] whose gradient w.r.t. 𝜃 is

∇𝜃 𝐽 (𝜃 ) =
∫
𝜏

R(𝜏)∇𝜃𝑝 (𝜏 | 𝜃 ) 𝑑𝜏

= E𝜏∼𝑝 ( · |𝜃 ) [∇𝜃 log𝑝 (𝜏 | 𝜃 )R(𝜏) | M] . (1)

Hence we can use gradient ascent in order to optimize 𝐽 (𝜃 ) over
𝜃 ∈ R𝑑 . Since (1) involves computing an integral over all possible
trajectories, we typically use stochastic gradient ascent. In each
iteration, a batch of trajectories {𝜏𝑖 }𝑀𝑖=1 is sampled at the current
policy 𝜃 . Then, the policy is updated by 𝜃 ← 𝜃 + 𝜂∇̂𝑀 𝐽 (𝜃 ), where
𝜂 is the step size and ∇̂𝑀 𝐽 (𝜃 ) is an estimate of (1) based on the sam-
pled trajectories {𝜏𝑖 }𝑀𝑖=1: ∇̂𝑀 𝐽 (𝜃 ) =

1
𝑀

∑𝑀
𝑖=1 ∇𝜃 log 𝑝 (𝜏𝑖 | 𝜃 ) R (𝜏𝑖 ).

Commonly used policy gradient estimators, e.g. REINFORCE [12]

and GPOMDP [13], can be written as

∇̂𝑀 𝐽 (𝜃 ) =
1
𝑀

𝑀∑︁
𝑖=1

𝑔(𝜏𝑖 | 𝜃 )

where 𝜏𝑖 = {𝑠𝑖0, 𝑎
𝑖
0, . . . , 𝑠

𝑖
𝐻−1, 𝑎

𝑖
𝐻−1} and 𝑔(𝜏𝑖 | 𝜃 ) is an unbiased

estimate of ∇𝜃 log𝑝 (𝜏𝑖 | 𝜃 )R(𝜏𝑖 ). For more details on gradient
estimation and sampling, we refer to Appendix A.1.

Non-convex optimization. Despite PG’s additional challenges
of non-stationarity and the non-finite-sum structure, improvements
in convergence results in non-convex optimization have generally
led to similar progress for optimizing the non-concave 𝐽 (𝜃 ) in PG.
The O(𝜀−4) sample complexity for reaching an 𝜀-stationary point,
i.e., 𝜃 such that E[∥∇𝐽 (𝜃 )∥2] ≤ 𝜖2, of SGD [14] and vanilla PG [15]
has been lowered to O(𝜀−10/3) by SVRG, and SVRPG [16] respec-
tively. These methods rely on an inner loop that reuses old gradient
estimates for reduced variance which in the case of SVRPG is im-
plemented via importance sampling. The recently proposed PAGE
estimator [17], and its PG adaptation PAGE-PG [18], replace the in-
ner loop by a probabilistic switch, lowering the sample complexity
to O(𝜀−3).

Fault-tolerance. Byzantine fault-tolerance [19] has long been
established as the strongest notion of resilience against arbitrary
failure or deliberate manipulation of distributed systems. Regarding
previous work in the federated optimization literature, we distin-
guish between the rather common centralized, and the far less
studied decentralized, sometimes called collaborative, setting.

(a) Centralized: In the presence of a trusted coordinator, Byzan-
tine fault-tolerant non-convex optimization has been widely
studied—with approaches differing mostly in terms of filter-
ing techniques and problem assumptions [20–22]. We refer
to [23] for an overview of such commonly used Byzantine-
resilient methods for aggregating potentially malicious up-
dates at a central server. Regarding Byzantine-tolerant PG,
[5] shows promising empirical results. However, theoretical
guarantees are proven only under deterministic noise bounds
which makes results difficult to appreciate in comparison
with non-fault-tolerant methods that do not rely on such
assumptions. Recently, [24] has proposed a non-convex opti-
mization algorithm leveraging the favorable interplay of cer-
tain robust aggregators and the above-mentioned variance-
reduced PAGE estimator. Our centralized ByzPG extends
their ideas into the PG setting, with a modified algorithm
and tightened analysis.

(b) Decentralized: In the PG context, there is no previous work
studying decentralized Byzantine-tolerant methods. More
generally, [8] proposes a fault-tolerant algorithm for decen-
tralized non-convex optimization. While convergence is only
proven in an infinite-time asymptotic sense, their notion of
averaging agreement is shown to be of crucial importance for
decentralized learning. Indeed, the notion of 𝜖-approximate
Byzantine agreement on 𝑑-dimensional inputs had previ-
ously been proposed [25, 26]. However, unlike averaging
agreement, such methods show poor applicability in our set-
ting since the fraction of tolerable Byzantines goes to zero
as 𝑑 increases.



3 SETUP AND ASSUMPTIONS

3.1 Distributed Computing Setup

Communication is assumed to happen in a round-based, synchro-
nous, all-to-all manner among 𝐾 agents, and the exchange of raw
trajectories is prohibited. In particular, our algorithms will only
involve sending current values of local policy parameters and re-
spective gradients.

In order to model both system failure as well as malicious agent
behavior, we tolerate a fraction of Byzantine agents, in particular:

Assumption 1 (Byzantine agents). Let 𝛼max = 1/2 in the
centralized setting, and 𝛼max = 1/4 in the decentralized setting,
respectively. Denote byH𝑡 ⊂ [𝐾] the set of honest (i.e. non-Byzantine)
agents in iteration 𝑡 of an algorithm. Then there exist 𝛼, 𝜖 > 0 such
that 𝛼 := 𝛼 + 𝜖 < 𝛼max and for all 𝑡 , |H𝑡 | ≥ (1 − 𝛼)𝐾 .

We point out thatH𝑡 may be different for each iteration 𝑡 , hence
it is of no use for any agent to remember past communication in
order to infer who might be Byzantine.

Instead of sending updates as prescribed by our algorithms,
Byzantine agents may send arbitrary values. In particular, these
values may be chosen by an omniscient entity with access to all
information (e.g. agents’ local state, messages that have been sent,
the definition of the algorithm, who is Byzantine, etc.) and con-
trolling all Byzantine agents. This means Byzantine agents may
collude or base their behavior on any other non-public information.
However, Byzantine agents are not omnipotent, e.g. they cannot
interfere in communication between honest agents by changing or
delaying messages. Moreover, we assume that Byzantines cannot
alter local state, not even their own state. In the centralized case,
this assumption does not change anything, since our algorithm
ByzPG only maintains cross-iteration state at the trusted central
agent. In the decentralized case, however, corrupted local state may
otherwise be passed on from a Byzantine agent to an honest agent
across iterations. Note also that in particular, any agent not sending
messages in the required format or omitting updates, potentially
due to failure of the communication network, can be modeled as
Byzantine.

3.2 Reinforcement Learning Assumptions

Our theoretical analysis aims to bound the required number of
sampled trajectories required per agent in order to reach an 𝜖-
stationary solution. In the centralized case, this refers to the central
agent finding 𝜃 ∈ R𝑑 such that ∥∇𝐽 (𝜃 )∥ ≤ 𝜖 which can then be
broadcast to all participants. A generalized solution concept for the
decentralized setting is presented in Section 5.

In the following, we state the set of assumptions our analysis is
based on, which is standard in the study of PG, see e.g. [16, 18, 27,
28]. In particular, we do not require a more restrictive version of
Assumption 4 made in [5]. Hence, our sample complexity results
are amenable to comparison with non-fault tolerant counterparts.

Note that we are assuming homogeneity of all agents’ local
environments, and all agents hence share the same objective 𝐽 (·).

Assumption 2 (Log-policy gradient norm). For any 𝑎 ∈ A
and 𝑠 ∈ S, there exists a constant𝐺 > 0 such that for any 𝜃 ∈ R𝑑 we
have ∥∇𝜃 log𝜋𝜃 (𝑎 | 𝑠)∥ ≤ 𝐺 .

Assumption 3 (Log-policy smoothness). For any 𝜃 ∈ R𝑑 , 𝜋𝜃
is twice differentiable, and for any 𝑎 ∈ A and 𝑠 ∈ S, there exists a
constant𝑀 > 0 such that

∇2
𝜃

log𝜋𝜃 (𝑎 | 𝑠)
 ≤ 𝑀 .

Assumption 4 (Gradient estimator variance). There exists a
constant 𝜎 > 0 such that for any 𝜃 ∈ R𝑑 , we have Var [𝑔(𝜏 | 𝜃 )] =
E∥𝑔(𝜏 | 𝜃 ) − ∇𝐽 (𝜃 )∥2 ≤ 𝜎2.

Assumption 5 (Importance weight variance). For any pol-
icy pair 𝜃𝑎, 𝜃𝑏 ∈ R𝑑 and 𝜏 ∼ 𝑝 (· | 𝜃𝑏 ), the importance weight
𝜔 (𝜏 | 𝜃𝑏 , 𝜃𝑎) =

𝑝 (𝜏 |𝜃𝑎 )
𝑝 (𝜏 |𝜃𝑏 ) is well-defined. In addition, there exists a

constant𝑊 > 0 such that Var [𝜔 (𝜏 | 𝜃𝑏 , 𝜃𝑎)] ≤𝑊 ∥𝜃𝑎 − 𝜃𝑏 ∥2.
For completeness, we restate the following commonly used

proposition from [16].

Proposition 1. Under the above assumptions 2, 3, 4, and 5, with
𝑔(𝜏 | 𝜃 ) denoting the REINFORCE or GPOMDP gradient estimator,
we have for all 𝜃, 𝜃1, 𝜃2 ∈ R𝑑 :

(1) ∥𝑔𝑘 (𝜏 | 𝜃 )∥ ≤ 𝐶𝑔 with 𝐶𝑔 = 𝐻𝐺 (𝑅 + |𝐶𝑏 |)/(1 − 𝛾) and 𝐶𝑏 is
the baseline reward,

(2) ∥𝑔(𝜏 | 𝜃1) − 𝑔(𝜏 | 𝜃2)∥ ≤ 𝐿𝑔 ∥𝜃1 − 𝜃2∥ with 𝐿𝑔 = 𝐻𝑀 (𝑅 +
|𝐶𝑏 |)/(1 − 𝛾), and

(3) 𝐽 (𝜃 ) is 𝐿-smooth with 𝐿 = 𝐻𝑅(𝑀 + 𝐻𝐺2)/(1 − 𝛾).

4 CENTRALIZED BYZANTINE-TOLERANT

FEDERATED PG

In this section, we describe ByzPG, given by Algorithm 1, our cen-
tralized method for Byzantine fault-tolerant PG. This also serves as
a warm-up for introducing parts of our method that are going to
reappear in Section 5. Note that in Algorithm 1, Be (𝑝) denotes a
Bernoulli distribution with success probability 𝑝 andU(𝑆) denotes
a uniform distribution over a finite set 𝑆 .

Algorithm 1 ByzPG at server agent

1: input: 𝜃0 ∈ R𝑑 , large batch size 𝑁 , small batch size 𝐵, step size
𝜂, probability 𝑝 ∈ (0, 1]

2: for 𝑡 = 0 to 𝑇 − 1 do

3: 𝑐𝑡 ← Sample (Be (𝑝))
4: if 𝑐𝑡 = 1 or 𝑡 = 0 then

5: for worker agent 𝑘 ∈ [𝐾] in parallel do
6: sample trajectories {𝜏 (𝑘 )

𝑡,𝑖
}𝑁
𝑖=1 from 𝑝 (· | 𝜃𝑡 )

7: �̃�
(𝑘 )
𝑡 = 1

𝑁

∑𝑁
𝑖=1 𝑔(𝜏

(𝑘 )
𝑡,𝑖
| 𝜃𝑡 )

8: 𝑣𝑡 ← Aggregate

(
⟨̃𝑣 (𝑘 )𝑡 ⟩𝐾𝑘=1

)
⊲ �̃�
(𝑘 )
𝑡 received from

worker agent 𝑘 , ∀𝑘 ∈ [𝐾]
9: else

10: sample trajectories {𝜏𝑡,𝑖 }𝐵𝑖=1 from 𝑝 (· | 𝜃𝑡 )
11: 𝑣𝑡 =

1
𝐵

∑𝐵
𝑖=1 𝑔(𝜏𝑡,𝑖 | 𝜃𝑡 )+𝑣𝑡−1− 1

𝐵

∑𝐵
𝑖=1 𝑔

𝜔𝜃𝑡
(
𝜏𝑡,𝑖 | 𝜃𝑡−1

)
12: 𝜃𝑡+1 = 𝜃𝑡 + 𝜂𝑣𝑡 ⊲ broadcast 𝜃𝑡+1 to worker agents
13: output: 𝜃

𝑇
with 𝑇 ∼ U ([𝑇 ])

4.1 Method

Instead of the usual inner loop seen in variance-reduced methods
such as SVRPG [27], we probabilistically switch between update



types, as in PAGE-PG [18]. Concretely, in each iteration, we ei-
ther (a) sample a large batch of 𝑁 trajectories at 𝜃𝑡 for gradient
estimation, or (b) sample a small batch of 𝐵 trajectories and use a
variance-reduced estimator incorporating the previous iteration’s
gradient estimate, and employ importance sampling to correct for
non-stationarity. For details on gradient estimation, importance
sampling, and the definition of 𝑔𝜔𝜃𝑡

(
𝜏𝑡,𝑖 | 𝜃𝑡−1

)
we refer to Appen-

dix A.1. Note that with probability 𝑝 we use (a), and (b) otherwise—
except for the first iteration, in which only (a) is well-defined. Fur-
thermore, (a) is performed at all worker agents in parallel which
have previously received the current parameters 𝜃𝑡 from the server
agent. Then, the individual estimates �̃�𝑘𝑡 are aggregated at the server
via the Aggregate subroutine described below. In the case of (b),
we sample and estimate the gradient only at the server, hence there
is no need for aggregation.

We point out that loopless variance-reduction has previously
been used in conjunction with Byzantine fault-tolerant aggregation
in [24]’s Byz-VR-Marina. However, ByzPG distinguishes itself in
two ways:

(1) ByzPG only samples at workers in case (a) while Byz-VR-
Marina does so in either case. Our analysis suggests that
unlike in case (a), in (b), the bias introduced by Byzantine
filtering outweighs the benefits from the reduced variance of
the aggregated sample. In our PG setting, this modification
is key to achieving sample complexity competitive with non-
fault-tolerant methods.

