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ABSTRACT

We propose a novel theoretical framework to understand self-supervised learning
methods that employ dual pairs of deep ReLU networks (e.g., SimCLR, BYOL).
First, we prove that in each SGD update of SimCLR, the weights at each layer
are updated by a covariance operator that specifically amplifies initial random
selectivities that vary across data samples but survive averages over data augmen-
tations. We show this leads to the emergence of hierarchical features, if the input
data are generated from a hierarchical latent tree model. With the same frame-
work, we also show analytically that in BYOL, the combination of BatchNorm
and a predictor network creates an implicit contrastive term, acting as an approx-
imate covariance operator. Additionally, for linear architectures we derive exact
solutions for BYOL that provide conceptual insights into how BYOL can learn
useful non-collapsed representations without any contrastive terms that separate
negative pairs. Extensive ablation studies justify our theoretical findings.

1 INTRODUCTION

While self-supervised learning (SSL) has achieved great empirical success across multiple domains,
including computer vision (He et al., 2020; Goyal et al., 2019; Chen et al., 2020a; Grill et al., 2020;
Misra and Maaten, 2020; Caron et al., 2020), natural language processing (Devlin et al., 2018),
and speech recognition (Wu et al., 2020; Baevski and Mohamed, 2020; Baevski et al., 2019), its
theoretical understanding remains elusive, especially when multi-layer nonlinear deep networks are
involved (Bahri et al., 2020). Unlike supervised learning (SL) that deals with labeled data, SSL
learns meaningful structures from randomly initialized networks without human-provided labels.

In this paper, we propose a systematic theoretical analysis of SSL with deep ReLU networks. Our
analysis imposes no parametric assumptions on the input data distribution and is applicable to state-
of-the-art SSL methods that typically involve two parallel (or dual) deep ReLU networks during
training (e.g., SimCLR (Chen et al., 2020a), BYOL (Grill et al., 2020), etc). We do so by developing
an analogy between SSL and a theoretical framework for analyzing supervised learning, namely the
student-teacher setting (Tian, 2020; Allen-Zhu and Li, 2020; Lampinen and Ganguli, 2018; Saad
and Solla, 1996), which also employs a pair of dual networks. Our results indicate that SimCLR
weight updates at every layer are amplified by a fundamental positive semi definite (PSD) covariance
operator that only captures feature variability across data points that survive averages over data
augmentation procedures designed in practice to scramble semantically unimportant features (e.g.
random image crops, blurring or color distortions (Falcon and Cho, 2020; Kolesnikov et al., 2019;
Misra and Maaten, 2020; Purushwalkam and Gupta, 2020)). This covariance operator provides a
principled framework to study how SimCLR amplifies initial random selectivity to obtain distinctive
features that vary across samples after surviving averages over data-augmentations.

Based on the covariance operator, we further show that (1) in a two-layer setting, a top-level covari-
ance operator helps accelerate the learning of low-level features, and (2) when the data are generated
by a hierarchical latent tree model, training deep ReLU networks leads to an emergence of the latent
variables in its intermediate layers. We also analyze how BYOL might work without negative pairs.
First we show analytically that an interplay between the zero-mean operation in BatchNorm and the
extra predictor in the online network creates an implicit contrastive term, consistent with empirical
observations in the recent blog (Fetterman and Albrecht, 2020). Note this analysis does not rule
out the possibility that BYOL could work with other normalization techniques that don’t introduce
contrastive terms, as shown recently (Richemond et al., 2020a). To address this, we also derive exact
solutions to BYOL in linear networks without any normalization, providing insight into how BYOL
can learn without contrastive terms induced either by negative pairs or by BatchNorm. Finally, we
also discover that reinitializing the predictor every few epochs doesn’t hurt BYOL performance,
thereby questioning the hypothesis of an optimal predictor in (Grill et al., 2020).
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Figure 1: (a) Overview of the two SSL algorithms we study in this paper: SimCLR (W1 = W2 = W , no
predictor, NCE Loss) and BYOL (W1 has an extra predictor,W2 is a moving average), (b) Detailed Notation.

To the best of our knowledge, we are the first to provide a systematic theoretical analysis of modern
SSL methods with deep ReLU networks that elucidates how both data and data augmentation, drive
the learning of internal representations across multiple layers.

Related Work. Besides SimCLR and BYOL, we briefly mention other concurrent SSL frame-
works for vision. MoCo (He et al., 2020; Chen et al., 2020b) keeps a large bank of past representa-
tions in a queue as the slow-progressing target to train from. DeepCluster (Caron et al., 2018) and
SwAV (Caron et al., 2020) learn the representations by iteratively or implicitly clustering on the cur-
rent representations and improving representations using the cluster label. (Alwassel et al., 2019)
applies similar ideas to multi-modality tasks. In contrast, the literature on the analysis of SSL with
dual deep ReLU networks is sparse. (Arora et al., 2019) proposes an interesting analysis of how
contrastive learning aids downstream classification tasks, given assumptions about data generation.
However, it does not explicitly analyze the learning of representations in deep networks.

2 OVERALL FRAMEWORK

Notation. Consider an L-layer ReLU network obeying fl = ψ(f̃l) and f̃l = Wlfl−1 for l =

1, . . . L. Here f̃l and fl are nl dimensional pre-activation and activation vectors in layer l, with
f0 = x being the input and fL = f̃L the output (no ReLU at the top layer). Wl ∈ Rnl×nl−1

are the weight matrices, and ψ(u) := max(u, 0) is the element-wise ReLU nonlinearity. We let
W := {Wl}Ll=1 be all network weights. We also denote the gradient of any loss function with respect
to fl by gl ∈ Rnl , and the derivative of the output fL with respect to an earlier pre-activation f̃l by
the Jacobian matrix Jl(x;W) ∈ RnL×nl , as both play key roles in backpropagation (Fig. 1(b)).

An analogy between self-supervised and supervised learning: the dual network scenario.
Many recent successful approaches to self-supervised learning (SSL), including SimCLR (Chen
et al., 2020a), BYOL (Grill et al., 2020) and MoCo (He et al., 2020), employ a dual “Siamese-
like” pair (Koch et al., 2015) of such networks (Fig. 1(b)). Each network has its own set of
weights W1 and W2, receives respective inputs x1 and x2 and generates outputs f1,L(x1;W1)
and f2,L(x2;W2). The pair of inputs {x1,x2} can be either positive or negative, depending on
how they are sampled. For a positive pair, a single data point x is drawn from the data distribution
p(·), and then two augmented views x1 and x2 are drawn from a conditional augmentation distri-
bution paug(·|x). Possible image augmentations include random crops, blurs or color distortions,
that ideally preserve semantic content useful for downstream tasks. In contrast, for a negative pair,
two different data points x,x′ ∼ p(·) are sampled, and then each are augmented independently to
generate x1 ∼ paug(·|x) and x2 ∼ paug(·|x′). For SimCLR, the dual networks have tied weights
withW1 =W2, and a loss function is chosen to encourage the representation of positive (negative)
pairs to become similar (dissimilar). In BYOL, only positive pairs are used, and the first network
W1, called the online network, is trained to match the output of the second networkW2 (the target),
using an additional layer named predictor. The target network ideally provides training targets that
can improve the online network’s representation and does not contribute a gradient. The improved
online network is gradually incorporated into the target network, yielding a bootstrapping procedure.

Our fundamental goal is to analyze the mechanisms governing how SSL methods like SimCLR
and BYOL lead to the emergence of meaningful intermediate features, starting from random initial-
izations, and how these features depend on the data distribution p(x) and augmentation procedure
paug(·|x). Interestingly, the analysis of supervised learning (SL) often employs a similar dual net-
work scenario, called teacher-student setting (Tian, 2020; Allen-Zhu and Li, 2020; Lampinen and
Ganguli, 2018; Saad and Solla, 1996), where W2 are the ground truth weights of a fixed teacher
network, which generates outputs in response to random inputs. These input-output pairs constitute
training data for the first network, which is a student network. Only the student network’s weights
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W1 are trained to match the target outputs provided by the teacher. This yields an interesting mathe-
matical parallel between SL, in which the teacher is fixed and only the student evolves, and SSL, in
which both the teacher and student evolve with potentially different dynamics. This mathematical
parallel opens the door to using techniques from SL (e.g., (Tian, 2020)) to analyze SSL.

Gradient of `2 loss for dual deep ReLU networks. As seen above, the (dis)similarity of repre-
sentations between a pair of dual networks plays a key role in both SSL and SL. We thus consider
minimizing a simple measure of dissimilarity, the squared `2 distance r := 1

2‖f1,L − f2,L‖2 be-
tween the final outputs f1,L and f2,L of two multi-layer ReLU networks with weightsW1 andW2

and inputs x1 and x2. Without loss of generality, we only analyze the gradient w.r.tW1. For each
layer l, we first define the connection Kl(x), a quantity that connects the bottom-up feature vector
fl−1 with the top-down Jacobian Jl, which both contribute to the gradient at weight layer l.
Definition 1 (The connection Kl(x)). The connection Kl(x;W) := fl−1(x;W) ⊗ Jᵀ

l (x;W) ∈
Rnlnl−1×nL . Here ⊗ is the Kronecker product.
Theorem 1 (Squared `2 Gradient for dual deep ReLU networks). The gradient gWl

of r w.r.t. Wl ∈
Rnl×nl−1 for a single input pair {x1,x2} is (here K1,l := Kl(x1;W1) and K2,l := Kl(x2;W2)):

gWl
= vec (∂r/∂W1,l) = K1,l

[
Kᵀ

1,lvec(W1,l)−Kᵀ
2,lvec(W2,l)

]
. (1)

We used vectorized notation for the gradient gWl
and weights Wl to emphasize certain the-

oretical properties of SSL learning below. The equivalent matrix form is ∂r/∂W1,l =
Jᵀ
1,l [J1,lW1,lf1,l−1 − J2,lW2,lf2,l−1]fT1,l−1. See Appendix for proofs of all theorems in main text.

3 ANALYSIS OF SIMCLR
As discussed above, SimCLR (Chen et al., 2020a) employs both positive and negative input pairs,
and a symmetric network structure withW1 =W2 =W . Let {x1,x+} be a positive input pair from
x, and let {x1,xk−} for k = 1, . . . ,H beH negative pairs. These input pairs induce corresponding
squared `2 distances in output space, r+ := 1

2‖f1,L − f+,L‖22, and rk− := 1
2‖f1,L − fk−,L‖22.

We consider three different contrastive losses, (1) the simple contrastive loss Lsimp := r+ − r−,
(2) (soft) Triplet loss Lτtri := τ log(1 + e(r+−r−+r0)/τ ) (here r0 ≥ 0 is the margin). Note that
limτ→0 L

τ
tri = max(r+ − r− + r0, 0) (Schroff et al., 2015), (3) InfoNCE loss (Oord et al., 2018):

Lτnce(r+, r1−, r2−, . . . , rH−) := − log
e−r+/τ

e−r+/τ +
∑H
k=1 e

−rk−/τ
(2)

Note that when ‖u‖2 = ‖v‖2 = 1, we have − 1
2‖u − v‖22 = sim(u,v) − 1 where sim(u,v) =

uᵀv
‖u‖2‖v‖2 , and Eqn. 2 reduces to what the original SimCLR uses (the term e−1/τ cancels out).

For simplicity, we move the analysis of the final layer `2 normalization to Appendix A.2. In Ap-
pendix F.6 of BYOL Grill et al. (2020) v3, it shows that even without `2 normalization, the algorithm
still works despite numerical instabilities. In this case, the goal of our analysis is to show that useful
weight components grow exponentially in the gradient updates.

One property of these loss functions is important for our analysis:
Theorem 2 (Common Property of Contrastive Losses). For loss functions L ∈ {Lsimp, L

τ
tri, L

τ
nce},

we have ∂L
∂r+

> 0, ∂L
∂rk−

< 0 for 1 ≤ k ≤ H and ∂L
∂r+

+
∑H
k=1

∂L
∂rk−

= 0.

With Theorem 1 and Theorem 2, we now present our first main contribution. The gradient in Sim-
CLR is governed by a positive semi-definite (PSD) covariance operator at any layer l:
Theorem 3 (Covariance Operator for Lsimp). With large batch limit, Wl’s update under Lsimp is:

Wl(t+ 1) = Wl(t) + α∆Wl(t), where vec(∆Wl(t)) = OPsimp
l (W)vec(Wl(t)). (3)

where OPsimp
l (W) := Vx∼p(·)[K̄l(x;W)] ∈ Rnlnl−1×nlnl−1 is the covariance operator for Lsimp,

K̄l(x;W) := Ex′∼paug(·|x) [Kl(x
′;W)] is the expected connection under the augmentation distri-

bution, conditional on the datapoint x and α is the learning rate.
Theorem 4 (Covariance Operator for Lτtri and Lτnce (H = 1, single negative pair)). Let r :=
1
2‖fL(x)−fL(x′)‖22. The covariance operator OPl(W) = 1

2V
ξ
x,x′∼p(·)

[
K̄l(x)− K̄l(x

′)
]
+corr,

where corr := O(Ex,x′∼p(·)

[√
r(x,x′)trVx′′∼paug(·|x)[fL(x′′)]

]
). For Lτtri, ξ(r) = e−(r−r0)/τ

1+e−(r−r0)/τ

(and limτ→0 ξ(r) = I(r ≤ r0)). For Lτnce, ξ(r) = 1
τ

e−r/τ

1+e−r/τ
. For Lsimp, ξ(r) ≡ 1 and corr = 0.
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Figure 2: Overview of Sec. 4. (a) To analyze the functionality of the covariance operator Vz0
[
K̄l(z0)

]
(Eqn. 3), we assume that Nature generates the data from a certain generative model with latent variable z0 and
z′, while data augmentation takes x(z0, z

′), changes z′ but keeps z0 intact. (b) Sec. 4.1: one layer one neuron
example. (c) Sec. 4.2: two-layer case where V[K̄1] and V[K̄2] interplay. (d) Sec. 4.3: Hierarchical Latent Tree
Models and deep ReLU networks trained with SimCLR. A latent variable zµ, and its corresponding nodes Nµ
in multi-layer ReLU side, covers a subset of input x, resembling local receptive fields in ConvNet.

Above, we use Covξ[X,Y ] := E [ξ(X,Y )(X − E [X])(Y − E [Y ])ᵀ] and Vξ[X] := Covξ[X,X]
(Cov[X,Y ] means ξ(·) ≡ 1). The covariance operator OPl(W) is a time-varying PSD matrix over
the entire training procedure. Therefore, all its eigenvalues are non-negative and at any time t, Wl

is most amplified along its largest eigenmodes. Intuitively, OPl(W) ignores different views of the
same sample x by averaging over the augmentation distribution to compute K̄l(x), and then com-
putes the expected covariance of this augmentation averaged connection with respect to the data
distribution p(x). Thus, at all layers, any variability in the connection across different data points,
that survives augmentation averages, leads to weight amplification. This amplification of weights
by the PSD data covariance of an augmentation averaged connection constitutes a fundamental de-
scription of SimCLR learning dynamics for arbitrary data and augmentation distributions.

4 HOW THE COVARIANCE OPERATOR DRIVES THE EMERGENCE OF FEATURES

To concretely illustrate how the fundamental covariance operator derived in Theorem 3-4 drives fea-
ture emergence in SimCLR, we setup the following paradigm for analysis. The input x = x(z0, z

′)
is assumed to be generated by two groups of latent variables, class/sample-specific latents z0 and
nuisance latents z′. We assume data augmentation only changes z′ while preserving z0 (Fig. 2(a)).
For brevity we use Theorem 3 (Lsimp), then OP = Vz0 [K̄l(z0)] since z′ is averaged out in K̄l(z0).

In this setting, we first show that a linear neuron performs PCA within an augmentation preserved
subspace. We then consider how nonlinear neurons with local receptive fields (RFs) can learn to
detect simple objects. Finally, we extend our analysis to deep ReLU networks exposed to data gener-
ated by a hierarchical latent tree model (HLTM), proving that, with sufficient over-parameterization,
there exist lucky nodes at initialization whose activation is correlated with latent variables underly-
ing the data, and that SimCLR amplifies these initial lucky representations during learning.

