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Abstract

Foundation models are strong data compressors,
but when accounting for their parameter size, their
compression ratios are inferior to standard com-
pression algorithms. Naively reducing the param-
eter count does not necessarily help as it deterio-
rates predictions and, accordingly, compression.
We conduct a large-scale empirical study to find a
sweet spot where pre-trained vanilla transformers
can achieve competitive compression ratios. To
this end, we train models on 165GB of raw byte
sequences of either text, image, or audio data (and
all possible combinations of the three) and then
compress 1GB of out-of-distribution (OOD) data
from each modality. We find that relatively small
models (millions of parameters) can outperform
standard general-purpose compression algorithms
(gzip, LZMA2) and even domain-specific com-
pressors (PNG, JPEG-XL, FLAC) — even when
accounting for parameter size. We achieve, e.g.,
the lowest compression ratio of 0.49 on OOD
audio data (vs. 0.54 for FLAC). We conduct ex-
tensive ablations and hyperparameter sweeps to
study the impact of model- and dataset scale, and
we investigate the effect of unimodal versus mul-
timodal training. We find that even small models
can be trained to perform well on multiple modal-
ities, but unlike large-scale foundation models,
transfer to unseen modalities is generally weak.

1. Introduction
Strong predictive models can straightforwardly be turned
into strong lossless compressors, e.g., via arithmetic cod-
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ing (Pasco, 1977; Rissanen, 1976; Witten et al., 1987).
Consequently, large pre-trained foundation models, such
as LLMs, achieve high data compression on their training
distributions and beyond (Delétang et al., 2024). However,
when factoring these models’ size into the compression
ratio, too large models actually perform worse. For this
reason, large foundation models with billions of parameters
cannot compete with standard compression algorithms such
as gzip (Deutsch, 1996) or LZMA2 (Pavlov, 2019). The
goal of this paper is thus to investigate whether pre-trained
vanilla transformers can achieve compression ratios that
are competitive with standard algorithms across a range of
data modalities. This places fairly tight constraints on the
maximal model size, leading us to investigate families of
relatively small transformers (with millions of parameters).
Note that our aim is not to build a practical transformer-
based data compressor, as the computational footprint (run-
ning time, memory, FLOPs) of even small models is far
beyond standard compressors. Instead, studying compres-
sion via pre-trained models provides insight into the models’
learned inductive biases, e.g., whether they are domain-
general, how they depend on the training data composition,
and whether there is transfer between modalities.

Recently, Delétang et al. (2024) stated that “language model-
ing is compression”, pointing out that log-loss minimization
is equivalent to optimizing a lossless compression objec-
tive. To illustrate this point, Delétang et al. (2024) used
billion-parameter LLMs that were exclusively trained on
text (Touvron et al., 2023b; Hoffmann et al., 2022) to com-
press 1GB of ImageNet images (Russakovsky et al., 2015)
and LibriSpeech audio (Panayotov et al., 2015), respec-
tively. They found that these models compress better than
gzip or LZMA2 and even domain-specific compressors such
as PNG (Boutell, 1997) or FLAC (Coalson, 2008), but only
when parameter counts are not considered. However, when
evaluating pre-trained neural networks as compressors, the
parameter count has to be factored into the compression ra-
tio. To illustrate this, imagine that Alice wants to compress
and send data to Bob, who wants to decompress it. If Alice
trains a neural network to compress the data but does not
communicate the model’s weights, Bob cannot decode the
data (unless Alice communicates the training recipe and Bob
retrains the same network from scratch, but that would no
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Figure 1: Our training and evaluation data pipelines. We consider three modalities: text, images, and audio. From these we
create training mixtures of 165GB that are either unimodal or multimodal. After pre-training transformers on each of these,
we evaluate their compression ratio (factoring in the model size) on all three modalities. If the corresponding modality has
not been seen during training, the evaluation is ‘out-of-modality’, otherwise it is ‘in-modality’. Importantly, our evaluation
is always performed on out-of-distribution data (different from any of the training data sources), even when it is in-modality.

longer fall into the pre-trained regime). Accordingly, when
evaluating pre-trained neural networks as compressors, the
parameter count needs to be factored into the compression
ratio. For this reason Delétang et al. (2024) also trained
small-scale transformers (up to 3.2M parameters) on 1GB
of Wikipedia (Hutter, 2006) but found that these models
were significantly worse at compressing images and audio.

The obvious open question (see Appendix A) is whether
small transformers pre-trained on large (multimodal)
datasets can achieve competitive compression ratios across
different modalities and whether there is transfer to un-
seen modalities, as observed in the large-scale model case.
We therefore conduct an extensive empirical study where
we train families of decoder-only transformers on 165GB
of either text, image, or audio data and all combinations
of the three. We then use these models (with frozen pa-
rameters, i.e., offline training) to compress 1GB of out-
of-distribution (OOD) data from all three modalities (see
Fig. 1). We compare against transformers trained purely
online, i.e., on the data stream that is being compressed
(Bellard, 2019; 2021; Izacard et al., 2020), for which stor-
age/communication of the weights is not required for de-
compression (unlike our pre-trained models). These online
transformers are currently state-of-the-art on the Large Text
Compression Benchmark (Mahoney, 2006). Overall we find
that our small pre-trained transformers achieve competitive
compression ratios, consistently outperform domain-general
and domain-specific standard compression algorithms, and
are on par with the online transformers from Bellard (2021).

Main Contributions Our key contributions are:

• We conduct a large-scale empirical study (hyperpa-
rameter sweeps, ablations) on the compression perfor-
mance of small transformers pre-trained on raw byte
sequences of text, image, and audio data (and all com-
binations), across various model- and dataset sizes.

