
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2025

AMSC: ADAPTIVE MULTI-DIMENSIONAL STRUCTURED
COMPRESSION WITH THEORETICAL GUARANTEES

Anonymous authors
Paper under double-blind review

ABSTRACT

Network pruning is a pivotal strategy for reducing complexity and accelerating inference.
Most pruning methods focus on a single dimension (depth or width), leading to insufficient
compression when multiple dimensions are redundant. Additionally, separating pruning
from training disrupts established network correlations, causing performance degradation.
In this paper, we propose a novel Adaptive Multi-dimensional Structured Compression
(AMSC) method that simultaneously learns the minimal depth, the minimal width, and net-
work parameters under the strategy that prioritizes depth compression. Specifically, based
on the regularization technique, AMSC incorporates layer- and filter- specific information
into the penalty in order to adaptively identify and eliminate redundant depth and width
in terms of the importance and size of each layer and filter. It integrates compression and
training processes together without pruning. Consequently, the proposed method enables
adaptive structure reduction from the initial configuration to a structure necessary that
minimizes the generalization error. Rigorous theoretical evidence is provided in terms
of the consistency of AMSC in achieving minimal network depth and width. To the best
of our knowledge, this is the first study that offers a theoretical guarantees in structure
selection. Extensive experiments on CIFAR-10/100 and ImageNet datasets demonstrate
our method not only achieves state-of-the-art compression performance in terms of FLOPs
and total parameters, but also preserves competitive classification accuracy. For example,
AMSC enhances the accuracy of ResNet56 on CIFAR-10 from 93.37% to 93.71%, while
simultaneously reducing calculations by 58.63% and parameters by 44.71%.

1 INTRODUCTION

Deep neural networks (DNNs) have shown significant advancements across various domains (Krizhevsky et al.,
2012; Kenton & Toutanova, 2019). However, their extensive parameterization presents several challenges.
First, training DNNs with numerous parameters necessitates a massive amount of samples, which is often
impractical, particularly in specialized domains. Second, the large number of parameters in DNNs can
theoretically increase statistical error, thereby potentially reducing the networks’ overall generalization ability
(Jiao et al., 2023; Tan et al., 2024). Third, DNNs with substantial parameter counts demand significant storage
space and exhibit slower runtime (Chen & Zhao, 2019; Wu et al., 2023), hindering their deployment on
resource-constrained edge devices, such as mobile phones, robotics, drones and smart watches.

To address these issues, numerous model compression approaches have been explored (Frankle & Carbin,
2018; Tan et al., 2020; Gou et al., 2021). A key technique among them is network pruning which involves
removing redundant parameters and connections, and is categorized into either unstructured (Han et al., 2015;
Frankle & Carbin, 2018; Sun et al., 2023) or structured (Li et al., 2017; Yu & Xiang, 2023; Chen & Zhao,
2019; Yu et al., 2022). Unstructured pruning deletes individual weights (weight-level) yet often struggles to
achieve substantial speedup without specialized libraries or hardware (Han et al., 2015; Lin et al., 2019b). In

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2025

contrast, structured pruning eliminates redundant filters or layers to reduce network width or depth, and is
better suited for acceleration on regular devices (Lin et al., 2020).

Current structured pruning methods mainly target a single dimension, such as pruning filters in CNNs or
self-attention heads in Transformers to reduce width, or removing layers and blocks to decrease depth.
However, focusing on only one dimension can lead to sub-optimal compression when multiple dimensions
exhibit redundancy, particularly when prior knowledge about which dimensions are truly redundant is limited,
and forcibly pruning a non-redundant dimension not only fails to achieve significant compression but also
greatly reduces accuracy (Wang et al., 2021b). Therefore, data-driven multi-dimensional pruning is crucial
for effective and precise compression, allowing faster model acceleration without sacrificing quality.

Current multi-dimensional structured pruning methods mainly focus on the allocation of pruning weights in
each dimension (Wang et al., 2021b) and algorithms for identifying redundant structures (Wen et al., 2016;
Lin et al., 2019b). While these approaches offer powerful tools for model compression, the literature lacks
systematic research on the following issues:

(1) Given a network architecture and a specific compression strategy, is there a sub-network with minimal
depth and minimal width that maintains the minimum generalization error?

(2) If such a sub-network exists, how to design an algorithm to accurately identify and train it?

In this paper, we aim to address the aforementioned questions. Specifically, since wide networks are easier
to optimize (Glorot & Bengio, 2010; Srivastava et al., 2015) and can typically be executed in parallel that
facilitating acceleration (Kim et al., 2023; 2024), we adopt a strategy that prioritizes depth compression.
We propose a novel penalty-based Adaptive Multi-dimension Structured Compression (AMSC) method to
adaptively and simultaneously compress both the depth and width while estimating network parameters. The
crucial point of AMSC in depth compression lies in observing that layers performing identity mapping can be
removed without impacting the network’s architecture or performance. Then, by imposing an identity penalty
on layer parameters, AMSC adaptively identifies redundant layers. Furthermore, it narrows network width by
penalizing width units such as filters in CNNs or heads in Transformers.

Unlike previous methods, AMSC seamlessly integrates the compression and training processes, enabling
simultaneous learning of network structure and parameters. Consequently, AMSC offers adaptive structure
reduction from the initial structure to a structure necessary to minimize generalization error. The main
contributions of this paper are as follows:

(i) We first investigate the relationship between accuracy and network structure across diverse architectures.
Figure 2 (a-b) illustrates that accuracy (in blue) initially increases and then decreases with reduced network
depth (in green), yet it remains above the baseline (in black), even for networks with substantially fewer
layers. A similar trend is observed in the process of decreasing the network width, as shown in Figure 2 (c-d).
These results reveal that tighter sub-networks within the original architecture can achieve greater accuracy
than can the full model. Moreover, during the structure-compressing phase, the accuracy reaches a plateau
and then sharply declines if the reduction continues. This phenomenon emphasizes the existence of a minimal
depth and width to ensure generalization error.

(ii) To identify the minimal structure, we propose the AMSC method for compressing various DNNs using
a penalty technique. Unlike existing penalty-based multi-dimensional compression methods (Wen et al., 2016;
Lin et al., 2019b), which equally penalize each layer or filter and often compress those with fewer parameter
counts, our penalty integrates both the importance and parameter counts of layers and filters into the weights.
This allows AMSC to achieve precise and effective compression in terms of FLOPs and parameter counts
while maintaining higher accuracy, as shown in Table 1.

(iii) We provide rigorous theoretical evidence that the proposed AMSC can achieve the minimal depth
and width with performance guarantees, as shown in Theorem 4.1. To our knowledge, this is the first study

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2025

offering theoretical guarantees for structure selection. Additionally, we explain how equally penalizing each
layer and filter can lead to improper compression, potentially violating Assumption 4.1, which is necessary
for selection consistency, as illustrated in Figure 1.

We conduct extensive experiments on the CIFAR-10/100 and ImageNet datasets, demonstrating that our pro-
posed AMSC achieves state-of-the-art compression performance, while maintaining competitive classification
accuracy compared to existing methods, as detailed in Tables 1 and 5. For instance, AMSC increases the
accuracy of ResNet56 on CIFAR-10 from 93.37% to 93.71%, while simultaneously reducing computations
by 58.63% and parameters by 44.71%. Moreover, the structure identified by AMSC remains consistent across
different initial network architectures, further validating our theoretical findings.

2 RELATED WORKS

Unstructured and single-dimensional structured pruning. Neural network pruning initially occurs at the
weight-level (Han et al., 2015; Frankle & Carbin, 2018; Chen et al., 2020b; Sun et al., 2023), achieving sparsity
by eliminating unimportant weights. However, the resultant unstructured sparsity achieves acceleration only
under specific libraries (e.g., cuSPARSE), which is restricted on mobile devices (Wang et al., 2021b). Recently,
single-dimensional structured pruning emerges, which focuses on reducing either the width (He et al., 2017;
Ding et al., 2021a; Michel et al., 2019) or depth (Chen & Zhao, 2019; Jordao et al., 2020; Kim et al., 2023;
2024) of DNNs. These methods primarily follow two research trajectories. The first line (Hu et al., 2016; He
et al., 2019; Lee et al., 2019; Wang et al., 2019; Yu et al., 2022) assesses the importance of network modules,
pruning those deemed least important. The second line (Wen et al., 2016; Zhu et al., 2018; Lin et al., 2019a;
Wang et al., 2020; Wu et al., 2023) introduces a sparsity penalty into the objective function to learn compact
models during the training phase. Although they all receive great success in pruning DNNs, their focus on
a single dimension limits compression potential, especially when multiple dimensions exhibit redundancy,
which is often the case.