4.1 SELF-SUPERVISED LEARNING AND THE SINGLE NEURON: ILLUSTRATIVE EXAMPLES

A single linear neuron performs PCA in a preserved subspace. For a single linear neuron
(L = 1, nL = 1), the connection in definition 1 is simply K1(x) = x. Now imagine the input space
x can be decomposed into the direct sum of a semantically relevant subspace, and its orthogonal
complement, which corresponds to a subspace of nuisance features. Furthermore, suppose the aug-
mentation distribution paug(·|x) is obtained by multiplying x by a random Gaussian matrix that acts
only in the nuisance subspace, thereby identically preserving the semantic subspace. Then the aug-
mentation averaged connection K̄1(x) = Qsx where Qs is a projection operator onto the semantic
subspace. In essence, only the projection of data onto the semantic subspace survives augmentation
averaging, as the nuisance subspace is scrambled. Then OP = Vx[K̄1(x)] = QsVx[x]Qsᵀ. Thus
the covariance of the data distribution, projected onto the semantic subspace, governs the growth
of the weight vector W1, demonstrating SimCLR on a single linear neuron performs PCA within a
semantic subspace preserved by data augmentation.

A single linear neuron cannot detect localized objects. We now consider a generative model
in which data vectors can be thought of as images of objects of the form x(z0, z

′) where z0 is an
important latent semantic variable denoting object identity, while z′ is an unimportant latent variable
denoting nuisance features, like object pose or location. The augmentation procedure scrambles
pose/position while preserving object identity. Consider a simple concrete example (Fig. 3(a)):

x(z0, z
′) =

{
ez′ + e(z′+1) mod d z0 = 1
ez′ + e(z′+2) mod d z0 = 2, (4)

Here 0 ≤ z′ ≤ d − 1 denotes d discrete translational object positions on a periodic ring and z0 ∈
{1, 2} denotes two possible objects 11 and 101. The distribution is uniform both over objects
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Figure 3: (a) Two 1D objects under translation: (a1) Two different objects 11 (z0 = 1) and 101 (z0 = 2)
located at different locations specified by z′. (a2) The frequency table for a neuron with local receptive field of
size 2. (b) In two-layer case (Fig. 2(c)), V[K̄1] and V[K̄2] interplay in two-cluster data distribution.

and positions: p(z0, z′) = 1
2d . Augmentation shifts the object to a uniformly random position

via paug(z′|z0) = 1/d. For a single linear neuron K1(x) = x, and the augmentation-averaged
connection is K̄1(z0) = 2

d1, and is actually independent of object identity z0 (both objects activate
two pixels at any location). Thus OP1 = Vz0

[
K̄1(z0)

]
= 0 and no learning happens.

A local receptive field (RF) does not help. In the same generative model, now consider a linear neu-
ron with a local RF of width 2. Within the RF only four patterns can arise: 00, 01, 10, 11. Taking
the expectation over z′ given z0 (Fig. 3(a2)) yields K̄1(z0=1) = 1

d [x11 + x01 + x10 + (d− 3)x00]

and K̄1(z0=2) = 1
d [2x01 + 2x10 + (d− 4)x00]. Here, x11 ∈ R2 denotes pattern 11. This yields

OP1 = Vz0
[
K̄1(z0)

]
=

1

4d2
uuᵀ where u := x11 + x00 − x01 − x10, (5)

and OP1 ∈ R2×2 since the RF has width 2. Note that the signed sum of the four pattern vectors in u
actually cancel, so that u = 0, implying OP1 = 0 and no learning happens. Interestingly, although
the conditional distribution of the 4 input patterns depends on the object identity z0 (Fig. 3(a2)), a
linear neuron cannot learn to discriminate the objects.

A nonlinear neuron with local RF can learn to detect object selective features. With a ReLU
neuron with weight vector w, from Def. 1, the connection is now K1(x,w) = ψ′(wᵀx)x. Suppose
w(t) happens to be selective for a single pattern xp (where p ∈ {00,01,10,11}), i.e., w(t)ᵀxp >
0 and w(t)ᵀxp′ < 0 for p′ 6= p. The augmentation averaged connection is then K̄1(z0) ∝ xp where
the proportionality constant depends on object identity z0 and can be read off (Fig. 3(a2)). Since this
averaged connection varies with object identity z0 for all p, the covariance operator OP1 is nonzero
and is given by Vz0

[
K̄1(z0)

]
= cpxpx

ᵀ
p where the constant cp > 0 depends on the selective pattern

p and can be computed from Fig. 3(a2). By Theorem 3, the dot product xᵀ
pw(t) grows over time:

xᵀ
pw(t+ 1) = xᵀ

p

(
I2×2 + αcpxpx

ᵀ
p

)
w(t) =

(
1 + αcp‖xp‖2

)
xᵀ
pwj(t) > xᵀ

pwj(t) > 0. (6)

Thus the learning dynamics amplifies the initial selectivity to the object selective feature vector xp
in a way that cannot be done with a linear neuron. Note this argument also holds with bias terms
and initial selectivity for more than one pattern. Moreover, with a local RF, the probability of weak
initial selectivity to local object sensitive features is high, and we may expect amplification of such
weak selectivity in real neural network training, as observed in other settings (Williams et al., 2018).

4.2 A TWO-LAYER CASE WITH MULTIPLE HIDDEN NEURONS

Now consider a two-layer network (L = 2). The hidden layer has n1 ReLU neurons while the
output has n2 (Fig. 2(c)). In this case, the augmentation-averaged connection K̄1(z0) at the lower
layer l = 1 can be written as (d = n0 is the input dimension):

K̄1(z0) = [w2,1u
ᵀ
1(z0),w2,2u

ᵀ
2(z0), . . . ,w2,n1u

ᵀ
n1

(z0)]ᵀ ∈ Rn1d×n2 (7)

where w1,j ∈ Rd and w2,j ∈ Rn2 are weight vectors into and out of hidden neuron j (Fig. 2(c)),
and uj(z0) := Ez′|z0

[
x(z0, z

′)I(wᵀ
1,jx(z0, z

′) ≥ 0)
]
∈ Rd is the augmentation average of only

those inputs that activate hidden neuron j. While the gradient dynamics in SimCLR under Lsimp

has a close form (Eqn. 65), it is hard to see what happens. Instead, we consider an intuitive sub-case:
Theorem 5 (Dynamics of two-layer (W2 diagonal)). If n1 = n2 and W2 = diag(w2,1, . . . , w2,n1

):

ẇ2,j = (wᵀ
1,jAjw1,j)w2,j , ẇ1,j = w2

2,jAjw1,j , where Aj := Vz0 [uj(z0)]. (8)

Note that for ReLU neurons, Aj changes with w1,j , while for linear neurons, Aj would be con-
stant, since gating ψ′(wᵀ

1,jx) ≡ 1. It is easy to see that dw2
2,j/dt = d‖w1,j‖22/dt and thus

w2
2,j = ‖w1,j‖22 + c where c is some time-independent constant. Since Aj is always PSD,

wᵀ
1,jAjw1,j ≥ 0 and |w2,j | generically increases, which in turn accelerates the dynamics of w1,j ,

which is most amplified at any given time, along the largest eigenvector of Aj . This dynamics ex-
hibits top-down modulation whereby the top-layer weights accelerate the training of the lower layer.
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Symbol Definition Size Description
Nl, Zl The set of all nodes and all latent variables at layer l.
Nµ,N ch

µ Nodes corresponding to latent variable zµ. N ch
µ are children underNµ.

Pµν [P(zν |zµ)] 2× 2 The top-down transition probability from zµ to zν .
vj(zµ), vj Ez [fj |zµ], [vj(zµ)] scalar, 2 Expected activation fj given zµ (zµ’s descendants are marginalized).
fµ, fNch

µ
[fj ]j∈Nµ , [fk]k∈Nch

µ
|Nµ|, |N ch

µ | Activations for all nodes j ∈ Nµ and for the children ofNµ
ρµν 2P(zν=1|zµ=1)− 1 scalar in [−1, 1] Polarity of the transitional probability.
ρ0 P(z0 = 1)− P(z0 = 0) scalar Polarity of probability of root latent z0.
sk

1
2
(vk(1)− vk(0)) scalar Discrepancy of node k w.r.t its latent variable zν(k).

aµ [ρµν(k)sk]k∈Nch
µ

|N ch
µ | Child selectivity vector.

Table 1: Notation for Sec. 4.3 (binary symmetric HLTM).

Previous works (Allen-Zhu and Li, 2020) also mention a similar concept in supervised learning,
called “backward feature correction.” Here we demonstrate rigorously that a similar behavior can
occur in SSL under gradient descent in the 2-layer case when the top layer W2 is diagonal.

As an example, consider a mixture of Gaussians: x ∼ 1
2 I(z0 =1)N(w∗1 , σ

2)+ 1
2 I(z0 =2)N(w∗2 , σ

2)
and let ∆w∗ := w∗1 −w∗2 , then in the linear case, Aj ∼ ∆w∗∆w∗ᵀ and w1,j converges to ±∆w∗

(Fig. 3(b)). In the nonlinear case with multiple Gaussians, if one of the Gaussians sits at the origin
(e.g., background noise), then dependent on initialization, Aj evolves into w∗kw

∗ᵀ
k for some center

k, and w1,j → w∗k. Note this dynamics is insensitive to specific parametric forms of the input data.

4.3 DEEP RELU SSL TRAINING WITH HIERARCHICAL LATENT TREE MODELS (HLTM)

We next study how multi-layer ReLU networks learn from data generated by an HLTM, in which
visible leaf variables are sampled via a hierarchical branching diffusion process through a sequence
of latent variables starting from a root variable z0 (Fig. 2(d, left)). The HLTM represents a mathemat-
ical abstraction of the hierarchical structure real-world objects, which consist of spatially localized
parts and subparts, all of which can lie in different configurations or occluded states. See Appendix
D.2 for a detailed description and motivation for the HLTM. Simpler versions of the HLTM have been
used to mathematically model how both infants and linear neural networks learn hierarchical struc-
ture (Saxe et al., 2019). We examine when a multi-layer ReLU network with spatially local RFs can
learn the latent generative variables when exposed only to the visible leaf variables (Fig. 2(d, right)).

We define symbols in Tbl. 1. At layer l, we have categorical latent variables {zµ}, where µ ∈ Zl
indexes different latent variables. Each zµ can take discrete values. The topmost latent variable is
z0. Following the tree structure, for µ ∈ Zl and ν1, ν2 ∈ Zl−1, conditional independence holds:
P(zν1 , zν2 |zµ) = P(zν1 |zµ)P(zν2 |zµ). The final sample x is just the collection of all visible leaf
variables (Fig. 2(d)), and thus depends on all latent variables. Corresponding to the hierarchical tree
model, each neural network node j ∈ Nl maps to a unique µ = µ(j) ∈ Zl. LetNµ be all nodes that
map to µ. For j ∈ Nµ, its activation fj only depends on the value of zµ and its descendant latent
variables, through input x. Define vj(zµ) := Ez [fj |zµ] as the expected activation w.r.t zµ. Given a
sample x, data augmentation involves resampling all zµ (which are z′ in Fig. 2), fixing the root z0.

Symmetric Binary HLTM. Here we consider a symmetric binary case: each zµ ∈ {0, 1} and for
µ ∈ Zl, ν ∈ Zl−1, P(zν = 1|zµ = 1) = P(zν = 0|zµ = 0) = (1 + ρµν)/2, where the polarity
ρµν ∈ [−1, 1] measures how informative zµ is. If ρµν = ±1 then there is no stochasticity in the
top-down generation process; ρµν = 0 means no information in the downstream latents and the
posterior of z0 given the observation x can only be uniform. See Appendix for more general cases.

Now we compute covariance operator OPµ = Vz0 [K̄µ(z0)] at different layers, where K̄µ(z0) =

Ez′
[
fN ch

µ
⊗ Jᵀ

µ |z0
]
. Here we mainly check the term Ez′

[
fN ch

µ
|z0
]

and assume Jµ is constant.

Theorem 6 (Activation covariance in binary HLTM). Vz0 [Ez′
[
fN ch

µ
|z0
]
] = oµaµa

ᵀ
µ. Here aµ :=

[ρµν(k)sk]k∈N ch
µ

and oµ := ρ20µ(1− ρ20). If maxαβ |ραβ | < 1, then limL→+∞ ρ0µ → 0 for µ ∈ Zl.

Theorem 6 suggests when ρ0µ and ‖aµ‖ are large, the covariance OPµ = oµaµa
ᵀ
µ ⊗ Jᵀ

µJµ is large
and training is faster. For deep HLTM and deep networks, at lower layers, ρ0µ → 0 and P0µ is
uniform due to mixing of the Markov Chain, making OPµ small. Thus training in SSL is faster at
the top layers where the covariance operators have large magnitude. On the other hand, large ‖aµ‖
implies sk := (vk(1)− vk(0))/2 is large, or the expected activation vk(zν) is selective for different
values of zν for ν ∈ ch(µ). Interestingly, this can be achieved by over-parameterization (|Nµ| > 1):

6
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Theorem 7 (Lucky nodes in deep ReLU networks regarding to binary HLTM at initializa-
tion). Suppose each element of the weights Wl between layer l + 1 and l are initialized with
Uniform

[
−σw

√
3/|N ch

µ |, σw
√

3/|N ch
µ |
]
. There exists σ2

l so that V[fk|zν ] ≤ σ2
l for any k ∈ Nl.

For any µ ∈ Zl+1, if |Nµ| = O(exp(c)), then with high probability, there exists at least one node
j ∈ Nµ so that their pre-activation gap ṽj(1)− ṽj(0) = 2wᵀ

j aµ > 0 and the activations satisfy:∣∣∣v2j (1)− v2j (0)
∣∣∣ ≥ 3σ2

w

 1

4|N ch
µ |

∑
k∈N ch

µ

|vk(1)− vk(0)|2
(
c+ 6

6
ρ2µν − 1

)
− σ2

l

 . (9)

Intuitively, this means that with large polarity ρµν (strong top-down signals), randomly initialized
over-parameterized ReLU networks yield selective neurons, if the lower layer also contains selective
ones. For example, when σl = 0, c = 9, if ρµν ≥ 63.3% then there is a gap between expected
activations vj(1) and vj(0), and the gap is larger when the selectivity in the lower layer l is higher.
Note that at the lowest layer, {vk} are themselves observable leaf latent variables and are selective
by definition. So a bottom-up mathematical induction of latent selectivity will unfold.

If we further assume Jᵀ
µJµ = I , then after the gradient update, for the “lucky” node j we have:

aᵀ
µwj(t+ 1) = aᵀ

µ

[
I + αoµaµa

ᵀ
µ

]
wj(t) = (1 + αoµ‖aµ‖22)aᵀ

µwj(t) > aᵀ
µwj(t) > 0

which means that the pre-activation gap ṽj(1) − ṽj(0) = 2wᵀ
j aµ grows over time and the latent

variable zµ is learned (instantiated as fj) during training, even if the network is never supervised
with its true value. While here we analyze the simplest case (Jᵀ

µJµ = I), in practice Jµ changes
over time. Similar to Sec. 4.2, once the top layer starts to have large weights, the magnitude of Jµ
for lower layer becomes larger and training is accelerated.

We implement the HLTM and confirm, as predicted by our theory, that the intermediate layers of
deep ReLU networks do indeed learn the latent variables of the HLTM (see Tbl. 2 below).

5 ANALYSIS OF INGREDIENTS UNDERLYING BYOL LEARNING

In BYOL, the two networks are no-longer identical and, interestingly, only positive pairs are used
for training. The first network with weights W1 = W := {Wbase,Wpred} is an online network
that is trained to predict the output of the second target network with weights W2 = W ′, using a
learnable predictor Wpred to map the online to target outputs (Fig. 1(a) and Fig. 1 in Grill et al.
(2020)). In contrast, the target network hasW ′ := {W ′base}, whereW ′base is an exponential moving
average (EMA) ofWbase: W ′base(t+ 1) = γemaW ′base(t) + (1− γema)Wbase(t). Since BYOL only
uses positive pairs, we consider the following loss function:

r :=
1

2
‖fL(x1;W)− fL′(x+;W ′)‖22 (10)

where the input data are positive pairs: x1,x+ ∼ paug(·|x) and x ∼ p(·). The two outputs,
fL(x1;W) and fL′(x+;W ′), are from the online and the target networks, respectively. Note that
L′ < L due to the presence of an extra predictor on the side of online network (W).