• We are the first to show that small pre-trained trans-
formers achieve better compression ratios than general-
purpose and domain-specific compressors on 1GB of
OOD data across different modalities, e.g., 0.49 on
audio vs. 0.51 for Bellard (2021) & 0.54 for FLAC.

• We show that training on multiple modalities only
slightly deteriorates the performance on each individ-
ual modality but significantly boosts the compression
ratios on multimodal data, as long as all the evaluation
modalities are part of the pre-training data mixture.

• We show that small pre-trained transformers fail to
beat standard compressors on data modalities that were
unseen during training, implying weak out-of-modality
transfer (unlike LLMs, see Delétang et al. (2024)).

2. Background
Compression and prediction are “two sides of the same
coin” (MacKay, 2003). This fundamental duality stems
directly from Shannon’s celebrated lossless source coding
theorem (Shannon, 1948), which states that there is a well-
defined lower bound for encoding data from a probabilistic
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source. For any data sequence x1:n := x1x2 . . . xn ∈ Xn

of length n from a finite alphabet X sampled from a source
ρ : X ∗ 7→ (0, 1], a lossless compressor c : X ∗ 7→ {0, 1}∗
assigns a code c(x1:n), i.e., a sequence of bits, from which
the original sequence is recoverable without loss of in-
formation. The goal is to minimize the expected length
Lρ := Ex∼ρ[ℓc(x)] by encoding rare sequences with more
bits and frequent sequences with fewer bits. Shannon’s
source coding theorem states that the minimal expected
length is lower-bounded by the Shannon entropy of the
source: Lρ ≥ H(ρ) := Ex∼ρ[− log2 ρ(x)].

If the source’s statistics are unknown, good compression
becomes a statistical modeling problem, i.e., it relies en-
tirely on being able to predict well sequentially. For any
predictor π : X ∗ 7→ (0, 1] the expected coding length Lρ

π

for data drawn from ρ is at least the cross entropy:

Lρ
π ≥ Ex∼ρ[− log2 π(x)] = Ex∼ρ

[
− log2

π(x)ρ(x)

ρ(x)

]
= H(ρ) +DKL(ρ||π) ≥ H(ρ),

which is also lower-bounded by the Shannon entropy of ρ.
A mismatch between π and ρ thus leads to an excess length
given by their KL divergence, and minimal coding length
(maximal compression) implies π = ρ across the whole
support of ρ. Accordingly, some AI researchers have argued
that compressing well is fundamentally connected to intelli-
gence (e.g., Chaitin’s famous “Compression is Comprehen-
sion” (Chaitin, 2006); Rathmanner & Hutter (2011); Grau-
Moya et al. (2024)), and that building universal compressors
will accelerate AI development (cf. the Hutter prize (Hutter,
2006), an ongoing competition to compress (1GB of) human
knowledge). The duality between compression and predic-
tion has also led to the (algorithmic) information-theoretic
formulation of universal prediction, i.e., Solomonoff induc-
tion (Solomonoff, 1964a;b; Li & Vitányi, 2019), one of two
key ingredients for AIXI (Legg & Hutter, 2007; Hutter et al.,
2024), the theory of artificial superintelligence.

Consequently, Delétang et al. (2024) argue that lossless
compression performance lends itself as a domain-general
metric for assessing any predictor’s quality, including foun-
dation models. They further emphasize that foundation
models trained by minimizing log-loss (a.k.a., next-token
prediction-error or cross entropy loss) are explicitly trained
to minimize the expected coding length:

min
π

Lρ
π = min

π
Ex∼ρ[− log2 π(x)]︸ ︷︷ ︸

“log loss”

(1)

= min
π

Ex∼ρ

[∑
i

− log2 π(xi|x<i)

]
(2)

The problem of constructing the actual codes that achieve
(near) minimal expected length given a predictor is largely

solved in information theory, with gold-standard algorithms
such as Huffman coding (Huffman, 1952), arithmetic cod-
ing (Pasco, 1977; Rissanen, 1976; Witten et al., 1987), or
asymmetric numeral systems (Duda, 2009). The latter two
compress strings online by iteratively converting them into
a single binary number with increasing precision (see Delé-
tang et al. (2024) for an illustration or Chapter 2 in Hutter
et al. (2024)). Arithmetic coding is an example of an on-
line compression algorithm since it only requires a single
pass through the data and compresses on the fly (unlike
offline compressors, such as Huffman coding). Both our
models and Bellard (2021), which we compare against, use
arithmetic coding and compress online. However, the dif-
ference is that we pre-train our predictor, i.e., we perform
offline training on a dataset and then freeze its parameters
(non-adaptive arithmetic coding), whereas Bellard (2019;
2021) and Izacard et al. (2020) perform online adaptation of
the model parameters on the data stream that is being com-
pressed (adaptive arithmetic coding). As a result, and unlike
our compressors, these approaches do not communicate the
trained weights for decompression but only the model archi-
tecture and training algorithm (i.e., the compression ratio
does not need to account for the model parameters).

3. Related Work
Compression Without Transformers Lossless compres-
sion with (non-transformer) neural predictors has been ex-
tensively studied, both via arithmetic coding (Lehtokan-
gas et al., 1993; Schmidhuber & Heil, 1994; 1996; Ma-
honey, 2000; Mikolov, 2012; Knoll, 2014; van den Oord &
Schrauwen, 2014; Cox, 2016; Schiopu et al., 2018; Goyal
et al., 2019; Liu et al., 2019; Mentzer et al., 2019; 2020;
Schiopu & Munteanu, 2020; Rhee et al., 2022) and asym-
metric numeral systems (Hoogeboom et al., 2019; Kingma
et al., 2019; Townsend et al., 2019; Barzen et al., 2022).
Neural networks are also used for lossy compression, e.g.,
by overfitting tiny networks to data points and transmitting
the weights rather than the data (Dupont et al., 2021; 2022;
Chen et al., 2021; Ladune et al., 2023; Kim et al., 2024).