Multi-dimensional pruning. To enhance compression efficacy, several methods explore the multi-dimension
pruning and can generally be divided into two groups. The first group (Wen et al., 2016; Lin et al., 2019b)
reduces both the width and depth of models by imposing extra penalty terms on the network structures.
However, these methods equally penalize all network components, such as layers and filters, ignoring the
importance and parameter counts of different components. This can lead to inadequate compression, as
demonstrated by GAL and SSL in Table 1. The second group (Wang et al., 2021b; Yu et al., 2022) assigns
pruning budgets to different dimensions but prunes network based on traditional single-dimensional methods.
Particularly, Wang et al. (2021b) formulate the allocation issue as an optimization problem, and establish the
optimization targets by searching networks with varying depths and widths, making the allocation process
time-consuming. Yu et al. (2022) adopts a sequential pruning strategy, first pruning width, then depth.
However, both methods separate pruning from training, disrupting established correlations within the network
and resulting in performance degradation (Ding et al., 2021a;b). Additionally, none of the aforementioned
methods are theoretically supported. In contrast, the proposed AMSC incorporates components-specific
information into the penalty to adaptively identify and eliminate redundant components, and integrates
compression and training processes together without pruning, yielding better compression performance.
Furthermore, we provide rigorous theoretical evidence that under mild conditions, AMSC can automatically
identify minimal network depth and width given depth-first compression strategy.

Neural Architecture Search (NAS). The objective of NAS (Pham et al., 2018; Tan & Le, 2019; Gao et al.,
2020b; Guo et al., 2021; 2023b) is to identify a well-designed architecture by searching the options and
connections given a computational budget. This goal is similar with prunging. However, their operational
frameworks are very different: NAS constructs models from scratch, while pruning reduce the scale of an
existing model. Thus, despite several NAS algorithms (Tan & Le, 2019; Han et al., 2020) strive to optimize
multiple dimensions (e.g., depth, width) of a model, they are not directly applicable to the pruning domain.

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2025

3 ADAPTIVE MULTI-DIMENSION COMPRESSION

A neural network with L − 1 middle layers is a collection of mappings f of the form f(x, θ) = fL ◦
fL−1 ◦ fL−2... ◦ f0(x), where θ = {θl}Ll=0 are the parameters, and f1 ◦ f0(x) = f1(f0(x)) represents the
composition of two functions f1 and f0. Then the underlying mapping in the l-th layer can be formulated as:

zl = fl(zl−1, θl), 1 ≤ l ≤ L− 1, (1)

where zl is the output of the l-th layer, and fl(·, θl) is the neural network with parameters θl. In practical
DNNs implementations, the depth is usually given in advance, and changing the depth requires retraining
a new network. This limitation hinders the dynamic adjustment between network training and depth. To
address this, we propose a new strategy based on a key observation, in which if zl = zl−1, the l-th layer
is redundant. More specifically, the layer performing identity mapping can be removed without disrupting
the well-established correlations within the network or compromising network performance. To determine
whether zl = zl−1, we rewrite model (1) as

zl = hl(zl−1, θl) + zl−1, 1 ≤ l ≤ L− 1. (2)

Then identifying whether zl = zl−1 is transformed into hl(zl−1, θl) = 0. Based on the network expression for
hl, the identification of redundant layers can be further reformulated as the problem of determining whether
the parameters θl are zero, which can be implemented by imposing a group penalty on θl.

Network width typically refers to the number of filters in CNNs or the number of attention heads in
Transformers. For simplicity, we uniformly refer to these as "filters" when discussing width units. To
decrease the width, we further impose a group penalty on θl,j , where θl,j is the j-th filter of the l-th layer. As
a result, our objective in a dataset {Xi, yi}ni=1 with n samples ends up with:

θ̂ = argmin
θ

L(θ) := 1

n

n∑
i=1

Ltarget(yi, f(Xi, θ)) + λ0Qd(θ) + λ1Qw(θ) (3)

where Ltarget(·, ·) is the loss function for specific targets, such as mean square error (MSE) in regres-
sion and cross-entropy (CE) loss in classification; the penalty Qd(θ) =

∑L−1
l=1 λ(l)∥θl∥2 and Qw(θ) =∑L−1

l=1

∑nl

j=1 λ(l, j)∥θl,j∥2 are used to identify redundant depth and width; λ0 and λ1 are the penalty inten-
sity to balance the target loss and the network architecture. As λ0 and λ1 increase, the number of zeros in
{θl|1 ≤ l ≤ L − 1} and {θl,j |1 ≤ l ≤ L − 1, 1 ≤ j ≤ nl} increases, resulting in a shallow and narrow
neural network architecture. Hence the automatic selection of depth and width can be accomplished by tuning
the parameters λ0 and λ1.

λ(l) and λ(l, j), the weight of the l-th layer and the j-th filter in l-th layer, play crucial roles in identifying
redundant layers and filters. Setting λ(l) = 1 and λ(l, j) = 1, penalizing each layer and filter equally, might
overlook the sequence of layers and the variation in parameter count among layers and filters, potentially
leading to compressing layers and filters with fewer parameters. Taking depth as an example, in networks
such as ResNet, earlier layers typically have fewer parameters, serve as fundamental components for later
layers and should be retained. Therefore, the approach with λ(l) = 1 may lead to inadequate compression
and suboptimal performance, as demonstrated by SSL in Table 2 and Figure 3. Here, we hence design the
weight based on two considerations: the importance of each layer and filter, and the parameter counts present
in them. In particular, we set the weights as

λ(l) =
√
ql/∥θ̂l∥2, λ(l, j) =

√
ql,j/∥θ̂l,j∥2, (4)

where ql and ql,j are the number of parameters in the l-th layer and the j-th filter of the l-th layer, respectively.
θ̂l and θ̂l,j are estimators for θl and θl,j , which can be obtained from the pre-trained model. This choice of λ(l)
and λ(l, j) has several intriguing features. First, under the commonly used assumption that ∥θ∥∞ < B for

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2025

some 0 < B < +∞ in neural network literature (Chen et al., 2020a), ∥θl∥2 ≤ √
qlB and ∥θl,j∥2 ≤ √

ql,jB.
Then, the weights

√
ql and √

ql,j serve as adaptive tuning parameters for shrinking θl and θl,j toward zero
based on their respective parameter counts. This is important because parameter counts can vary significantly
across layers and filters. Second, DNNs are highly unidentifiable (Fukumizu, 2003) even with specified width,
depth, and loss. Given width, depth, and loss, the AMSC method, using the weight

√
ql and √

ql,j , tends to
compress layers and filters with more parameters, resulting in a simpler network with guaranteed performance.
Third, the magnitude of ∥θ̂l∥2 and ∥θ̂l,j∥2 reflect the importance of the l-th layer and the j-th filter of the l-th
layer, respectively. 1/∥θ̂l∥2 and 1/∥θ̂l,j∥2 assign more weights to layers and filters with lower norm values,
guiding AMSC to aggressively compress the less important components.

4 CONSISTENCY IN ARCHITECTURE SELECTION

In this section, we theoretically demonstrate that the proposed AMSC can identify the minimal depth and width
in terms of selection consistency, given depth-first compression strategy. The rationale for prioritizing depth-
wise compression is that reducing depth facilitates model optimization (Glorot & Bengio, 2010; Srivastava
et al., 2015) and acceleration (Kim et al., 2023; 2024) compared to reducing width. Denote the optimal pa-
rameter set that minimize the generalization error as Θ∗ = {θ∗ : θ∗ ∈ argmin

θ
E(X,y)∼µLtarget(y, f(X, θ)},

where µ is the population distribution of samples. Since DNNs are highly unidentifiable, we first consider
depth and width selection consistency given another component. Particularly, given width W = w, the
minimal depth that maintains the minimum generalization error is defined as lθ(w) = min

l∗
{l∗ : l∗ =

dep(θ∗), θ∗ ∈ Θ∗,W = w}, where dep(θ∗) =
∑L−1

l=1 1{θ∗
l ̸=0} is the depth of θ∗. Hereafter, we drop

w for brevity if the w is the initial width. Similarly, given L = l, the minimal width that maintains the
minimum generalization error is defined as wθ(l) = min

w∗
{w∗ : w∗ = wid(θ∗), θ∗ ∈ Θ∗, L = l}, where

width(θ∗) =
∑L−1

l=1

∑nl

j=1 1{θ∗
l,j ̸=0} is the width of θ∗. Then, we define that the estimation of f achieves

consistency in structure selection if P(dep(θ̂) = lθ) → 1, P(wid(θ̂) = wθ(lθ)) → 1 as n → ∞. In the above
consistency definition, we identify the minimal depth under initial width w and access the minimal width
given the minimal depth. It should be noted that further depth compression on dep(θ̂) is impossible because
wid(θ̂) is less than the initial width w. Thus, dep(θ̂) then wid(θ̂) represent the minimum depth and width
under the current compression strategy. The following assumptions are required to establish their consistency.
Assumption 4.1. For any θ∗1 , θ

∗
2 ∈ Θ∗, Qd(θ

∗
1) ≤ Qd(θ

∗
2) implies dep(θ∗1) ≤ dep(θ∗2); and Qw(θ

∗
1) ≤

Qw(θ
∗
2) implies wid(θ∗1) ≤ wid(θ∗2).