(2) Byz-VR-Marina is designed for general non-convex finite-
sum optimization. ByzPG handles the additional challenges
of non-stationarity and not having access to the full gradient
by relying on importance sampling and switching between
a large and small batch size.

The following notion of robust aggregation specifying our re-
quirements on the Aggregate subroutine is adopted from [24] and
has first appeared in a similar form in [29].

Definition 1 (robust aggregation). Let 𝐶𝑟𝑎 > 0 and 𝛼 ∈
[0, 1/2). A function Aggregate : (R𝑑 )𝐾 → R𝑑 is an (𝛼,𝐶𝑟𝑎)-
robust aggregator if for any tuple of inputs ⟨𝜃 (𝑘 ) ⟩𝑘∈[𝐾 ] with 𝜃 (𝑘 ) ∈
R𝑑 , and for any H ⊆ 𝐾 with |H | ≥ (1 − 𝛼)𝐾 , denoting 𝜃 :=
Aggregate(𝜃 (1) , . . . , 𝜃 (𝐾 ) ), it holds that

E
[
∥𝜃 − 𝜃 ∥2

]
≤ 𝐶𝑟𝑎𝛼

|H |(|H | − 1)
∑︁
𝑖,𝑙∈H

E
[
∥𝜃 (𝑖 ) − 𝜃 (𝑙 ) ∥2

]
where 𝜃 := 1

|H |
∑
𝑖∈H 𝜃

(𝑖 ) . Expectations are taken over the random-
ness of the input.

Known implementations satisfying Definition 1 are discussed in
Appendix A.2. In particular, there exist (𝛼,𝐶𝑟𝑎)-robust aggregators
for constant 𝐶𝑟𝑎 and any 𝛼 ∈ [0, 1/2).

4.2 Convergence Analysis and Sample

Complexity

Next, we present the convergence guarantees for ByzPG, with
proofs deferred to Appendix B.

Theorem 1. Let Assumptions 2, 3, 4, and 5 hold. Suppose Aggre-
gate is an (𝛼,𝐶𝑟𝑎)-robust aggregator with constant 𝐶𝑟𝑎 > 0 and 𝛼

satisfying Assumption 1. Then the following holds for the output of
ByzPG, i.e., Algorithm 1: For 𝜂 = Θ(min{

√︁
𝑝𝐾, 1/𝐿}), there exists a

constant 𝐶 > 0, such that for any 𝑇 ≥ 1,

E
[
∥∇𝐽

(
𝜃
𝑇

)
∥2

]
≤ 2E [Φ0]

𝜂𝑇
+ 𝐶𝜎

2

𝑁

(
𝛼 + 1

𝐾

)
with Φ0 := 𝐽 ∗− 𝐽 (𝜃0) + 𝜂𝑝 ∥𝑣0 − ∇𝐽 (𝜃0)∥2 and 𝐽 ∗ := max𝜃 ∈R𝑑 𝐽 (𝜃 ).

Corollary 1. In the setting of Theorem 1, by choosing 𝑝 = 1/𝑁 ,
the expected number of trajectories that need to be sampled per agent

to achieve E[∥∇𝐽
(
𝜃
𝑇

)
∥2] ≤ 𝜖2 is

O
(
𝛼1/2

𝐾1/2𝜖3 +
1
𝐾𝜖3

)
.

Observe that in particular, if 𝛼 = 0, we need O(𝐾−1𝜖−3) trajecto-
ries in expectation, and for constant 𝛼 > 0, we need O(𝐾−1/2𝜖−3)
trajectories in expectation. We hence recover the SOTA sample
complexity of PAGE-PG [18] (which is proven under assumptions
equivalent to ours) for𝐾 = 1, and asymptotically improve for larger
𝐾 , despite the presence of Byzantines.

5 DECENTRALIZED BYZANTINE-TOLERANT

FEDERATED PG

5.1 Method

In the decentralized setting, instead of having a centrallymaintained
𝜃𝑡 ∈ R𝑑 , the state at each iteration 𝑡 is given by a tuple ⟨𝜃 (𝑘 )𝑡 ⟩𝑘∈[𝐾 ]
of each agent’s local parameters with 𝜃 (𝑘 )𝑡 ∈ R𝑑 . We are interested
in the following solution concept.

Definition 2 (𝐾-agent 𝛼-tolerant 𝜖-approximate solution).
For 𝜖 > 0, we call ⟨𝜃 (𝑘 ) ⟩𝑘∈[𝐾 ] with 𝜃 (𝑘 ) ∈ R𝑑 a 𝐾-agent 𝛼-tolerant
𝜖-stationary point if ∃G ⊂ [𝐾] such that |G| ≥ (1 − 𝛼)𝐾 and
∀𝑘 ∈ G, we have ∥∇𝐽 (𝜃 (𝑘 ) )∥ ≤ 𝜖 . We say a decentralized algorithm
achieves a 𝐾-agent 𝛼-tolerant 𝜖-approximate solution in 𝑇 rounds
if ∃G𝑇 ⊂ [𝐾] such that |G𝑇 | ≥ (1 − 𝛼)𝐾 and ∀𝑘 ∈ G𝑇 , we have
E[∥∇𝐽 (𝜃 (𝑘 )

𝑇
)∥2] ≤ 𝜖2, where 𝜃 (𝑘 )

𝑇
is the output of agent 𝑘 after

𝑇 rounds and the expectation is taken w.r.t. all randomness of the
algorithm.

As a first step towards decentralizing ByzPG, suppose all agents
simultaneously execute ByzPG, each with itself in the role of the
server, and denote the 𝑘-th agent’s resulting local parameters in
iteration 𝑡 by 𝜃 (𝑘 )𝑡 . Since Byzantines may send inconsistent gradient
estimates to different agents, already after the first iteration, wemay
have 𝜃 (𝑘 )1 ≠ 𝜃

(𝑘 ′ )
1 for 𝑘 ≠ 𝑘′. Such disagreement on parameters

across agents may be detrimental to convergence at each agent. As
a remedy, we adopt the notion of averaging agreement that has
been proposed by [8] in the context of Byzantine fault-tolerant
collaborative learning.

Definition 3 (Averaging Agreement). Let Avg-Agree𝜅 be a
decentralized algorithm that as input receives ⟨𝜃 (𝑘 ) ⟩𝑘∈[𝐾 ] where
𝜃 (𝑘 ) ∈ R𝑑 is known only to agent𝑘 . Under Assumption 1, letG𝑡 ⊆ H𝑡
be such that |G𝑡 | ≥ (1 − 𝛼)𝐾 . Suppose after 𝜅 rounds of communi-
cation, where 𝜅 ∈ N is a parameter of the algorithm, Avg-Agree𝜅
terminates with output ⟨𝜃 (𝑘 ) ⟩𝑘∈G𝑡 in the form of 𝜃 (𝑘 ) ∈ R𝑑 being



Algorithm 2 DecByzPG at the 𝑘-th agent

1: input: 𝜃0 ∈ R𝑑 , large batch size 𝑁 , small batch size 𝐵, step size 𝜂, probability 𝑝 ∈ (0, 1]
2: initialize 𝜃 (𝑘 )0 = 𝜃0
3: for 𝑡 = 0 to 𝑇 − 1 do

4: 𝑐𝑡 ← Common-Sample (Be (𝑝))

5: sample trajectories {𝜏 (𝑘 )
𝑡,𝑖
}𝑀
𝑖=1 from 𝑝 (· | 𝜃 (𝑘 )𝑡 ) where𝑀 =

{
𝑁 if 𝑐𝑡 = 1 or 𝑡 = 0
𝐵 else

6: �̃�
(𝑘 )
𝑡 =


1
𝑁

∑𝑁
𝑖=1 𝑔(𝜏

(𝑘 )
𝑡,𝑖
| 𝜃 (𝑘 )𝑡 ) if 𝑐𝑡 = 1 or 𝑡 = 0

1
𝐵

∑𝐵
𝑖=1 𝑔(𝜏

(𝑘 )
𝑡,𝑖
| 𝜃 (𝑘 )𝑡 ) +

1
𝜂 (𝜃
(𝑘 )
𝑡 − 𝜃 (𝑘 )

𝑡−1) −
1
𝐵

∑𝐵
𝑖=1 𝑔

𝜔
𝜃
(𝑘 )
𝑡 (𝜏 (𝑘 )

𝑡,𝑖
| 𝜃 (𝑘 )
𝑡−1) else

7: 𝑣
(𝑘 )
𝑡 ← Aggregate

(
⟨̃𝑣 (𝑘

′ )
𝑡 ⟩𝐾

𝑘 ′=1

)
8: 𝜃

(𝑘 )
𝑡+1 = 𝜃

(𝑘 )
𝑡 + 𝜂𝑣 (𝑘 )𝑡

9: 𝜃
(𝑘 )
𝑡+1 ← Avg-Agree𝜅

(
⟨𝜃 (𝑘

′ )
𝑡+1 ⟩

𝐾
𝑘 ′=1

)
10: output: 𝜃

(𝑘 )
𝑇

with 𝑇 ∼ Common-Sample (U ([𝑇 ]))

known to agent 𝑘 . Then, we say Avg-Agree𝜅 achieves𝐶𝑎𝑣𝑔-averaging
agreement for some 𝐶𝑎𝑣𝑔 > 0, if for any input it is guaranteed that

max
𝑖,𝑙∈G𝑡

∥𝜃 (𝑖 ) − 𝜃 (𝑙 ) ∥ ≤
max𝑖,𝑙∈G𝑡 ∥𝜃 (𝑖 ) − 𝜃 (𝑙 ) ∥

2𝜅
and

∥ ¯̂
𝜃 − 𝜃 ∥ ≤ 𝐶𝑎𝑣𝑔 · max

𝑖,𝑙∈G𝑡
∥𝜃 (𝑖 ) − 𝜃 (𝑙 ) ∥

where 𝜃 = 1
| G𝑡 |

∑
𝑘∈G𝑡 𝜃

(𝑘 ) and ¯̂
𝜃 = 1

| G𝑡 |
∑
𝑘∈G𝑡 𝜃

(𝑘 ) .

Known implementations satisfying the above definition are stated
and discussed in Appendix A.3. Our algorithm DecByzPG, as de-
scribed by Algorithm 2, employs an Avg-Agree𝜅 subroutine at the
end of each iteration to ensure averaging agreement on agents’
local parameters.

We point out that while [8] makes use of averaging agreement
in a similar context, their analysis does not yield sample complexity
results. Our improved results rely upon the following insights:

(1) Careful analysis of bias and variance of the realized gradi-
ent estimates, which we define as 𝑣 (𝑘 )𝑡 := 1

𝜂

(
𝜃
(𝑘 )
𝑡+1 − 𝜃

(𝑘 )
𝑡

)
,

reveal that variance-reduced methods combined with the no-
tion of robust aggregation from Definition 1 show favorable
interplay with averaging agreement. In particular, the low
variance of intermediate estimates �̃� (𝑘 )𝑡 and 𝑣 (𝑘 )𝑡 keep the
bias introduced by Avg-Agree𝜅 small.

(2) Controlling this bias introduced by Avg-Agree𝜅 further re-
quires a bound on the expected diameter of agents’ parame-
ters before agreement, i.e., the 𝜃 (𝑘 )

𝑡+1 ’s. We leverage the fact
that only the diameter of some large subset of parameters
needs to be bounded, allowing us to apply strong concentra-
tion bounds instead of a weak union bound.

In place of Sample in Line 3 of Algorithm 1, DecByzPG requires
a distributed Byzantine fault-tolerant sampling procedure. While
such implementations have been studied in theory [30], in practice,
we may simply use a pseudorandom generator with a seed derived
from the common initialization 𝜃0.

5.2 Convergence Analysis and Sample

Complexity

We next present sample complexity guarantees for DecByzPG, and
provide a proof sketch outlining key ideas required for the analysis.

Theorem 2. Let Assumptions 2, 3, 4, and 5 hold. Suppose Aggre-
gate is an (𝛼,𝐶𝑟𝑎)-robust aggregator for constant 𝐶𝑟𝑎 > 0 and 𝛼
as in Assumption 1. Let further Avg-Agree𝜅 achieve 𝐶𝑎𝑣𝑔-averaging

agreement for constant 𝐶𝑎𝑣𝑔 > 0. For 𝐴 = Θ
(
𝛼
𝑝2 + 1

𝑝𝐾

)
, choose

𝜂 = 1
2 min

{
1√
𝐴
, 1
𝐿

}
, and 𝜅 = Θ

(
log 𝑁𝐾

𝑝2

)
. Then the following holds

for the output of DecByzPG, i.e., Algorithm 2: There exists a constant
𝐶 > 0 such that for any 𝑇 ≥ 1, ∃G

𝑇
⊂ [𝐾] with |G

𝑇
| ≥ (1 − 𝛼)𝐾

and ∀𝑘 ∈ G
𝑇
,

E

[∇𝐽 (
𝜃
(𝑘 )
𝑇

)2
]
≤ 4E [Φ0]

𝜂𝑇
+ 𝐶𝜎

2

𝑁

(
𝛼 + 1

𝐾

)
+ O

(
2−𝜅

)
where we define Φ0 := 𝐽 ∗ − 𝐽 (𝜃0) + 2𝜂

𝑝

 1
𝐾

∑
𝑘∈[𝐾 ] 𝑣

(𝑘 )
0 − ∇𝐽 (𝜃0)

2

with 𝐽 ∗ := max𝜃 ∈R𝑑 𝐽 (𝜃 ).

Corollary 2. In the setting of Theorem 2, by choosing 𝑝 = 1/𝑁
and 𝜅 = Θ

(
max

{
log (𝑁𝐾) , log

(
𝜖−1)}) , the expected number of

trajectories that need to be sampled per agent, to achieve a 𝐾-agent
𝛼-tolerant 𝜖-approximate solution as in Definition 2, is

O
(
𝛼3/2

𝜖4 +
𝛼1/2

𝐾𝜖4 +
𝛼1/2

𝐾1/2𝜖3 +
1
𝐾𝜖3

)
.

In particular, if 𝛼 = 0, we need O(𝐾−1𝜖−3) trajectories in ex-
pectation which matches with our respective result from Corollary
1. The same sample complexity has been obtained in [7] for a
momentum-based decentralized PG method that, however, lacks
fault-tolerance. For constant 𝛼 > 0, we need O(𝜖−4) trajectories
in expectation which in our setting matches for example the com-
plexity of single-agent vanilla PG [15]. If, e.g., a constant number
of agents are Byzantine, i.e., 𝛼 = Θ(𝐾−1), we get a complexity
of O(𝐾−3/2𝜖−4 + 𝐾−1𝜖−3). Hence asymptotic speed-up w.r.t. the



number of agents is possible despite the presence of Byzantine
agents.