Online Transformers Most of the above approaches use
a separate training set to pre-train models that are then used
to compress a test set. Alternatively, the model can also be
trained from scratch on the data stream that is being com-
pressed (Bellard, 2019; 2021; Izacard et al., 2020; Goyal
et al., 2020; Mao et al., 2022). The main advantage of
these adaptive online compressors is that they are (quasi)
parameterless (since they are initialized from scratch when
compressing a data stream), i.e., the model size does not
explicitly affect the compression ratio, even for large mod-
els (though it implicitly affects the training performance,
e.g., large models train more slowly meaning that larger
chunks of the data stream are only weakly compressed).
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The transformer-based adaptive online compressor of Bel-
lard (2021) is currently state-of-the-art on the Large Text
Compression Benchmark (Mahoney, 2006), and Section 5
shows that our best models are on par across all modalities.

Pre-Trained Transformers Most related to our work is
the line of research by Valmeekam et al. (2023); Delétang
et al. (2024); Huang et al. (2024); Li et al. (2024); Mittu
et al. (2024); Chen et al. (2024) on lossless compression via
arithmetic coding with pre-trained foundation models, i.e.,
the Llama models (Touvron et al., 2023a;b; Dubey et al.,
2024) and Chinchilla (Hoffmann et al., 2022). Delétang
et al. (2024), in particular, also report good compression
rates on unseen modalities (LLMs trained only on text com-
press images and audio data well). However, these studies
differ from our work as they do not take the model size into
account for the compression ratios, except for Delétang et al.
(2024), who report both “raw” and “adjusted” compression
ratios and find that LLMs are not competitive in terms of
adjusted (i.e., the actual) compression ratios. To the best
of our knowledge, our paper is the first to systematically
investigate the use of appropriately-sized pre-trained trans-
formers for multimodal lossless compression in a regime
where competitive performance w.r.t. standard compression
algorithms is possible. In this regime, our study is the most
comprehensive in that it also investigates multimodal train-
ing and cross-modal transfer of pre-trained transformers.

4. Methods
We now describe our experimental setup (cf. Appendix B).

Baselines We compare to various standard compres-
sors, both general-purpose, i.e., gzip (Deutsch, 1996)
and LZMA2 (Pavlov, 2019), and domain-specific, i.e.,
FLAC (Coalson, 2008) for audio data and PNG (Boutell,
1997) and lossless JPEG 2000 (Skodras et al., 2001) and
JPEG-XL (Alakuijala et al., 2019) for images. Both gzip
and LZMA2 (which is used by the 7zip software) are based
on Huffman coding (Huffman, 1952) and the Lempel-Ziv-
Welch algorithm (Welch, 1984). We use the default parame-
ters for gzip, LZMA2, JPEG 2000, and JPEG-XL, compres-
sion level 12 for FLAC, and instruct PNG to find the optimal
encoder settings. We also compare to the online transformer
from Bellard (2021) with the default v3.3 parameters, which
is currently state-of-the-art on the Large Text Compression
Benchmark (LTCB) (Mahoney, 2006). We do not compare
to Izacard et al. (2020), since it is conceptually very close
to Bellard (2021) but worse on LTCB.

Models We focus on decoder-only transformers (Vaswani
et al., 2017) with SwiGLU activations (Shazeer, 2020) and
post-layer normalization. Unless otherwise noted, we use
8 heads, an embedding dimension of 64, a context size

of 4096 (bytes), and sliding windows without overlap or
memory (full details in Appendix B.3). We always train
and evaluate the models with the same context size (4096
by default). We use the Adam optimizer (Kingma & Ba,
2015) for 2.5 million steps with a batch size of 32, which,
for 165GB of data, roughly corresponds to 2 epochs. Due
to the duality of compression and prediction, we minimize
the standard (sequential) log-loss (Eq. (1)) during training,
which is a maximum-compression objective (see Section 2).
The model computes a distribution over the next byte for
every input byte, and the arithmetic coder then uses these
predictions to losslessly compress the data. Concretely, the
arithmetic coder directly uses the model’s predictions over
tokens (i.e., the logits) to encode/decode data (see Figure
1 in Delétang et al. (2024) for an overview). Accordingly,
no separate head or extraction procedure is necessary. As
a result, we can train via standard log-loss minimization to
perform next-byte prediction. At inference time, we perform
standard autoregressive evaluation (using teacher forcing).

(No) Tokenization Tokenization is a commonly-used,
domain-specific pre-compression step to boost transformers’
performance by increasing their vocabulary size to fit more
information into their context window (Lester et al., 2024),
i.e., increased information density at the cost of increased
entropy. However, since we aim to be domain-general, we
do not use tokenization and instead feed byte streams to our
models (we still have to choose how to flatten images/sample
audio signals, i.e., minimal domain-specific preprocessing).