Assumption 4.1 requires the penalty terms Qd(θ) and Qw(θ) to have the ability to identify redundant layers
and filters. In section 5.3.1, we empirically shows the monotonic relationship between dep(θ) and Qd(θ), as
well as between wid(θ) and Qw(θ). Meanwhile, we also demonstrate that some commonly used penalties
(Wen et al., 2016) may violate Assumption 4.1, resulting in inappropriate compression.
Assumption 4.2. The loss function Ltarget(θ) is a sub-analytic function of θ.
The loss functions such as CE loss, and DNNs with activation functions ReLU and GeLU (Hendrycks &
Gimpel, 2016), are sub-analytic functions (Bolte et al., 2006), Assumption 4.2 is typically satisfied in practice.
Assumption 4.3. For any two θ∗1 , θ

∗
2 ∈ Θ∗, ∥θ∗1 − θ∗2∥2 ≤ Mb < +∞.

Assumption 4.3 focuses on the bounded difference between any two parameters in Θ∗. It is a relaxation of
the assumption that the L1 norm of any parameter is bounded, a condition frequently required in the neural
network literature (Chen et al., 2020a).
Theorem 4.1. Suppose that Assumptions 4.1, 4.2 and 4.3 hold. Let θ̂ be the estimator of equation 3, if
λ0 = op(1), λ1 = op(λ0) and the statistical error Sn = op(λ1), we deduce that

P(dep(θ̂) = lθ) → 1, P(wid(θ̂) = wθ(lθ)) → 1, d(θ̂,Θ∗)=̂ min
θ∗∈Θ∗

∥θ̂ − θ∗∥2 = op(1). (5)

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2025

Theorem 4.1 demonstrates that AMSC can identify the minimal structure with appropriate choices of λ0 and
λ1. The condition λ1 = op(λ0) is required to ensure that the selection of depth is independent of the selection
of width. The requirement that λ0 and λ1 exceed the statistical error Sn is to prevent cases where redundant
structures remain uncompressed due to randomness.

Mathematically, denote the class of neural network is F . The statistical error Sn can be bounded by the
pseudo dimension of F (Jiao et al., 2023), denoted by Pdim(F). In particular, if both the architecture and
activation functions within F remain fixed, it follows that Pdim(F) = VCdim(F) (Bartlett, 1996), where
VCdim(F) is the Vapnik-Chervonenkis (VC) dimension of F , which can be further bounded by width, depth
and the number of parameters of F (Jiao et al., 2023; Bartlett et al., 2019). There are several existing results on
the statistical error. Chen et al. (2020a) demonstrate that it scales as Op(n

− β
2β+d) where β is the smoothness

index of true function class and d is the input dimension. This rate can be further refined to Op(n
− β

2β+d∗),
where d∗ is the intrinsic dimension of data (Nakada & Imaizumi, 2020).

The detailed proof of Theorem 4.1 can be found in Appendix A. The proof includes two parts: convergence to
the optimal parameter set and structure consistency, where the first is achieved by the Lojasiewicz inequality
(Ji et al., 1992; Colding & Minicozzi, 2014; Bolte et al., 2006), Young’s inequality and Assumption 4.2, and
the second part can be obtained by the property of θ̂ and Assumption 4.1 and 4.3.

5 EXPERIMENTS

5.1 IMPLEMENT DETAILS AND EXPERIMENTAL SETTINGS

Training procedures. We implement the proposed AMSC by optimizing equation 3, with the details provided
in Algorithm 1 of Appendix B.1.
Datasets. We use three popular datasets to test the proposed AMSC: CIFAR-10/100 (Krizhevsky et al., 2009)
and ImageNet ILSVRC 2012 (Deng et al., 2009). These datasets differs in image resolution (from 32× 32 to
224× 224), number of classes (10 to 1000), and dataset size (50K to 1M). For all datasets, we apply common
augmentation techniques such as symmetric padding, random cropping, and horizontal flipping, in line with
standard practices (He et al., 2016; Huang et al., 2017).
Architectures. Our experiment spans various architecture, including VGGs (Simonyan & Zisserman, 2015),
ResNets (He et al., 2016), DenseNets (Huang et al., 2017) and DeiTs (Touvron et al., 2021). For depth
compression, we follow standard settings (Wang et al., 2019; Zhang et al., 2024) that designate layers in
VGGs, blocks in ResNets and DenseNets, attention and FFN layers in DeiT as compression units. As VGGs
lack skip connections, we modify the original architecture to maintain connectivity when implementing
AMSC and the details are available in Appendix B.2. For width compression, we take convolutional filters in
CNNs, and heads for attention layers and neurons for FFN layers in Transformers as compression units.
Training settings. The training settings for all architectures on different datasets follow commonly used
protocols (He et al., 2016; Huang et al., 2017; Touvron et al., 2021). Detailed training configurations, along
with the selection strategies for λ0 and λ1 in AMSC, are provided in Appendix B.3.
Evaluation protocols. We evaluate the compression ratios by floating-point operations (FLOPs) and parame-
ter counts (Params.). To minimize bias due to differing experimental conditions, we adopt the approach from
(He et al., 2018; Gao et al., 2020a; Wu et al., 2023) by using the relative accuracy increase to the benchmark
model to investigate model performance. The compression ratios, accuracy, and corresponding baselines for
other methods are directly taken from the original studies.

5.2 RESULTS AND ANALYSIS

Results on CIFAR. We analyze the performance of the proposed AMSC on CIFAR-10, comparing it to
several popular CNNs, including ResNet-56, ResNet-110, and DenseNet-40. The results are shown in Table 1

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2025

Table 1: Performance comparisons for various architectures on CIFAR-10 and ImageNet. Pruned and Acc.↑ denote
pruned accuracy and relative accuracy increase, respectively. W and D indicate whether the model will be pruned along
depth and width, respectively. The best and second best scores are highlighted as bold and underlined, respectively.

Dataset Architecture Methods W D Baseline(%) Pruned(%) Acc↑(%) FLOPs(M/B) Params.(M)

CIFAR-10

ResNet56

GAL(Lin et al., 2019b) ✓ ✓ 93.26 93.38 0.12 78.74 0.75
DLP(Jordao et al., 2020) ✓ - - -0.82 65.80 0.52

TDPF(Wang et al., 2021b) ✓ ✓ 93.69 93.76 0.09 63.50 0.51
HRank(Lin et al., 2020) ✓ 93.26 93.17 -0.09 62.72 0.49
SANP(Gao et al., 2023) ✓ 93.49 93.81 0.32 60.24 -

LPSR(Zhang & Liu, 2022) ✓ 93.21 93.40 0.19 60.10 0.47
SSL(Wen et al., 2016) ✓ 93.37 93.25 -0.12 59.79 0.50
ELC(Wu et al., 2023) ✓ 93.45 93.66 0.21 58.30 -

AMSC(Ours) ✓ ✓ 93.37 93.71 0.34 51.91 0.47

ResNet110

DBP(Wang et al., 2019) ✓ 93.97 93.61 -0.36 141.90 -
GAL(Lin et al., 2019b) ✓ ✓ 93.50 92.55 -0.95 130.20 0.95

DLP(Jordao et al., 2020) ✓ - - -0.25 129.70 1.02
ELC(Wu et al., 2023) ✓ 93.60 94.07 0.47 92.30 -

HRank(Lin et al., 2020) ✓ 93.50 92.65 -0.85 79.30 0.70
DECORE(Alwani et al., 2022) ✓ 93.50 92.71 -0.79 58.16 0.35

AMSC(Ours) ✓ ✓ 93.51 92.73 -0.78 54.71 0.34

DenseNet40

DBP(Wang et al., 2019) ✓ 94.59 94.02 -0.57 159.25 0.43
DECORE(Alwani et al., 2022) ✓ 94.81 94.04 -0.77 128.13 0.37