With neither EMA (γema = 0) nor the predictor,W ′ =W and the BYOL update without BN is

vec (∆Wl)sym = −Ex

[
Vx′∼paug(·|x) [Kl(x

′)]
]

vec(Wl) (11)

(see App. E.1 for proof). This update only promotes variance minimization in the representations of
different augmented views of the same data samples and therefore would yield model collapse.

We now consider the effects played by the extra predictor and BatchNorm (BN) (Ioffe and Szegedy,
2015) in BYOL. Our interest in BatchNorm is motivated by a recent blogpost (Fetterman and Al-
brecht, 2020). We will see that combining both could yield a sufficient condition to create an implicit
contrastive term that could help BYOL learn. As pointed out recently by Richemond et al. (2020a),
BYOL can still work using other normalization techniques that do not rely on cross batch statistics
(e.g., GroupNorm (Wu and He, 2018), Weight Standardization (Qiao et al., 2019) and careful ini-
tialization of affine transform of activations). In Appendix F we derive exact solutions to BYOL
for linear architectures without any normalization, to provide conceptual insights into how BYOL
can still learn without contrastive terms, at least in the linear setting. Here we focus on BatchNorm,
leaving an analysis of other normalization techniques in nonlinear BYOL settings for future work.

When adding predictor, Theorem 1 can still be applied by adding identity layers on top of the target
network W ′ so that the online and the target networks have the same depth. Theorem 5 in (Tian,

7
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2018) demonstrates this version of BN shifts the downward gradients so their mini-batch mean is 0:

≈
gil := gil −

1

|B|
∑
i∈B

gil = gil − ḡl (12)

Here gil is the i-th sample in a batch and ḡl is the batch average (same for f̄l). Backpropagating
through this BN (vs. just subtracting the mean only in the forward pass1), leads to a correction term:
Theorem 8. If (1) the network is linear from layer l to the topmost and (2) the downward gradient
gl undergoes Eqn. 12, then with large batch limits, the correction of the update is2 (for brevity,
dependency onW is omitted, while dependency onW ′ is made explicit):

vec(δWBN

l ) = Ex

[
K̄l(x)

] {
Ex

[
K̄ᵀ
l (x)

]
vec(Wl)− Ex

[
K̄ᵀ
l (x;W ′)

]
vec(W ′l )

}
(13)

and the corrected weight update is ∆̃Wl := ∆Wl + δWBN

l . Using Eqn. 11, we have:

vec(∆̃Wl) = vec(∆Wl)sym − Vx

[
K̄l(x)

]
vec(Wl) + Covx

[
K̄l(x), K̄l(x;W ′)

]
vec(W ′l ) (14)

Corollary 1 (SimCLR). For SimCLR with contrastive losses Lsimp, Ltri and Lnce, δWBN

l = 0.

5.1 THE CASE WITHOUT EMA (γema = 0 AND THUSWbase =W ′base)
In BYOL when the predictor is present, W ′ 6= W and BN is present, from the analysis above we
know that δWBN

l 6= 0, which provides an implicit contrastive term. Note thatW ′ 6=W means there
is a predictor, the online network uses EMA, or both. We first discuss the case without EMA.

From Theorem 8, if we further consider a single linear predictor, then the following holds. Here
K̄l,base(x) := K̄l(x;Wbase) and zero-mean expected connection K̂l(x) := K̄l(x)− Ex

[
K̄l(x)

]
.

Corollary 2 (The role of a predictor in BYOL). IfWpred = {Wpred} is linear and no EMA, then

vec(∆̃Wl) = vec(∆Wl)sym + Ex

[
K̂l,base(x)W ᵀ

pred(I −Wpred)K̂ᵀ
l,base(x)

]
vec(Wl). If there is

no stop gradient, then vec(˜̃∆Wl) = 2vec(∆Wl)sym − Vx

[
K̄l,base(x)(I −Wpred)ᵀ

]
vec(Wl).

The Predictor. To see why Wpred plays a critical role, we check some special case. If
Wpred = βInL×nL (Wpred has to be a squared matrix), then vec(∆Wl) = vec(∆Wl)sym + β(1 −
β)Vx

[
K̄l,base(x)

]
vec(Wl). If 0 < β < 1, then β(1− β) > 0 and the covariance operator appears.

In this regime, BYOL works like SimCLR, except that it also minimizes variance across different
augmented views of the same data sample through vec(∆Wl)sym (Eqn. 11), the first term in Eqn. 14.

Indeed, the recent blogpost (Fetterman and Albrecht, 2020) as well as our own experiments (Tbl. 3)
suggests that standard BYOL without BN fails. In addition, we also initialize the predictor with
small positive weights (See Appendix G.4), and reinitialize the predictor weights once in a while
(Tbl. 5), and BYOL still works, consistent with our theoretical prediction.

Stop Gradient. In BYOL, the target networkW ′ serves as a target to be learned from, but does not
contribute gradients to the current weightW . Without EMA, we might wonder whether the target
network should also contribute the gradient or not. Corollary 2 shows that this won’t work: no
matter what Wpred is, the update always contains a (weighted) negative covariance operator.

5.2 DYNAMICS OF EXPONENTIAL MOVING AVERAGE (EMA)
On the other hand, the EMA part might play a different role. Consider the following linear dynamic
system, which is a simplified version of Eqn. 14 (we omit vec(∆Wl)sym and W ′l = Wl,ema):

w(t+ 1)−w(t) = ∆w(t) = α [−w(t) + (1− λ)wema(t)] (15)

Theorem 9 (EMA dynamics in Eqn. 15). w(t) ∝ (1 + κ)t. Here we define κ := 1
2 (η +

α)
(√

1 + 4αηλ/(η + α)2 − 1
)

and η := 1− γema. Moreover, if λ ≥ 0, then κ ≤ λ/(1/α+ 1/η).

From the analysis above, when β is small, we see that the coefficient before Wl (∼ β2) is typically
smaller than that before Wl,ema (∼ β). This means λ > 0. In this case, κ > 0 and w(t) grows
exponentially and learning happens. Compared to no EMA case (γema = 0 or η = 1), with EMA,
we have η < 1 and κ becomes smaller. Then the growth is less aggressive and training stabilizes.

1In PyTorch, the former is x-x.mean() and the latter is x-x.mean().detach().
2A formal treatment requires Jacobian J to incorporate BatchNorm’s contribution and is left for future work.
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Table 2: Normalized Correlation between the topmost latent variables in binary HLTM and topmost nodes in
deep ReLU networks (L = 5) go up when training with SimCLR with NCE loss. We see higher correlations at
both initialization and end of training, with more over-parameterization (Left: |Nµ| = 2, Right: |Nµ| = 5).

ρµν Initial 1 epoch 20 epochs
∼ Uniform[0.7, 1] 0.51 0.69 0.76
∼ Uniform[0.8, 1] 0.65 0.76 0.79
∼ Uniform[0.9, 1] 0.81 0.85 0.86

ρµν Initial 1 epoch 20 epochs
∼ Uniform[0.7, 1] 0.60 0.72 0.88
∼ Uniform[0.8, 1] 0.73 0.80 0.87
∼ Uniform[0.9, 1] 0.87 0.90 0.95

Table 3: Top-1 STL performance with different combination of predictor (P), EMA and BatchNorm using
BYOL. EMA means γema = 0.996. Batch size is 128 and all experiments run on 5 seeds and 100 epochs.

- EMA BN EMA, BN
38.7± 0.6 39.3± 0.9 33.0± 0.3 32.8± 0.5

P P, EMA P, BN P, EMA, BN
39.5± 3.1 44.4± 3.2 63.6± 1.06 78.1± 0.3

Table 4: Top-1 STL performance using different BatchNorm components in the predictor and the projector
of BYOL (γema = 0.996, 100 epochs). There is no affine part. “µ” = zero-mean normalization only, “µ, σ”
= BN without affine, “µ, σ∦” = normalization with mean and std but only backpropagating through mean. All
variants with detached zero-mean normalization (in red) yield similar poor performance as no normalization.

- µ σ µ, σ µ∦ σ∦ µ∦, σ µ, σ∦ µ∦, σ∦

43.9± 4.2 64.8± 0.6 72.2± 0.9 78.1± 0.3 44.2± 7.0 54.2± 0.6 48.3± 2.7 76.3± 0.4 47.0± 8.1

Table 5: Top-1 performance of BYOL using reinitialization of the predictor every T epochs.
Original BYOL ReInit T = 5 ReInit T = 10 ReInit T = 20

STL-10 (100 epochs) 78.1 78.6 79.1 79.0
ImageNet (60 epochs) 60.9 61.9 62.4 62.4

6 EXPERIMENTS

We test our theoretical findings through experiments on STL-10 (Coates et al., 2011) and Ima-
geNet (Deng et al., 2009). We use a simplified linear evaluation protocol: the linear classifier is
trained on frozen representations computed without data augmentation. This reuses pre-computed
representations and accelerates evaluation by 10x. See Sec. G.3 for detailed setup.

Hierarchical Latent Tree Model (HLTM). We implement HLTM and check whether the intermediate
layers of deep ReLU networks learn the corresponding latent variables at the same layer. The degree
of learning is measured by the normalized correlations between the ground truth latent variable
zµ and its best corresponding node j ∈ Nµ. Tbl. 2 indicates this measure increases with over-
parameterization and learning, consistent with our analysis (Sec. 4.3). More experiments in Sec. G.2.

Factors underlying BYOL performance. To test our theory, we perform an ablation study of
BYOL on STL-10 by modifying three key components: predictor, EMA and BN. Tbl. 3 shows
that BN and predictor are important and EMA further improves the performance. First, without a
predictor, neither BN nor EMA give good performance. A predictor without BN still doesn’t work.
A predictor with BN starts to show good performance (63.6%) and further adding EMA leads to the
best performance (78.1%). This is consistent with our theoretical findings in Sec. 5, in which we
show that using a predictor with BN yields δWBN

l 6= 0 and leads to an implicit contrastive term.

To further test our understanding of the role played by BN, we fractionate BN into several
sub-components: subtract by batch mean (mean-norm), divide by batch standard deviation
(std-norm) and affine, and do ablation studies (Tbl. 4). Surprisingly, removing affine
yields slightly better performance on STL-10 (from 78.1% to 78.7%). We also find that variants of
mean-norm performs reasonably, while variants of detached mean-norm has similar poor perfor-
mance as no normalization, supporting that centralizing backpropagated gradient leads to implicit
contrastive terms (Sec. 5). Note that std-norm also helps, which we leave for future analysis.

We also check whether the online network requires an “optimal predictor” as suggested by recent
version (v3) of BYOL. For this, we reinitialize the predictor (ReInit) every T epochs and compare
the final performance under linear evaluation protocol. Interestingly, as shown in Tbl. 5, ReInit
actually improves the performance a bit, compared to the original BYOL that keeps training the same
predictor, which should therefore be closer to optimal. Moreover, if we shrink the initial weight
range of the predictor to make Covx

[
K̄l(x), K̄l(x;W ′)

]
(third term in Eqn. 14) more dominant,

and reduce the learning rate, the performance further improves (See Tbl. 10 in Appendix G.4),
thereby corroborating our analysis.
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A BACKGROUND AND BASIC SETTING (SECTION 2)

A.1 LEMMAS

Definition 2 (reversibility). A layer l is reversible if there is a Gl(x;W) ∈ Rnl×nl−1 so that
fl(x;W) = Gl(x;W)fl−1(x;W) and gl−1 = Gᵀ

l (x;W)Qlgl for some constant PSD matrix
Rnl×nl 3 Ql � 0. A network is reversible if all layers are.

Note that many different kinds of layers have this reversible property, including linear layers (MLP
and Conv) and (leaky) ReLU nonlinearity. For multi-layer ReLU network, for each layer l, we have:

Gl(x;W) = Dl(x;W)Wl, Ql ≡ Inl×nl (16)
where Dl ∈ Rnl×nl is a binary diagonal matrix that encodes the gating of each neuron at layer l.
The gating Dl(x;W) depends on the current input x and current weightW .

In addition to ReLU, other activation function also satisfies this condition, including linear,
LeakyReLU and monomial activations. For example, for power activation ψ(x) = xp where p > 1,
we have (where f̃l is the pre-activation at layer l):

Gl(x;W) = diagp−1(f̃l)Wl, Ql ≡ pInl×nl (17)

Remark. Note that the reversibility is not the same as invertible. Specifically, reversibility only
requires the transfer function of a backpropagation gradient is a transpose of the forward function.
Lemma 1 (Recursive Gradient Update (Extension to Lemma 1 in (Tian, 2020)). Let (pseudo)-
Jacobian matrix J̃L(x) = InL×nL , and recursively define J̃l−1(x) := J̃l(x)

√
QlGl(x) ∈

Rnl×nl−1 . Here
√
Ql is the constant PSD matrix so that

√
Ql
√
Ql = Ql � 0.

If (1) the network is reversible (Def. 2) and (2)
√
Ql commutes with J̃l(x1)ᵀJ̃l(x1) and

J̃l(x1)ᵀJ̃l(x2), then minimizing the `2 objective

r(W1) :=
1

2
‖fL(x1;W1)− fL(x2;W2)‖22 (18)

with respect to weight matrix Wl at layer l yields the following gradient at layer l:

gl = J̃ᵀ
l (x1;W1)

[
J̃l(x1;W1)fl(x1;W1)− J̃l(x2;W2)fl(x2;W2)

]
(19)

Proof. We prove by induction. Note that our definition ofWl is the transpose ofWl defined in (Tian,
2020). Also our gl(x) is the gradient before nonlinearity, while (Tian, 2020) uses the same symbol
for the gradient after nonlinearity.

For notation brievity, we let fl(x1) := fl(x1;Wl) and Gl(x1) := Gl(x1;Wl). Similar for x2 and
W2.

When l = L, by the property of `2-loss, we know that gL = fL(x1;W1)− fL(x2;W2), by setting
J̃L(x1) = J̃L(x2) = I , the condition holds. Now suppose for layer l, we have:

gl = J̃ᵀ
l (x1)

[
J̃l(x1)fl(x1)− J̃l(x2)fl(x2)

]
(20)

Then:
gl−1 = Gᵀ

l (x1)Qlgl (21)

= Gᵀ
l (x1)QlJ̃

ᵀ
l (x1)

[
J̃l(x1)fl(x1)− J̃l(x2)fl(x2)

]
(22)

= Gᵀ
l (x1)

√
QlJ̃

ᵀ
l (x1)︸ ︷︷ ︸

J̃ᵀ
l−1(x1)

·
[
J̃l(x1)

√
Qlfl(x1)− J̃l(x2)

√
Qlfl(x2)

]
(23)

= J̃ᵀ
l−1(x1)

J̃l(x1)
√
QlGl(x1)︸ ︷︷ ︸

J̃l−1(x1)

fl−1(x1)− J̃l(x2)
√
QlGl(x2)︸ ︷︷ ︸

J̃l−1(x2)

fl−1(x2)

 (24)

= J̃ᵀ
l−1(x1)

[
J̃l−1(x1)fl−1(x1)− J̃l−1(x2)fl−1(x2)

]
(25)
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Note that for multi-layered ReLU network, Gl(x) = Dl(x)Wl, Ql = I for each ReLU+Linear
layer, if we set x1 = x2 = x, W1 = W , W2 = W∗ (teacher weights), then we go back to the
original Lemma 1 in (Tian, 2020).

Remark on ResNet. Note that the same structure holds for blocks of ResNet with ReLU activation.