Evaluation To evaluate performance, we compute the
compression ratio (lower is better):

compression ratio :=
|compressed data|+ |compressor|

|uncompressed data| ,

(3)
which accounts for the model size and is equivalent to the
“adjusted compression rate” of Delétang et al. (2024). We
always evaluate on 1GB of out-of-distribution data, i.e.,
|uncompressed data| = 1GB. Like Delétang et al. (2024),
we compute the size of the compressor by encoding the
model weights with float16 (2 bytes per parameter)
since this level of quantization has little impact on perfor-
mance (Tao et al., 2022) and is standard for model inference.
As a result, our model sizes range from 0.8MB to 40.3MB.
Note that, similar to Delétang et al. (2024), we do not com-
press the model parameters, since naive approaches (e.g.,
compressing them with gzip) barely decrease the model size
(only by around 7%, which corresponds to a decrease in
compression ratio of only 0.002821 for our largest model).
However, as a result, the compression ratio we report is
an upper bound, which could be improved by (losslessly)
compressing the parameters (though with limited room for
improvement in our regime, even in the best case).
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Figure 2: Small pre-trained transformers are domain-general compressors (panels: evaluation data mixtures, bars: training
data mixtures). Our method (bars) outperforms standard compression algorithms (horizontal lines) and is on par with the
online adaptive transformers from Bellard (2021) (blue line) — as long as the evaluation modality is in the training mixture.
There is very little cross-modal transfer to unseen modalities (unlike foundation models (Delétang et al., 2024)). Unimodal
models are good for their respective modality, but multimodal models perform almost as well across all their training
modalities (despite seeing much less data per modality than the unimodal models), i.e., one can trade off a small amount of
performance on each individual modality to obtain a strong domain-general compressor via multimodal training (gray bar).

Training Datasets A key point of our investigation is to
evaluate how well pre-trained transformers can compress
data from different modalities — both if the modality was or
was not part of the training data (see Fig. 1). We create three
different unimodal training datasets with audio, images, and
text, and four multimodal training sets (full details in Ap-
pendix B.1). This yields seven 165GB pre-training datasets:
(i) 165GB audio; (ii) 165GB images; (iii) 165GB text; (iv)
82.5GB audio and 82.5GB images; (v) 82.5GB audio and
82.5GB text; (vi) 82.5GB images and 82.5GB text; and
(vii) 55GB audio, 55GB images, and 55GB text. By train-
ing models on all seven data mixtures, we can investigate
in-modality and out-of-modality compression ratios. For
example, for a model trained on text (iii), the in-modality
compression ratio is given by evaluating on text, while audio
or image data provide out-of-modality compression ratios.

OOD Evaluation Datasets To mimic the standard com-
pression algorithm setting (and thereby ensure a fair com-

parison), where the compressor is designed with only mini-
mal statistical assumptions about the data (domain-specific
compressors make stronger assumptions), we evaluate on
unseen, out-of-distribution (OOD) datasets for each modal-
ity and not on in-distribution held-out datasets (as common
in machine learning). To do so, we create a single OOD
dataset of 1GB for each modality (details in Appendix B.2).

5. Results
We present our extensive experimental evaluation (see also
Appendix C). Unless otherwise noted, we report the best
results over two hyperparameter sweeps (see Appendix B.3):
(i) model- vs. dataset size, and (ii) model- vs. context size.

Small Transformers Are Domain-General Compressors
Figure 2 shows the best compression ratio attained on each
of the seven out-of-distribution evaluation datasets when
training a model on each of the seven training data mix-
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Figure 3: What you see is what you get. Each panel visualizes the compression ratios for one of our modalities when
training models on varying dataset mixtures and sizes. Although one can replace a large proportion of the unimodal training
datasets with data from other modalities without incurring significant losses on the original modality (note the scale of the
y-axis), transformers (at our tested model sizes) do not exhibit improved transfer from the out-of-modality data (i.e., the
multimodal models are worse than the unimodal ones, even when trained on much more data from that particular modality).
Nevertheless, multimodal training data significantly improves multimodal compression performance (as shown in Fig. 2).

tures (we report the best-performing model from our two
sweeps for each training-evaluation pair). We observe that
pre-trained transformers achieve state-of-the-art in-modality
compression ratios, regardless of the concrete composition
of the training mixture, outperforming standard compression
algorithms (even domain-specific ones) in all cases where
all evaluation modalities are part of the training mixture. In
these cases, transformers thus learn the modality’s prototyp-
ical statistical patterns during pre-training. Importantly, by
comparing models trained on unimodal vs. multimodal data,
we observe that multimodal training only slightly decreases
performance compared to the unimodal models on their
respective modalities (despite only having half or a third
amount of data from that modality). This means that it is
possible to trade off a small amount of performance on each
individual modality to obtain a very strong domain-general
compressor via multimodal training (the gray bar in Fig. 2).

What You See Is What You Get While Fig. 2 shows that
substituting half or two thirds of the training set with data
from other modalities only leads to a small performance loss
compared to the unimodally trained models, it is unclear
whether simply training on a smaller amount of unimodal
data (i.e., decreasing the unimodal training dataset size to,
e.g., 82.5GB, and not substituting 82.5GB with another
modality) would give the same performance, or whether
there is some transfer between modalities (as suggested by
Mirchandani et al. (2023)) that compensates for the smaller
amount of data per individual modality. To investigate this,
we run an ablation where we subdivide each of our seven
training sets into 5 different sizes: 20%, 40%, 60%, 80%,
and 100% of the respective dataset (uniformly subsampled).
We train a series of models (sweeping over their number of
layers; see Appendix B.3) on each dataset mixture and each

dataset size, and then evaluate as before. Figure 3 shows
that, for our models and datasets, there is little transfer
between modalities. For all cases of audio, text, and (less
clearly) images, it is better to train on a smaller unimodal
dataset to get the best unimodal performance, as opposed to
training on a much larger multimodal dataset. For example,
training on a pure text dataset of 33GB (20% of 165GB)
outperforms training on a dataset consisting of 82.5GB (i.e.,
more than twice as much) text and of 82.5GB images/audio.