Remark. Besides sample complexity, we prefer algorithms with
low communication complexity. Due to Avg-Agree𝜅 , each of the 𝑇
iterations of DecByzPG involves 𝜅 = Θ(max{log(𝑁𝐾), log(𝜖−1)})
rounds of all-to-all communication, each consisting of O(𝐾2) mes-
sages containing a vector in R𝑑 . We point out that the logarithmic
number of rounds is crucial for the practicality of our decentralized
algorithm, as otherwise the cost of communication may outweigh the
benefits of the lower sample complexity gained from collaboration.

Due to space constraints, the full proofs of Theorem 2 and Corol-
lary 2, as well as all required lemmas are deferred to Appendix
C. Here, we want to focus on one key argument of the proof re-
sponsible for controlling the diameter of agents’ local parameters.
Before stating and proving the two respective lemmas, we introduce
additional notation: Recall thatH𝑡 ⊂ [𝐾] is the set of honest, i.e.,
non-Byzantine agents as in Assumption 1 with |H𝑡 | ≥ (1 − 𝛼)𝐾 .
In addition, with 𝛼 = 𝛼 + 𝜖 < 𝛼max = 1/4, denote the diameter of a
tuple of vectors by Δ2 (·)2, e.g., for some 𝑆 ⊆ [𝐾], let

Δ2
(
⟨𝜃 (𝑖 )𝑡 ⟩𝑖∈𝑆

)
:= max
𝑖, 𝑗∈𝑆

∥𝜃 (𝑖 )𝑡 − 𝜃
( 𝑗 )
𝑡 ∥

and consider the set

G𝑡 := arg min
𝑆⊂H𝑡 , |𝑆 | ≥ (1−𝛼 )𝐾

Δ2
(
⟨𝜃 (𝑖 )𝑡 ⟩𝑖∈𝑆

)
⊂ H𝑡

which we will call the set of good agents. As we will show below, the
diameter of good agents’ parameters exhibits good concentration
in the sense that we obtain stronger bounds as would hold for the
expected diameter of all honest agents’ parameters. The diameter
of good agents’ parameters after agreement will frequently occur
as an error term which we denote by

EΔ𝑡 := Δ2
(
⟨𝜃 (𝑖 )𝑡 ⟩𝑖∈G𝑡

)2
. (2)

Finally, we abbreviate

T̃1,𝑡 :=
1

|G𝑡 | ( |G𝑡 | − 1)
∑︁
𝑖,𝑙∈G𝑡

E
[
∥𝑣 (𝑖 )𝑡 − 𝑣

(𝑙 )
𝑡 ∥

2 | 𝑐𝑡 = 1
]
,

T̃0,𝑡 :=
1

|G𝑡 | ( |G𝑡 | − 1)
∑︁
𝑖,𝑙∈G𝑡

E
[
∥𝑣 (𝑖 )𝑡 − 𝑣

(𝑙 )
𝑡 ∥

2 | 𝑐𝑡 = 0
]
.

The following lemma bounds the diameter of good agents’ pa-
rameters after aggregation and before agreement in iteration 𝑡 ,
distinguishing between the two cases given by the probabilistic
switch.

Lemma 1. For any 𝜖 > 0, it holds that

E

[
Δ2

(
⟨𝜃 (𝑖 )
𝑡+1⟩𝑖∈G𝑡

)2
| 𝑐𝑡 = 1

]
≤ 2E[EΔ𝑡 ] +

10𝜂2𝐶𝑟𝑎𝛼 T̃1,𝑡
𝜖

,

E

[
Δ2

(
⟨𝜃 (𝑖 )
𝑡+1⟩𝑖∈G𝑡

)2
| 𝑐𝑡 = 0

]
≤ 2E[EΔ𝑡 ] +

10𝜂2𝐶𝑟𝑎𝛼 T̃0,𝑡
𝜖

.

Proof. First, we define

𝑆𝑡 := arg min
𝑆⊂G𝑡 , |𝑆 | ≥ (1−(𝛼+𝜖 ) )𝐾

Δ2
(
⟨𝑣 (𝑖 )𝑡 ⟩𝑖∈𝑆𝑡

)
⊂ H𝑡 ⊂ [𝐾]

and aim to bound E
[
Δ2 (⟨𝑣 (𝑖 )𝑡 ⟩𝑖∈𝑆𝑡 )2

]
. Observe that we have

Δ2
(
⟨𝑣 (𝑖 )𝑡 ⟩𝑖∈𝑆𝑡

)2
≤ max
𝑖∈𝑆𝑡
∥ ¯̃𝑣𝑡 − 𝑣 (𝑖 )𝑡 ∥

2 .

For 𝑖 ∈ H𝑡 , let T 𝑖 be such that E[∥ ¯̃𝑣𝑡 − 𝑣 (𝑖 )𝑡 ∥2] ≤ T 𝑖 (we will plug
in the right bound T 𝑖 later) where ¯̃𝑣𝑡 := 1

| G𝑡 |
∑
𝑖∈G𝑡 𝑣

(𝑖 )
𝑡 , and let 𝑋𝑖

be indicator random variables for the events

∥ ¯̃𝑣𝑡 − 𝑣 (𝑖 )𝑡 ∥
2 ≥ 2

𝜖
· T 𝑖 .

Let 𝑋 =
∑
𝑖∈H𝑡

𝑋𝑖 . Our goal is to upper bound E𝑋𝑖 = Pr [𝑋𝑖 = 1]
in order to use Chernoff concentration bounds on 𝑋 .

By Lemma 8 (see Appendix A.4), we get

Pr [𝑋𝑖 = 1] = Pr
[
∥ ¯̃𝑣𝑡 − 𝑣 (𝑖 )𝑡 ∥

2 ≥ 2
𝜖
· T 𝑖

]
≤ Pr

[
∥ ¯̃𝑣𝑡 − 𝑣 (𝑖 )𝑡 ∥

2 ≥ 2
𝜖
· E

[
∥ ¯̃𝑣𝑡 − 𝑣 (𝑖 )𝑡 ∥

2
] ]

= Pr

[
∥ ¯̃𝑣𝑡 − 𝑣 (𝑖 )𝑡 ∥ ≥

√︂
2
𝜖
·
√︂
E

[
∥ ¯̃𝑣𝑡 − 𝑣 (𝑖 )𝑡 ∥2

] ]

≤
E

[
∥ ¯̃𝑣𝑡 − 𝑣 (𝑖 )𝑡 ∥2

]
2
𝜖 E

[
∥ ¯̃𝑣𝑡 − 𝑣 (𝑖 )𝑡 ∥2

]
=
𝜖

2
.

Let 𝐸 be the “bad case”, i.e., the event that we have 𝑋 ≥ (𝜖 + 𝛼)𝐾 .
By Lemma 9 (see Appendix A.4), with 𝛿 = 1 + 2𝛼

𝜖 and 𝑝 as bounded
above, we get

Pr[𝐸] = Pr [𝑋 ≥ (𝜖 + 𝛼)𝐾] = Pr
[
𝑋 ≥ (1 + 𝛿) 𝜖𝐾

2

]
≤ exp

(
− 𝛿

2𝜖𝐾

4 + 2𝛿

)
= exp

(
−𝐾 (2𝛼 + 𝜖)

2

4𝛼 + 6𝜖

)
≤ exp

(
−𝜖𝐾

6

)
.

With T := max𝑖∈H𝑡
T 𝑖 , by the law of total expectation, we then

have

E

[
Δ2

(
⟨𝑣 (𝑖 )𝑡 ⟩𝑖∈𝑆𝑡

)2
]
≤ E

[
Δ2

(
⟨𝑣 (𝑖 )𝑡 ⟩𝑖∈𝑆𝑡

)2
| 𝐸

]
· Pr

[
𝐸
]︸︷︷︸

≤1

+ E
[
Δ2

(
⟨𝑣 (𝑖 )𝑡 ⟩𝑖∈𝑆𝑡

)2
| 𝐸

]
· Pr [𝐸]

≤ 2
𝜖
T + 𝐾T · exp

(
−𝜖𝐾

6

)
≤ 5
𝜖
T

where in the first step, for the expectation conditioned on 𝐸 we
union-bound the max by introducing a factor 𝐾 , and in the second
step we use the fact that the function 𝑓 (𝑥) = 𝑥𝑒−𝛽𝑥 has a global
maximum with value 1

𝛽𝑒
.



Remains to use this bound on E[Δ2 (⟨𝑣 (𝑖 )𝑡 ⟩𝑖∈𝑆𝑡 )2] in order to
obtain the desired bound on E[Δ2 (⟨𝜃 (𝑖 )𝑡+1⟩𝑖∈G𝑡 )

2] which follows
straightforwardly since

E

[
Δ2

(
⟨𝜃 (𝑖 )
𝑡+1⟩𝑖∈G𝑡

)2
]

= E

[
max
𝑖,𝑙∈G𝑡

∥𝜃 (𝑖 )
𝑡+1 − 𝜃

(𝑙 )
𝑡+1∥

2
]

≤ 2E
[

max
𝑖,𝑙∈G𝑡

∥𝜃 (𝑖 )𝑡 − 𝜃
(𝑙 )
𝑡 ∥

2
]
+ 2𝜂2E

[
max
𝑖,𝑙∈G𝑡

∥𝑣 (𝑖 )𝑡 − 𝑣
(𝑙 )
𝑡 ∥

2
]

≤ 2E[EΔ𝑡 ] + 2𝜂2E

[
Δ2

(
⟨𝑣 (𝑖 )𝑡 ⟩𝑖∈𝑆𝑡

)2
]

≤ 2E[EΔ𝑡 ] +
10𝜂2

𝜖
T .

What can we plug in for T ? Observe that 𝑣 (𝑖 )𝑡 is the result of ag-
gregation of inputs with average ¯̃𝑣𝑡 := 1

| G𝑡 |
∑
𝑖∈G𝑡 𝑣

(𝑖 )
𝑡 . Therefore,

by Definition 1, for any 𝑖 ∈ G𝑡 , we have

E
[
∥𝑣 (𝑖 )𝑡 − ¯̃𝑣𝑡 ∥2

]
≤ 𝐶𝑟𝑎𝛼

|G𝑡 | ( |G𝑡 | − 1)
∑︁
𝑖,𝑙∈G𝑡

E
[
∥𝑣 (𝑖 )𝑡 − 𝑣

(𝑙 )
𝑡 ∥

2
]
.

Thus, we can distinguish between conditioning our expectation on
𝑐𝑡 = 0 and 𝑐𝑡 = 1 and using the respective bounds 𝐶𝑟𝑎𝛼 T̃0,𝑡 and
𝐶𝑟𝑎𝛼 T̃1,𝑡 , the result follows. □

With this bound on the diameter of intermediate local parameters
𝜃
(𝑖 )
𝑡 at hand, we can now derive the desired bound on parameters
after agreement that only depends on the averaging agreement
parameter 𝜅.

Lemma 2. For all iterations 𝑡 ≤ 𝑇 , there exists EΔ,𝜅 such that
E[EΔ𝑡 ] ≤ E

Δ,𝜅
and

EΔ,𝜅 ≤ O
(
2−𝜅

)
.

Proof. We proceed by induction on 𝑡 . For 𝑡 = 0, EΔ𝑡 = 0 due
to the common initialization 𝜃 (𝑘 ) = 𝜃0 for all 𝑘 ∈ [𝐾]. Suppose
for some 𝑡 < 𝑇 − 1, E[EΔ𝑡 ] ≤ E

Δ,𝜅 ≤ O (2−𝜅 ). In iteration 𝑡 ,
applying Lemma 1 and the bounds on T̃0,𝑡 and T̃0,𝑡 from Lemma 15
(see Appendix C), one can observe that in both cases 𝑐𝑡−1 = 1 and
𝑐𝑡−1 = 0, the expected diameter of 𝜃 (𝑖 )𝑡 ’s for good agents 𝑖 ∈ G𝑡 is
(loosely) bounded by O(1). Hence by the definition of averaging
agreement, see Definition 3, we have E

[
EΔ𝑡

]
≤ EΔ,𝜅 with

EΔ,𝜅 ≤
E

[
Δ2

(
⟨𝜃 (𝑖 )𝑡 ⟩𝑖∈G𝑡

)]
2𝜅

≤ O
(
2−𝜅

)
.

□

6 EXPERIMENTS

In order to corroborate our theoretical findings, we empirically
study the performance of the proposed methods w.r.t. the properties
suggested by Corollary 2, i.e., (a) speed-up when increasing the
number of agents 𝐾 , and (b) resilience against various Byzantine
attacks. We focus on our main contribution regarding the more
challenging decentralized setting here (i.e. DecByzPG), and defer
experiments for ByzPG to Appendix E.

Environments and Setup.We consider two common RL bench-
marks, CartPole [31] and LunarLander. For all experiments, we
report average returns of honest agents (y-axis) in terms of the
trajectories that have been sampled per agent (x-axis). To visualize
potential variance in our experiments, all plots show the respective
mean and standard deviation across 10 independent runs. Further
details, including hyperparameters, can be found in Appendix D.

6.1 DecByzPG without Byzantine Agents
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Figure 1: Performance of DecByzPG for different federation

sizes when all agents behave honestly (i.e. 𝛼 = 0).

In Figure 1, we consider DecByzPG in the case 𝛼 = 0, with
𝐾 = 1 (which is equivalent to PAGE-PG [18]), 𝐾 = 5, and 𝐾 = 13.
Speed-up with increasing number of agents is observable in both
environments, as suggested by Corollary 2. Such faster convergence
provides empirical evidence motivating agents to join a decentral-
ized federation.

6.2 DecByzPG under Attack

Choice of attacks. In previous work [5], Byzantine attacks are
constructed by making random modifications to an agent’s interac-
tion with its environment, by e.g. choosing an action u.a.r. instead
of following the current policy (here denoted RandomAction),
adding noise to the reward, or randomly flipping the reward’s
sign. We find that in our setting, for simple environments such
as CartPole, robustness to such attacks is often already given for
naively collaborating agents. This behavior is exemplified by our
experiments under the RandomAction attack. Thus, even though
DecByzPG is also resilient to such attacks, a stronger adversary is
needed to demonstrate DecByzPG’s advantage over naive methods.
LargeNoise lets Byzantine agents directly send noise instead of
gradients obtained from noisy interactions. Even though introduc-
ing noise may generally also have beneficial effects on convergence
speed (e.g. due to improved exploration), by choosing the vari-
ance large enough, such benefits are outweighed. The third attack,
AvgZero leverages the power of Byzantine knowledge and collab-
oration. Gradients sent by Byzantines are chosen such that when
averaged with gradients sent by honest agents, the result will be
close to zero.
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Figure 2: Performance & resilience of DecByzPG for CartPole w.r.t. our three attack types.
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Figure 3: Performance & resilience of DecByzPG for LunarLander w.r.t. our three attack types.