GAL(Lin et al., 2019b) ✓ ✓ 94.81 93.53 -1.28 128.11 0.45
DHP(Li et al., 2020) ✓ 94.74 93.94 -0.80 112.06 0.68

HRank(Lin et al., 2020) ✓ 94.81 93.68 -1.13 110.15 0.48
AMSC(Ours) ✓ ✓ 94.07 93.93 -0.14 103.43 0.33

ImageNet

ResNet34

Taylor (Molchanov et al., 2019) ✓ 73.31 72.83 -0.48 2.83 17.20
FPGM (He et al., 2019) ✓ 73.92 72.63 -1.29 2.16 -

LPSR(Zhang & Liu, 2022) ✓ 73.31 72.63 -0.68 2.52 14.35
ELC (Wu et al., 2023) ✓ 74.02 73.79 -0.23 2.43 -

AMSC(Ours) ✓ ✓ 73.31 72.93 -0.38 2.27 16.61

ResNet50

GAL(Lin et al., 2019b) ✓ ✓ 76.15 71.95 -4.20 2.33 21.20
HRank(Lin et al., 2020) ✓ 76.15 74.98 -1.17 2.30 16.15

AKECP(Zhang et al., 2021) ✓ 76.52 76.20 -0.32 2.29 15.16
Greg-2(Wang et al., 2021a) ✓ 76.13 75.36 -0.77 1.77 -

GFP (Liu et al., 2021) ✓ 76.79 76.42 -0.37 2.04 -
DepGraph (Fang et al., 2023) ✓ ✓ 76.15 75.83 -0.32 1.99 -

AMSC(Ours) ✓ ✓ 76.15 75.53 -0.62 1.85 16.84

DeiT-tiny

OPTIN-β (Khaki & Plataniotis, 2024) ✓ 72.20 67.51 -4.69 1.10 -
SSP (Michel et al., 2019) ✓ 72.20 68.60 -3.60 1.00 4.20

S2ViTE (Chen et al., 2021) ✓ 72.20 70.10 -2.10 1.00 4.20
SPViT (He et al., 2024) ✓ 72.20 70.70 -1.50 1.00 4.80

P6 (Liu et al., 2024) ✓ 72.20 70.30 -1.90 0.90 3.80
AMSC(Ours) ✓ ✓ 72.20 70.70 -1.50 0.87 4.60

(Top block). As observed, maintaining similar accuracy levels, width-based compression methods offer lower
compression rates than depth-based methods for ResNet56. However, this trend reverses for ResNet-110.
This phenomenon highlights that the significance of depth and width varies across different networks; in other
words, a single-dimensional compression strategy-either width or depth- does not universally apply to all
network architectures. In contrast, the proposed AMSC achieves a higher relative accuracy improvement,
requires fewer FLOPs, and utilizes fewer total parameters compared to the single-dimensional compression
methods, emphasizing the advantages of multi-dimensional compression. Moreover, compared to existing
multi-dimensional compression methods such as GAL (Lin et al., 2019a) and TDPF (Wang et al., 2021b),
which either treat all components equally or rely on traditional single-dimension pruning techniques, AMSC
achieves significantly enhanced compression efficiency by incorporating structure-specific information into
its penalty and integrating compression with training. Additionally, the architectures derived from both
ResNet56 and ResNet110 via AMSC achieve similar accuracy, FLOPs and the number of parameters. This
implies the existence of a minimal structure that remains consistent across different initial architectures and
confirms the consistency in the structure selection of AMSC, as established in Theorem 4.1. We also conduct
experiments for VGG16 on CIFAR10, and ResNet56, VGG16 and VGG19 on CIFAR-100. The experimental
results are presented in Appendix B.4, yielding similar conclusions to those obtained for CIFAR-10.

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2025

Results on ImageNet. We also conduct experiments for ResNets and DeiTs on the challenging ImageNet
dataset. As demonstrated in Table 1 (Bottom block), AMSC achieves the fewer FLOPs with a competitive
accuracy for both ResNet34 and DeiT-tiny. However, for ResNet34, LPSR maintains a fewer parameters
than AMSC. To see the inconsistency, we display the compressed ResNet34 in Figure 3 (Bottom). LPSR
prunes 5 blocks, including a critical one in the penultimate position which has the highest parameter count
in the network and is crucial for the network performance (Zeiler & Fergus, 2014). Therefore, pruning
this block leads to LPSR having significantly reduced parameter counts but at the cost of a substantial
performance decrease (-0.68%) and a slight reduction in FLOPs (2.52B). Conversely, AMSC prunes 6 blocks
primarily within the middle layers, which typically exhibit weaker feature extraction capabilities (Nguyen
et al., 2020) and possess fewer parameters, resulting in a smaller accuracy decrease (-0.32%) and fewer
FLOPs (2.27B). For ResNet50, AMSC exhibits a behavior similar to that observed in ResNet34, focusing
on compressing the middle layers, which are relatively less important. Hence, AMSC results in highly
competitive compression performance. For Deit-Tiny, AMSC compresses two attention layers that are high in
FLOPs yet low in parameters, resulting in a model with fewer FLOPs (0.87B), higher accuracy (70.70%), and
increased parameter counts (4.60M). These result implies that AMSC targets less critical structures, achieving
sufficient compression with performance guarantees.

5.3 ABLATION STUDY AND DISCUSSION

5.3.1 AN EMPIRICAL VERIFICATION OF ASSUMPTION 4.1

Assumption 4.1 requires the penalty term Qd(θ) and Qw(θ) to have the abilities to identify redun-
dant structures. For clarity, we compare the proposed penalties Qd(θ) =

∑L−1
l=1

1
∥θ̂l∥2

√
ql∥θl∥2 and

Qw(θ) =
∑L−1

l=1

∑nl

j=1
1

∥θ̂l,j∥2

√
ql,j∥θl,j∥2 with the penalties Q̃d(θ) =

∑L−1
l=1 ∥θl∥2 and Q̃w(θ) =∑L−1

l=1

∑nl

j=1 ∥θl,j∥2 in SSL (Wen et al., 2016). Removing a network component with a high parame-
ter count can significantly decreases Q̃d(θ) and Q̃w(θ), but the reduction in depth or width can be minor.
Therefore, Q̃d(θ) and Q̃w(θ) may not fulfill Assumption 4.1. In contrast, Qd(θ) and Qw(θ) assigns weights
to each layers and filters based on their importance and parameter counts, aggressively compressing less
important layers and filters. This makes Qd(θ) and Qw(θ) more likely to satisfy Assumption 4.1. The
empirical verification of the above analysis can be found in Figure 1. Based on the results from ResNet56 and
DenseNet40 on CIFAR-10, and DeiT-tiny on ImageNet, Figure 1 (a-b) illustrates a monotonic relationship
between dep(θ∗) and Qd(θ

∗) (in blue). However, this monotonicity between dep(θ∗) and Q̃d(θ
∗) (in orange)

is not so significant. Similar results are also observed between width(θ∗) and Qw(θ
∗) (Q̃w(θ

∗)) in Figure 1
(c-d). More verification of Assumption 4.1 can be found in Appendix B.5.

5.3.2 THE INFLUENCE OF λ0 AND λ1

We demonstrate the influence of the penalty parameters λ0 and λ1 in Figure 2 based on the results from
ResNet56 and DenseNet40 on CIFAR-10, and DeiT-tiny on ImageNet. In Figure 2 (a-b), as λ0 increases,
network depth (in green) decreases, and accuracy (in blue) initially increases and then decreases, but it
stays above the baseline even for networks with significantly small depth. This result reveals that shallower
sub-networks within the original architecture can achieve greater accuracy compared to the full model. This
occurs because AMSC selects the smallest network that ensures generalization error, resulting in substantially
decreased statistical error while maintaining approximation error. Moreover, during the decreasing phase
of depth, accuracy reaches a plateau and then sharply declines if the depth is continuously reduced. This
phenomenon emphasizes the existence of minimal depth which ensures the generalization error and AMSC’s
capability to identify and respond to it. Similar patterns are also observed in width reduction as λ1 increases,
as shown in Figure 2 (c-d). More results about the influence of λ0 and λ1 can be found in Appendix B.6.