Scaling Analysis Since there is a non-trivial relationship
between model- and dataset size, we analyze the scaling
of these factors (details in Appendix B.3). Figure 4 shows
trends akin to the scaling laws observed for LLMs (Kaplan
et al., 2020), which state that better prediction (in our case
compression) is only possible by scaling both models and
datasets in a particular way. Unlike traditional scaling laws
for models trained on internet-scale datasets, the distribution
shift in our evaluation makes it easier for the model to overfit
to the training distribution (since we always evaluate on
OOD data). However, as the number of parameters and the
training flops of our small models increase, the adjusted
compression ratio improves, eventually beating standard
compression algorithms. We do observe gradual overfitting
on the image dataset for our models trained only on images.
However, this phenomenon can be mitigated by including
other modalities in the training mixture (see Fig. A1).

Model Size vs. Context Size The previous two experi-
ments investigated the impact of training dataset- and model
size, revealing a complex, “scaling law”-like, relationship
between the two and the overall FLOPS training budget. We
now investigate the impact of the context window length.
Since the context window length has a large impact on the
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Figure 4: Scaling training dataset- and model size (for unimodal training and evaluation). Colors indicate the model size;
lines correspond to dataset size. We train for 2 epochs regardless of dataset size (i.e., smaller datasets require fewer FLOPS).
Increasing the model- and dataset size boosts compression (at the cost of FLOPS). Our OOD evaluation makes models more
prone to overfitting (e.g., our largest image models), making scaling more complex than traditional LLM scaling laws.
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Figure 5: Context- vs. model size. Both context size (measure in bytes) and model sizes
affect the training compute budget (in FLOPS), leading to a non-trivial trade-off. Our results
show that this trade-off is highly modality-dependent (note the different y-axis scales, i.e.,
the effect varies significantly with modality). For text, shorter context sizes and larger
models are beneficial (short-term dependencies are most important). For images, larger
context is generally beneficial, given that a single image consists of 512 · 512 · 3 = 786432
bytes, far exceeding our models’ contexts, i.e., models with larger context can process larger
fractions of an image at once. For audio, the relationship is complex with intermediate
context length and larger models performing better (the reverse is true for short contexts).
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ing window overlap (for uni-
modal training/evaluation).
Increasing the overlap be-
tween context windows only
marginally improves the per-
formance (most significantly
for images) but comes at a
huge computational cost.

overall FLOPS footprint (attention scales quadratically with
input sequence length), we also vary the model size to ex-
plore whether there is a sweet spot in terms of training
compute budget allocation (details in Appendix B.3). Fig. 5
shows that the optimal trade-off strongly depends on the
data modality. The best models for text have a context win-
dow ≤ 2048 bytes, indicating that short term dependencies
are more important than long ones in this case. For images,
the best compromise overall is to choose a larger context
window of 8192, which means decreasing the model size.
For audio data, the trade-off is even more complex. Overall
these results highlight the difficulty of tuning architectures
to achieve best performance across many modalities.

Sliding Window So far we used a sliding window without
overlap to process the evaluation data. Consequently, bytes

early in the context window are not conditioned on a lot of
data (conditioning on more data should help with prediction
and thus compression, according to transformers’ in-context
learning abilities (Brown et al., 2020; Genewein et al., 2023;
Ge et al., 2024)). Sliding the context window with more
overlap requires more forward passes to process the same
amount of data, significantly increasing the computational
cost. Figure 6 shows that increasing the overlap window
(for a context length of 4096) has relatively little effect. The
strongest effect is observed for image data, since 4096 bytes
only captures a small fraction of an image and there are
obvious long-range dependencies between image channels.

Evaluation Dataset Size Figure 7 shows the relationship
between the compression ratio and the evaluation dataset
size for all three modalities and our best-performing model
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Figure 7: Compression ratio vs. evaluation dataset size. The numerator of the compression ratio consists of the size of the
compressed data and the size of the compressor (Eq. (3)). For standard compressors (e.g., gzip), the size of the compressor
(a few thousand lines of code) is negligible given sufficient evaluation data (i.e., the compression ratio is unaffected by the
evaluation dataset size). For neural compressors trained offline (i.e., where the size of the compressor is dominated by the
model parameters), the compression ratio improves with increasing data since the model size influence decreases. If the
model size ≥ evaluation dataset size (e.g., 500M parameters and 1GB of data), one cannot achieve a compression ratio < 1.

(as determined on 1GB of OOD data in Table A2). For
offline (i.e., pre-) trained neural compressors, the model
parameters are factored into the compression ratio, which
means that their compression performance will improve
with increasing evaluation data (as long as the model gen-
eralizes well to the additional data). In contrast, the size of
standard compressors is negligible compared to the amount
of evaluation data, which means that their compression
ratios are largely unaffected by the evaluation dataset size.
FLAC cannot losslessly compress more than 4.2GB of data.

6. Discussion
Our main goal is to investigate whether pre-trained trans-
formers can compete with standard compressors, even when
taking their parameter size into account. In contrast to
previous work, this places our models into a relatively
small regime, where it is unclear whether models will learn
well from large datasets at all and have non-trivial out-of-
distribution and cross-modality transfer. One could try to
train larger models and compress the model parameters
themselves, but we chose not to do this since naive lossless
compression of model parameters leads to ≤ 10% reduction
(see Table A4), and even best-case scenarios would only
lead to marginal improvements in compression ratio given
the size of our models. For very large (e.g., foundation)
models, compressing weights to achieve competitive com-
pression ratios may be interesting, though it would require
lossy compression (Tao et al., 2022), leading to non-trivial
trade-offs between high (lossy) compression and maintain-
ing strong predictor performance (the two summands in the
numerator of Eq. (3)). Exploring these trade-offs is an inter-
esting direction for future research but beyond the scope of
our work. Another option for larger models is to evaluate on

more test data. We chose 1GB of test data as a regime where
standard compression algorithms are hard to beat. Moreover,
evaluations on more test data, and/or without accounting
for model parameters, have been conducted (Delétang et al.,
2024; Valmeekam et al., 2023; Li et al., 2024) (finding sig-
nificant cross-domain transfer, unlike our experiments).