In Figure 2 and 3, we compare DecByzPG under above attacks to
(a) PAGE-PG [18], the SOTA single-agent PGmethod thatDecByzPG
reduces to when 𝐾 = 1, and (b) Dec-PAGE-PG, a naive decentral-
ized (but not fault-tolerant) version of PAGE-PGwhere aggregation
of gradients is done by averaging, and no agreement mechanism
is used. Note that for experiments involving Byzantine agents, we
choose their quantity to be the largest for which Assumption 1, and
hence the guarantees of Theorem 2, still hold (i.e. 3 out of 13 agents
are Byzantine).

For both environments and all attacks, we can observe that
DecByzPG performs nearly on par with the unattacked Dec-PAGE-
PG. This empirically supports the Byzantine fault-tolerance of
DecByzPG. Furthermore, for CartPole, as expected, LargeNoise
and AvgZero are highly effective against the non-fault-tolerant
method, while as previously remarked, RandomAction barely
shows any effect. For the more difficult task of LunarLander, al-
ready RandomAction breaks Dec-PAGE-PG. Lastly, we point out
that in all cases DecByzPG with 𝐾 = 13 and 𝛼 > 0 outperforms

PAGE-PG with 𝐾 = 1 (and 𝛼 = 0), meaning that in our experi-
ments, despite the presence of Byzantines, joining the federation is
empirical beneficial for faster convergence.

7 CONCLUSION

We described and analyzed a federated decentralized Byzantine
fault-tolerant PG algorithm. As a warm-up, we combined variance-
reduced PG methods with results from Byzantine-tolerant non-
convex optimization to obtain a new centralized algorithm under
standard assumptions. We then use ideas from Byzantine robust
aggregation and agreement to generalize our approach to the sig-
nificantly more challenging decentralized setting. As a result, we
obtained the first sample complexity guarantees for Byzantine fault-
tolerant decentralized federated non-convex optimization. We thus
believe that our technical contributions are more generally appli-
cable and may therefore open up directions for future research.
Moreover, the provided empirical results for standard RL bench-
mark tasks support our theory and promise practical relevance of
our method.
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APPENDIX

A BACKGROUND IN RL & DETAILS ON ROBUST AGGREGATION AND AGREEMENT

A.1 Details on Gradient Estimation and Importance Sampling in PG Methods

Throughout the paper, we have used 𝑔 (𝜏 | 𝜃 ) to denote an unbiased estimator of ∇𝐽 (𝜃 ). It is known, see e.g. [5], that in our setting of
episodic MDP with trajectory horizon 𝐻 , 𝑔 (𝜏 | 𝜃 ) can for example be implemented as REINFORCE [12],

𝑔 (𝜏 | 𝜃 ) =
(
𝐻−1∑︁
ℎ=0
∇𝜃 log𝜋𝜃 (𝑎ℎ | 𝑠ℎ)

) (
𝐻−1∑︁
ℎ=0

𝛾ℎR (𝑠ℎ, 𝑎ℎ) −𝐶𝑏

)
,

or GPOMDP [13],

𝑔 (𝜏 | 𝜃 ) =
𝐻−1∑︁
ℎ=0

(
ℎ∑︁
𝑡=0
∇𝜃 log𝜋𝜃 (𝑎𝑡 | 𝑠𝑡 )

) (
𝛾ℎ𝑟 (𝑠ℎ, 𝑎ℎ) −𝐶𝑏ℎ

)
.

with 𝐶𝑏 and 𝐶𝑏ℎ denoting the corresponding baselines. Under Assumption 2, Proposition 1 is known to hold for both REINFORCE and
GPOMDP [16]. For the experiments, our implementation will be based on GPOMDP, as it has generally been reported to have lower variance
and thus yields better performance than REINFORCE [16, 27].

Variance-reduced stochastic gradient descent methods such as SVRG [32] and PAGE [17] rely on the ability to sample gradients at points
that are not the current iterate. In PG however, the underlying sample distribution depends on the current parameters 𝜃𝑡 . To overcome
this challenge of non-stationarity, we employ the commonly used importance sampling technique and follow [18] in defining, for any
𝜃𝑡 , 𝜃𝑡−1 ∈ R𝑑 , and any trajectory 𝜏 ,

𝑔𝜔𝜃𝑡 (𝜏 | 𝜃𝑡−1) := 𝜔 (𝜏 | 𝜃𝑡 , 𝜃𝑡−1) 𝑔 (𝜏 | 𝜃𝑡−1)

with importance weight𝜔 (𝜏 | 𝜃𝑡 , 𝜃𝑡−1) := 𝑝 (𝜏 |𝜃𝑡−1 )
𝑝 (𝜏 |𝜃𝑡 ) . It can be shown [27] that this yields an unbiased estimate of ∇𝐽 (𝜃𝑡−1) despite trajectory

𝜏 being sampled from the current policy based on 𝜃𝑡 , i.e.,

E𝜏∼𝑝 ( · |𝜃𝑡 )
[
𝑔𝜔𝜃𝑡 (𝜏 | 𝜃𝑡−1)

]
= ∇𝐽 (𝜃𝑡−1) .

At this point, we also introduce the following additional notation that will be used throughout the proofs of Theorem 1 and 2: For any
𝜃𝑡 , 𝜃𝑡−1 ∈ R𝑑 , and𝑀 ∈ N, let

Δ̂𝑀 (𝜃𝑡 , 𝜃𝑡−1) :=
1
𝑀

𝑀∑︁
𝑗=1

𝑔
(
𝜏𝑡, 𝑗 | 𝜃𝑡

)
− 1
𝑀

𝑀∑︁
𝑗=1

𝑔𝜔𝜃𝑡
(
𝜏𝑡, 𝑗 | 𝜃𝑡−1

)
and

Δ (𝜃𝑡 , 𝜃𝑡−1) := ∇𝐽 (𝜃𝑡 ) − ∇𝐽 (𝜃𝑡−1)
where 𝜏𝑡, 𝑗 ∼ 𝑝 (· | 𝜃𝑡 ) for 𝑗 = 1, . . . , 𝑀 .

A.2 Implementation of Robust Aggregation

The notion of (𝛼,𝐶𝑟𝑎)-robust aggregation, see Definition 1, is adopted from [24], and has originally appeared in a similar form in [33].
Known implementations satisfying our requirement of 𝐶𝑟𝑎 = O (1) include Krum [34] and Robust Federated Averaging (RFA) [35], where
both must be used in conjunction with bucketing [33].

Krum. Denoting by 𝑆𝑖 the ⌈(1 − 𝛼)𝐾⌉ closest neighbors to 𝜃 (𝑖 ) among 𝜃 (1) , . . . , 𝜃 (𝐾 ) in Euclidean norm, we let

Krum
(
𝜃 (1) , . . . , 𝜃 (𝐾 )

)
:= arg min
𝜃 (𝑖 ) s.t. 𝑖∈[𝐾 ]

∑︁
𝑗∈𝑆𝑖

𝜃 ( 𝑗 ) − 𝜃 (𝑖 )2
.

Note that due to the computation of pairwise distances, Krum has runtime complexity O
(
𝐾2) . RFA.We define

RFA
(
𝜃 (1) , . . . , 𝜃 (𝐾 )

)
:= arg min

𝜃 ∈R𝑑

∑︁
𝑖∈[𝐾 ]

𝜃 − 𝜃 (𝑖 )2

which corresponds to finding the geometric median—a problem that does not have a closed form solution. However, efficient iterative
approximation methods, such as the smoothed Weiszfeld algorithm [35, 36], exist. Bucketing. Instead of directly aggregating the inputs
vectors, [33] proposes to apply existing aggregators to the means of buckets of size ⌊𝛼max/𝛼⌋, where inputs are randomly assigned to buckets
(see Algorithm 1 in [33] for the detailed procedure). It has been shown that this can turn aggregation methods not satisfying Definition 1
into robust aggregators.

For completeness, we restate the relevant parts summarized by Theorem D.1 of [24] in the following lemma.

Lemma 3 (Implementations of (𝛼,𝐶𝑟𝑎)-robust aggregation). For 0 < 𝛼 < 𝛼max, 𝐶𝑟𝑎 = O (1), and bucket size ⌊𝛼max/𝛼⌋, it holds that



• bucketing with Krum is an (𝛼,𝐶𝑟𝑎)-robust aggregator for 𝛼max = 1/4, and
• bucketing with RFA is an (𝛼,𝐶𝑟𝑎)-robust aggregator for 𝛼max = 1/2.

Note that this means, in order to achieve the values 𝛼max stated in Assumption 1, i.e., 1/2 in the centralized, and 1/4 in the decentralized
case, we may use RFA for ByzPG, and either RFA or Krum for DecByzPG.

A.3 Implementation of Averaging Agreement

Averaging agreement, as in Definition 3, has been introduced by [8], together with two possible implementations. One of them, Minimum
Diameter Averaging (MDA) also satisfies our stronger requirement of 𝐶𝑎𝑣𝑔 = O (1).

MDA. For each 𝑘 ∈ [𝐾], let

Byz(𝑘 )
(
⟨𝜃 (𝑘

′ ) ⟩𝑘 ′∈[𝐾 ]
)
= ⟨Byz(𝑘,𝑖 )

(
⟨𝜃 (𝑘

′ ) ⟩𝑘 ′∈[𝐾 ]
)
⟩𝑖∈[𝐾 ]

be the set of vectors received by agent 𝑘 (from agent 𝑖) after one round of all-to-all parameter broadcast of ⟨𝜃 (𝑘 ′ ) ⟩𝑘 ′∈[𝐾 ] , subject to some
Byzantine attack, under Assumption 1. Furthermore, let

MDA
(
⟨𝜃 (𝑘 ) ⟩𝑘∈[𝐾 ]

)
:= ⟨𝜃 (𝑘 ) ⟩𝑘∈𝑆∗ where 𝑆∗ = arg min

𝑆⊂[𝐾 ], |𝑆 | ≥ (1−𝛼 )𝐾
Δ2

(
⟨𝜃 (𝑘 ) ⟩𝑘∈𝑆

)
.

The MDA averaging agreement mechanism is then defined by running Algorithm 3 at all agents 𝑘 ∈ [𝐾] concurrently, for 𝜅 iterations.

Algorithm 3MDA at 𝑘-th agent

1: input: 𝜃 (𝑘 )

2: for 𝜅 iterations do
3: broadcast 𝜃 (𝑘 ) to all other agents and receive B := Byz(𝑘 )

(
⟨𝜃 (𝑘 ′ ) ⟩𝑘 ′∈[𝐾 ]

)
4: letM ← MDA (B)
5: 𝜃 (𝑘 ) ← 1

|M |
∑
𝜃 ∈M 𝜃

6: output: 𝜃 (𝑘 )

The following is a special case of [8]’s Theorem 4 for our synchronous setting, restated here for convenience.

Lemma 4. Under Assumption 1, i.e., with 𝛼max = 1/4, and assuming synchronous communication, MDA as in Algorithm 3 achieves 𝐶𝑎𝑣𝑔-
averaging agreement for 𝐶𝑎𝑣𝑔 = O(1).

However, it needs to be pointed out that for any constant 𝛼 > 0, finding the subset that minimizes the diameter in Line 4 of Algorithm 3
has computational complexity exponential in 𝐾 , and for larger 𝐾 is therefore not suitable in practice. As proposed by [8], a computationally
efficient alternative exists, which we call Greedy Diameter Averaging (GDA). We define

GDA𝑘

(
⟨𝜃 (𝑘 ) ⟩𝑘∈[𝐾 ]

)
:= ⟨𝜃 (𝑘 ) ⟩𝑘∈𝑆∗ where 𝑆∗ = arg min

𝑆⊂[𝐾 ], |𝑆 | ≥ (1−𝛼 )𝐾

∑︁
𝑖∈𝑆

𝜃 (𝑖 ) − 𝜃 (𝑘 )2
.

Note that unlike for MDA, in the case of GDA, the set 𝑆∗ can be found in time O(𝐾) by choosing the ⌈(1 − 𝛼)𝐾⌉ parameter vectors closest to
𝜃 (𝑘 ) . As mentioned in [8], replacing MDA with GDA𝑘 in Algorithm 3 still achieves𝐶𝑎𝑣𝑔-averaging agreement with𝐶𝑎𝑣𝑔 = O(1) but comes at a
slight cost in the fraction of tolerable Byzantines, namely requiring 𝛼max = 1/5 instead of 1/4 in Assumption 1.

A.4 Useful Facts

In this section, we collect some simple relations and lemmas that will be helpful throughout our proofs. First, we recall some basic facts.

Lemma 5 (Basic facts). For any 𝑥,𝑦, 𝑎1, . . . , 𝑎𝑛 ∈ R𝑑 , 𝑝 ∈ (0, 1], and 𝛽 > 0, it holds that

⟨𝑥,𝑦⟩ = ∥𝑥 ∥
2

2
+ ∥𝑥 ∥

2

2
− ∥𝑦 − 𝑥 ∥

2

2
(3) 𝑛∑︁

𝑖=1
𝑎𝑖

2

≤ 𝑛
𝑛∑︁
𝑖=1
∥𝑎𝑖 ∥2 (4)

∥𝑥 + 𝑦∥2 ≤ (1 + 𝛽) ∥𝑥 ∥2 +
(
1 + 𝛽−1

)
∥𝑦∥2 (5)

(1 − 𝑝)
(
1 + 𝑝

2

)
≤ 1 − 𝑝

2
(6)

1.1𝑝 (1 − 𝑝) + (1 − 𝑝)2
(
1 + 𝑝

4

)
≤ 1 − 𝑝

2
(7)



Next, we show a simple bound on the distance to a mean vector in terms of average pairwise distances.