An alternative form of Lemma 1. Note that we can alternatively group linear weight with its
immediate downward nonlinearity and Lemma 1 still holds. In this case, we will have:

g̃l = Jᵀ
l (x1)

[
Jl(x1)f̃l(x1)− Jl(x2)f̃l(x2)

]
(26)

where Jl(x) is the (pseudo-)Jacobian: Jl(x) := ∂fL/∂f̃l (i.e., with respect to the pre-activation
f̃l), as defined in the notation paragraph of Sec. 2, and g̃l is the back-propagated gradient after the
nonlinearity. This will be used in the following Lemma 2. For other reversible layers (e.g., Eqn. 17),
the relationship between the pseudo-Jacobian and the real one can differ by a constant (e.g., some
power of

√
p).

A.2 `2-NORMALIZATION IN THE TOPMOST LAYER

For `2-normalized layer fl := fl−1/‖fl−1‖2, we have Gl := 1/‖fl−1‖2 · Inl×nl and due to the
following identity (here ỹ := y/‖y‖2):

∂ỹ

∂y
=

1

‖y‖2
(I − ỹỹᵀ) (27)

Therefore we have ∂fl/∂fl−1 = (Inl×nl − flf
ᵀ
l )Gl and we could set Ql := I − flf

ᵀ
l , which is a

projection matrix and thus PSD. Furthermore, since the normalization layer is at the topmost, J̃l = I
and Ql trivially commutes with J̃ᵀ

l J̃l.

The only issue is that Ql is not a constant matrix and can change over training. Therefore Lemma 1
doesn’t apply exactly to such a layer but can be regarded as an approximate way to model.

A.3 THEOREM 1

Now we prove Theorem 1 in a more general setting where the network is reversible (note that deep
ReLU networks are included and its Ql is a simple identity matrix):
Lemma 2 (Squared `2 Gradient for dual deep reversible networks). The gradient gWl

of the squared
loss r with respect to Wl ∈ Rnl×nl−1 for a single input pair {x1,x2} is:

gWl
= vec (∂r/∂W1,l) = K1,l

[
Kᵀ

1,lvec(W1,l)−Kᵀ
2,lvec(W2,l)

]
. (28)

Here Kl(x;W) := fl−1(x;W)⊗ Jᵀ
l (x;W), K1,l := Kl(x1;W1) and K2,l := Kl(x2;W2).

Proof. We consider more general case where the two towers have different parameters, namelyW1

and W2. Applying Lemma 1 for the branch with input x1 at the linear layer l, and we have (See
Eqn. 26):

g̃1,l = Jᵀ
1,l[J1,lW1,lf1,l−1 − J2,lW2,lf2,l−1] (29)

where f1,l−1 := fl−1(x1;W1) is the activation of layer l − 1 just below the linear layer at tower 1
(similar for other symbols), and g̃1,l is the back-propagated gradient after the nonlinearity.

In this case, the gradient (and the weight update, according to gradient descent) of the weight Wl

between layer l and layer l − 1 is:

∂r

∂W1,l
= g̃1,lf

ᵀ
1,l−1 (30)

= Jᵀ
1,lJ1,lW1,lf1,l−1f

ᵀ
1,l−1 − J

ᵀ
1,lJ2,lW2,lf2,l−1f

ᵀ
1,l−1 (31)

Using vec(AXB) = (Bᵀ ⊗A)vec(X) (where ⊗ is the Kronecker product), we have:

vec

(
∂r

∂W1,l

)
=
(
f1,l−1f

ᵀ
1,l−1 ⊗ J

ᵀ
1,lJ1,l

)
vec(W1,l)−

(
f1,l−1f

ᵀ
2,l−1 ⊗ J

ᵀ
1,lJ2,l

)
vec(W2,l)

(32)

13
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Let
Kl(x;W ) := fl−1(x;W)⊗ Jᵀ

l (x;W) ∈ Rnlnl−1×nL (33)
Note that Kl(x;W) is a function of the current weight W , which includes weights at all layers. By
the mixed-product property of Kronecker product (A⊗B)(C ⊗D) = AC ⊗BD, we have:

vec

(
∂r

∂W1,l

)
= Kl(x1)Kl(x1)ᵀvec(W1,l)−Kl(x1)Kl(x2)ᵀvec(W2,l) (34)

= Kl(x1) [Kl(x1)ᵀvec(W1,l)−Kl(x2)ᵀvec(W2,l)] (35)
where Kl(x1) = Kl(x1;W1) and Kl(x2) = Kl(x2;W2).

In SimCLR case, we haveW1 =W2 =W so

vec

(
∂r

∂Wl

)
= Kl(x1) [Kl(x1)−Kl(x2)]

ᵀ
vec(Wl) (36)

B ANALYSIS OF SIMCLR USING TEACHER-STUDENT SETTING (SECTION 3)

B.1 THEOREM 2

Proof. For Lsimp and Ltri the derivation is obvious. For Lnce, we have:

∂L

∂r+
=

1

τ

(
1− e−r+/τ

e−r+/τ +
∑H
k′=1 e

−rk′−/τ

)
> 0 (37)

∂L

∂rk−
= −1

τ

(
e−rk−/τ

e−r+/τ +
∑H
k′=1 e

−rk′−/τ

)
< 0, k = 1, . . . ,H (38)

and obviously we have:
∂L

∂r+
+

H∑
k=1

∂L

∂rk−
= 0 (39)

B.2 THE COVARIANCE OPERATOR UNDER DIFFERENT LOSS FUNCTIONS

Lemma 3. For a loss function L that satisfies Theorem 2, with a batch of size one with samples
X := {x1, x+,x1−,x2−, . . . ,xH−}, where x1,x+ ∼ paug(·|x) are augmentation from the same
sample x, and xk− ∼ paug(·|x′k) are augmentations from independent samples x′k ∼ p(·). We
have:

vec(gWl
) = Kl(x1)

H∑
k=1

[
∂L

∂rk−

∣∣∣∣∣
X

· (Kl(x+)−Kl(xk−))ᵀ

]
vec(Wl) (40)

Proof. First we have:

vec(gWl
) =

∂L

∂Wl
=

∂L

∂r+

∂r+
∂Wl

+

H∑
k=1

∂L

∂rk−

∂rk−
∂Wl

(41)

Then we compute each terms. Using Theorem 1, we know that:
∂r+
∂Wl

= Kl(x1)(Kl(x1)−Kl(x+))ᵀvec(Wl) (42)

∂rk−
∂Wl

= Kl(x1)(Kl(x1)−Kl(xk−))ᵀvec(Wl), k = 1, . . . , n (43)

Since Eqn. 39 holds, Kl(x1)Kᵀ
l (x1) will be cancelled out and we have:

vec(gWl
) = Kl(x1)

H∑
k=1

[
∂L

∂rk−
(Kl(x+)−Kl(xk−))ᵀ

]
vec(Wl) (44)
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B.3 THEOREM 3

Proof. For Lsimp := r+− r−, we have H = 1 and ∂L
∂r−
≡ −1. Therefore using Lemma 3, we have:

vec(gWl
) = −Kl(x1) [Kᵀ

l (x+)−Kᵀ
l (x−)] vec(Wl) (45)

Taking large batch limits, we know that E [Kl(x1)Kᵀ
l (x+)] = Ex

[
K̄l(x)K̄ᵀ

l (x)
]

since x1,x+ ∼
paug(·|x) are all augmented data points from a common sample x. On the other hand,
E [Kl(x1)Kᵀ

l (xk−)] = Ex

[
K̄l(x)

]
Ex

[
K̄ᵀ
l (x)

]
since x1 ∼ paug(·|x) and xk− ∼ paug(·|x′k)

are generated from independent samples x and x′k and independent data augmentation. Therefore,

vec(gWl
) = −

{
Ex

[
K̄l(x)K̄ᵀ

l (x)
]
− Ex

[
K̄l(x)

]
Ex

[
K̄ᵀ
l (x)

] }
vec(Wl) (46)

= −Vx

[
K̄l(x)

]
vec(Wl) (47)

The conclusion follows since gradient descent is used and ∆Wl = −gWl
.

B.4 THEOREM 4

Proof. When ∂L/∂rk− is no longer constant, we consider its expansion with respect to un-
augmented data point X0 = {x,x′1, . . . ,x′k}. Here X = {x1,x+,x1−, . . . ,xH−} is one
data sample that includes both positive and negative pairs. Note that x1,x+ ∼ paug(·|x) and
xk− ∼ paug(·|x′k) for 1 ≤ k ≤ H .

∂L

∂rk−

∣∣∣∣∣
X

=
∂L

∂rk−

∣∣∣∣∣
X0

+ ε (48)

where ε is a bounded quantity for Ltri (|ε| ≤ 1) and Lnce (|ε| ≤ 2/τ ).

We consider H = 1 where there is only a single negative pair (and r−). In this case X0 = {x,x′}.
Let r := 1

2‖fL(x)− fL(x′)‖22 and ξ(x,x′) := − ∂L
∂rk−

∣∣
X0

.

Note that for Ltri, it is not differentiable, so we could use its soft version: Lτtri(r+, r−) = τ log(1 +

e(r+−r−+r0)/τ ). It is easy to see that limτ→0 L
τ
tri(r+, r−)→ max(r+ − r− + r0, 0).

For the two losses:

• For Lτtri, we have

ξ(x,x′) = ξ(r) =
e−r/τ

e−r0/τ + e−r/τ
. (49)

• For Lnce, we have

ξ(x,x′) = ξ(r) =
1

τ

e−r/τ

1 + e−r/τ
. (50)

Note that for Lτtri we have limτ→0 ξ(r) = I(r ≤ r0). for Lnce, since it is differentiable, by Taylor
expansion we have ε = O(‖x1 − x‖2, ‖x+ − x‖2, ‖x− − x′‖2), which will be used later.

The constant term ξ with respect to data augmentation. In the following, we first consider the
term ξ, which only depends on un-augmented data points X0. From Lemma 3, we now have a term
in the gradient:

gl(X ) := −Kl(x1) [Kᵀ
l (x+)−Kᵀ

l (x−)] ξ(x,x′)vec(Wl) (51)

Under the large batch limit, taking expectation with respect to data augmentation paug and notice
that all augmentations are done independently, given un-augmented data x and x′, we have:

gl(x,x
′) := Epaug [gl(X )] = −K̄l(x)

[
K̄ᵀ
l (x)− K̄ᵀ

l (x′)
]
ξ(x,x′)vec(Wl) (52)

Symmetrically, if we swap x and x′ since both are sampled from the same distribution p(·), we
have:

gl(x
′,x) = −K̄l(x

′)
[
K̄ᵀ
l (x′)− K̄ᵀ

l (x)
]
ξ(x′,x)vec(Wl) (53)
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since ξ(x′,x) only depends on the squared `2 distance r (Eqn. 49 and Eqn. 50), we have ξ(x′,x) =
ξ(x,x′) = ξ(r) and thus:

gl(x,x
′) + gl(x

′,x) = −
[
K̄l(x)K̄ᵀ

l (x)− K̄l(x)K̄ᵀ
l (x′) + K̄l(x

′)K̄ᵀ
l (x′)− K̄l(x

′)K̄ᵀ
l (x)

]
ξ(r)vec(Wl)

= −ξ(r)(K̄l(x)− K̄l(x
′))(K̄l(x)− K̄l(x

′))ᵀvec(Wl) (54)

Therefore, we have:

Ex,x′∼p [gl(x,x
′)] = −1

2
Ex,x′∼p

[
ξ(r)(K̄l(x)− K̄l(x

′))(K̄l(x)− K̄l(x
′))ᵀ
]

vec(Wl)(55)

= −1

2
Vξx,x′∼p

[
K̄l(x)− K̄l(x

′)
]

vec(Wl) (56)

Bound the error. For Lnce, let F := − ∂L
∂r−

, then we can compute their partial derivatives:

∂F

∂r+
= −F (1/τ − F ),

∂F

∂r−
= F (1/τ − F ) (57)

Note that |F (1/τ − F )| ≤ 1/τ2 is always bounded. From Taylor expansion, we have:

ε = − ∂F

∂r+

∣∣∣
{r̃+,r̃−}

(r+ − r0+)− ∂F

∂r−

∣∣∣
{r̃+,r̃−}

(r− − r0−) (58)

for derivatives evaluated at some point {r̃+, r̃−} at the line connecting (x,x,x′) and (x1,x+,x−).
r0+ and r0− are squared `2 distances evaluated at (x,x,x′), therefore, r0+ ≡ 0 and r0− = 1

2‖f(x)−
f(x′)‖22 (note that here we just use f := fL for brevity).

Therefore, we have r+ − r0+ = 1
2‖f(x1)− f(x+)‖22 and

r− − r0− = [f(x)− f(x′)]
ᵀ

[(f(x1)− f(x))− (f(x−)− f(x′))]

+
1

2
‖(f(x1)− f(x))− (f(x−)− f(x′))‖2 (59)

Therefore, we have:

Epaug

[∣∣∣∣ ∂F∂r+ (r+ − r0+)

∣∣∣∣] ≤ 1

τ2
· 1

2

∫
‖f(x1)− f(x+)‖22paug(x1|x)paug(x+|x)dx1dx+

=
1

τ2
trVaug[f |x] (60)

where trVaug[f |x] := trVx′∼paug(·|x)[f(x′)] is a scalar. Similarly, using Lemma 4, we have the
following (using ‖a‖22 + ‖b‖22 ≥ 1

2‖a− b‖22). Here c0 := maxx ‖f(x)− Ex′∼paug(·|x) [f(x′)] ‖22:

Epaug

[∣∣∣∣ ∂F∂r− (r− − r0−)

∣∣∣∣] (61)

≤ 1

τ2

{
‖f(x)− f(x′)‖

(√
trVaug[f |x] +

√
trVaug[f |x′] + 2c0

)
+ trVaug[f |x] + trVaug[f |x′]

}
Let MK := maxx ‖Kl(x)‖ so finally we have:

|Ex,x′,aug [εKl(x1)(Kᵀ
l (x+)−Kᵀ

l (x−))] |
≤ Ex,x′,aug [|εKl(x1)(Kᵀ

l (x+)−Kᵀ
l (x−))|]

≤ 2M2
K

τ2

{
2Ex,x′∼p(·)

[
‖f(x)− f(x′)‖

(√
trVaug[f |x] + c0

)]
+ 3trEx [Vaug[f |x]]

}
(62)

Note that if there is no augmentation (i.e., paug(x1|x) = δ(x1 − x)), then c0 = 0, Vaug[f |x] ≡ 0
and the error (Eqn. 62) is also zero. A small range of augmentation yields tight bound.

For Lτtri, the derivation is similar. The only difference is that we have 1/τ rather than 1/τ2 in
Eqn. 62. Note that this didn’t change the order of the bound since ξ(r) (and thus the covariance
operator) has one less 1/τ as well. We could also see that for hard loss Ltri, since τ → 0 this bound
will be very loose. We leave a more tight bound as the future work.
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Remarks for H > 1. Note that for H > 1, Lnce has multiple negative pairs and ∂L/∂rk− =

e−rk−/τ/Z(X ) where Z(X ) := e−r+/τ +
∑H
k=1 e

−rk−/τ . While the nominator e−rk−/τ still only
depends on the distance between x1 and xk− (which is good), the normalization constant Z(X )
depends on H + 1 distance pairs simultaneously. This leads to

ξk =
∂L

∂rk−

∣∣∣
X0

=
e−‖x−x

′
k‖

2
2/τ

1 +
∑H
k=1 e

−‖x−x′k‖
2
2/τ

(63)

which causes issues with the symmetry trick (Eqn. 54), because the denominator involves many
negative pairs at the same time.

However, if we think given one pair of distinct data point (x,x′), the normalized constant Z aver-
aged over data augmentation is approximately constant due to homogeneity of the dataset and data
augmentation, then Eqn. 54 can still be applied and similar conclusion follows.

C THE DYNAMICS OF TWO-LAYER RELU NETWORK AND THE INTERPLAYS
OF COVARIANCE OPERATORS BETWEEN NEARBY LAYERS (SECTION 4.2)

C.1 THEOREM 5

Proof. For convenience, we define the centralized version of uj(z0): ûj(z0) = uj(z0) −
Ez0 [uj(z0)] ∈ Rd and the matrices Ajk := Covz0 [uj(z0),uk(z0)] = Ez0 [ûj(z0)ûᵀ

k(z0)] ∈ Rd×d.
Here both j and k run from 1 to n1.