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2025

(a) Depth of ResNet56 (b) Depth of DenseNet40 (c) Width of ResNet56 (d) Width of DeiT-tiny

Figure 1: Relationship between dep(θ∗) and Qd(θ
∗) (Q̃d(θ

∗)) as well as wid(θ∗) and Qw(θ
∗) (Q̃w(θ

∗)) for any
θ∗ ∈ Θ∗, where Q(θ) =

∑L−1
l=1

1

∥θ̂l∥2

√
ql∥θl∥2 and Qw(θ) =

∑L−1
l=1

∑nl
j=1

1

∥θ̂l,j∥2

√
ql,j∥θl,j∥2 are the proposed

penalties as well as Q̃d(θ) =
∑L−1

l=1 ∥θl∥2 and Q̃w(θ) =
∑L−1

l=1

∑nl
j=1 ∥θl,j∥2 are the penalties used in SSL (Wen et al.,

2016). The accuracy of each point meets or exceeds the baseline and varies by less than 1% across different points within
the same architecture. Therefore, these points can be approximately considered as elements of Θ∗.

(a) Depth of ResNet56 (b) Depth of DenseNet40 (c) Width of ResNet56 (d) Width of DeiT-tiny

Figure 2: The accuracy and depth/width of different architectures vary with the penalty parameters λ0 and λ1, In each
figure, the left Y-axis denotes the accuracy and the right Y-axis denotes the depth (width).

5.3.3 CHOICE OF λ(l) AND λ(l, j)

Figure 3: The compressed ResNet56 on CIFAR-10
and ResNet34 on ImageNet.

Table 2: Performance comparisons of SSL (Wen et al., 2016),
commonly used group lasso (GL) and AMSC for ResNet56 on
CIFAR-10 and ResNet34 on ImageNet.

Datasets Methods Acc.(%) FLOPs(M/B)(↓) Params.(M)(↓) Depth

CIFAR-10
Baselines 93.37 125.48(-) 0.85(-) 56

SSL 93.25 59.79(52.92%) 0.50(41.18%) 28
AMSC(Ours) 93.71 51.91(58.63%) 0.47(44.71%) 24

ImageNet
Baselines 73.31 3.66(-) 21.80(-) 34

GL 72.15 2.52(31.34%) 8.82(59.54%) 24
AMSC(Ours) 72.93 2.27(38.15%) 16.61(23.81%) 22

Here, we investigate the the impact of the choice of λ(l) and λ(l, j) in equation 3. For visualization, we only
demonstrate the impact of the choice of λ(l) by comparing the proposed λ(l) = 1

∥θ̂l∥2

√
ql with the setting

λ(l) = 1 in SSL (Wen et al., 2016) and λ(l) =
√
ql in a group lasso setting (GL) (Yuan & Lin, 2006; WEI &

HUANG, 2010). As shown in Table 2, the proposed AMSC surpasses SSL in accuracy and all compression
metrics, while it also outperforms GL in accuracy and FLOPs, although not in parameter counts. To see more
clearly, we show the compressed networks in Figure 3. Obviously, SSL treats layers with varying parameter
counts equally, leading to a tendency to compress layers with fewer parameters (Top in Figure 3). Conversely,
GL heavily weights layers with larger parameters, leading to significant compression of these layers (Bottom
in Figure 3). Hence, neither setting achieves precise and efficient compression. In contrast, AMSC adaptively
adjusts the penalty for each layer based on its importance and parameter counts, preserving the earlier layers
while compressing the middle layers more extensively. This aligns with the current understanding of neural
networks. Particularly, it is well known that the earlier layers usually extract features such as edges, texture
and color, which serve as fundamental components for later layers and should be preserved. Conversely, the
outputs of the middle layers often show similar features (Nguyen et al., 2020) and should be compressed.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2025

By setting an appropriate λ(l), AMSC effectively distinguishes critical and redundant layers, and achieves a
more precise and effective compression.

5.3.4 MULTI-DIMENSIONAL COMPRESSION V.S. SINGLE-DIMENSIONAL COMPRESSION

In this section, we investigate the advantages of multi-dimensional compression compared to single-
dimensional compression. We implement width-only and depth-only compressions by setting λ0 = 0
and λ1 = 0 in (3), respectively. Figure 4 illustrates that the accuracy of all three methods initially increases
and then decreases as FLOPs or parameter counts are reduced. Notably, under similar FLOPs (parameter
counts), AMSC consistently achieves higher accuracy across all architectures and datasets. This suggests
that multi-dimensional compression is more effective at identifying reasonable substructures compared to
single-dimensional compression under a given computational budget.

(a) FLOPs of ResNet56 (b) Params. of ResNet56 (c) FLOPs of VGG16 (d) Param. of VGG16
Figure 4: The accuracy varies with FLOPs (Parameter counts) reducing.

5.3.5 TRAINING BUDGETS AND INFERENCE TIME

Table 3: The training complexity compar-
ison for ResNet56 on CIFAR-10.

Methods DBP LPSR ELC AMSC

Epochs 320 320 600 500

Table 4: The average inference time comparison for ResNet56 on CIFAR-10
using an NVIDIA A100 GPU with a batch size of 1 (100 Trials).

Methods W D Acc.↑(%) FLOPs Inference time Speedup Ratio

Baseline 0.00 125.48M 4.22ms 0.00
HRank ✓ -0.09 62.70M 2.34ms 1.80
FPGM ✓ -0.33 59.40M 2.63ms 1.60
ELC ✓ 0.21 58.30M 2.01ms 2.10

AMSC ✓ ✓ 0.34 51.91M 1.91ms 2.21

Compared to traditional pruning-based compression methods, which repeatedly fine-tune to offset performance
degradation caused by pruning, AMSC does not incur high training costs. We present the training complexities
of several existing state-of-the-art methods (Wang et al., 2019; Xu et al., 2022; Wu et al., 2023) for ResNet56
on CIFAR-10 in Table 3. As we can see, our training complexity is comparable to these methods, and in some
cases, it may even be lower.

We further evaluate the average inference times of models compressed by different methods for ResNet56 on
CIFAR-10, conducted on a NVIDIA A100 GPU with a batch size of 1, and repeat the tests 100 times. As
shown in Table 4, the resulting model of AMSC delivers faster inference speeds due to its minimal structures.

6 CONCLUSION

In this paper, we introduce an adaptive multi-dimensional structured compression (AMSC) method to
reduce both depth and width of the networks. To adaptively identify the redundant structures, we apply
the weighted adaptive group penalty to the parameters of each components. Our approach is supported by
rigorous theoretical evidence demonstrating its consistency in achieving minimal network structure. Extensive
experiments conducted on CIFAR-10/100 and ImageNet datasets demonstrate that our proposed AMSC
method not only achieves state-of-the-art compression performance measured by FLOPs and parameter
counts but also maintains competitive classification performance. We will expand the proposed AMSC to
more visual tasks such as object detection and image segmentation in the future works.

10

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2025

REFERENCES

Manoj Alwani, Yang Wang, and Vashisht Madhavan. Decore: Deep compression with reinforcement learning.
In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12339–12349.
IEEE, 2022.

Peter Bartlett. For valid generalization the size of the weights is more important than the size of the network.
Advances in neural information processing systems, 9, 1996.

Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension and
pseudodimension bounds for piecewise linear neural networks. The Journal of Machine Learning Research,
20(1):2285–2301, 2019.

Jérôme Bolte, Aris Daniilidis, and Adrian Lewis. The łojasiewicz inequality for nonsmooth subanalytic
functions with applications to subgradient dynamical systems. SIAM Journal on Optimization, 17:1205–
1223, 2006.

Linhang Cai, Zhulin An, Chuanguang Yang, Yangchun Yan, and Yongjun Xu. Prior gradient mask guided
pruning-aware fine-tuning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pp. 140–148, 2022.

Minshuo Chen, Wenjing Liao, Hongyuan Zha, and Tuo Zhao. Distribution approximation and statistical
estimation guarantees of generative adversarial networks. arXiv preprint arXiv:2002.03938, 2020a.

Shi Chen and Qi Zhao. Shallowing deep networks: Layer-wise pruning based on feature representations.
IEEE Transactions on Pattern Analysis & Machine Intelligence, 41(12):3048–3056, 2019.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. The lottery ticket hypothesis for pre-trained bert networks. In Proceedings of the 34th International
Conference on Neural Information Processing Systems, pp. 15834–15846, 2020b.

Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, and Zhangyang Wang. Chasing sparsity in
vision transformers: An end-to-end exploration. Advances in Neural Information Processing Systems, 34:
19974–19988, 2021.

Tobias Holck Colding and William P Minicozzi. Lojasiewicz inequalities and applications. Surveys in
Differential Geometry, 19(1):63–82, 2014.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255.
IEEE Computer Society, 2009.