Lemma 6. Let 𝜃 (1) , . . . , 𝜃 (𝐾 ) ∈ R𝑑 , and 𝜃 = 1
𝐾

∑
𝑗∈[𝐾 ] 𝜃

( 𝑗 ) . Then, for any 𝑖 ∈ [𝐾],𝜃 − 𝜃 (𝑖 )2
≤ 1
𝐾

∑︁
𝑗∈[𝐾 ]

𝜃 ( 𝑗 ) − 𝜃 (𝑖 )2

Proof. Observe that, 𝜃 − 𝜃 (𝑖 )2
=

 1
𝐾

∑︁
𝑗∈[𝐾 ]

𝜃 ( 𝑗 ) − 𝜃 (𝑖 )
2

=
1
𝐾2

 ∑︁
𝑗∈[𝐾 ]

𝜃 ( 𝑗 ) − 𝜃 (𝑖 )
2

from which the result follows using Lemma 5, (4). □

The following lemma shows how repeated, independent sampling reduces the variance of gradient estimates.

Lemma 7. Let Assumption 4 hold. Then, for any𝑀 ∈ N, 𝜃 (𝑖 )𝑡 ∈ R𝑑 , and 𝜏 (𝑖 )
𝑡, 𝑗
∼ 𝑝

(
· | 𝜃 (𝑖 )𝑡

)
for 𝑗 = 1, . . . , 𝑀 ,

E

[ 1
𝑀

𝑀∑︁
𝑗=1

𝑔

(
𝜏
(𝑖 )
𝑡, 𝑗
| 𝜃 (𝑖 )𝑡

)
− ∇𝐽

(
𝜃
(𝑖 )
𝑡

) 2]
≤ 𝜎

2

𝑀
.

Proof. Using independence of the gradient estimates in the first step, we get

E

[ 1
𝑀

𝑀∑︁
𝑗=1

𝑔

(
𝜏
(𝑖 )
𝑡, 𝑗
| 𝜃 (𝑖 )𝑡

)
− ∇𝐽

(
𝜃
(𝑖 )
𝑡

) 2]
=

1
𝑀2

𝑀∑︁
𝑗=1
E

[𝑔 (
𝜏
(𝑖 )
𝑡, 𝑗
| 𝜃 (𝑖 )𝑡

)
− ∇𝐽

(
𝜃
(𝑖 )
𝑡

)2
]

︸                                      ︷︷                                      ︸
≤ 𝜎2

≤ 𝜎
2

𝑀

where the inequality in the last step is by Assumption 4. □

Finally, we give two lemmas that are slight variations of classical concentration bounds. The former is Markov’s inequality, stated in
terms of the random variable’s second moment. The latter is a Chernoff bound for the case in which only an upper bound on the expectation
is known.

Lemma 8 (Second moment version of Markov’s ineqality). Let 𝑋 be a non-negative random variable and 𝑎 > 0. Then

Pr[𝑋 ≥ 𝑎] ≤ E[𝑋
2]

𝑎2 .

Proof. By Markov’s inequality,

Pr[𝑋 ≥ 𝑎] = Pr[𝑋 2 ≥ 𝑎2] ≤ E[𝑋
2]

𝑎2 .

□

Lemma 9 (Chernoff with bounded probabilities). For 𝑖 ∈ [𝑛], let𝑌𝑖 𝑖 .𝑖 .𝑑.∼ Ber(𝑝𝑖 ) where 𝑝𝑖 ≤ 𝑝 ∈ [0, 1] for all 𝑖 ∈ [𝑛]. With𝑌 :=
∑𝑛
𝑖=1 𝑌𝑖 ,

we have E [𝑌 ] ≤ 𝑛𝑝 , and for any 𝛿 ≥ 0,

Pr [𝑌 ≥ (1 + 𝛿)𝑛𝑝] ≤ exp
(
−𝛿2𝑛𝑝

2 + 𝛿

)
.

Proof. For 𝑖 ∈ [𝑛], let 𝑋𝑖 𝑖 .𝑖 .𝑑.∼ Ber(𝑝). We then have

Pr [𝑌 ≥ (1 + 𝛿)𝑛𝑝]
(𝑎)
≤ Pr [𝑋 ≥ (1 + 𝛿)𝑛𝑝]
(𝑏 )
≤ exp

(
−𝛿2𝑛𝑝

2 + 𝛿

)
where (a) is because by definition, Pr[𝑋𝑖 = 1] ≥ Pr[𝑌𝑖 = 1] for all 𝑖 ∈ [𝑛], and (b) is the standard Chernoff bound applied to 𝑋1, . . . , 𝑋𝑛 . □



B PROOFS FOR SECTION 4

In this section, we prove Theorem 1 and Corollary 1. We start with the main results, and then proceed with the required technical lemmas.

B.1 Main Result

Proof of Theorem 1. Following the strategy of [24] applied to our policy gradient setting, we let

Φ𝑡 := 𝐽 ∗ − 𝐽 (𝜃𝑡 ) +
𝜂

𝑝
∥𝑣𝑡 − ∇𝐽 (𝜃𝑡 )∥2 .

Then, applying first Lemma 10, followed by Lemma 13, we derive

E [Φ𝑡+1] ≤ E
[
𝐽 ∗ − 𝐽 (𝜃𝑡 ) −

𝜂

2
∥∇𝐽 (𝜃𝑡 )∥2 −

(
1

2𝜂
− 𝐿

2

)
∥𝜃𝑡+1 − 𝜃𝑡 ∥2 +

𝜂

2
∥𝑣𝑡 − ∇𝐽 (𝜃𝑡 )∥2

+ 𝜂
𝑝
∥𝑣𝑡+1 − ∇𝐽 (𝜃𝑡+1)∥2

]
≤ E

[
𝐽 ∗ − 𝐽 (𝜃𝑡 ) −

(
1

2𝜂
− 𝐿

2

)
∥𝜃𝑡+1 − 𝜃𝑡 ∥2 +

𝜂

2
∥𝑣𝑡 − ∇𝐽 (𝜃𝑡 )∥2

]
− 𝜂

2
E ∥∇𝐽 (𝜃𝑡 )∥2

+
(
𝜂

𝑝
− 𝜂

2

)
E

[
∥𝑣𝑡 − ∇𝐽 (𝜃𝑡 )∥2

]
+ 𝜂𝐴

2
E

[
∥𝜃𝑡+1 − 𝜃𝑡 ∥2

]
+ 𝜂𝐶𝜎

2

2𝑁

(
𝛼 + 1

𝐾

)
≤ E [Φ𝑡 ] −

𝜂

2
E

[
∥∇𝐽 (𝜃𝑡 )∥2

]
+ 𝜂𝐶𝜎

2

2𝑁

(
𝛼 + 1

𝐾

)
− 1

2𝜂

(
1 − 𝐿𝜂 −𝐴𝜂2

)
E

[
∥𝜃𝑡+1 − 𝜃𝑡 ∥2

]
≤ E [Φ𝑡 ] −

𝜂

2
E

[
∥∇𝐽 (𝜃𝑡 )∥2

]
+ 𝜂𝐶𝜎

2

2𝑁

(
𝛼 + 1

𝐾

)
where in the last step we use Lemma C.1 from [24], our choice of 𝜂, and the fact that 𝐴 = Θ

(
𝑝−1𝐾−1) , see Lemma 13. Summing over 𝑡 , we

obtain

1
𝑇

𝑇−1∑︁
𝑡=0
E

[
∥∇𝐽 (𝜃𝑡 )∥2

]
≤ 2
𝜂𝑇

𝑇−1∑︁
𝑡=0
(E [Φ𝑡 ] − [Φ𝑡+1]) +

𝐶𝜎2

𝑁

(
𝛼 + 1

𝐾

)
≤ 2E [Φ0]

𝜂𝑇
+ 𝐶𝜎

2

𝑁

(
𝛼 + 1

𝐾

)
where in the second step we simplify the telescoping sum and use the fact that Φ𝑇 ≥ 0. Note that the LHS is exactly E

[∇𝐽 (
𝜃
𝑇

)2
]
with 𝑇

chosen uniformly at random from [𝑇 ]. □

Proof of Corollary 1. In order to achieve
2E [Φ0]
𝜂𝑇︸   ︷︷   ︸
(𝑎)

+ 𝐶𝜎
2

𝑁

(
𝛼 + 1

𝐾

)
︸           ︷︷           ︸

(𝑏 )

≤ 𝜖2,

we set

𝐵 = Θ(1), 𝑇 = Θ

(
1

𝜖2
√︁
𝑝𝐾

)
, and 𝑁 = Θ

(
𝜖−2

(
𝛼 + 1

𝐾

))
.

Since 𝜂 = Θ
(
min

{√︁
𝑝𝐾, 1/𝐿

})
, above choice of 𝑇 ensures that term (a) is bounded by 𝜖2/2. We treat 𝜎2 as constant, hence our choice of 𝑁

also ensures a 𝜖2/2-bound for term (b).
To conclude the proof, we want to count the number of trajectories sampled at an agent: Per iteration, with probability 𝑝 we sample 𝑁

times, and with probability 1 − 𝑝 we sample 𝐵 times. Hence over all 𝑇 iterations, choosing 𝑝 = 1
𝑁

= 𝜖2

𝛼+1/𝐾 , the expected number of sampled
trajectories is given by

𝑇 (𝑝𝑁 + (1 − 𝑝)𝐵) ≤ O(𝑇𝑝𝑁 )
𝑝= 1

𝑁
= O

(
𝜖−2 1√︁

𝑝𝐾

)
= O

(
𝜖−2

√︂
𝛼 + 1/𝐾
𝐾𝜖2

)
≤ O

(
𝛼1/2

𝐾1/2𝜖3 +
1
𝐾𝜖3

)
.

□



B.2 Technical Lemmas

Here, we give proofs of the technical lemmas used in above proofs. The first is a standard application of smoothness, also seen in a similar
form e.g. in [17, 18].

Lemma 10. Let Assumptions 2, 3, 4, and 5 hold. Then, for 𝜃𝑡+1 = 𝜃𝑡 + 𝜂𝑣𝑡 ,

𝐽 (𝜃𝑡+1) ≥ 𝐽 (𝜃𝑡 ) +
𝜂

2
∥∇𝐽 (𝜃𝑡 )∥2 +

(
1

2𝜂
− 𝐿

2

)
∥𝜃𝑡+1 − 𝜃𝑡 ∥2 −

𝜂

2
∥𝑣𝑡 − ∇𝐽 (𝜃𝑡 )∥2 .

Proof. By smoothness of 𝐽 , i.e., Proposition 1,

𝐽 (𝜃𝑡+1) ≥ 𝐽 (𝜃𝑡 ) + ⟨∇𝐽 (𝜃𝑡 ) , 𝜃𝑡+1 − 𝜃𝑡 ⟩ −
𝐿

2
∥𝜃𝑡+1 − 𝜃𝑡 ∥2

= 𝐽 (𝜃𝑡 ) + 𝜂⟨∇𝐽 (𝜃𝑡 ) , 𝑣𝑡 ⟩ −
𝜂2𝐿

2
∥𝑣𝑡 ∥2

(𝑎)
= 𝐽 (𝜃𝑡 ) +

𝜂

2
∥∇𝐽 (𝜃𝑡 )∥2 +

𝜂

2
∥𝑣𝑡 ∥2 −

𝜂

2
∥𝑣𝑡 − ∇𝐽 (𝜃𝑡 )∥2 −

𝜂2𝐿

2
∥𝑣𝑡 ∥2

= 𝐽 (𝜃𝑡 ) +
𝜂

2
∥∇𝐽 (𝜃𝑡 )∥2 +

(
1

2𝜂
− 𝐿

2

)
∥𝜃𝑡+1 − 𝜃𝑡 ∥2 −

𝜂

2
∥𝑣𝑡 − ∇𝐽 (𝜃𝑡 )∥2

where (a) is due to Lemma 5, (3). □

As a next preparatory step, we want to show that the gradient estimates 𝑣 (𝑖 )𝑡 do not vary too much across different agents. In particular,
we bound the average of pairwise variances, denoted by T̃ . Note that we slightly abuse notation and omit adding an index 𝑡 to T̃ since the
bound below does not depend on 𝑡 .

Lemma 11. Let Assumption 1 and 4 hold, i.e.,H𝑡 ⊂ 𝐾 is the set of honest agents in iteration 𝑡 . Then,

T̃ :=
1

|H𝑡 | ( |H𝑡 | − 1)
∑︁

𝑖,𝑙∈H𝑡

E

[𝑣 (𝑖 )𝑡 − 𝑣 (𝑙 )𝑡 2
| 𝑐𝑡 = 1

]
≤ 4𝜎2

𝑁

and we will use T̃ also in subsequent lemmas to refer to this term.

Proof. By plugging in the definition of 𝑣 (𝑖 )𝑡 as in Algorithm 1, and using basic fact (4) from Lemma 5, we get

T̃ =
1

|H𝑡 | ( |H𝑡 | − 1)
∑︁

𝑖,𝑙∈H𝑡

E

[𝑣 (𝑖 )𝑡 − 𝑣 (𝑙 )𝑡 2
| 𝑐𝑡 = 1

]

=
1

|H𝑡 | ( |H𝑡 | − 1)
∑︁

𝑖,𝑙∈H𝑡

E


 1
𝑁

𝑁∑︁
𝑗=1

𝑔

(
𝜏
(𝑖 )
𝑡, 𝑗
| 𝜃𝑡

)
− 1
𝑁

𝑁∑︁
𝑗=1

𝑔

(
𝜏
(𝑙 )
𝑡, 𝑗
| 𝜃𝑡

)
2

≤ 1
|H𝑡 | ( |H𝑡 | − 1)

∑︁
𝑖,𝑙∈H𝑡

E

2
 1
𝑁

𝑁∑︁
𝑗=1

𝑔

(
𝜏
(𝑖 )
𝑡, 𝑗
| 𝜃𝑡

)
− ∇𝐽 (𝜃𝑡 )


2

+ 2

 1
𝑁

𝑁∑︁
𝑗=1

𝑔

(
𝜏
(𝑙 )
𝑡, 𝑗
| 𝜃𝑡

)
− ∇𝐽 (𝜃𝑡 )


2

=
4
|H𝑡 |

∑︁
𝑖∈H𝑡

E


 1
𝑁

𝑁∑︁
𝑗=1

𝑔

(
𝜏
(𝑖 )
𝑡, 𝑗
| 𝜃𝑡

)
− ∇𝐽 (𝜃𝑡 )


2︸                                          ︷︷                                          ︸

(𝑎)
≤ 𝜎2

𝑁

≤ 4𝜎2

𝑁

where (a) is by Lemma 7. □

Next, we want to bound the deviation of our potentially aggregated gradient estimate 𝑣𝑡 from ∇𝐽 (𝜃𝑡 ) which is what we aim to estimate.
Note that in case 𝑐𝑡 = 1, this involves bounding both the bias introduced by aggregation, as well as the variance due to sampling.