At layer l = 1 the covariance operator is Vz0 [K̄1(z0)] = [wᵀ
2,jw2,kAjk] ∈ Rn1d×n1d.

On the other hand, if we check the second layer l = 2, we could compute K̄2(z0) ∈ Rn1n2×n2 .
Note that for input j of the second layer, we can compute its expectation with respect to z|z0 as
wᵀ

1,juj(z0). On the other hand, since the last layer doesn’t have ReLU nonlinearity, the Jacobian
J2 = In2×n2 which is independent of the input. So we have:

K̄2(z0) =

 wᵀ
1,1u1(z0)

wᵀ
1,2u2(z0)
. . .

wᵀ
1,n1

un1(z0)

⊗ In2×n2
∈ Rn1n2×n2 (64)

So at layer l = 2 we can compute the covariance operator Vz0 [K̄2(z0)] = [wᵀ
1,jAjkw1,k]⊗In2×n2 ∈

Rn1n2×n1n2 . Here [wᵀ
1,jAjkw1,k] ∈ Rn1×n1 .

Using these two covariance operators, we are able to write down the weight update in SimCLR
setting with simple contrastive loss (here Qj :=

∑
k Ajkw1,kw

ᵀ
2,k ∈ Rd×n2 ):

ẇ1,j = Qjw2,j , ẇ2,j = Qᵀ
jw1,j (65)

The dynamics of Eqn. 65 can be quite general and hard to solve. In the following, we talk about
some special cases.

Diagonal W2. We consider the case where W2 is a diagonal and square matrix, so n1 = n2 and
W2 = diag(w2,1, w2,2, . . . , w2,n1

) and remains such a structure throughout the training. Note that
this also means there is no bias term for all output nodes.

In this case, we could simplify Eqn. 65 due to the fact that now wᵀ
2,k(t)w2,j(t) = 0 for j 6= k at

any time step t (again all biases are zero in the top-layer, otherwise the orthogonal condition do not
hold):

ẇ1,j = w2
2,jAjjw1,j (66)

ẇ2,j = (wᵀ
1,jAjjw1,j)w2,j (67)

Note that if we multiply w1,j to Eqn. 66 and multiply w2,j to Eqn. 67, we arrive at:

1

2

d‖w1,j‖22
dt

= w2
2,j(w

ᵀ
1,jAjjw1,j) (68)

1

2

dw2
2,j

dt
= (wᵀ

1,jAjjw1,j)w
2
2,j (69)
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Therefore, d‖w1,j‖22/dt = dw2
2,j/dt and thus ‖w1,j‖22 = w2

2,j + c with some time-independent
constant c.

D HIERARCHICAL LATENT TREE MODELS (SECTION 4.3)

D.1 LEMMAS

Lemma 4 (Variance Squashing). Suppose a function φ : R 7→ R is L-Lipschitz continuous: |φ(x)−
φ(y)| ≤ L|x− y|, then for x ∼ p(·), we have:

Vp[φ(x)] ≤ L2Vp[x] (70)

Proof. Suppose x, y ∼ p(·) are independent samples and µφ := E [φ(x)]. Note that V[φ(x)] can be
written as the following:

E
[
|φ(x)− φ(y)|2

]
=

1

2
E
[
|(φ(x)− µφ)− (φ(y)− µφ)|2

]
= E

[
|φ(x)− µφ|2

]
+ E

[
|φ(y)− µφ|2

]
− 2E [(φ(x)− µφ)(φ(y)− µφ)]

= 2Vp[φ(x)] (71)

Therefore we have:

Vp[φ(x)] =
1

2
E
[
|φ(x)− φ(y)|2

]
≤ L2

2
E
[
|x− y|2

]
= L2Vp[x] (72)

Lemma 5 (Sharpened Jensen’s inequality (Liao and Berg, 2018)). If function φ is twice differen-
tiable, and x ∼ p(·), then we have:

1

2
V[x] inf φ′′ ≤ E [φ(x)]− φ(E [x]) ≤ 1

2
V[x] supφ′′ (73)

Lemma 6 (Sharpened Jensen’s inequality for ReLU activation). For ReLU activation ψ(x) :=
max(x, 0) and x ∼ p(·), we have:

0 ≤ E [ψ(x)]− ψ(E [x]) ≤
√

Vp[x] (74)

Proof. Since ψ is a convex function, by Jensen’s inequality we have E [ψ(x)] − ψ(E [x]) ≥ 0. For
the other side, let µ := Ep [x] and we have (note that for ReLU, ψ(x)− ψ(µ) ≤ |x− µ|):

E [ψ(x)]− ψ(E [x]) =

∫
(ψ(x)− ψ(µ))p(x)dx (75)

≤
∫
|x− µ|p(x)dx (76)

≤
(∫
|x− µ|2p(x)dx

)1/2(∫
p(x)dx

)1/2

(77)

=
√

Vp[x] (78)

where the last inequality is due to Cauchy-Schwarz.

D.2 MOTIVATION AND DESCRIPTION OF A GENERAL HLTM

Here we describe a general Hierarchical Latent Tree Model (HLTM) of data, and the structure of a
multilayer neural network that learns from this data. The structure of the HLTM is motivated by the
hierarchical structure of our world in which objects may consist of parts, which in turn may consist
of subparts. Moreover the parts and subparts may be in different configurations in relation to each
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Symbol Definition Size Description
Zl The set of all latent variables at layer l of the generative model.
Nl The set of all neurons at layer l of the neural network.
Nµ The set of neurons that corresponds to zµ.
N ch
µ

⋃
ν∈ch(µ)Nν The set of neurons that corresponds to children of latent zµ.

mµ Number of possible categorical values taken by zµ ∈ {0, . . . ,mµ − 1}.
0µ, 1µ mµ All-one and all-zero vectors.
Pµν [P(zν |zµ)] mµ ×mν The top-down transition probability from zµ to zν .
ρµν 2P(zν=1|zµ=1)− 1 scalar in [−1, 1] Polarity of the transitional probability in the binary case.
P0 diag[P(z0)] m0 ×m0 The diagonal matrix of probability of z0 taking different values.
vj(zµ) Ez [fj |zµ] scalar Expectation of activation fj given zµ (zµ’s descendants are marginalized).
vj [vj(zµ)] mµ Vector form of vj(zµ).
fµ, fNch

µ
[fj ]j∈Nµ , [fk]k∈Nch

µ
|Nµ|, |N ch

µ | Activations for all nodes j ∈ Nµ and for the children ofNµ
v0k, V0,Nch

µ
[Ez [fk|z0]], [v0k]k∈Nch

µ
m0, m0 × |N ch

µ | Expected activation conditioned on z0
sk

1
2
(vk(1)− vk(0)) scalar Discrepancy of node k w.r.t its latent variable zν(k).

aµ [ρµν(k)sk]k∈Nch
µ

|N ch
µ | Child selectivity vector in the binary case.

Table 6: Extended notation in HLTM.

Deep ReLU
networks

Hierarchical Latent 
Tree Model (HLTM)

FC

FC

FC

Nuisance latent 𝒙(𝑧! , 𝑧")

𝑙 = 2

𝑙 = 0

𝑙 = 1

Visible variable

𝑧!

(a) (b)

Fully connected 

(c)

Figure 4: (a) The Hierarchical Latent Tree Model (HLTM). (b) Correspondence between latent
variables and nodes in the intermediate layer of neural networks. (c) Definition of vj , sj and aµ in
Table. 6.
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other in any given instantiation of the object, or any given subpart could be occluded in any given
view of an object.

The HLTM is a very simple toy model that represents a highly abstract mathematical version of this
much more realistic scenario. It consists of a tree structured generative model of data (see Fig. 2(d)
and Fig. 4). Simpler versions of this generative model have been used to mathematically model how
both infants and linear neural networks learn hierarchically structured data (Saxe et al., 2019). At
the top of the tree (i.e. level L), a single categorical latent variable z0 takes one of m0 possible
integer values values in {0 . . . ,m0 − 1}, with a prior distribution P(z0). One can roughly think
of the value of z0 as denoting the identity of one of m0 possible objects. At level L − 1 there
is a set of latent variables ZL−1. This set is indexed by µ and each latent variable zµ is itself a
categorical variable that takes one of mµ values in {0, . . . ,mµ − 1}. Roughly we can think of
each latent variable zµ as corresponding to a part, and the different values of zµ reflect different
configurations or occlusion states of that part. The conditional probability distributions P(zµ|z0), or
m0 by mµ transition probability matrices, can roughly be thought of as collectively reflecting the
distribution over the presence or absence, as well as configurational and occlusional states of each
part µ, conditioned on object identity z0. This process can continue onwards to describe subparts of
parts, etc...

D.3 A TWO-LAYER EXAMPLE TO DEMONSTRATE NOTATION

For simplicity, here we demonstrate the notation in a two-layer generative model, and two-layer
network with L = 2. Thus the top, middle, and leaf levels of the generative model are labelled
by l = 2, 1, 0, respectively, with corresponding latents z0, zµ and zν , and the corresponding input,
hidden, and final layers of the neural network are labelled by l = 0, 1, 2 respectively.

As shown in Fig. 4, at the leaf level l = 0 there are a set of visible variables Z0. This set is indexed
by ν and each visible variable zν is itself a categorical variable that takes one of mν values in the
set {0 . . . ,mν − 1}. Roughly we can think of each zν as a pixel, or more generally, some visible
feature. For simplicity, we assume that each part zµ at level 1 affects a distinct subset of pixels or
visible features zν . In essence, we assume each visible variable zν is a child of a unique level 1 latent
variable zµ in the generative tree process (Fig. 2(d)). In the rough analogy to objects and parts, in
this abstraction, each part µ controls the appearance of a subset of spatially localized nearby pixels
or visual features ν that are all children of part µ. Conversely, each such local cluster of pixels or
feature values is influenced by the state of a single part. The conditional probability distribution
P(zν |zµ), or mµ by mν transition probability matrix, then describes the distribution over pixel or
visual feature values zν of each child pixel ν, conditioned on state zµ of the parent part µ.

We next consider the two-layer ReLU network that learns from data generated from the two-layer
HLTM (right hand side of Fig. 2(d)). The neural network has a set of input neurons that are in one
to one correspondence with the pixels or visible variables zν that arise at the leaves of the HLTM,
where l = 0. For any given object z0 at layer l = 2, and its associated parts states zµ at layer l = 1,
and visible feature values zν at layer l = 0, the input neurons of the neural network receive only the
visible feature values zν as real analog inputs. Thus the neural network does not have direct access
to the latent variables z0 and zµ that generate these visible variables.

Over-parameterization. While in the pixel level, there is a one to one correspondence between
the children ν of a subpart µ and the pixel, in the hidden layer, more than one neuron could cor-
respond to zµ (i.e., pool from pixels whose values are influenced by part µ), which is a form of
over-parameterization. We thus let Nµ denote the set of such hidden neurons, and we let Nl denote
the set of all neurons in layer l of the network. ThusNµ is a subset ofN1. We further letN ch

µ denote
the subset of neurons in layer 0 that provide input to the hidden layer neurons inNµ. ThusN ch

µ is a
subset ofN0. Each neuron in the subsetN ch

µ is in one to one correspondence with the children (i.e.,
some zν) of latent variable zµ in the generative tree (see Fig. 2(d)).

In applying SSL in this setup, each object is specified by a set of values for z0 (object identity),
zµ (configurational and occlusional states of parts), and zν (pixel values). Given any such object
and its realization of configurational and occlusional states of parts and the resulting pixel values,
we assume that the process of data augmentation corresponds to resampling zµ and zν from the
conditional distributions P(zµ|z0) and P(zν |zµ), while fixing object identity z0. This augmentation
process then roughly corresponds to being able to sample the same object under different parts
configurations and views.
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The key question of interest that we wish to address is, under this generative model of data and model
of data augmentation, what do the hidden units of the neural network learn? In particular, can they
invert the generative model to convert pixels values at neural layer l = 0 into hidden representations
at neural layer l = 1 that reflect the existence of parts, with their associated states zµ? More
precisely, can the network learn hidden units whose activation across all data points correlates well
with the values a latent variable zµ takes across all data points? We address this question next, first
introducing further simplifying technical assumptions on the generative model and further notation.

D.4 A GENERAL STRUCTURE OF CONDITIONAL DISTRIBUTIONS IN THE HLTM

For convenience, we define the following symbols for k ∈ N ch
µ (note that |N ch

µ | = N ch
µ is the

number of the children of the node set Nµ):

vµk := Ez [fk|zµ] = Pµν(k)vk ∈ Rmµ (79)
Vµ,N ch

µ
:= [vµk]k∈N ch

µ
(80)

ṽj :=
[
Ez
[
f̃j |zµ

]]
= Vµ,N ch

µ
wj ∈ Rmµ (81)

As an extension of binary symmetric HLTM, we make an assumption for the transitional probability:

Assumption 1. For µ ∈ Zl and ν ∈ Zl−1, the transitional probability matrix Pµν := [P(zν |zµ)]
has decomposition Pµν = 1

mν
1µ1

ᵀ
ν + Cµν where Cµν1ν = 0µ and 1ᵀ

µCµν = 0ν .

Note that Cµν1 = 0 is obvious due to the property of conditional probability. The real condition is
1ᵀ
µCµν = 0ν . If mµ = mν , then Pµν is a square matrix and Assumption 1 is equivalent to Pµν is

double-stochastic. Assumption 1 makes computation of Pµν easy for any zµ and zν .

Lemma 7 (Transition Probability). If Assumption 1 holds, then for µ ∈ Zl, ν ∈ Z1−1 and α ∈
Zl−2, we have:

Pµα = PµνPνα =
1

mα
1µ1

ᵀ
α + CµνCνα (82)

In general, for any µ ∈ Nl1 and α ∈ Nl2 with l1 > l2, we have:

Pµα =
1

mα
1µ1

ᵀ
α +

∏
µ,...,ξ,ζ,...,α

Cξζ (83)

Proof. Using Assumption 1, we have

Pµα = PµνPνα (84)

=

(
1

mν
1µ1

ᵀ
ν + Cµν

)(
1

mα
1ν1

ᵀ
α + Cνα

)
(85)

since 1ᵀ
ν1ν = mν , Cµν1ν = 0ν and 1ᵀ

νCνα = 0α, the conclusion follows.

Remark. In the symmetric binary HLTM mentioned in the main text, all Cµν can be parameterized
as (here q := [−1, 1]ᵀ):

Cµν = Cµν(ρµν) =
1

2

[
ρµν −ρµν
−ρµν ρµν

]
=

1

2
ρµνqq

ᵀ (86)

This is because 1ᵀ
2Cµν = 02 and Cµν12 = 02 provides 4 linear constraints (1 redundant), leaving

1 free parameter, which is the polarity ρµν ∈ [−1, 1] of latent variable zν given its parent zµ.
Moreover, since qᵀq = 2, the parameterization is close under multiplication:

C(ρµν)C(ρνα) =
1

4
qqᵀqqᵀρµνρνα =

1

2
qqᵀρµνρνα = C(ρµνρνα) (87)
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D.5 THEOREM 6

Proof. First note that for each node k ∈ N ch
µ :

v0k := [Ez [fk|z0]] =
∑
zν

Ez [fk|zν ]P(zν |z0) = P0νvk (88)

=

(
1

mν
101

ᵀ
ν + C0ν

)
vk (89)

=
1

mν
101

ᵀ
νvk + C0νvk (90)

Note that 101
ᵀ
νvk is a constant regarding to change of z0. So we could remove it when computing

covariance operator. On the other hand, for a categorical distribution

(P(z0 = 0), u(0)), (P(z0 = 1), u(1)), . . . , (P(z0 = m0 − 1), u(m0 − 1))

With P0 := diag[P(z0)], the mean is Ez0 [u] = 1ᵀP0u and its covariance can be written as (here
1 = 10):

Vz0 [u] = (u− 11ᵀP0u)ᵀP0(u− 11ᵀP0u) = uᵀ(P0 − P011
ᵀP0)u (91)

Note that each column of V0,N ch
µ

is v0k. Setting u = v0k and we have:

Vz0 [Ez
[
fN ch

µ
|z0
]
] = V ᵀ

0,N ch
µ

(P0 − P ᵀ
0 11

ᵀP0)V0,N ch
µ

(92)

Note that Ez0 [v0k] = 1
mν

1ᵀ
νvk+Ez0 [C0νvk], since 1ᵀP01 = 1. With some computation, we could

see Covz0 [v0k,v0k′ ] = Covz0 [C0ν(k)vk, C0ν(k′)vk′ ].