Guiguang Ding, Shuo Zhang, Zizhou Jia, Jing Zhong, and Jungong Han. Where to prune: Using lstm to
guide data-dependent soft pruning. IEEE Transactions on Image Processing, 30:293–304, 2021a.

Xiaohan Ding, Tianxiang Hao, Jianchao Tan, Ji Liu, Jungong Han, Yuchen Guo, and Guiguang Ding. Resrep:
Lossless cnn pruning via decoupling remembering and forgetting. In 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 4490–4500. IEEE Computer Society, 2021b.

Vu Dinh and Lam Si Tung Ho. Consistent feature selection for analytic deep neural networks. In Proceedings
of the 34th International Conference on Neural Information Processing Systems, pp. 2420–2431, 2020.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards any
structural pruning. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 16091–16101. IEEE, 2023.

11

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2025

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks.
In International Conference on Learning Representations, 2018.

Kenji Fukumizu. Likelihood ratio of unidentifiable models and multilayer neural networks. The Annals of
Statistics, 31(3):833–851, 2003.

Shangqian Gao, Feihu Huang, Jian Pei, and Heng Huang. Discrete model compression with resource
constraint for deep neural networks. In 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1896–1905. IEEE Computer Society, 2020a.

Shangqian Gao, Zeyu Zhang, Yanfu Zhang, Feihu Huang, and Heng Huang. Structural alignment for network
pruning through partial regularization. In 2023 IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 17356–17366. IEEE, 2023.

Yuan Gao, Haoping Bai, Zequn Jie, Jiayi Ma, Kui Jia, and Wei Liu. Mtl-nas: Task-agnostic neural architecture
search towards general-purpose multi-task learning. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 11540–11549. IEEE, 2020b.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, AISTATS
2010, volume 9, pp. 249–256, 2010.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A survey.
International Journal of Computer Vision, 129:1789–1819, 2021.

Song Guo, Lei Zhang, Xiawu Zheng, Yan Wang, Yuchao Li, Fei Chao, Chenglin Wu, Shengchuan Zhang,
and Rongrong Ji. Automatic network pruning via hilbert-schmidt independence criterion lasso under
information bottleneck principle. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV),
pp. 17412–17423. IEEE Computer Society, 2023a.

Yong Guo, Yin Zheng, Mingkui Tan, Qi Chen, Zhipeng Li, Jian Chen, Peilin Zhao, and Junzhou Huang.
Towards accurate and compact architectures via neural architecture transformer. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 44(10):6501–6516, 2021.

Yong Guo, Yaofo Chen, Yin Zheng, Qi Chen, Peilin Zhao, Junzhou Huang, Jian Chen, and Mingkui Tan.
Pareto-aware neural architecture generation for diverse computational budgets. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2248–2258, 2023b.

Kai Han, Yunhe Wang, Qiulin Zhang, Wei Zhang, Chunjing Xu, and Tong Zhang. Model rubik’s cube:
Twisting resolution, depth and width for tinynets. Advances in Neural Information Processing Systems, 33:
19353–19364, 2020.

Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and connections for efficient
neural networks. In Proceedings of the 28th International Conference on Neural Information Processing
Systems-Volume 1, pp. 1135–1143, 2015.

Haoyu He, Jianfei Cai, Jing Liu, Zizheng Pan, Jing Zhang, Dacheng Tao, and Bohan Zhuang. Pruning
self-attentions into convolutional layers in single path. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), volume 1, pp. 770. IEEE,
2016.

12

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2025

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating deep
convolutional neural networks. In Proceedings of the 27th International Joint Conference on Artificial
Intelligence, pp. 2234–2240, 2018.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for deep
convolutional neural networks acceleration. In 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2019.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks. In
2017 IEEE International Conference on Computer Vision (ICCV), pp. 1398–1406. IEEE Computer Society,
2017.

Zhiqiang He, Yaguan Qian, Yuqi Wang, Bin Wang, Xiaohui Guan, Zhaoquan Gu, Xiang Ling, Shaoning
Zeng, Haijiang Wang, and Wujie Zhou. Filter pruning via feature discrimination in deep neural networks.
In European Conference on Computer Vision, pp. 245–261, 2022.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415,
2016.

Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming: A data-driven neuron
pruning approach towards efficient deep architectures. arXiv preprint arXiv:1607.03250, 2016.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolutional
networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261. IEEE,
2017.

Shanyu Ji, János Kollár, and Bernard Shiffman. A global łojasiewicz inequality for algebraic varieties.
Transactions of the American Mathematical Society, 329(2):813–818, 1992.

Yuling Jiao, Guohao Shen, Yuanyuan Lin, and Jian Huang. Deep nonparametric regression on approximate
manifolds: Nonasymptotic error bounds with polynomial prefactors. The Annals of Statistics, 51(2):
691–716, 2023.

Artur Jordao, Maiko Lie, and William Robson Schwartz. Discriminative layer pruning for convolutional
neural networks. IEEE Journal of Selected Topics in Signal Processing, 14(4):828–837, 2020.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–4186, 2019.

Samir Khaki and Konstantinos N Plataniotis. The need for speed: Pruning transformers with one recipe. In The
Twelfth International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=MVmT6uQ3cQ.

Jinuk Kim, Yeonwoo Jeong, Deokjae Lee, and Hyun Oh Song. Efficient latency-aware cnn depth compression
via two-stage dynamic programming. In Proceedings of the 40th International Conference on Machine
Learning, pp. 16502–16520, 2023.

Jinuk Kim, Marwa El Halabi, Mingi Ji, and Hyun Oh Song. Layermerge: Neural network depth compression
through layer pruning and merging. In Forty-first International Conference on Machine Learning, 2024.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In Proceedings of the 25th International Conference on Neural Information Processing
Systems-Volume 1, pp. 1097–1105, 2012.

13

https://openreview.net/forum?id=MVmT6uQ3cQ
https://openreview.net/forum?id=MVmT6uQ3cQ

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2025

Min Kyu Lee, Seunghyun Lee, Sang Hyuk Lee, and Byung Cheol Song. Channel pruning via gradient of
mutual information for light-weight convolutional neural networks. In 2020 IEEE International Conference
on Image Processing, ICIP 2020, pp. 1751–1755. IEEE Computer Society, 2020.

N Lee, T Ajanthan, and P Torr. Snip: single-shot network pruning based on connection sensitivity. In
International Conference on Learning Representations. Open Review, 2019.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient
convnets. In International Conference on Learning Representations, 2017.

Yawei Li, Shuhang Gu, Kai Zhang, Luc Van Gool, and Radu Timofte. Dhp: Differentiable meta pruning
via hypernetworks. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part VIII 16, pp. 608–624. Springer, 2020.

Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and Ling Shao.
Hrank: Filter pruning using high-rank feature map. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 1526–1535. IEEE Computer Society, 2020.

S Lin, R Ji, Y Li, C Deng, and X Li. Toward compact convnets via structure-sparsity regularized filter pruning.
IEEE Transactions on Neural Networks and Learning Systems, 31(2):574–588, 2019a.

Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang, Liujuan Cao, Qixiang Ye, Feiyue Huang,
and David Doermann. Towards optimal structured cnn pruning via generative adversarial learning. In
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2785–2794. IEEE
Computer Society, 2019b.

Sihao Lin, Pumeng Lyu, Dongrui Liu, Tao Tang, Xiaodan Liang, Andy Song, and Xiaojun Chang. Mlp can be
a good transformer learner. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 19489–19498, 2024.

Ji Liu, Dehua Tang, Yuanxian Huang, Li Zhang, Xiaocheng Zeng, Dong Li, Mingjie Lu, Jinzhang Peng,
Yu Wang, Fan Jiang, et al. Updp: A unified progressive depth pruner for cnn and vision transformer. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 13891–13899, 2024.

L Liu, S Zhang, Z Kuang, A Zhou, J Xue, X Wang, Y Chen, W Yang, Q Liao, and W Zhang. Group
fisher pruning for practical network compression. In Proceedings of the 38th International Conference
on Machine Learning, volume 139, pp. 7021–7032. PMLR: Proceedings of Machine Learning Research,
2021.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning
efficient convolutional networks through network slimming. In Proceedings of the IEEE international
conference on computer vision, pp. 2736–2744, 2017.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? In Proceedings of
the 33rd International Conference on Neural Information Processing Systems, pp. 14037–14047, 2019.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation for neural
network pruning. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 11256–11264. IEEE Computer Society, 2019.