Lemma 12. In the setting of Theorem 1, the following bounds hold:

T (1)1,𝑡 := E
[𝑣𝑡 − ¯̃𝑣𝑡

2 | 𝑐𝑡 = 1
]
≤ 𝐶𝑟𝑎𝛼 T̃ ,

T (2)1,𝑡 := E
[ ¯̃𝑣𝑡 − ∇𝐽 (𝜃𝑡 )

2 | 𝑐𝑡 = 1
]
≤ 2𝜎2

𝐾𝑁
, and

T (1)0,𝑡 := E
[
∥𝑣𝑡 − ∇𝐽 (𝜃𝑡 )∥2 | 𝑐𝑡 = 0

]
≤ E

[
∥𝑣𝑡−1 − ∇𝐽 (𝜃𝑡−1)∥2

]
+

(
𝐶𝑝

𝐵𝐾
+ 𝐿

2

𝐾

)
E

[
∥𝜃𝑡 − 𝜃𝑡−1∥2

]
,

where T (1)1,𝑡 , T (2)1,𝑡 are the errors w.r.t. aggregation and sampling, respectively, in case 𝑐𝑡 = 1, and T (1)0,𝑡 is the error due to sampling in case 𝑐𝑡 = 0
(no aggregation done in this case). We will use this notation also to refer to the respective terms in subsequent lemmas.

Proof. We proceed by showing each of the claimed bounds separately, as follows:
(1) First, by applying Definition 1,

T (1)1,𝑡 = E
[𝑣𝑡 − ¯̃𝑣𝑡

2 | 𝑐𝑡 = 1
]

≤ 𝐶𝑟𝑎𝛼

|H𝑡 | ( |H𝑡 | − 1)
∑︁

𝑖,𝑙∈H𝑡

E

[𝑣 (𝑖 )𝑡 − 𝑣 (𝑙 )𝑡 2
| 𝑐𝑡 = 1

]
≤ 𝐶𝑟𝑎𝛼 T̃

where the second step is the result of Lemma 11.
(2) Next, by plugging in the definition of ¯̃𝑣𝑡 and then applying Lemma 7, we get

T (2)1,𝑡 = E
[ ¯̃𝑣𝑡 − ∇𝐽 (𝜃𝑡 )

2 | 𝑐𝑡 = 1
]

≤ E

 1
|H𝑡 |𝑁

∑︁
𝑖∈H𝑡

𝑁∑︁
𝑗=1

𝑔

(
𝜏
(𝑖 )
𝑡, 𝑗
| 𝜃𝑡

)
− ∇𝐽 (𝜃𝑡 )


2

≤ 𝜎2

|H𝑡 |𝑁

≤ 2𝜎2

𝐾𝑁

where in the final step we use the fact that according to Assumption 1, we have 𝛼max ≤ 1/2 and therefore |H𝑡 | ≥ (1 − 𝛼)𝐾 ≥
(1 − 𝛼max)𝐾 ≥ 𝐾/2.

(3) We have

T (1)0,𝑡 = E
[
∥𝑣𝑡 − ∇𝐽 (𝜃𝑡 )∥2 | 𝑐𝑡 = 0

]
= E

[Δ̂𝐵 (𝜃𝑡 , 𝜃𝑡−1) + 𝑣𝑡−1 − ∇𝐽 (𝜃𝑡 )
2

]
= E

[Δ̂𝐵 (𝜃𝑡 , 𝜃𝑡−1) + 𝑣𝑡−1 + ∇𝐽 (𝜃𝑡−1) − ∇𝐽 (𝜃𝑡−1) − ∇𝐽 (𝜃𝑡 )
2

]
= E

[ (𝑣𝑡−1 − ∇𝐽 (𝜃𝑡−1))︸                  ︷︷                  ︸
=:𝑋1

+
(
Δ̂𝐵 (𝜃𝑡 , 𝜃𝑡−1) − Δ (𝜃𝑡 , 𝜃𝑡−1)

)
︸                                 ︷︷                                 ︸

=:𝑋2

2
]

(𝑎)
= E

[
∥𝑣𝑡−1 − ∇𝐽 (𝜃𝑡−1)∥2

]
+ E

[Δ̂𝐵 (𝜃𝑡 , 𝜃𝑡−1) − Δ (𝜃𝑡 , 𝜃𝑡−1)
2

]
(𝑏 )
≤ E

[
∥𝑣𝑡−1 − ∇𝐽 (𝜃𝑡−1)∥2

]
+

(
𝐶𝑝

𝐵𝐾
+ 𝐿

2

𝐾

)
E

[
∥𝜃𝑡 − 𝜃𝑡−1∥2

]
Steps (a) and (b) require further justification but appear again equivalently in the last part of the proof of Lemma 17 where we explain
the details.

□

Finally, we combine the individual bounds of Lemma 12 into an overall distortion bound, as follows.



Lemma 13. In the setting of Lemma 12, we have

E ∥𝑣𝑡 − ∇𝐽 (𝜃𝑡 )∥2 ≤ (1 − 𝑝) E
[
∥𝑣𝑡−1 − ∇𝐽 (𝜃𝑡−1)∥2

]
+ 𝐴𝑝

2
E

[
∥𝜃𝑡 − 𝜃𝑡−1∥2

]
+ 𝐶𝑝𝜎

2

2𝑁

(
𝛼 + 1

𝐾

)
where 𝐶 > 0 is a constant, and 𝐴 = Θ

(
1
𝑝𝐾

)
.

Proof. By the law of total expectation and using Lemma 5, (4) in the first step, we have

E
[
∥𝑣𝑡 − ∇𝐽 (𝜃𝑡 )∥2

]
≤ (1 − 𝑝) T (1)0,𝑡 + 𝑝

(
2T (1)1,𝑡 + 2T (2)1,𝑡

)
≤ (1 − 𝑝)

(
E

[
∥𝑣𝑡−1 − ∇𝐽 (𝜃𝑡−1)∥2

]
+

( 2𝐶𝑝
𝐵𝐾
+ 2𝐿2

𝐾

)
E

[
∥𝜃𝑡 − 𝜃𝑡−1∥2

] )
+ 8𝑝𝐶𝑟𝑎𝛼𝜎2

𝑁
+ 4𝑝𝜎2

𝐾𝑁
.

where in the second step we have plugged in the results of Lemma 12. Since 1 − 𝑝 ≤ 1, 𝐵 ≥ 1, and treating 𝐶𝑝 , 𝐿, and 𝐶𝑟𝑎 as constant, the
result follows. □

C PROOFS FOR SECTION 5

First, we define (or recall from previous definitions), that for any 𝑘 ∈ [𝐾]:

𝑣
(𝑘 )
𝑡 :=

1
𝜂

(
𝜃
(𝑘 )
𝑡+1 − 𝜃

(𝑘 )
𝑡

)
,

¯̂𝑣𝑡 :=
1
|G𝑡 |

∑︁
𝑖∈G𝑡

𝑣
(𝑖 )
𝑡 , ¯̃𝑣𝑡 :=

1
|G𝑡 |

∑︁
𝑖∈G𝑡

𝑣
(𝑖 )
𝑡

𝜃𝑡 :=
1
|G𝑡 |

∑︁
𝑖∈G𝑡

𝜃
(𝑖 )
𝑡 ,

¯̃
𝜃𝑡 :=

1
|G𝑡 |

∑︁
𝑖∈G𝑡

𝜃
(𝑖 )
𝑡 .

In the remainder of this section, we prove Theorem 2 and Corollary 2. As in Section B, we first show the main results, and then provide
proofs of the required technical lemmas.

C.1 Main Result

Proof of Theorem 2. Following the proof strategy from [24] applied to our decentralized policy gradient setting, we let

Φ𝑡 := 𝐽 ∗ − 𝐽
(
𝜃𝑡

)
+ 2𝜂
𝑝

 ¯̂𝑣𝑡 −
1
|G𝑡 |

∑︁
𝑖∈G𝑡
∇𝐽

(
𝜃
(𝑖 )
𝑡

) 2

.

Then, applying first Lemma 14 and then Lemma 17, we derive

E [Φ𝑡+1] ≤ E
[
𝐽 ∗ − 𝐽

(
𝜃𝑡

)
− 𝜂

2
∇𝐽 (

𝜃𝑡
)2 −

(
1

2𝜂
− 𝐿

2

) 𝜃𝑡+1 − 𝜃𝑡 2 + 𝜂
 ¯̂𝑣𝑡 −

1
|G𝑡 |

∑︁
𝑖∈G𝑡
∇𝐽

(
𝜃
(𝑖 )
𝑡

)2

+ 𝜂EΔ𝑡 𝐿2 + 2𝜂
𝑝

 ¯̂𝑣𝑡+1 −
1
|G𝑡 |

∑︁
𝑖∈G𝑡
∇𝐽

(
𝜃
(𝑖 )
𝑡+1

)2
]

≤ E
𝐽 ∗ − 𝐽

(
𝜃𝑡

)
−

(
1

2𝜂
− 𝐿

2

) 𝜃𝑡+1 − 𝜃𝑡 2
+ 𝜂

 ¯̂𝑣𝑡 −
1
|G𝑡 |

∑︁
𝑖∈G𝑡
∇𝐽

(
𝜃
(𝑖 )
𝑡

) 2 + 𝜂𝐿2E[EΔ𝑡 ]

− 𝜂
2
E

[∇𝐽 (
𝜃𝑡

)2
]
+ 2𝜂
𝑝

(
1 − 𝑝

2

)
E


 ¯̂𝑣𝑡 −

1
|G𝑡 |

∑︁
𝑖∈G𝑡
∇𝐽

(
𝜃
(𝑖 )
𝑡

) 2 +
2𝜂𝐴𝑝

4𝑝
E

[𝜃𝑡+1 − 𝜃𝑡 2
]

+ 2𝜂𝐶1𝜎2𝑝𝛼

4𝑁𝑝
+ 2𝜂𝐶2𝜎2𝑝

4𝐾𝑁𝑝

≤ E [Φ𝑡 ] −
𝜂

2
E

[∇𝐽 (
𝜃𝑡

)2
]
+ 𝜂𝐶1𝜎2𝛼

2𝑁
+ 𝜂𝐶2𝜎2

2𝐾𝑁
− 1

2𝜂

(
1 − 𝐿𝜂 −𝐴𝜂2

)
E

[𝜃𝑡+1 − 𝜃𝑡 2
]
+ O

(
𝜂2−𝜅

)
≤ E [Φ𝑡 ] −

𝜂

2
E

[∇𝐽 (
𝜃𝑡

)2
]
+ 𝜂𝐶1𝜎2𝛼

2𝑁
+ 𝜂𝐶2𝜎2

2𝐾𝑁
+ O

(
𝜂2−𝜅

)



where in the second to last step we use Lemma 2 and in last step we use Lemma C.1 from [24] and our choice of 𝜂. We now sum over 𝑡 to
obtain

1
𝑇

𝑇−1∑︁
𝑡=0
E

[∇𝐽 (
𝜃𝑡

)2
]
≤ 2
𝜂𝑇

𝑇−1∑︁
𝑡=0
(E [Φ𝑡 ] − [Φ𝑡+1]) +

𝐶1𝜎2𝛼

𝑁
+ 𝐶2𝜎2

𝐾𝑁
+ O

(
2−𝜅

)
≤ 2E [Φ0]

𝜂𝑇
+ 𝐶𝜎

2

2𝑁

(
𝛼 + 1

𝐾

)
+ O

(
2−𝜅

)
where 𝐶 := 1

2 max (𝐶1,𝐶2). In the second step, we simplify the telescoping sum and use the fact that Φ𝑇 ≥ 0. Note that the LHS is exactly

E

[∇𝐽 (
𝜃
𝑇

)2
]
with 𝑇 chosen u.a.r. from [𝑇 ]. To finish the proof, notice that for any 𝑘 ∈ G𝑡 ,

E

[∇𝐽 (
𝜃
(𝑘 )
𝑇

)2
] (𝑎)
≤ 2E

[∇𝐽 (
𝜃
𝑇

)2
]
+ 2E

[∇𝐽 (
𝜃
(𝑘 )
𝑇

)
− ∇𝐽

(
𝜃
𝑇

)2
]

(𝑏 )
≤ 2E

[∇𝐽 (
𝜃
𝑇

)2
]
+ 2𝐿2E

[
EΔ
𝑇

]
(𝑐 )
≤ 4E [Φ0]

𝜂𝑇
+ 𝐶𝜎

2

𝑁

(
𝛼 + 1

𝐾

)
+ O

(
2−𝜅

)
where (a) is by Lemma 5, (4), (b) easily follows from 𝐿-smoothness of 𝐽 (·) (i.e. Proposition 1) and (2), and (c) is by Lemma 2. □

Proof of Corollary 2. In order to achieve

4E [Φ0]
𝜂𝑇︸   ︷︷   ︸
(𝑎)

+ 𝐶𝜎
2

𝑁

(
𝛼 + 1

𝐾

)
︸           ︷︷           ︸

(𝑏 )

+ O
(
2−𝜅

)︸   ︷︷   ︸
(𝑐 )

≤ 𝜖2,

we set

𝐵 = Θ(1), 𝑇 = Θ

(
𝜖−2 ·max

{√
𝛼

𝑝
,

1√︁
𝑝𝐾

})
, and 𝑁 = Θ

(
𝜖−2

(
𝛼 + 1

𝐾

))
.

Since, in the statement of Theorem 2, we require

𝜂 ≤ O
(

1
√
𝐴

)
= O

(
min

{
𝑝
√
𝛼
,
√︁
𝑝𝐾

})
,

above choice of 𝑇 can ensure that term (a) is at most 𝜖2/3. We treat 𝐶𝑟𝑎,𝐶1,𝐶2, 𝜎2 as constants, hence our choice of 𝑁 also ensures a
𝜖2/3-bound for term (b), and the same holds for (c) due to our choice of 𝜅 ≤ Θ

(
log 𝜖−1) .

To conclude the proof, we want to count the number of trajectories sampled at an agent: Per iteration, with probability 𝑝 we sample 𝑁
times, and with probability 1 − 𝑝 we sample 𝐵 times. Hence over all 𝑇 iterations, choosing 𝑝 = 1

𝑁
= 𝜖2

𝛼+1/𝐾 , the expected number of sampled
trajectories is given by

𝑇 (𝑝𝑁 + (1 − 𝑝)𝐵) ≤ O(𝑇𝑝𝑁 )

𝑝= 1
𝑁
= O

(
𝜖−2 ·max

{√
𝛼

𝑝
,

1√︁
𝑝𝐾

})
≤ O

(
𝜖−2

(
𝛼1/2 (𝛼 + 1/𝐾)

𝜖2 +
√︁
𝛼 + 1/𝐾
𝐾1/2𝜖

))
≤ O

(
𝛼3/2

𝜖4 +
𝛼1/2

𝐾𝜖4 +
𝛼1/2

𝐾1/2𝜖3 +
1
𝐾𝜖3

)
.