The equation above can be applied for any cardinality of latent variables. In the binary symmetric
case, we have (note here we define ρ0 := P(z0 = 1)− P(z0 = 0), and q := [−1, 1]ᵀ):

P0 − P011
ᵀP0 =

1

4
(1− ρ20)qqᵀ (93)

Note that in the binary symmetric case, according to remarks in Lemma 7, all Cµν = 1
2ρµνqq

ᵀ and
we could compute C0νvk:

C0νvk =
1

2
ρ0νqq

ᵀvk = ρ0ν
1

2
(vk(1)− vk(0))q = ρ0νskq (94)

where according to Eqn. 87, we have:

ρ0ν :=
∏

0,...,α,β,...,ν

ραβ (95)

and the covariance between node k and k′ can be computed as:

Covz0 [v0k,v0k′ ] = Covz0 [C0ν(k)vk, C0ν(k′)vk′ ] (96)

= ρ0ν(k)ρ0ν(k′)sksk′
1

4
qᵀqqᵀq(1− ρ20) (97)

= ρ0ν(k)ρ0ν(k′)sksk′(1− ρ20) (98)

= ρ20µρµν(k)ρµν(k′)sksk′(1− ρ20) (99)

The last equality is due to the fact that due to tree structure, the path from z0 to all child nodes in
N ch
µ must pass zµ.

Therefore we can compute the covariance operator:

Vz0 [Ez
[
fN ch

µ
|z0
]
] = ρ20µ(1− ρ20)aµa

ᵀ
µ (100)

When L→ +∞, we have:
ρ0ν :=

∏
0,...,α,β,...,ν

ραβ → 0 (101)

and thus the covariance becomes zero as well.
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D.6 THEOREM 7

Proof. According to our setting, for each node k ∈ Nµ, there exists a unique latent variable zν with
ν = ν(k) that corresponds to it. In the following we omit its dependency on k for brevity.

Since we are dealing with binary case, we define the following for convenience:

v+k := vk(1) (102)

v−k := vk(0) (103)

v̄k :=
1

2
(v+k + v−k ) =

1

2
(Ez [fk|zν = 1] + Ez [fk|zν = 0]) (104)

v̄N ch
µ

:= [v̄k]k∈N ch
µ
∈ R|N

ch
µ | (105)

sk :=
1

2
(v+k − v

−
k ) =

1

2
(Ez [fk|zν = 1]− Ez [fk|zν = 0]) (106)

sN ch
µ

:= [sk]k∈N ch
µ
∈ R|N

ch
µ | (107)

We also define the sensitivity of node k to be λk := |(v+k )2 − (v−k )2|. Intuitively, a large λk means
that the node k is sensitive for changes of latent variable zν . If λk = 0, then the node k is invariant
to latent variable zν .

We first consider pre-activation f̃j :=
∑
k wjkfk and its expectation with respect to latent variable

z:
ṽ+j := Ez

[
f̃j

∣∣∣zµ = 1
]
, ṽ−j := Ez

[
f̃j

∣∣∣zµ = 0
]

(108)

Note that for each node k ∈ N ch
µ we have:

v+µk = v̄k + ρµνsk, v−µk = v̄k − ρµνsk (109)

Let aµ := [ak]k∈N ch
µ

:= [ρµνsk]k∈N ch
µ

and

u+
N ch
µ

:= V +
µ,N ch

µ
:=
[
E [fk|zµ = 1]

]
= v̄N ch

µ
+ aµ (110)

u−N ch
µ

:= V −
µ,N ch

µ
:=
[
E [fk|zµ = 0]

]
= v̄N ch

µ
− aµ (111)

Then we have ṽ+j = wᵀ
ju

+
N ch
µ

and ṽ−j = wᵀ
ju
−
N ch
µ

.

Note that wj is a random variable with each entry wjk ∼ Uniform

[
−σw

√
3
|N ch
µ |
, σw

√
3
|N ch
µ |

]
.

It is easy to verify that E [wjk] = 0 and V[wjk] = σ2
w/|N ch

µ |. Therefore, for two dimensional
vector ṽj = [ṽ+j , ṽ

−
j ]ᵀ, we can compute its first and second order moments: Ew [ṽj ] = 0 and

Vw[ṽj ] =
σ2
w

|N ch
µ |
Vµ,N ch

µ
V ᵀ
µ,N ch

µ
=

σ2
w

|N ch
µ |

[u+
N ch
µ
,u−N ch

µ
]ᵀ[u+

N ch
µ
,u−N ch

µ
].

Define the positive and negative set (note that ak := ρµνsk):
A+ = {k : ak ≥ 0}, A− = {k : ak < 0} (112)

Without loss of generality, assume that
∑
k∈A+

a2k ≥
∑
k∈A− a

2
k. In the following, we show there

exists j with λj is greater than some positive threshold. Otherwise the proof is symmetric and we
can show λj is lower than some negative threshold.

When |N ch
µ | is large, by Central Limit Theorem, v can be regarded as zero-mean 2D Gaussian

distribution and we have for some c > 0:

P

ṽ+j ≥ √
cσw√
|N ch

µ |
‖u+
N ch
µ
‖

 =
1− erf(

√
c/2)

2
(113)

Moreover, if al 6= 0, then the following probability is also not small :

P

ṽ+j ≥ √
cσw√
|N ch

µ |
‖u+
N ch
µ
‖ and ṽ−j < 0

 (114)
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Therefore, when |Nµ| = O(exp(c)), with high probability, there exists wj so that

ṽ+j = wᵀ
ju

+
N ch
µ
≥
√
cσw√
|N ch

µ |
‖u+
N ch
µ
‖, ṽ−j = wᵀ

ju
−
N ch
µ
< 0 (115)

Since v̄N ch
µ
≥ 0 (all fk are after ReLU and non-negative), this leads to:

ṽ+j ≥
√
cσw√
|N ch

µ |
‖u+
N ch
µ
‖ ≥

√
cσw√
|N ch

µ |

√∑
k∈A+

a2k ≥ σw
√

c

2|N ch
µ |

∑
k∈N ch

µ

ρ2µνs
2
k (116)

By Jensen’s inequality, we have (note that ψ(x) := max(x, 0) is the ReLU activation):

v+j = Ez [fj |zµ = 1] = Ez
[
ψ(f̃j)|zµ = 1

]
(117)

≥ ψ
(
Ez
[
f̃j

∣∣∣zµ = 1
])

= ψ(ṽ+j ) ≥ σw
√

c

2|N ch
µ |

∑
k∈N ch

µ

ρ2µνs
2
k (118)

On the other hand, we also want to compute v−j := Ez [fj |zµ = 0] using sharpened Jensen’s in-
equality (Lemma 6). For this we need to compute the conditional covariance Vz[f̃j |zµ]:

Vz[f̃j |zµ]
2©
=

∑
k

w2
jkVz[fk|zµ]

3©
≤ 3σ2

w

|N ch
µ |
∑
k

Vz[fk|zµ] (119)

=
3σ2

w

|N ch
µ |
∑
k

(
Ezν |zµ [V[fk|zν ]] + Vzν |zµ [Ez [fk|zν ]]

)
(120)

≤ 3σ2
w

(
σ2
l +

1

|N ch
µ |
∑
k

Vzν |zµ [Ez [fk|zν ]]

)
(121)

Note that 2© is due to conditional independence: fk as the computed activation, only depends on
latent variable zν and its descendants. Given zµ, all zν and their respective descendants are inde-
pendent of each other and so does fk. 3© is due to the fact that each wjk are sampled from uniform
distribution and |wjk| ≤ σw

√
3
|N ch
µ |

.

Here Vzν |zµ [Ez [fk|zν ]] = s2k(1−ρ2µν) can be computed analytically. It is the variance of a binomial
distribution: with probability 1

2 (1 + ρµν) we get v+k otherwise get v−k . Therefore, we finally have:

Vz[f̃j |zµ] ≤ 3σ2
w

(
σ2
l +

1

|N ch
µ |
∑
k

s2k(1− ρ2µν)

)
(122)

As a side note, using Lemma 4, since ReLU function ψ has Lipschitz constant ≤ 1 (empirically it is
smaller), we know that:

Vz[fj |zµ] ≤ 3σ2
w

(
σ2
l +

1

|N ch
µ |
∑
k

s2k(1− ρ2µν)

)
(123)

Finally using Lemma 6 and ṽ−j < 0, we have:

v−j = Ez [fj |zµ = 0] = Ez
[
ψ(f̃j)|zµ = 0

]
(124)

≤ ψ
(
Ez
[
f̃j

∣∣∣zµ = 0
])

+

√
Vz[f̃j |zµ = 0] (125)

=

√
Vz[f̃j |zµ = 0] (126)

≤ σw

√
3σ2

l +
3

|N ch
µ |
∑
k

s2k(1− ρ2µν) (127)

24



Under review as a conference paper at ICLR 2021

Combining Eqn. 118 and Eqn. 127, we have a bound for λj :

λj = (v+j )2 − (v−j )2 ≥ 3σ2
w

[
1

|N ch
µ |
∑
k

s2k

(
c+ 6

6
ρ2µν − 1

)
− σ2

l

]
(128)

E THE ANALYSIS OF BYOL IN SEC. 5

E.1 DERIVATION OF BYOL GRADIENT

Note that for BYOL, we have:

vec

(
∂r

∂Wl

)
= Kl(x1;W) [Kᵀ

l (x1;W)vec(Wl)−Kᵀ
l (x2;W ′)vec(W ′l )] (129)

under large batchsize, we have (note that we omit W for any term that depends on W , but make
dependence ofW ′ explicit in the math expression):

vec

(
∂r

∂Wl

)
= Ex∼p(·)

[
Ex′∼paug(·|x) [Kl(x

′)Kᵀ
l (x′)] vec(Wl)− K̄l(x)K̄ᵀ

l (x;W ′)vec(W ′l )
]

For brevity, we write Ex [·] := Ex∼p(·) [·] and Ex′ [·] := Ex′∼paug(·|x) [·]. Similar for V. And the
equation above can be written as:

vec

(
∂r

∂Wl

)
= Ex {Vx′ [Kl(x

′)]} vec(Wl) (130)

+ Ex

{
K̄l(x)

[
K̄ᵀ
l (x)vec(Wl)− K̄ᵀ

l (x;W ′)vec(W ′l )
]}

(131)

In terms of weight update by gradient descent, since ∆Wl = − ∂r
∂Wl

, we have:

vec (∆Wl) = −Ex {Vx′ [Kl(x
′)]} vec(Wl) (132)

− Ex

{
K̄l(x)

[
K̄ᵀ
l (x)vec(Wl)− K̄ᵀ

l (x;W ′)vec(W ′l )
]}

(133)

If we consider the special caseW =W ′, then the last two terms cancelled out, yielding:

vec(∆Wl)sym = −Ex {Vx′ [Kl(x
′)]} vec(Wl) (134)

And the general update (Eqn. 136) can be written as:

vec (∆Wl) = vec(∆Wl)sym (135)

− Ex

{
K̄l(x)

[
K̄ᵀ
l (x)vec(Wl)− K̄ᵀ

l (x;W ′)vec(W ′l )
]}

(136)

E.2 THEOREM 8

Proof. When BN is present, Eqn. 129 needs to be corrected with an additional term, ∂̃r
∂Wl

:= ∂r
∂Wl
−

δWBN

l , where δWBN

l is defined as follows:

δWBN

l :=
1

|B|
∑
i∈B

Di
l ḡlf

iᵀ
l−1 (137)

From the proof of Theorem 1 (see Eqn. 26), we know that for each sample i ∈ B (note that by
definition, the back-propagated gradient after nonlinearity g̃il equals to Di

lg
i
l , where gil is the back-

propagated gradient before nonlinearity):

Di
lg
i
l = J iᵀl [J ilWlf

i
l−1 − J il (W ′)W ′lf il−1(W ′)] (138)

Since the network is linear from layer l to the topmost layer L, we have Di
l = D̄l. Since the only

input dependent part in J il is the gating function between the current layer l and the topmost layer
L, for linear network the gating is always 1 and thus J̄l = J il and is independent of input data. We
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now have (note that we omitW for any terms that are dependent onW , but will writeW ′ explicitly
for terms that are depend onW ′):

δWBN

l :=
1

|B|
∑
i∈B

Di
l ḡlf

iᵀ
l−1 = −D̄lḡlf̄

ᵀ
l−1 (139)

= J̄ᵀ
l [J̄lWlf̄l−1 − J̄l(W ′)W ′l f̄l−1(W ′)]f̄ᵀ

l−1 (140)

Therefore we have:

vec(δWBN

l ) = (f̄l−1 ⊗ J̄ᵀ
l )
[
(f̄l−1 ⊗ J̄ᵀ

l )vec(Wl)− (f̄l−1(W ′)⊗ J̄ᵀ
l (W ′))vec(W ′l )

]
(141)

Note that by assumption, since J̄l doesn’t depend on the input data, we have

f̄l−1 ⊗ J̄ᵀ
l = EB [fl−1]⊗ J̄ᵀ

l = EB
[
fl−1 ⊗ J̄ᵀ

l

]
(142)

Taking large batchsize limits and notice that the batchB could contain any augmented data generated
from independent samples from p(·), we have:

vec(δWBN

l ) = Ex,x′ [Kl(x
′)]Ex,x′ [K

ᵀ
l (x′)] vec(Wl) (143)

− Ex,x′ [Kl(x
′)]Ex,x′ [K

ᵀ
l (x′;W ′)] vec(W ′l ) (144)

An important thing is that the expectation is taking over x ∼ p(x) and x′ ∼ paug(·|x). Intuitively,
this is because f̄l−1 and ḡl are averages over the entire batch, which has both intra-sample and
inter-sample variation.

With augment-mean connection K̄l(x) we could write:

vec(δWBN

l ) = Ex

[
K̄l(x)

]
Ex

[
K̄ᵀ
l (x)

]
vec(Wl)− Ex

[
K̄l(x)

]
Ex

[
K̄ᵀ
l (x;W ′)

]
vec(W ′l )

= Ex

[
K̄l(x)

] {
Ex

[
K̄ᵀ
l (x)

]
vec(Wl)− Ex

[
K̄ᵀ
l (x;W ′)

]
vec(W ′l )

}
(145)

Plug in δWl,BN into Eqn. 136 and we have corrected gradient for BYOL:

vec

(̃
∂r

∂Wl

)
= vec

(
∂r

∂Wl

)
− vec (δWBN

l ) (146)

= Ex

[
Vx′∼paug(·|x) [Kl(x

′)]
]

vec(Wl) + Vx

[
K̄l(x)

]
vec(Wl) (147)

− Covx

[
K̄l(x), K̄l(x;W ′)

]
vec(W ′l ) (148)

And the weight update ∆̃Wl = ∆Wl + δWBN

l is:

vec
(

∆̃Wl

)
= −Ex

[
Vx′∼paug(·|x) [Kl(x

′)]
]

vec(Wl)− Vx

[
K̄l(x)

]
vec(Wl) (149)

+ Covx

[
K̄l(x), K̄l(x;W ′)

]
vec(W ′l ) (150)

Using Eqn. 134, we have:

vec
(

∆̃Wl

)
= vec(∆Wl) + vec(δWBN

l ) (151)

= vec(∆Wl)sym (152)

− Vx

[
K̄l(x)

]
vec(Wl) + Covx

[
K̄l(x), K̄l(x;W ′)

]
vec(W ′l ) (153)

E.3 COROLLARY 1

Proof. In this case, both the target and online networks use the same weight and there is no predictor.
This meansW ′ =W . Therefore, in Eqn. 145, all Wl = W ′l and δWBN

l = 0.