Ryumei Nakada and Masaaki Imaizumi. Adaptive approximation and generalization of deep neural network
with intrinsic dimensionality. The Journal of Machine Learning Research, 21(1):7018–7055, 2020.

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2025

Thao Nguyen, Maithra Raghu, and Simon Kornblith. Do wide and deep networks learn the same things?
uncovering how neural network representations vary with width and depth. In International Conference on
Learning Representations, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: an imperative style, high-performance deep
learning library. In Proceedings of the 33rd International Conference on Neural Information Processing
Systems, pp. 8026–8037, 2019.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search
via parameters sharing. In Proceedings of the 35th International Conference on Machine Learning, pp.
4095–4104. PMLR: Proceedings of Machine Learning Research, 2018.

K Simonyan and A Zisserman. Very deep convolutional networks for large-scale image recognition. In
3rd International Conference on Learning Representations (ICLR 2015). Computational and Biological
Learning Society, 2015.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. arXiv preprint
arXiv:1505.00387, 2015.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for large
language models. In The Twelfth International Conference on Learning Representations, 2023.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In Proceedings of the 36th International Conference on Machine Learning, pp. 6105–6114. PMLR:
Proceedings of Machine Learning Research, 2019.

Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet: Scalable and efficient object detection. In 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10778–10787. IEEE
Computer Society, 2020.

Zhiyao Tan, Ling Zhou, and Huazhen Lin. Generative adversarial learning with optimal input dimension and
its adaptive generator architecture. arXiv preprint arXiv:2405.03723, 2024.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society:
Series B (Methodological), 58(1):267–288, 1996.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Herve Jegou.
Training data-efficient image transformers & distillation through attention. In Marina Meila and Tong
Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pp. 10347–10357. PMLR, 18–24 Jul 2021.

Huan Wang, Can Qin, Yulun Zhang, and Yun Fu. Neural pruning via growing regularization. In International
Conference on Learning Representations (ICLR), 2021a.

Wenxiao Wang, Shuai Zhao, Minghao Chen, Jinming Hu, Deng Cai, and Haifeng Liu. Dbp: Discrimination
based block-level pruning for deep model acceleration. arXiv preprint arXiv:1912.10178, 2019.

Wenxiao Wang, Minghao Chen, Shuai Zhao, Long Chen, Jinming Hu, Haifeng Liu, Deng Cai, Xiaofei He, and
Wei Liu. Accelerate cnns from three dimensions: A comprehensive pruning framework. In International
Conference on Machine Learning, pp. 10717–10726. PMLR, 2021b.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured pruning of large language models. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 6151–6162,
2020.

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2025

FENGRONG WEI and JIAN HUANG. Consistent group selection in high-dimensional linear regression.
Bernoulli: official journal of the Bernoulli Society for Mathematical Statistics and Probability, 16(4):
1369–1384, 2010.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in deep neural
networks. Advances in Neural Information Processing Systems, 29, 2016.

Jie Wu, Dingshun Zhu, Leyuan Fang, Yue Deng, and Zhun Zhong. Efficient layer compression without
pruning. IEEE Transactions on Image Processing, 2023.

Pengtao Xu, Jian Cao, Wenyu Sun, Pu Li, Yuan Wang, and Xing Zhang. Layer pruning via fusible residual
convolutional block for deep neural networks. Beijing Da Xue Xue Bao, 58(5):801–807, 2022.

Yangchun Yan, Rongzuo Guo, Chao Li, Kang Yang, and Yongjun Xu. Channel pruning via multi-criteria
based on weight dependency. In 2021 International Joint Conference on Neural Networks (IJCNN), pp.
1–8. IEEE, 2021.

Fang Yu, Kun Huang, Meng Wang, Yuan Cheng, Wei Chu, and Li Cui. Width & depth pruning for vision
transformers. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 3143–3151,
2022.

Lu Yu and Wei Xiang. X-pruner: explainable pruning for vision transformers. In 2023 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 24355–24363. IEEE Computer Society, 2023.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67, 2006.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part I 13, pp. 818–833. Springer, 2014.

Hanxiao Zhang, Yifan Zhou, and Guo-Hua Wang. Dense vision transformer compression with few samples. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15825–15834,
2024.

Haonan Zhang, Longjun Liu, Hengyi Zhou, Wenxuan Hou, Hongbin Sun, and Nanning Zheng. Akecp:
Adaptive knowledge extraction from feature maps for fast and efficient channel pruning. In Proceedings of
the 29th ACM International Conference on Multimedia, pp. 648–657, 2021.

Ke Zhang and Guangzhe Liu. Layer pruning for obtaining shallower resnets. IEEE Signal Processing Letters,
29:1172–1176, 2022.

Xiaotian Zhu, Wengang Zhou, and Houqiang Li. Improving deep neural network sparsity through decorrela-
tion regularization. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp.
3264–3270, 2018.

Max Zimmer, Christoph Spiegel, and Sebastian Pokutta. How i learned to stop worrying and love retraining.
In The Eleventh International Conference on Learning Representations, 2022.

Hui Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101:
1418–1429, 2006.

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2025

A PROOF OF MAIN THEOREMS IN SECTION 4

A.1 PROOF OF THEOREM 4.1

Recall that the optimal parameters set Θ∗(w) = {θ∗ : θ∗ ∈ argmin
θ

E(X,y)∼µLtarget(y, f(X, θ)}. Before

giving the complete proof of Theorem 4.1, we assume the following assumptions and restate Theorem 4.1.

Assumption 4.1. For any θ∗1 , θ
∗
2 ∈ Θ∗, Qd(θ

∗
1) ≤ Qd(θ

∗
2) implies dep(θ∗1) ≤ dep(θ∗2) and Qw(θ

∗
1) ≤

Qw(θ
∗
2) implies wid(θ∗1) ≤ wid(θ∗2).

Assumption 4.2. The loss function Ltarget(θ) is a sub-analytic function related to θ.

Assumption 4.3. For any θ∗1 , θ
∗
2 ∈ Θ∗, ∥θ∗1 − θ∗2∥2 ≤ Mb < +∞.

Theorem 4.1. Suppose that Assumptions 4.1, 4.2 and 4.3 hold. Let θ̂ be the estimator of equation 3, if
λ0 = op(1), λ1 = op(λ0) and the statistical error Sn = op(λ1), we deduce that

P(dep(θ̂) = lθ) → 1, P(wid(θ̂) = wθ(lθ)) → 1, d(θ̂,Θ∗)=̂ min
θ∗∈Θ∗

∥θ̂ − θ∗∥2 = op(1). (6)

Proof. For simplicity, we denote L̂(θ) = 1
n

∑n
i=1 Ltarget(yi, f(Xi, θ)) and L(θ) =

E(X,y)∼µLtarget(y, f(X, θ). Due to the definition of θ̂, for any θ∗ ∈ Θ∗, we have

L̂(θ̂) + λ0Qd(θ̂) + λ1Qw(θ̂) ≤ L̂(θ∗) + λ0Qd(θ
∗) + λ1Qw(θ

∗)

⇐⇒L̂(θ̂)− L̂(θ∗) + λ0(Qd(θ̂)−Qd(θ
∗)) + λ1(Qw(θ̂)−Qw(θ

∗)) ≤ 0.
(7)

Since Qd(θ) and Qw(θ) are both Lipschitz functions, then there exists a constant c2 such that

L(θ̂)− L(θ∗) ≤ L(θ̂)− L̂(θ̂)− L(θ∗) + L̂(θ∗) + λ0(Qd(θ
∗)−Qd(θ̂)) + λ1(Qw(θ

∗)−Qw(θ̂))

≤ |L(θ̂)− L̂(θ̂)|+ |L(θ∗)− L̂(θ∗)|+ λ0(Qd(θ
∗)−Qd(θ̂)) + λ1(Qw(θ

∗)−Qw(θ̂))

≤ Op(Sn) + (λ0 + λ1)c2∥θ∗ − θ̂∥2.

(8)

The first inequality arises from the fact that the term is smaller than its sum with a positive value and Sn is
the statistic error (Jiao et al., 2023; Dinh & Ho, 2020) of any θ ∈ Θ in the third inequality. Mathematically,
denote the class of neural network is F . The statistical error Sn can be bounded by the pseudo dimension of
F , denoted by Pdim(F). In particular, if both the architecture and activation functions within F remain fixed,
it follows that Pdim(F) = VCdim(F) (Bartlett, 1996), where VCdim(F) is the Vapnik-Chervonenkis (VC)
dimension of F , which can be further bounded by width, depth and the number of parameters of F (Jiao
et al., 2023; Bartlett et al., 2019). There are several existing results on the statistical error. Chen et al. (2020a)
demonstrate that it scales as Op(n

− β
2β+d) where β is the smoothness index of true function class and d is the

input dimension. This rate can be further refined to Op(n
− β

2β+d∗), where d∗ is the intrinsic dimension of data
(Nakada & Imaizumi, 2020).