Like Xue et al. (2022), we do not use a tokenizer, which
has two reasons. First, tokenizers are typically pre-trained
per modality, and we want to rule out bad cross-modality
transfer resulting from a bad tokenizer. Second, tokeniza-
tion acts as a “pre-compression” step (cf. Delétang et al.
(2024)). This pre-compression increases information den-
sity in the context window at the cost of increasing entropy,
which can make the prediction problem harder: Lester et al.
(2024) even show that when using a strong neural-based
pre-compressor (together with arithmetic coding) to train
LLMs, training performance can collapse catastrophically.

Limitations All our claims regarding the universality
of our compressors (or the lack thereof) are limited to
the model size, regime, and the particular modalities and
datasets we studied. We cannot rule out that there are cases
where even in-modality transfer is weak (e.g., using another
OOD image evaluation dataset with very different statis-
tics), or that there are cases of non-trivial cross-modal trans-
fer (which we have not observed). We did not investigate
transfer learning approaches to improve the out-of-modality
performance of our neural compressors, but we consider
this an interesting avenue for future work. Our claims re-
garding outperforming standard compression algorithms are
limited to our experiments. We cannot rule out that there are
datasets where no pre-trained transformer outperforms, e.g.,
LZMA2 (in fact, we think its plausible that such datasets can
be constructed synthetically). Moreover, we cannot rule out
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that more sophisticated architectures (e.g., Perceivers (Jae-
gle et al., 2021), MegaByte (Yu et al., 2023), or Byte Latent
Transformers (Pagnoni et al., 2024)), would outperform
our models, and we consider neural architecture optimiza-
tion for lossless compression an interesting direction for
future research. Finally, our goal is not to build practical
transformer-based universal compressors to compete with
standard compressors in terms of computational footprint.
As Table A3 shows, our models are orders of magnitude
slower for encoding data (with significantly larger memory-
and FLOPS-demands) and ≈ 3x slower than Bellard’s on-
line adaptive transformer. When decoding data with our
models, which has to be done token-by-token to obtain the
correct conditioning, our running time is even worse.

Future Work Even our largest models that were trained
on multiple different modalities failed to achieve out-of-
modality transfer (unlike LLMs, which do achieve cross-
modal transfer when used as compressors, albeit using the
“unajdusted” compression ratio; see Delétang et al. (2024)).
Accordingly, investigating more sophisticated training strate-
gies to improve cross-modal transfer, e.g., transfer learning,
presents an interesting direction for future work.

7. Conclusion
We showed that pre-trained vanilla transformers are com-
petitive “zero-shot” compressors on OOD evaluation data,
achieving better compression ratios than domain-general
and domain-specific standard compression algorithms. We
showed this for text, images, and audio data, and for all pos-
sible combinations of the three — as long as the correspond-
ing modalities are in the training mixture. Despite their rela-
tively small size, our models compress well across multiple
modalities, without losing much performance compared to
a purely unimodal model. On the other hand, multimodal
training does not lead to strong compression performance
on unseen modalities. This is in contrast to LLMs (Delétang
et al., 2024), indicating a qualitative difference between
small and (very) large models, even when the small models
are trained on large datasets. Our results suggest that small
transformers can be pre-trained to exploit statistical regular-
ities on par or better than standard compressors and current
state-of-the-art adaptive online neural compressors, but we
do not observe the emergence of universal compression.

Impact Statement
This paper presents work whose goal is to advance the field
of machine learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Table A1: Similarities and differences of our work w.r.t. Bellard (2021) and Delétang et al. (2024). Unlike Bellard (2021),
we use offline (i.e., pre-) training and consider multimodal data. Online training imposes different constraints on the optimal
model size, since the compression ratio does not have to account for the model parameters, which is why Bellard (2021)
were able to study somewhat larger models. We also conduct comprehensive scientific ablations over dataset-, model-,
context-size, etc. Unlike Delétang et al. (2024), we (only) consider the adjusted (i.e., the actual) compression ratio, which
includes the model parameters, and therefore, we cannot use massive foundation models. Moreover, while Delétang et al.
(2024) studied the cross-domain transfer of foundation models trained on text, they did not study multimodal training.

Bellard (2021) Delétang et al. (2024) Ours

# of Parameters 187M 70B 20M
Training online offline offline
Multimodal - evaluation training & evaluation
Actual (Adj.) Compression Ratio ✓ ✗ ✓

Ablations

Model Size ✓ ✓
Context Size ✓ ✓
Tokenizer ✓
Data Mixture ✓
Train Dataset Size ✓
Evaluation Dataset Size ✓
Sliding Window Overlap ✓

A. Relation to Prior Work
As stated in Section 1 and shown in Table A1, we study the open question of whether small transformers pre-trained on
multimodal data can achieve competitive compression ratios across different modalities and whether there is transfer to
unseen modalities (as observed in the large-scale model case). Consequently, the fact that they can do so cannot be predicted
from the strong compression performance of LLMs (e.g., results by Delétang et al. (2024)).

In contrast to Bellard (2021), we use offline adaptive arithmetic coding, which induces entirely different constraints on the
optimal model size (since the model parameters do not have to be factored into the compression ratio). Bellard (2021) relies
on “test-time” gradient updates on in-distribution data, whereas we pre-train models and then leverage in-context learning
on out-of-distribution data. It is, therefore, impossible to conclude from the results in Bellard (2021) whether our results are
possible. The training data and protocol are incomparable, making it all the more interesting that our results are generally
very close — another surprising finding that cannot be trivially explained.