Note that for SimCLR, the loss function contains both positive pair squared distance r+ and negative
pair squared distance r−. The argument above shows that δWBN

l = 0 for positive pair distance r+.
For negative pair distance r−, with the same logic in Theorem. 8, we will see δWBN

l takes the same
form as Eqn. 145 and thus is zero as well.

Remarks. Note that BatchNorm does not matter in terms of gradient update, modulo its benefit
during optimization. This is justified in the recent blogpost (Fetterman and Albrecht, 2020).
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E.4 COROLLARY 2

Proof. By our condition, we consider the case that the extra predictor is a linear layer: Wpred =
{Wpred}. Note that Wpred ∈ RnL×nL is a squared matrix, otherwise we cannot compute the loss
function between the output fL′ from the online network with the output fL from the target network.

In this case, for connection Kl(x) in the common part of the network (inWbase), we have:

Kl(x) = fl−1(x)⊗ Jᵀ
l (x) = fl−1(x)⊗ Jᵀ

l,base(x)W ᵀ
pred (154)

= (fl−1(x)⊗ Jᵀ
l,base(x))W ᵀ

pred (155)

Here Jl,base(x) is the Jacobian from the current layer l to the layer right before the extra predictor.
The last equality is due to the fact that fl−1 is a vector. Therefore, for augment-mean K̄l(x), since
Wpred doesn’t depend on the input data distribution, we have:

K̄l(x) = K̄l,base(x)W ᵀ
pred (156)

where K̄l,base(x) := K̄l(x;Wbase). To make things concise, let K̂l(x) := K̄l(x) − Ex

[
K̄l(x)

]
.

Obviously we have K̂l(x) = K̂l,base(x)W ᵀ
pred. And the covariance operator becomes:

Vx[K̄l(x;W)] = Ex

[
K̂l,base(x)W ᵀ

predWpredK̂
ᵀ
l,base(x)

]
(157)

Now let ∆̂Wl be the last two terms in Eqn. 14:

vec(∆̂Wl) = −Vx

[
K̄l(x;W)

]
vec(Wl) + Covx

[
K̄l(x;W), K̄l(x;W ′)

]
vec(W ′l ) (158)

Since there is no EMA,Wbase =W ′base and we have:

vec(∆̂Wl) =
{
−Vx

[
K̄l(x;W)

]
+ Covx

[
K̄l(x;W), K̄l(x;W ′)

]}
vec(Wl) (159)

= Ex

[
K̂l,base(x)W ᵀ

pred(I −Wpred)K̂ᵀ
l,base(x)

]
vec(Wl) (160)

Therefore, the final expression of vec(∆̃Wl) is the following:

vec(∆̃Wl) = vec(∆Wl) + vec(δWBN

l )

=
{
−Ex

[
Vx′∼paug(·|x) [Kl(x

′)]
]

+ Ex

[
K̂l,base(x)W ᵀ

pred(I −Wpred)K̂ᵀ
l,base(x)

]}
vec(Wl)

If there is no stop gradient on the target network side, and we receive gradient from both the on-

line and the target network, then for any common layer l, the weight update vec(˜̃∆Wl) becomes
symmetric (note that this can be derived by swappingW ′ withW and add the two terms together):

vec(˜̃∆Wl) = 2vec(∆Wl)sym (161)

−
(
Vx

[
K̄l(x;W)

]
+ Vx

[
K̄l(x;W ′)

])
vec(Wl) (162)

+ Covx

[
K̄l(x;W), K̄l(x;W ′)

]
vec(Wl) (163)

+ Covx

[
K̄l(x;W ′), K̄l(x;W)

]
vec(Wl) (164)

which gives:

vec(˜̃∆Wl) = 2vec(∆Wl)sym − Ex

[
K̂l,base(x)(I −Wpred)ᵀ(I −Wpred)K̂ᵀ

l,base(x)
]

vec(Wl)

= 2vec(∆Wl)sym − Vx

[
K̄l,base(x)(I −Wpred)ᵀ

]
vec(Wl) (165)
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E.5 THEOREM 9

Proof. Consider the following discrete dynamics of a weight vector w(t):

w(t+ 1)−w(t) = α [−w(t) + (1− λ)wema(t)] (166)

where α is the learning rate, wema(t + 1) = γemawema(t) + (1 − γema)w(t) is the exponential
moving average of w(t). For convenience, we use η := 1− γema.

Since it is a recurrence equation, we apply z-transform on the temporal domain, where w(z) :=

Z[w(t)] =
∑+∞
t=0 w(t)z−t. This leads to:

z(w(z)−w(0)) = w(z)− α (w(z)− Z[wema(t)](1− λ)) (167)

Note that for wema(t) we have:

z(wema(z)−wema(0)) = (1− η)wema(z) + ηw(z) (168)

If we set wema(0) = 0, i.e., the target network is all zero at the beginning, then it gives wema(z) =
η

z−1+ηw(z). Plugging it back to Eqn. 167 and we have:

z(w(z)−w(0)) = w(z)− αw(z)

(
1− η

z − 1 + η
(1− λ)

)
(169)

And then we could solve w(z):

w(z) =
z(z − 1 + η)

(z − 1)2 + (η + α)(z − 1) + αηλ
w(0) (170)

Note that the denominator has two roots z1 and z2:

z1,2 = 1− 1

2

(
η + α±

√
(η + α)2 − 4αηλ

)
(171)

and w(z) can be written as

w(z) =
z(z − 1 + η)

(z − z1)(z − z2)
w(0) (172)

Without loss of generality, let z1 < z2. The larger root z2 > 1 when λ < 0, so the zero (z = 1−η =
γema) in the nominator won’t cancel out the pole at z2. And we have:

z

(z − z1)(z − z2)
=

z

z2 − z1
(z − z1)− (z − z2)

(z − z1)(z − z2)
(173)

=
z

z2 − z1

(
1

z − z2
− 1

z − z1

)
(174)

=
1

z2 − z1

(
1

1− z2z−1
− 1

1− z1z−1

)
(175)

where 1/(1− z2z−1) corresponds to a power series zt2 in the temporal domain. Therefore, we could
see w(t) has exponential growth due to z2 > 1.

Now let us check how z2 changes over η, i.e., how the parameter γema := 1− η of EMA affects the
learning process. We have:

z2 = 1 +
η + α

2

(√
1 +

4αηλ

(η + α)2
− 1

)
(176)

Use the fact that (1 + x)1/2 ≤ 1 + 1
2x for x ≥ 0, we have:

z2 − 1 ≤ η + α

4

4αηλ

(η + α)2
=

λ
1
α + 1

η

(177)

Compared to no EMA case (i.e., γema = 0 or η = 1), with a γema < 1 but close to 1 (or equivalently,
η is close to 0), the upper bound of z2 becomes smaller but still greater than 1, and the exponential
growth is less aggressive, which stabilizes the training. Note that if γema = 1 (or η = 0), then
wema(t) ≡ wema(0) = 0 and learning also doesn’t happen.
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F EXACT SOLUTIONS TO BYOL WITH LINEAR ARCHITECTURES WITHOUT
BATCHNORM

An interesting property of BYOL is that it finds useful non-collapsed solutions for the online net-
work and target network, despite the fact that it does not employ contrastive terms to separate the
representations of negative pairs. While BatchNorm can implicitly introduce contrastive terms in
BYOL, as discussed in the main paper, recent work (Richemond et al., 2020b) has shown that other
normalization methods which do not introduce contrastive terms, nevertheless enable BYOL to work
well. We therefore analyze BYOL in a simple linear setting to obtain insight into why it does not
lead to collapsed solutions, even without BatchNorm. We first derive exact fixed point solutions to
BYOL learning dynamics in this setting, and discuss their stability. We then discuss specific models
for data distributions and augmentation procedures, and show how the fixed point solutions of BYOL
learning dynamics depend on both data and augmentation distributions. We then discuss how our
theory reveals a fundamental role for the predictor in avoiding collapse in BYOL solutions. Finally,
we derive a highly reduced three dimensional description of BYOL learning dynamics that pro-
vide considerable insights into dynamical mechanisms enabling BYOL to avoid collapsed solutions
without negative pairs to force apart representations of different objects.

F.1 THE FIXED POINT STRUCTURE OF BYOL LEARNING DYNAMICS.

We consider a single linear layer online network with weights W1 ∈ Rn1×n0 and a single layer
target network with weights Θ ∈ Rn1×n0 . Additionally, the online network has a predictor layer
with weights W2 ∈ Rn1×n1 , that maps the output of the online network to the output space of
the target network. BYOL only uses positive pairs in which a single data point x is drawn from
the data distribution p(·), and then two augmented views x1 and x2 are drawn from a conditional
augmentation distribution paug(·|x). The loss function driving the learning dynamics of the online
weights W1 and predictor weights W2 given a single positive pair {x1,x2} and a given target
network Θ is then given by

L = ‖W2W1x1 −Θx2‖22. (178)

In contrast, the dynamics of the target network weights Θ follows that of the online weights W1

through an exponential moving average. In the limit of large batch sizes and slow learning rates, the
combined learning dynamics is then well approximated by the continuous time ordinary differential
equations (see e.g. Saxe et al. (2014) for analogous equations in the setting of supervised learning):

τo
dW2

dt
=
[
ΘΣd −W2W1Σs

]
WT

1 (179)

τp
dW1

dt
= WT

2

[
ΘΣd −W2W1Σs

]
(180)

τt
dΘ

dt
= −Θ +W1, (181)

where

Σs ≡ Ex1

[
x1x

T
1

]
(182)

Σd ≡ Ex1,x2

[
x1x

T
2

]
= Ex∼p(·)

[
K̄(x)K̄(x)T

]
, (183)

and
K̄(x) ≡ Ex1∼paug(·|x) [x1] . (184)

Here Σs is the correlation matrix of a single augmented view x1 of the data x, while Σd is the corre-
lation matrix between two augmented views of the same data point, or equivalently, the correlation
matrix of the augmentation averaged vector K̄(x). Additionally, we have retained the possibility
of having three different learning rates for the online, predictor, and target networks, represented by
the time constants τo, τp, and τt respectively.

Because of the linearity of the networks, the final outcome of learning depends on the data and
augmentation procedures only through the two correlation matrices Σs and Σd. Examining equa-
tion 179-equation 181, we find sufficient conditions for a fixed point given by W2W1Σs = ΘΣd

and W1 = Θ. Inserting the second equation into the first and right multiplying both sides by [Σs]−1
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(assuming Σs is invertible), yields a manifold of fixed point solutions in W1 and W2 satisfying the
nonlinear equation

W2W1 = W1Σd[Σs]−1. (185)

This constitutes a set of n1 × n2 nonlinear equations in (n1 × n2) + (n2 × n2) unknowns, yielding
generically a nonlinear manifold of solutions inW1 andW2 of dimensionality n2×n2 corresponding
to the number of predictor parameters. For concreteness, we will assume that n2 ≤ n1, so that the
online and target networks perform dimensionality reduction. Then a special class of solutions to
equation 185 can be obtained by assuming the n2 rows of W1 correspond to n2 left-eigenvectors
of Σd[Σs]−1 and W2 is a diagonal matrix with the corresponding eigenvalues. This special class of
solutions can then be generalized by a transformation W2 → SW2S

−1 and W1 → SW1 where S
is any invertible n2 by n2 matrix. Indeed this transformation is a symmetry of equation 185, which
defines the solution manifold.

In addition to these families of solutions, the collapsed solution W1 = W2 = Θ = 0 also exists,
and a natural question is, why doesn’t BYOL generically converge to this collapsed solution? This
question can be addressed by analyzing the stability of both the collapsed solution and the families
of solutions presented above. The basic calculation involves computing the Jacobian of the vector
field defining the dynamics of equation 179 through equation 181. A fixed point solution is stable
if and only if all eigenvalues of the Jacobian evaluated at a fixed point solution are negative. Using
methods similar to that of Baldi and Hornik (1989), which carried out a similar stability analysis
for learning dynamics in two weight layer linear networks in the supervised setting, it is possible to
show that all of the above fixed point solutions are unstable except for those derived from the special
solutions where the n2 rows of W1 correspond to the top n2 principal eigenmodes of Σd[Σs]−1.

Thus this analysis sketch provides conceptual insights into why BYOL, at least in this simple setting,
learns nontrivial, and potentially useful representations with only positive examples, and does not
converge to the naive collapsed solution. Basically, the collapsed solution, as well as other subdomi-
nant solutions, are unstable, while solutions corresponding to the principal eigenmodes of Σd[Σs]−1

are stable. Thus, from generic initial conditions, one would expect that the row space of the online
network would converge to the span of the top n2 principal eigenmodes of Σd[Σs]−1.

F.2 ILLUSTRATIVE MODELS FOR DATA AND DATA AUGMENTATION

While the above section suggests that BYOL converges to the top eigenmodes of Σd[Σs]−1, here
we make this result more concrete by giving illustrative examples of data distributions and data
augmentation procedures, and the resulting properties of Σd[Σs]−1.

Multiplicative scrambling. Consider for example a multiplicative subspace scrambling model,
used in the illustration of SIMCLR in Sec. 4.1. In this model, data augmentation scrambles a
subspace by multiplying by a random Gaussian matrix, while identically preserving the orthogonal
complement of the subspace. In applications, the scrambled subspace could correspond to a space of
nuisance features, while the preserved subspace could correspond to semantically important features.

More precisely, we consider a random scrambling operator A which only scrambles data vectors
x within a fixed k dimensional subspace spanned by the orthonormal columns of the n0 × k ma-
trix U . Within this subspace, data vectors are scrambled by a random Gaussian k × k matrix B.
Thus A takes the form A = P c + UBUT where P c = I − UUT is a projection operator onto
the n0 − k dimensional conserved, semantically important, subspace orthogonal to the span of the
columns of U , and the elements of B are i.i.d. zero mean unit variance Gaussian random variables
so that E [BijBkl] = δikδjl. Under this simple model, the augmentation average K̄(x) in equa-
tion 184 becomes K̄(x) = P cx. Thus, intuitively, under multiplicative subspace scrambling, the
only aspect of a data vector that survives averaging over augmentations is the projection of this
data vector onto the preserved subspace. Then the correlation matrix of two different augmented
views is Σd = P cΣxP c while the correlation matrix of two identical views is Σs = Σx where
Σx ≡ Ex∼p(·)

[
xxT

]
is the correlation matrix of the data distribution. Thus BYOL learns the prin-

cipal eigenmodes of Σd[Σs]−1 = P cΣxPc[Σ
x]−1. In the special case in which P c commutes with

Σx, we have the simple result that Σd[Σs]−1 = P c, which is completely independent of the data
correlation matrix Σx. Thus in this simple setting BYOL learns the subspace of features that are
identically conserved under data augmentation, independent of how much data variance there is in
the different dimensions of this conserved subspace.
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It is interesting to compare to SimCLR in the same setting, which learns the principal eigenmodes
of P cΣxP c as described in Sec. 4.1. Thus SimCLR also projects to the conserved subspace, but is
further influenced by the correlation matrix of the data within this subspace. In actual applications,
which performs better will depend on whether or not features of high variance within the conserved
subspace are important for downstream tasks; SimCLR (BYOL) should perform better if conserved
features of high variance are (are not) important.

Additive scrambling. We also consider, as an illustrative example, data augmentation procedures
which simply add Gaussian noise with a prescribed noise covariance matrix Σn. Under this model,
we have Σs = Σx+ Σn while Σd = Σx. Thus in this setting, BYOL learns principal eigenmodes of
Σd[Σs]−1 = Σx[Σx+Σn]−1. Thus intuitively, dimensions with larger noise variance are attenuated
in learned BYOL representations. On the otherhand, correlations in the data that are not attenuated
by noise are preferentially learned, but the degree to which they are learned is not strongly influenced
by the magnitude of the data correlation (i.e. consider dimensions that lie along small eigenvalues
of Σn).

F.3 THE IMPORTANCE OF THE PREDICTOR IN BYOL.

Here we note that our theory explains why the predictor plays a crucial role in BYOL learning in
this simple setting, as is observed empirically in more complex settings. To see this, we can model
the removal of the predictor by simply setting W2 = I in all the above equations. The fixed point
solutions then obey W1 = W1Σd[Σs]−1. This will only have nontrivial, non-collapsed solutions
if Σd[Σs]−1 has eigenvectors with eigenvalue 1. Rows of W1 consisting of linear combinations of
these eigenvectors will then constitute solutions.