□

C.2 Technical Lemmas

Similar to Lemma 10 in the centralized case, we start with a standard result following from smoothness, now adjusted to the decentralized
setting.



Lemma 14. Under Assumptions 2, 3, 4, and 5, and for ¯̂𝑣𝑡 := 1
𝜂

(
𝜃𝑡+1 − 𝜃𝑡

)
, we have

𝐽
(
𝜃𝑡+1

)
≥ 𝐽

(
𝜃𝑡

)
+ 𝜂

2
∇𝐽 (

𝜃𝑡
)2 +

(
1

2𝜂
− 𝐿

2

) 𝜃𝑡+1 − 𝜃𝑡 2 − 𝜂

 ¯̂𝑣𝑡 −
1
|G𝑡 |

∑︁
𝑖∈G𝑡
∇𝐽

(
𝜃
(𝑖 )
𝑡

)
2

+ 𝜂𝐿2EΔ𝑡 .

Proof. By smoothness of 𝐽 , i.e., Proposition 1,

𝐽
(
𝜃𝑡+1

)
≥ 𝐽

(
𝜃𝑡

)
+ ⟨∇𝐽

(
𝜃𝑡

)
, 𝜃𝑡+1 − 𝜃𝑡 ⟩ −

𝐿

2
𝜃𝑡+1 − 𝜃𝑡 2

= 𝐽
(
𝜃𝑡

)
+ 𝜂⟨∇𝐽

(
𝜃𝑡

)
, ¯̂𝑣𝑡 ⟩ −

𝜂2𝐿

2
 ¯̂𝑣𝑡

2

(𝑎)
= 𝐽

(
𝜃𝑡

)
+ 𝜂

2
∇𝐽 (

𝜃𝑡
)2 + 𝜂

2
 ¯̂𝑣𝑡

2 − 𝜂
2

 ¯̂𝑣𝑡 − ∇𝐽
(
𝜃𝑡

)2 − 𝜂
2𝐿

2
 ¯̂𝑣𝑡

2

= 𝐽
(
𝜃𝑡

)
+ 𝜂

2
∇𝐽 (

𝜃𝑡
)2 +

(
1

2𝜂
− 𝐿

2

) 𝜃𝑡+1 − 𝜃𝑡 2 − 𝜂
2

 ¯̂𝑣𝑡 − ∇𝐽
(
𝜃𝑡

)2

(𝑏 )
= 𝐽

(
𝜃𝑡

)
+ 𝜂

2
∇𝐽 (

𝜃𝑡
)2 +

(
1

2𝜂
− 𝐿

2

) 𝜃𝑡+1 − 𝜃𝑡 2 − 𝜂

 ¯̂𝑣𝑡 −
1
|G𝑡 |

∑︁
𝑖∈G𝑡
∇𝐽

(
𝜃
(𝑖 )
𝑡

)
2

+ 𝜂

∇𝐽 (
𝜃𝑡

)
− 1
|G𝑡 |

∑︁
𝑖∈G𝑡
∇𝐽

(
𝜃
(𝑖 )
𝑡

)
2

(𝑐 )
= 𝐽

(
𝜃𝑡

)
+ 𝜂

2
∇𝐽 (

𝜃𝑡
)2 +

(
1

2𝜂
− 𝐿

2

) 𝜃𝑡+1 − 𝜃𝑡 2 − 𝜂

 ¯̂𝑣𝑡 −
1
|G𝑡 |

∑︁
𝑖∈G𝑡
∇𝐽

(
𝜃
(𝑖 )
𝑡

)
2

+ 𝜂𝐿2EΔ𝑡

where (a) is due to Lemma 5,(3), (b) is by Lemma 5, (4), and (c) easily follows from 𝐿-smoothness of 𝐽 , i.e., Proposition 1, and the error bound
(2). □

As a next preparatory step, we want to show that the overall gradient estimates 𝑣 (𝑖 )𝑡 do not vary too much across different agents. In
particular, we bound the average of pairwise variances as follows.

Lemma 15. Let Assumption 1 and 4 hold. Then, there exists a constant 𝐶𝑝 > 0 such that

T̃1,𝑡 :=
1

|G𝑡 | ( |G𝑡 | − 1)
∑︁
𝑖,𝑙∈G𝑡

E

[𝑣 (𝑖 )𝑡 − 𝑣 (𝑙 )𝑡 2
| 𝑐𝑡 = 1

]
≤ 8

(
𝜎2

𝑁
+ 𝐿2E[EΔ𝑡 ]

)
T̃0,𝑡 :=

1
|G𝑡 | ( |G𝑡 | − 1)

∑︁
𝑖,𝑙∈G𝑡

E

[𝑣 (𝑖 )𝑡 − 𝑣 (𝑙 )𝑡 2
| 𝑐𝑡 = 0

]
≤ 12EΔ,𝜅

𝜂2 +
36𝐶𝑝E

[
EΔ𝑡

]
𝐵

+
18𝐶𝑝
𝐵
E

[𝜃𝑡 − 𝜃𝑡−1
2

]

and we will use T̃1,𝑡 , T̃0,𝑡 also in subsequent lemmas to refer to these terms.



Proof. For the first bound, we plug in the definition of 𝑣 (𝑖 )𝑡 as in Algorithm 1, and use basic fact (4) from Lemma 5, to get

T̃1,𝑡 =
1

|G𝑡 | ( |G𝑡 | − 1)
∑︁
𝑖,𝑙∈G𝑡

E

[𝑣 (𝑖 )𝑡 − 𝑣 (𝑙 )𝑡 2
| 𝑐𝑡 = 1

]

=
1

|G𝑡 | ( |G𝑡 | − 1)
∑︁
𝑖,𝑙∈G𝑡

E


 1
𝑁

𝑁∑︁
𝑗=1

𝑔

(
𝜏
(𝑖 )
𝑡, 𝑗
| 𝜃 (𝑖 )𝑡

)
− 1
𝑁

𝑁∑︁
𝑗=1

𝑔

(
𝜏
(𝑙 )
𝑡, 𝑗
| 𝜃 (𝑙 )𝑡

)
2

≤ 1
|G𝑡 | ( |G𝑡 | − 1)

∑︁
𝑖,𝑙∈G𝑡

E

2
 1
𝑁

𝑁∑︁
𝑗=1

𝑔

(
𝜏
(𝑖 )
𝑡, 𝑗
| 𝜃 (𝑖 )𝑡

)
− ∇𝐽

(
𝜃𝑡

)
2

+ 2

 1
𝑁

𝑁∑︁
𝑗=1

𝑔

(
𝜏
(𝑙 )
𝑡, 𝑗
| 𝜃 (𝑙 )𝑡

)
− ∇𝐽

(
𝜃𝑡

)
2

=
4
|G𝑡 |

∑︁
𝑖∈G𝑡
E


 1
𝑁

𝑁∑︁
𝑗=1

𝑔

(
𝜏
(𝑖 )
𝑡, 𝑗
| 𝜃 (𝑖 )𝑡

)
− ∇𝐽

(
𝜃𝑡

)
2

≤ 4
|G𝑡 |

∑︁
𝑖∈G𝑡

2E

 1
𝑁

𝑁∑︁
𝑗=1

𝑔

(
𝜏
(𝑖 )
𝑡, 𝑗
| 𝜃 (𝑖 )𝑡

)
− ∇𝐽

(
𝜃
(𝑖 )
𝑡

)
2︸                                                ︷︷                                                ︸

(𝑎)
≤ 𝜎2

𝑁

+2E
[∇𝐽 (

𝜃
(𝑖 )
𝑡

)
− ∇𝐽

(
𝜃𝑡

)2
]

︸                             ︷︷                             ︸
(𝑏)
≤ 𝐿2E[EΔ𝑡 ]

≤ 8
(
𝜎2

𝑁
+ 𝐿2E

[
EΔ𝑡

] )
where (a) is by Lemma 7 and (b) easily follows from 𝐿-smoothness of 𝐽 , i.e., Proposition 1, and error bound (2).

Then, the second bound follows from

T̃0,𝑡 =
1

|G𝑡 | ( |G𝑡 | − 1)
∑︁
𝑖,𝑙∈G𝑡

E

[𝑣 (𝑖 )𝑡 − 𝑣 (𝑙 )𝑡 2
| 𝑐𝑡 = 0

]
=

1
|G𝑡 | ( |G𝑡 | − 1)

∑︁
𝑖,𝑙∈G𝑡

E

[(Δ̂𝐵 (
𝜃
(𝑖 )
𝑡 , 𝜃

(𝑖 )
𝑡−1

)
+ 𝑣 (𝑖 )

𝑡−1

)
−

(
Δ̂𝐵

(
𝜃
(𝑙 )
𝑡 , 𝜃

(𝑙 )
𝑡−1

)
+ 𝑣 (𝑙 )

𝑡−1

)2
]

≤ 1
|G𝑡 | ( |G𝑡 | − 1)

∑︁
𝑖,𝑙∈G𝑡

3E
[Δ̂𝐵 (

𝜃
(𝑖 )
𝑡 , 𝜃

(𝑖 )
𝑡−1

)2
]
+ 3E

[Δ̂𝐵 (
𝜃
(𝑙 )
𝑡 , 𝜃

(𝑙 )
𝑡−1

)2
]
+ 3E

[𝑣 (𝑖 )𝑡−1 − 𝑣
(𝑙 )
𝑡−1

2
]

(𝑎)
≤ 12EΔ,𝜅

𝜂2 + 1
|G𝑡 | ( |G𝑡 | − 1)

∑︁
𝑖,𝑙∈G𝑡

3𝐶𝑝
𝐵
E

[𝜃 (𝑖 )𝑡 − 𝜃 (𝑖 )𝑡−1

2
]
+

3𝐶𝑝
𝐵
E

[𝜃 (𝑙 )𝑡 − 𝜃 (𝑙 )𝑡−1

2
]

≤ 12EΔ,𝜅

𝜂2 +
6𝐶𝑝
𝐵 |G𝑡 |

∑︁
𝑖∈G𝑡
E

[𝜃 (𝑖 )𝑡 − 𝜃 (𝑖 )𝑡−1

2
]

≤ 12EΔ,𝜅

𝜂2 +
6𝐶𝑝
𝐵 |G𝑡 |

∑︁
𝑖∈G𝑡
E

[
3
𝜃 (𝑖 )𝑡 − 𝜃𝑡 2

+ 3
𝜃𝑡 − 𝜃𝑡−1

2 + 3
𝜃𝑡−1 − 𝜃 (𝑖 )𝑡−1

2
]

(𝑏 )
≤ 12EΔ,𝜅

𝜂2 +
36𝐶𝑝E

[
EΔ𝑡

]
𝐵

+
18𝐶𝑝
𝐵
E

[𝜃𝑡 − 𝜃𝑡−1
2

]
.

Step (a) is due to

1
|G𝑡 | ( |G𝑡 | − 1)

∑︁
𝑖,𝑙∈G𝑡

E

[𝑣 (𝑖 )𝑡−1 − 𝑣
(𝑙 )
𝑡−1

2
]
≤ 1
|G𝑡 | ( |G𝑡 | − 1)

∑︁
𝑖,𝑙∈G𝑡

E

[ 1
𝜂

[(
𝜃
(𝑖 )
𝑡 − 𝜃

(𝑙 )
𝑡

)
+

(
𝜃
(𝑖 )
𝑡−1 − 𝜃

(𝑙 )
𝑡−1

)]2
]

≤
2E

[
EΔ𝑡

]
+ 2E

[
EΔ
𝑡−1

]
𝜂2

≤ 4EΔ,𝜅

𝜂2



where in the last step we use our bound EΔ,𝜅 from Lemma 2 that is independent of 𝑡 . The second fact used in (a) is that there exists constant
𝐶𝑝 > 0 such that

E

[Δ̂𝐵 (
𝜃
(𝑖 )
𝑡 , 𝜃

(𝑖 )
𝑡−1

)2
]
≤
𝐶𝑝

𝐵
E

[𝜃 (𝑖 )𝑡 − 𝜃 (𝑖 )𝑡−1

2
]

which follows similarly as Lemma B.1 in [18]. Step (b) is because, using Lemma 6 in the first step, we have

1
|G𝑡 |

∑︁
𝑖∈G𝑡

𝜃 (𝑖 )𝑡 − 𝜃𝑡 2
≤ 1
|G𝑡 | ( |G𝑡 | − 1)

∑︁
𝑖,𝑙∈G𝑡

𝜃 (𝑖 )𝑡 − 𝜃 (𝑙 )𝑡 2
≤ EΔ𝑡 .

□

Next, we want to see how good our realized average gradient estimates ¯̂𝑣𝑡 are, i.e., how much they deviate from ∇𝐽
(
𝜃𝑡

)
which is what we

aim to estimate. Note that this is a key component since both the aggregation and averaging steps introduce bias that we need to control
here.