In contrast to Delétang et al. (2024), we do not evaluate off-the-shelf, large-scale, text-based foundation models but pre-train
small-scale transformers on audio, image, and text data. As a result, the compressors proposed by Delétang et al. (2024) are
not competitive w.r.t. standard compressors (which they acknowledge) — unlike our models (we beat standard compressors
across the board). Delétang et al. (2024) do conduct a pilot experiment by pre-training a small transformer on text data,
but, in contrast to our work, they do not perform (i) a comprehensive study of multi-modal training, (ii) out-of-distribution
evaluation, (iii) ablations over context-, dataset-, and model-size, (iv) a comparison to Bellard (2021), (v) an investigation of
the sliding window overlap, and (vi) a test dataset size ablation. As our work shows, all of these ingredients are necessary to
obtain the strong performance we reported, and, as a result, Delétang et al. (2024) do not manage to pre-train a transformer-
based compressor that beats standard compressors across multiple modalities — unlike our work. The main contribution of
Delétang et al. (2024) is conceptual, with a relatively simple experimental evaluation to illustrate the conceptual arguments.
Our work, on the other hand, performs a rigorous and comprehensive empirical study.

B. Experimental Details
B.1. Training Data Sources

We source all of our data from the following open-source TensorFlow datasets (Pot et al., 2019):

Text Since most of TensorFlow’s text datasets are quite small, we concatenate the following five datasets into a single
collection of 165GB: (i) Wikipedia (Wikimedia, 2023), the filtered UTF-8 encoded text from an XML dump from 2023-06-01,
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containing all languages but predominantly English and western languages (113.9GB); (ii) PG-19 (Rae et al., 2020), books
from the Project Gutenberg, also encoded in UTF-8 (9.4GB); (iii) Big Patent (Sharma et al., 2019), a dataset of patents in
English (30.2GB); (iv) Scientific Papers (Cohan et al., 2018), from arXiv and PubMed, containing the raw text including the
LaTeX code (8.1GB); and (v) Natural Instructions (Mishra et al., 2022; Wang et al., 2022), tasks formulated in English
covering different domains and lanugages (4.1GB).

Image We collect a subset of 165GB of the ImageNet dataset (Russakovsky et al., 2015), uniformly sampled across the
1000 classes, which contains 14 197 122 annotated images (of varying resolutions) from the WordNet hierarchy. We decode
the images into RGB arrays (three uint8 channels), flatten them, and concatenate them into a byte stream of flattened
images. As a consequence, we ignore image boundaries when sampling from this data source (i.e., sequences are not
guaranteed to start or end at the start or end of an image).

Audio We create a subset of 165GB from the Common Voice dataset (Ardila et al., 2020), a multilingual dataset of voice
recordings. We downsample the dataset from 48 kHz to 16 kHz and encode the waveform as int16, i.e., with two bytes
per sample. As for images, we concatenate all individual audio samples into a single byte stream. Accordingly, there is no
guarantee that a sequence sampled from our dataset starts or ends at the beginning of a recording.

B.2. Out-of-Distribution Evaluation Data Sources

We source all of our data from the following open-source TensorFlow datasets (Pot et al., 2019):

Text We use a 1GB subset of Reddit (Völske et al., 2017), which contains 3.8 million Reddit posts encoded in UTF-8.

Images We create a 1GB subset of the CelebA HQ dataset (Liu et al., 2015) with a resolution of 512× 512. We process
the images in the same way as for our image training set, i.e., flattening and concatenation, and we subsample uniformly
across classes of CelebA.

Audio We use 1GB from the LibriSpeech (Panayotov et al., 2015) dataset, which contains roughly 1000 hours of English
speech data derived from audiobooks that have been segmented and aligned in the LibriVox project. The data is already in
16kHz (with a sample size of 2 bytes), and we simply concatenate samples into a single byte stream.

Multimodal Evaluations For our evaluations on multimodal data, we use the unimodal evaluations on 1GB of data as
described above and average the results accordingly (both for our models but also all standard compression algorithms, and
Bellard’s online adaptive transformer), either over two or three evaluations depending on the evaluation mixture composition.

B.3. Sweeps

Model Size vs. Dataset Size The experiment to investigate the impact of training dataset- and model size, with results
shown in Fig. 4, used the following model parameters. Dataset sizes were 20%, 40%, 60%, 80%, and 100% of the full
165GB for each training set mixture (uni- and multimodal). All models used a context size of 4096, 8 attention heads per
layer, a widening factor of 4 and the number of layers was either 2, 4, 6, 8, or 10. Models were trained with a batch size of
32. The learning rate was 1× 10−4, and a sinusoid positional encoding was used.

Model Size vs. Context Size Fig. 5 in the main paper shows the relationship between context length and model size. For
this experiment we performed a large-scale sweep with the goal of covering a good range of training FLOPS budget with
models that make various trade-offs between model size and context length (given the same model size, compute demand
increases with increasing context length). The main question was whether there is a qualitatively similar relationship across
parameters, and whether there is a clear sweet spot — see the main paper for results and discussion. For our sweep we
used the same model parameters as in the previous paragraph (the training data size was always at 100%) and sweep over
the following four context sizes (with training batch size in brackets): [1024 (128), 2048 (64), 4096 (32), 8192 (16)]. For
each context size we train five models (XS, S, M, L, and XL) on all three unimodal datasets, respectively. Each model
has a different combination of embedding dimension and number of layers for each different context size. The XS models
have embedding dimensions [112, 96, 80, 64] and numbers of layers [11, 7, 5, 3] for the different context sizes respectively
(i.e., wider and deeper models for shorter contexts and more narrow and more shallow models for long context size).
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Table A2: Best compression ratios for each compressor. This table shows the same results as Fig. 2 but as precise numerical
values to facilitate detailed comparison.