This constraint of eigenvalue 1 yields a much more restrictive condition on data distributions and
augmentation procedures for BYOL to have non-collapsed solutions. It can however be satisfied
in multiplicative scrambling if an eigenvector of the data matrix Σx lies in the column space of
the projection operator P c (in which case it is an eigenvector of eigenvalue 1 of Σd[Σs]−1 =
P cΣxPc[Σ

x]−1. This condition cannot however be generically satisfied for additive scrambling
case, in which generically all the eigenvalues of Σd[Σs]−1 = Σx[Σx + Σn]−1 are less than 1. In
this case, without a predictor, it can be checked that the collapsed solution W1 = Θ = 0 is stable.
In contrast, with a predictor, the collapsed solution can be checked to be unstable, and therefore it
will not be found from generic initial conditions.

Thus overall, in this simple setting, our theory provides conceptual insight into how the introduc-
tion of a predictor is crucial for creating new non-collapsed solutions for BYOL, whose existence
destabilizes the collapsed solutions.

F.4 REDUCTION OF BYOL LEARNING DYNAMICS TO LOW DIMENSIONS

The full learning dynamics in equation 179 to equation 181 constitutes a set of high dimensional
nonlinear ODEs which are difficult to solve from arbitrary initial conditions. However, there is a
special class of decoupled initial conditions which permits additional insight. Consider the special
case in which Σs and Σd commute, and so are simultaneously diagonalizable and share a common
set of eigenvectors, which we denote by uα ∈ Rn0 . Consider also a special set of initial conditions
where each row of W1 and the corresponding row of Θ are both proportional to one of the eigen-
modes uα, with scalar proportionality constants wα1 and θα respectively, and W2 is diagonal, with
the corresponding diagonal element given by wα2 . Then it is straightforward to see that under the
dynamics in equation 179 to equation 181, that the structure of this initial condition will remain the
same, with only the scalars wα1 , θα and wα2 changing over time. Moreover, the scalars decouple
across the different indices α, and the dynamics are driven by the eigenvalues λαs and λαd of Σs and
Σd respectively. Inserting this special class of initial conditions into the dynamics in equation 179
to equation 181, and dropping the α index, we find the dynamics of the triplet of scalars is given by

τo
dw2

dt
= [θλd − w2w1λs]w1 (186)

τp
dw1

dt
= w2 [θλd − w2w1λs] (187)

τt
dθ

dt
= −θ + w1. (188)
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Figure 5: A visualization of BYOL dynamics in low dimensions. Left: Black arrows denote the vector field
of the flow in the w1 and w2 of plane online and predictor weights in Eqns. 186 and 187 when the target
network weight θ is fixed to 1. For all 3 panels, λs = 1, λd = 1/2, and τo = τp = τt = 1, and all
vectors are normalized to unit length to indicate direction of flow alone. The red curve shows the hyperoblic
manifold of stable fixed points w2w1 = θλdλ

−1
s , while the red point at the origin is an unstable fixed point.

For a fixed target network, the online and predictor weights will cooperatively amplify each other to escape the
collapsed solution at the origin. Middle: A visualization of the full low dimensional BYOL dynamics in Eqns
186-188 when the online and predictor weights are tied so that w1 = w2 = w. The green curve shows the
nullcline θ = w corresponding to dθ

dt
= 0 and the blue curve shows part of the nullcline dw

dt
= 0 corresponding

to w2 = θλdλ
−1
s . The intersection of these two nullclines yields two fixed points (red dots): an unstable

collapsed solution at the origin w = θ = 0, and a stable nontrivial solution with θ = w and w = λdλ
−1
s .

Right: A visualization of dynamics in Eqns 186-188 when the the predictor is removed, so thatw2 is fixed to 1.
The resulting two dimensional flow field on w = w1 and θ is shown (black arrows). The green curve shows the
nullcline w = θ corresponding to dθ

dt
= 0, while the blue curve shows the nullcline w = θλdλ

−1
s . The slope

of this nullcline is λsλ−1
d > 1. The resulting nullcline structure yields a single fixed point at the origin which

is stable. Thus there only exists a collapsed solution. In the special case where λsλ−1
d = 1, the two nullclines

coincide, yielding a one dimensional manifold of solutions.

Alternatively, this low dimensional dynamics can be obtained from equation 179 to equation 181
not only by considering a special class of decoupled initial conditions, but also by considering the
special case where every matrix is simply a 1 by 1 matrix, making the scalar replacementsW1 → w1,
W2 → w2, Θ→ θ, Σs → λs, and Σd → λd.

The fixed point conditions of this dynamics are given by θ = w1 and w2w1 = θλdλ
−1
s . Thus the

collapsed point w1 = w2 = θ = 0 is a solution. Additionally w2 = λdλ
−1
s and w1 = θ taking

any value is also a family of non-collapsed solutions. We can understand the three dimensional
dynamics intuitively as follows when τt � τo and τo = τp. In this case, the target network evolves
very slowly compared to the online network, as is done in practice, and for simplicity we use the
same learning rate for the predictor as we do for the online network. In this situation, we can treat θ
as approximately constant on the fast time scale of τo on which the online and predictor weights w1

and w2 evolve. Then the joint dynamics in equation 186 and equation 187 obeys gradient descent
on the error function

E =
λs
2

(θλdλ
−1
s − w2w1)2. (189)

Iso-contours of constant error are hyperbolas in the w1 by w2 plane, and for fixed θ, the origin w1 =
w2 = 0 is a saddle point, yielding an unstable fixed point (see Fig. 5 (left)). From generic initial
conditions, w1 and w2 will then cooperatively amplify each other to rapidly escape the collapsed
solution at the origin, and approach the zero error hyperbolic contour w2w1 = θλdλ

−1
s where θ is

close to its initial value. Then the slower target network θ will adjust, slowly moving this contour
until θ = w1. The more rapid dynamics of w1 and w2 will hug the moving contour w2w1 = θλdλ

−1
s

as θ slowly adjusts. In this fashion, the joint fast dynamics of w1 and w2, combined with the slow
dynamics of θ, lead to a nonzero fixed point for all 3 values, despite the existence of a collapsed
fixed point at the origin. Moreover, the larger the ratio λdλ−1s , which is determined by the data, the
larger the final values of both w1 and w2 will tend to be.

We can obtain further insight by noting that the submanifold w1 = w2, in which the online and
predictor weights are tied, constitutes an invariant submanifold of the dynamics in Eqns. 186 to
188; if w1 = w2 at any instant of time, then this condition holds for all future time. Therefore we
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Figure 6: The Hierarchical Latent Tree Model (HLTM) used in our experiments (Sec. G.2 and Sec. 6).

can both analyze and visualize the dynamics on this two dimensional invariant submanifold, with
coordinatesw = w1 = w2 and θ (Fig. 5 (middle)). This analysis clearly shows an unstable collapsed
solution at the origin, with w = θ = 0, and a stable non-collapsed solution at w = θ = λdλ

−1
s .

We note again, that the generic existence of these non-collapsed solutions in Fig. 5 depends critically
on the presence of a predictor with adjustable weights w2. Removing the predictor corresponds to
forcing w2 = 1, and non-collapsed solutions cannot exist unless λd = λs, as demonstrated in Fig. 5
(right). Thus, remarkably, in BYOL in this simple setting, the introduction of a predictor network
plays a crucial role, even though it neither adds to the expressive capacity of the online network,
nor improves its ability to match the target network. Instead, it plays a crucial role by dramatically
modifying the learning dynamics (compare e.g. Fig 5 middle and right panels), thereby enabling
convergence to noncollapsed solutions through a dynamical mechanism whereby the online and
predictor network cooperatively amplify each others’ weights to escape collapsed solutions ( Fig. 5
(left)).

Overall, this analysis of BYOL learning dynamics provides considerable insight into the dynami-
cal mechanisms enabling BYOL to avoid collapsed solutions, without negative pairs to force apart
representations, in what is likely to be the simplest nontrivial setting.

G ADDITIONAL EXPERIMENTS

G.1 EXPERIMENTS ON TWO-LAYER NETWORK

We conduct experiments to verify our theoretical reasoning in Sec. 4.2. We follow the setting in
Theorem 5, i.e., two-layer ReLU network (L = 2) that contains the same number of hidden nodes
as the number of output nodes (n1 = n2). The top-layer weight W2 is a diagonal matrix with no
bias (note that “no bias” is important here, otherwise we won’t have wᵀ

2,jw2,k = 0 for j 6= k).

We use Lτnce (τ = 0.05 and H = 1) and Lsimp and use SGD optimizer with learning rate of 0.01.
All experiments run with 5000 minibatches with batchsize 128. We test cases with and without `2
normalization at the output layer. For each setting, i.e., (loss, normalization), we run 30 random
seeds. The data are generated by a mixture of 10 Gaussian distributions (with uniform prior on each
mixture), with mean µk ∼ N (0, I) and a covariance matrix Σk = 0.1I . We set the first cluster to
be zero-mean.

Without `2 normalization. Fig. 7 shows the weight growth of the top (W2) and bottom (W1) layer.
As predicted by Theorem 5, the weight quickly grows to infinity. Note that the y-axis is log scale
so exponential growth is shown as linear. From the figure, it is clear that with Lsimp, their growth is
super exponential due to the inter-plays between the top and the bottom layers. On the other hand,
with Lnce, the growth slows down due to the fact that its associated covariance operator has a weight
which decays exponentially when the representations of two distinct samples become far apart.

With `2 normalization. With the normalization, the weights will not grow substantially and we
focus ourselves more on the meaning of each intermediate nodes after training. From the theoretical
reasoning in Sec. 4.2, in the ReLU case, we should see each node gradually moves towards (or
specializes to) one cluster after training. Fig. 8 shows that a node j that is only active for 1 or 2
cluster centers (out of 10) have much higher |w2,j | than some other node that is active on many
cluster centers. This shows that those “specialized” nodes has undergone learning and their fan-out
weight magnitude |w2,j | becomes (or remains) high, according to the dynamics in Theorem 5.
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Figure 7: Top row: Without `2 normalization, training with SimCLR and Lsimp leads to fast growth
of the weight magnitude over time (each curve is one training curve out of 30 trials with different
random seeds). Furthermore, this growth is super exponential due to the interplay between top
and bottom layers, as suggested by the dynamics in Eqn. 8. Note that the y-axis is in log scale.
Bottom row: Without `2 normalization, Lnce has more stable weight magnitude over training since
its covariance operator is weighted (See Theorem 4).
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Figure 8: When |w2,j | is high, the corresponding node j is highly selective to one specific cluster of
the data generative models. On the other hand, those node j with low selectivity has very small w2,j

and does not contribute substantially to the output of the network. Training with Lτnce (Left Plot)
seems to yield stronger selectivity than with Lsimp (Right Plot).
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Figure 9: Ablation of how the Frobenius norm of the covariance operator OP changes over training,
under different factors: depth L, sample range of ρµν (ρµν ∼ Uniform[delta lower, 1]) and over-
parameterization |Nµ|. Top row: covariance operator of immediate left latent variable of the root
node z0; Bottom row: covariance operator of immediate right child of the root node z0.

G.2 HLTM

We also check how the norm of the covariance operator (OP) changes during training in differ-
ent situations. For this set of experiments, we construct a complete binary tree of depth L. The
class/sample-specific latent z0 is at the root, while other nuisance latent variables are labeled with
a binary encoding (e.g., µ = “s010” for a zµ that is the left-right-left child of the root z0). Please
check Fig. 6 for details.

Again we use SimCLR with the Lτnce loss (τ = 0.1 and H = 1) to train the model. `2 normal-
ization is used in the output layer. The results are shown in Fig. 9 and Fig. 10. We could see
that norm of the covariance operator indeed go up, showing that it gets amplified during train-
ing. We perform a grid search of depth = [3, 4, 5], delta lower = [0.7, 0.8, 0.9] (and the po-
larity ρµν ∼ Uniform[delta lower, 1] at each layer) and over-parameterization parameter hid =
|Nµ| = [2, 5, 10]. For each experiment configuration, we run 30 random seeds.

G.3 BYOL EXPERIMENTS SETUP

For all STL-10 task, we use ResNet18 as Wbase. The extra predictor is two layer. It takes 128
dimensional input, has a hidden layer of size 512, and its output is also 128 dimensional. We
use ReLU in-between the two layers. When we add BN to the predictor, we add it before ReLU
activation. When we say there is no BN in Tbl. 3, we remove BN in both predictor and projector
layer (but not in the encoder). Same as BYOL paper (Grill et al., 2020), symmetric loss function is
used with `2 normalization in the topmost layer.

We use simple SGD optimizer. The learning rate is 0.03 (unless otherwise stated), momentum is 0.9
and weight decay is 0.0004. The training batchsize is 128. The ImageNet experiment runs on 32
GPUs with a batchsize 4096.

G.4 ADDITIONAL BYOL EXPERIMENTS

Based on our theoretical analysis, we try training the predictor in different ways and check whether
it still works.

From the analysis in Sec. 5, we know that the reason why BYOL works is due to the dominance
of Covx[K̄l(x), K̄l(x;W)] and its resemblance of the covariance operator Vx[K̄l(x)], which is a
PSD matrix.
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Figure 10: Ablation of how the Frobenius norm of the covariance operator OP changes over training.
Same setting as Fig. 9 but focus on lower level. Note that since we have used `2 normalization at
the topmost layer, the growth of the covariance operator is likely not due to the growth of the weight
magnitudes, but due to more discriminative representations of the input features fµ with respect to
different z0. Top row: covariance operator of left-right-left latent variable from the root node z0;
Bottom row: covariance operator right-left-right-left latent variable from the root node z0.

The dominance should be stronger if the predictor has smaller weights than normally initialized
using Xavier/Kaiming initialization. Also, Covx[K̄l(x), K̄l(x;W ′)] should behave more like a
PSD matrix, if the predictor’s weights are all small positive numbers and no BN is used.

The following table justifies our theoretical findings. In particular, Tbl. 10 shows better performance
in STL-10 with smaller learning rate and smaller sample range of the predictor weights.

Table 7: Training one-layer predictor with positive initial weights and no EMA (γema = 0). All
experiments run for 3 seeds.

Sample range of predictor weight [0, 0.01] [0, 0.02] [0, 0.05]
With BN in predictor 62.78± 1.40 62.94± 1.03 62.31± 1.80

Without BN in predictor 71.95± 0.27 72.06± 0.44 71.91± 0.59

Table 8: Training one-layer predictor with positive initial weights with EMA (γema = 0.996) and
predictor resetting every T = 10 epochs. All experiments run for 3 seeds. Note that Xavier range is
Uniform[−0.15, 0.15] and our initialization range is much smaller than that.

Sample range of predictor weight [0, 0.003] [0, 0.005] [0, 0.007]
With BN in predictor 65.61± 1.34 70.56± 0.57 70.87± 1.51

Without BN in predictor 74.39± 0.67 74.52± 0.63 74.80± 0.57
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Table 9: Same as Tbl. 8 but with different weight range. All experiments run for 3 seeds.
Sample range of predictor weight [0, 0.01] [0, 0.02] [0, 0.05]

With BN in predictor 68.98± 2.34 66.56± 1.70 68.41± 1.19
Without BN in predictor 74.66± 0.81 73.60± 0.32 74.34± 0.77

Table 10: Top-1 Performance on STL-10 with a two-layer predictor with BN and EMA
(γema = 0.996). Learning rate is smaller (0.02) and predictor weight sampled from
Uniform[−range, range]. Note that for this, Xavier range is Uniform[−0.097, 0.097] and our
range is smaller.

Weight range 0.01 0.02 0.03 0.05
T = 3 79.48± 0.40 79.70± 0.47 79.66± 0.37 78.63± 0.10
T = 5 78.97± 0.62 79.63± 0.23 79.65± 0.37 79.01± 0.27
T = 10 79.25± 0.20 79.63± 0.22 79.58± 0.25 79.18± 0.22
T = 20 79.15± 0.66 79.91± 0.10 79.78± 0.05 79.54± 0.25
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