Lemma 16. In the setting of Theorem 2, the following bounds hold:

T (1)
𝑥1,𝑡 := E

[ ¯̂𝑣𝑡 − 𝑣𝑡
2 | 𝑐𝑡−1 = 1

]
≤
𝐶2
𝑎𝑣𝑔

𝜂2

[
2E[EΔ𝑡 ] +

10𝜂2𝐶𝑟𝑎𝛼

𝜖
T̃1,𝑡

]
,

T (1)
𝑥0,𝑡 := E

[ ¯̂𝑣𝑡 − 𝑣𝑡
2 | 𝑐𝑡−1 = 0

]
≤
𝐶2
𝑎𝑣𝑔

𝜂2

[
2E[EΔ𝑡 ] +

10𝜂2𝐶𝑟𝑎𝛼

𝜖
T̃0,𝑡

]
,

T (2)1𝑥,𝑡 := E
[𝑣𝑡 − ¯̃𝑣𝑡

2 | 𝑐𝑡 = 1
]
≤ 𝐶𝑟𝑎𝛼 T̃1,𝑡 ,

T (2)0𝑥,𝑡 := E
[𝑣𝑡 − ¯̃𝑣𝑡

2 | 𝑐𝑡 = 0
]
≤ 𝐶𝑟𝑎𝛼 T̃0,𝑡 ,

T (3)1𝑥,𝑡 := E

 ¯̃𝑣𝑡 −

1
|G𝑡 |

∑︁
𝑖∈G𝑡
∇𝐽

(
𝜃
(𝑖 )
𝑡

)
2

| 𝑐𝑡 = 1
 ≤

4𝜎2

𝐾𝑁
, and,

T (3)0𝑥,𝑡 := E

 ¯̃𝑣𝑡 −

1
|G𝑡 |

∑︁
𝑖∈G𝑡
∇𝐽

(
𝜃
(𝑖 )
𝑡

)
2

| 𝑐𝑡 = 0


≤ E

 ¯̂𝑣𝑡−1 −

1
|G𝑡 |

∑︁
𝑖∈G𝑡
∇𝐽

(
𝜃
(𝑖 )
𝑡−1

)
2 +

( 8𝐶𝑝
𝐵𝐾
+ 8𝐿2

𝐾

)
E

[𝜃𝑡 − 𝜃𝑡−1
2

]
where T (𝑖 )

𝑎𝑏,𝑡
denotes the error in iteration 𝑡 with 𝑐𝑡 = 𝑎, 𝑐𝑡−1 = 𝑏, and due to averaging agreement for 𝑖 = 1, due to aggregation for 𝑖 = 2, and due

to the randomness of sampling for 𝑖 = 3.

Proof. We proceed by showing each of the claimed bounds separately, as follows:
(1) We have

T (1)
𝑥1,𝑡 = E

[ ¯̂𝑣𝑡 − 𝑣𝑡
2 | 𝑐𝑡−1 = 1

]
= E

[ 1
𝜂

(
𝜃𝑡+1 − 𝜃𝑡

)
− 1
𝜂

( ¯̃
𝜃𝑡+1 − 𝜃𝑡

)2
| 𝑐𝑡−1 = 1

]
=

1
𝜂2 E

[𝜃𝑡+1 − ¯̃
𝜃𝑡+1

2
| 𝑐𝑡−1 = 1

]
(𝑎)
≤
𝐶2
𝑎𝑣𝑔

𝜂2 E

[
Δ2

(
⟨𝜃 (𝑖 )𝑡 ⟩𝑖∈G𝑡

)2
| 𝑐𝑡−1 = 1

]
(𝑏 )
≤
𝐶2
𝑎𝑣𝑔

𝜂2

[
2E[EΔ𝑡 ] +

10𝜂2

𝜖
T̃1,𝑡

]
where (a) is by the definition of averaging agreement, i.e., Definition 3, and (b) follows from Lemma 1.

(2) This follows equivalently to 1. — conditioning the expectation on 𝑐𝑡−1 = 0 instead of 𝑐𝑡−1 = 1 replaces T̃1,𝑡 by T̃0,𝑡 in the result.



(3) First, by applying Lemma 6 and Definition 1,

T (2)1𝑥,𝑡 = E
[𝑣𝑡 − ¯̃𝑣𝑡

2 | 𝑐𝑡 = 1
]
≤ 1
|G𝑡 |

∑︁
𝑗∈G𝑡
E

[𝑣 ( 𝑗 )𝑡 − ¯̃𝑣𝑡
2
| 𝑐𝑡 = 1

]
≤ 1
|G𝑡 |

∑︁
𝑗∈G𝑡

𝐶𝑟𝑎𝛼

|G𝑡 | ( |G𝑡 | − 1)
∑︁
𝑖,𝑙∈G𝑡

E

[𝑣 (𝑖 )𝑡 − 𝑣 (𝑙 )𝑡 2
| 𝑐𝑡 = 1

]
=

𝐶𝑟𝑎𝛼

|G𝑡 | ( |G𝑡 | − 1)
∑︁
𝑖,𝑙∈G𝑡

E

[𝑣 (𝑖 )𝑡 − 𝑣 (𝑙 )𝑡 2
| 𝑐𝑡 = 1

]
≤ 𝐶𝑟𝑎𝛼 T̃1,𝑡

where the final step is the result of Lemma 15.
(4) Again, this is equivalent to 3. — conditioning the expectation on 𝑐𝑡 = 0 instead of 𝑐𝑡 = 1 replaces T̃1,𝑡 by T̃0,𝑡 in the result.
(5) By plugging in the definition of ¯̃𝑣𝑡 , we get

T (3)1𝑥,𝑡 = E
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1
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𝑖∈G𝑡
∇𝐽

(
𝜃
(𝑖 )
𝑡

)
2
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≤ E

 1
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1
𝑁
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𝑔
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(
𝜃
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𝑡

)
2
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 1
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𝑖∈G𝑡

𝑁∑︁
𝑗=1

𝑔

(
𝜏
(𝑖 )
𝑡, 𝑗
| 𝜃 (𝑖 )𝑡

)
− ∇𝐽

(
𝜃
(𝑖 )
𝑡

)
2

≤ 𝜎2

|G𝑡 |𝑁

≤ 4𝜎2

𝐾𝑁

where the second to last step follows by an argument similar to Lemma 7. The last step then is due to |G𝑡 | ≥ (1−𝛼)𝐾 ≥ (1−𝛼max)𝐾 ≥
𝐾/4.



(6) First, observe that Δ̂𝑀
(
𝜃
(𝑘 )
𝑡 , 𝜃

(𝑘 )
𝑡−1

)
is an unbiased estimate of Δ

(
𝜃
(𝑘 )
𝑡 , 𝜃

(𝑘 )
𝑡−1

)
. Then,

T (3)0𝑥,𝑡 = E
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]
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1
|G𝑡 |

∑︁
𝑖∈G𝑡
∇𝐽

(
𝜃
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E
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2

]
Step (a) requires further justification: Note that 𝑋1 does not depend on any randomness at step 𝑡 , and also E [𝑋2] = 0. Hence, denoting
by E𝑡 the expectation over the randomness in step 𝑡 , we can use the tower rule to get

E
[
∥𝑋1 + 𝑋2∥2

]
= E

[
E𝑡

[
∥𝑋1 + 𝑋2∥2

] ]
= E

[
∥𝑋1∥2 + 2⟨𝑋1,E𝑡 [𝑋2]︸  ︷︷  ︸

=0

⟩ + E𝑡
[
∥𝑋2∥2

] ]
= E

[
∥𝑋1∥2

]
+ E

[
∥𝑋2∥2

]
which then justifies (a). Step (b) follows from a similar argument on a sum of |G𝑡 | random variables, the fact that E

[
Δ̂𝑀

(
𝜃
(𝑘 )
𝑡 , 𝜃

(𝑘 )
𝑡−1

)]
=

Δ
(
𝜃
(𝑘 )
𝑡 , 𝜃

(𝑘 )
𝑡−1

)
, and |G𝑡 | ≥ 𝐾/4 as noted above. Step (c) then follows from the same argument used in the second part of the proof of

Lemma 15.

□

Lemma 17. In the setting of Lemma 16, let T𝑡 :=
 ¯̂𝑣𝑡 − 1

| G𝑡 |
∑
𝑖∈G𝑡 ∇𝐽

(
𝜃
(𝑖 )
𝑡

)2
. Then, we have

E
[
∥T𝑡 ∥2

]
≤

(
1 − 𝑝

2

)
E

[
∥T𝑡−1∥2

]
+ 𝐴𝑝

4
E

[𝜃𝑡 − 𝜃𝑡−1
2

]
+ 𝐶1𝜎2𝑝𝛼

4𝑁
+ 𝐶2𝜎2𝑝

4𝐾𝑁

where 𝐶1,𝐶2 > 0 are constants, and 𝐴 = Θ
(
𝛼
𝑝2𝐵
+ 1
𝑝𝐾

)
.

Proof. By the law of total expectation,

E [T𝑡 ] = 𝑝E [T𝑡 | 𝑐𝑡 = 1] + (1 − 𝑝)E [T𝑡 | 𝑐𝑡 = 0]

= 𝑝E [T𝑡 | 𝑐𝑡 = 1] + (1 − 𝑝)
(
𝑝E [T𝑡 | 𝑐𝑡 = 0 ∧ 𝑐𝑡−1 = 1] + (1 − 𝑝)E [T𝑡 | 𝑐𝑡 = 0 ∧ 𝑐𝑡−1 = 0]

)
.



By applying (5) and (4) of Lemma 5, we further choose the following way of bounding:

E [T𝑡 | 𝑐𝑡 = 1] ≤ 3
(
𝑝T (1)
𝑥1,𝑡 + (1 − 𝑝)T

(1)
𝑥0,𝑡

)
+ 3T (2)1𝑥,𝑡 + 3T (3)1𝑥,𝑡 ,

E [T𝑡 | 𝑐𝑡 = 0 ∧ 𝑐𝑡−1 = 1 ] ≤ 22T (1)
𝑥1,𝑡 + 22T (2)0𝑥,𝑡 + 1.1T (3)0𝑥,𝑡 , and
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(
2 + 8

𝑝

)
T (1)
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(
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𝑝

)
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(
1 + 𝑝

4

)
T (3)0𝑥,𝑡 .

Putting everything together, we get

E [T𝑡 ] ≤
(
3𝑝2 + 22𝑝 (1 − 𝑝)

)
T (1)
𝑥1,𝑡 +

(
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(
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𝑝

))
T (1)
𝑥0,𝑡 + 3𝑝T (2)1𝑥,𝑡

+
(
22𝑝 (1 − 𝑝) + (1 − 𝑝)2

(
2 + 8

𝑝

))
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(
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(
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4
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8
𝑝
T (1)
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(
1 − 𝑝

2

)
T (3)0𝑥,𝑡

where the last step follows from Lemma 5, (7).
After plugging in the results of Lemma 16, rearranging, and choosing large enough constants 𝐶1,𝐶2 > 0, we get

E [T𝑡 ]

≤ T̃1,𝑡

[
220𝑝𝑐𝛼𝐶2

𝑎𝑣𝑔
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𝑝
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2
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𝜖
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)
+

(
12
𝜂2 +

36𝐶𝑝
𝐵

) (
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𝑎𝑣𝑔

𝑝𝜖
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𝑝

)]
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=:Z
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)
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2
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(
𝐶1𝑝𝛼 +

𝐶2𝑝

𝐾

)
+ O

(
𝛼

𝑝

)
E

𝜃𝑡 − 𝜃𝑡−1
2 +

(
1 − 𝑝

2

) [
E [T𝑡−1] + O

(
1
𝐾

)
E

[𝜃𝑡 − 𝜃𝑡−1
2

] ]
.

In step (a) we switch to asymptotic analysis, treating 𝜎,𝐶𝑎𝑣𝑔, 𝜂, 𝜖, 𝐿,𝐶𝑟𝑎 and 𝐶𝑝 as constants, and using 𝛼, 𝑝 ≤ 1, and 𝐵 ≥ 1. Moreover,
because of Lemma 2, we know EΔ,𝜅 ≤ O (2−𝜅 ), and further, one can see thatZ = Θ (1/𝑝). Therefore, with our choice of 𝜅 = Θ

(
log 𝐾𝑁

𝑝2

)
,

we have EΔ,𝜅 · Z ≤ O
(
𝑝

𝐾𝑁

)
and this term hence gets swallowed by the constant 𝐶2. From the last line above, it becomes clear that for

𝐴 = Θ

(
𝛼

𝑝2𝐵
+ 1
𝑝𝐾

)
the result of the lemma follows. □

D EXPERIMENTAL SETUP

D.1 Hyperparameters

Throughout all experiments, policies are parameterized as neural networks, and we use the Adam [37] optimizer during training. We
summarize the chosen hyperparameters, some of which are adopted from [5] and [18], in Table 1, and refer to the repository provided as
supplementary material for instructions on how to run the script that specifies the seeds and reproduces the experiments contained in this
paper.



D.2 Compute Requirements

Our experiments have been conducted on a 4-core Intel(R) Xeon(R) CPU E3-1284L v4 clocked at 2.90GHz and equipped with 8Gbs of memory.
Since no GPUs have been used, all experiments are fully reproducible using the specified seeds. Moreover, each individual experiment can
terminate within less than 5 hours for CartPole tasks, and less than 15 hours for LunarLander tasks, on the specified hardware.

Hyperparameters CartPole LunarLander
NN policy Categorical MLP Categorical MLP

NN hidden weights 16,16 64,64
NN activation ReLU Tanh

NN output activation Tanh Tanh
Step size (Adam) 𝜂 5e-3 1e-3
Discount factor 𝛾 0.999 0.999
Task horizon 𝐻 500 1000

Small batch size 𝐵 4 32
Large batch size 𝑁 50 96

Switching probability 𝑝 0.2 0.2

Table 1: Hyperparameters used in our experiments.

E ADDITIONAL EXPERIMENTS

E.1 Experiments for ByzPG
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Figure 4: Performance of ByzPG for different federation sizes when all agents behave honestly (i.e. 𝛼 = 0).

In Figure 4, we consider ByzPG in the case 𝛼 = 0, with 𝐾 = 1 (which is equivalent to PAGE-PG [18]), 𝐾 = 5, and 𝐾 = 13. Speed-up with
increasing number of agents is observable in both environments, as suggested by Corollary 1. Such faster convergence provides empirical
evidence motivating agents to join a (centralized) federation.

In Figure 5 and 6, we compare ByzPG under the same attacks as described in Section 6 to (a) PAGE-PG [18], the SOTA single-agent PG
method that ByzPG reduces to when 𝐾 = 1, and (b) Fed-PAGE-PG, a naive centralized federated (but not fault-tolerant) version of PAGE-PG
where aggregation of gradients is done by averaging.
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Figure 5: Performance & resilience of ByzPG for CartPole w.r.t. our three attack types.
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Figure 6: Performance & resilience of ByzPG for LunarLander w.r.t. our three attack types.

We observe that for both environments and all attacks, ByzPG performs nearly on par with the unattacked PAGE-PG. This empirically
supports the Byzantine fault-tolerance of ByzPG. Furthermore, for CartPole, as expected, LargeNoise and AvgZero are highly effective
against the non-fault-tolerant method, while RandomAction barely shows any effect, similar to our observation for the decentralized case
in Section 6. For the more difficult task of LunarLander, already RandomAction breaks PAGE-PG. Finally, we conclude by pointing out that
in all cases ByzPG with 𝐾 = 13 and 𝛼 > 0 outperforms PAGE-PG with 𝐾 = 1 (and 𝛼 = 0), meaning that in our experiments, despite the
presence of Byzantines, joining the (centralized) federation is empirical beneficial for faster convergence.
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