Out-of-Distribution Compression Ratio

Evaluation Modality Ours Bellard gzip LZMA2 FLAC PNG JPEG 2000 JPEG-XL

Audio 0.487 0.509 0.813 0.699 0.538 - - -
Image 0.285 0.281 0.698 0.545 - 0.426 0.390 0.260
Text 0.217 0.204 0.394 0.286 - - - -
Audio + Image 0.393 0.395 0.756 0.622 - - - -
Audio + Text 0.362 0.357 0.604 0.493 - - - -
Image + Text 0.270 0.243 0.546 0.415 - - - -
Audio + Image + Text 0.349 0.331 0.635 0.510 - - - -

Table A3: Running times to compress 1GB of data for all compressors used in our study. We use the best model per modality,
which have different sizes and thus different running times.

Running Times [s]

Evaluation Modality Ours Bellard gzip LZMA2 FLAC PNG JPEG 2000 JPEG-XL

Audio 305 609 101 178 55 524 169 - - -
Image 222 065 103 391 47 436 174 495 99 871
Text 452 355 100 657 102 881 184 - - -

The S models have embedding dimensions [192, 160, 112, 96] and numbers of layers [10, 8, 6, 4]. The M models have
embedding dimensions [224, 192, 144, 112] and numbers of layers [12, 9, 7, 5]. The L models have embedding dimensions
[272, 240, 176, 144] and numbers of layers [13, 10, 8, 5]. The XL models have embedding dimensions [320, 304, 240, 160]
and numbers of layers [12, 9, 7, 6]. The main goal with these settings is to create families of models that have roughly the
same demand in terms of FLOPS (iso-FLOPS) but very different trade-offs in terms of model- and context size.

B.4. Computational Resources

We trained every model on 16 NVIDIA A100 GPUs from our internal cluster. We trained 315 models in total, yielding a
computational footprint of 5040 A100s. We ran Bellard’s code on an NVIDIA GeForce RTX 4090 GPU with a 24-core Intel
i9-13900KF CPU @ 3Ghz.

C. Additional Results
C.1. Compression Ratios

Table A2 shows the optimal compression ratios that each of the compressors achieve on all of the different evaluation
modalities (note that all evaluations are on out-of-distribution data). The same values as shown in Fig. 2 in the main paper
and given here as precise numerical values for completeness.

C.2. Running Times

Computing the FLOPS for standard compressors (e.g., gzip or PNG) is much more involved than for neural networks and
requires intricate knowledge of the algorithm, which can consist of more than 100K lines of code (standard compression
algorithms have also been highly optimized and run on CPU, whereas the neural compressors need a GPU). Therefore, we
instead compare the wall-clock running times in seconds when compressing 1GB of data from each of the three modalities
for our models, Bellard’s online adaptive transformer (Bellard, 2021), and the standard compression algorithms used in our
work. As Table A3 clearly shows, our models and Bellard’s model are orders of magnitudes slower (let alone the increased
computational demand and GPU requirements). Running times for our models differ, because we pick the best model per
modality, which are models of different sizes.
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Table A4: Compression ratios for model parameters. We losslessly compress the trained model parameters with standard
compressors. For each modality we choose the best-performing model. As is shown, the maximal compression is 11%,
which would affect the overall compression ratio on the corresponding evaluation data only very marginally.

Model Parameter
Compression Ratio

Evaluation Modality gzip LZMA2

Audio 0.93 0.90
Image 0.93 0.90
Text 0.92 0.89
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Figure A1: Similar to Fig. 4 in the main paper, but here the models are trained on a uniform mixture over all three modalities
(55GB per modality). The plot shows compression performance evaluated on the unimodal datasets as training progresses
for various model- and training set sizes (models are different colors, each line is a different training set size of either 20%,
40%, 60%, 80%, and 100%). We always train for 2 epochs, regardless of dataset size, i.e., smaller datasets require fewer
FLOPS. In contrast to Fig. 4, where models are trained on unimodal data, we observe no overfitting, e.g., on images, even
for the largest models tested. However, the compression ratios are slightly worse than for unimodal training, which is in line
with our other expriments that show small losses when training on multimodal data.

C.3. Compressing Model Parameters

Throughout our paper we report compression rates that take uncompressed model parameters into account. As discussed
in the main paper, compression ratios could be improved by also compressing model parameters. However, as Table A4
shows, naively compressing model parameters with a lossless compressor does not lead to much compression, which would
translate into very marginal gains on the overall compression ratio. While it is possible to investigate more sophisticated
compression schemes, in particular lossy compression of network weights (though this opens the problem of having to solve
a trade-off between increasing weight compression and maintaining compression performance), this is beyond the scope of
our paper. Accordingly, our compression rates can be understood as (somewhat) conservative estimates that give (in our case
fairly tight) upper bounds on compression performance. Compressing network weights to achieve competitive compression
ratios would be of greater significance in a regime where models are significantly larger than ours (but the evaluation data
stays roughly at the same size).

C.4. Scaling Analysis for Multimodal Training

Fig. A1 shows the results of simultaneously scaling dataset- and model size across training. In contrast to the similar Fig. 4
in the main paper, where models were trained on unimodal data, Fig. A1 shows models trained on multimodal data (i.e., the
uniform mixture across all three modalities, with 55GB per modality). The multimodal training mixture acts as a regularizer,
which can clearly be seen by the lack of overfitting of the largest models on images. Compare this against the unimodal
training results in Fig. 4 where overfitting can be observed. In line with our other main results in Fig. 2 and Fig. 3, the
overall compression ratios are slightly worse for the models trained on multimodal data compared to unimodal training.
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