On the one hand, Θ∗ is the zero set of L(θ̂)− L(θ∗). Denote η = argmin
θ∗∈Θ∗

∥θ∗ − θ̂∥2. Hence, by Lemma A.1

and Assumption 4.2, there exists constants c1 > 0 and v > 2 such that

c1d(θ̂,Θ
∗)v = c1∥η − θ̂∥v2 ≤ L(θ̂)− L(η) ≤ Op(Sn) + (λ0 + λ1)c2∥η − θ̂∥2. (9)

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2025

On the other hand, Using the Young’s inequality, there exists a constant c1 such that

c2(λ0 + λ1)∥η − θ̂∥2 ≤ 1

v

(
(c1v)

1/v

2
∥η − θ̂∥2

)v

+
v − 1

v

(
2c2

(c1v)1/v
(λ0 + λ1)

)v/(v−1)

=
c1
2
∥η − θ̂∥v2 +

(v − 1)(2c2)
v/(v−1))

v(c1v)1/(v−1)
(λ0 + λ1)

v/(v−1).

(10)

Combining the two inequality, we have

c1
2
∥η − θ̂∥v2 ≤ Op(Sn) +

(v − 1)(2c2)
v/(v−1))

v(c1v)1/(v−1)
(λ0 + λ1)

v/(v−1). (11)

Collate the above results, we have

d(θ̂,Θ∗) = Op((Sn + (λ0 + λ1)
v/(v−1))1/v). (12)

equation 12 indicates that if λ0, λ1 = op(1), d(θ̂,Θ∗) will vanishes with probability going to 1, i.e.
d(θ̂,Θ∗) = op(1) and θ̂ → Θ∗.

Furthermore, by equation 7, for any θ∗ ∈ Θ∗, we have

L̂(θ̂) + λ0Qd(θ̂) + λ1Qw(θ̂) ≤ L̂(θ∗) + λ0Qd(θ
∗) + λ1Qw(θ̂)

⇐⇒ λ0Qd(θ̂) ≤ λ0Qd(θ
∗) + λ1(Qw(θ̂)−Qw(θ

∗)) + L̂(θ∗)− L(θ∗)− L̂(θ̂) + L(θ̂) + L(θ∗)− L(θ̂)

⇐⇒ Q(θ̂) ≤ Q(θ∗) +
λ1

λ0
∥θ̂ − θ∗∥2 +Op(

1

λ0
Sn)

⇐⇒ Q(θ̂) ≤ Q(θ∗) +
λ1

λ0
d(θ̂,Θ∗) +

λ1

λ0
Mb +Op(

1

λ0
Sn).

(13)
The third inequality arises from that Qw(θ) is a Lipschitz function and the final inequality is because of
triangle inequality and Assumption 4.3. Consequently, in equation 13, if λ1 = o(λ0) and Sn = op(λ0),
we deduce that Q(θ̂) ≤ Q(θ∗) as n → ∞. Due to the arbitrariness of θ∗ and Assumption 4.1, we have
P(dep(θ̂) = lθ) → 1 as n → ∞.

Finally, to prove that θ̂ can achieve the minimal width, we denote Θ̄∗ = {γ∗ : γ∗ ∈ Θ∗, dep(γ∗) = lθ},
which is the optimal parameter set with minimal depth. Then, we can construct an θ̄∗ ∈ Θ̄∗ such that
Qd(θ̄) = Qd(θ̂) and wid(θ̄) = wθ(lθ). This construction always exists due to the unidentifiability of neural
network. Therefore, by equation equation 7 again, we have

L̂(θ̂) + λ0Qd(θ̂) + λ1Qw(θ̂) ≤ L̂(θ̄∗) + λ0Qd(θ̄
∗) + λ1Qw(θ̄

∗)

⇐⇒ L̂(θ̂) + λ1Qw(θ̂) ≤ L̂(θ̄∗) + λ1Qw(θ̄
∗)

⇐⇒ Qw(θ̂) ≤ Qw(θ̄
∗) +Op(

1

λ1
Sn)

(14)

Hence, if Sn = op(λ1), we deduce that Qw(θ̂) ≤ Qw(θ̄) as n → ∞. By Assumption 4.1, we have
P(wid(θ̂) = wθ(lθ)) → 1 as n → ∞.

A.2 RELATED LEMMAS

To provide a polynomial convergence rate of θ̂, we need the following Lemma.

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2025

Lemma A.1. There exist c1 > 0 and v > 2 such that L(θ) − L(θ∗) ≥ c1d(θ,Θ
∗)v for all θ ∈ Θ and

θ∗ ∈ Θ∗.

Proof. Firstly, since L(θ) is sub-analytic related to θ by Assumption 4.2, the excess risk gL(θ) = L(θ)−L(θ∗)
is also sub-analytic in θ. Thus Θ∗ is the zero level-set of the sub-analytic function gL(θ). By Lojasiewicz
inequality (Ji et al., 1992; Colding & Minicozzi, 2014; Bolte et al., 2006) for algebraic varieties, there
exists positive constants c′1 > 0 and v > 2 such that d(θ,Θ∗)v ≤ c′1|gL(θ)| ∀θ ∈ Θ, which completes the
proof.

B DETAILED IMPLEMENT DETAILS AND MORE RESULTS

B.1 ALGORITHMS

We implement the proposed AMSC by Algorithm 1. Since the parameters trained with group lasso may
not converge exactly to zero, we use a threshold to preserve the important layers and filters after training.
Additionally, the group lasso penalty may shrink the remaining parameters (Tibshirani, 1996; Zou, 2006),
potentially compromising performance. Therefore, we train the pruned model with slight extra budgets by
continue optimizing equation 3 without penalty terms.

Algorithm 1: Adaptive Multi-dimensional Structured Compression

Require: A baseline model θ̂, penalty parameters λ0 and λ1, pruning thresholds τ0 and τ1;
Output: A compressed model;

1: Compute λ(l) and λ(l, j) based on θ̂ by equation 4;
2: for number of training iterations do
3: Compute the loss by equation 3;
4: Update parameters;
5: end for
6: Prune the depth units whose L2 norms are smaller than τ0;
7: Prune the width units whose L2 norms are smaller than τ1;
8: for number of penalty-free training iterations do
9: Compute the loss by equation 3 without penalty terms (λ0 = 0, λ1=0);

10: Update the remained parameters;
11: end for
12: return compressed model.

B.2 THE ARCHITECTURE MODIFICATION OF VGGS

To maintaining the network connectivity when compressing the depth of VGGs, we modify the convolution
operation as zl = ReLU(wl ∗ zl−1) = ReLU(w̃l ∗ zl−1 + zl−1), where wl, w̃l are the learned 3 ×
3 convolutional kernels and ∗ is the convolution operator. As the convolution operation is linear, This
reformulation does not compromise the expressive capacity of the convolutional layers. Consequently, given
ReLU(ReLU(x)) = ReLU(x), if w̃l = 0, we deduce

zl = ReLU(zl−1) = ReLU(ReLU(wl−2 ∗ zl−2) = ReLU(wl−2 ∗ zl−2) = zl−1.

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2025

B.3 EXPERIMENTAL SETTINGS

For publicly available pretrained models, such as DeiT series, we directly use them as the baselines. Otherwise,
we train all networks from scratch to establish baseline models. 1 In the implementation of AMSC, following
Chen & Zhao (2019) and Wang et al. (2019), the depth penalty is only enforced on the layers (blocks)
between each pair of shortcut endpoints, excluding the first convolutional layer. Unless otherwise stated, the
optimization algorithm, initial network values, learning rates, and schedules remain consistent between the
proposed method and the baseline. All computations are performed using PyTorch (Paszke et al., 2019) in
Python. The detailed training settings are as follows:

Training settings: For base models trained on CIFAR-10, we set batch size to 64 for DenseNet40 and 128
for ResNet56/110, respectively. Weight decay is set to 10−4. The DenseNets are trained for 160 epochs with
the learning rate starting from 0.1 and divided by 10 at epochs 80 and 120. And the ResNets are trained
for 200 epochs with the learning rate starting from 0.1 and divided by 10 at epochs 100 and 150. These are
all the the most training settings (He et al., 2016; Huang et al., 2017) for models trained on CIFAR-10. On
CIFAR-100, the training settings for ResNet56 are the same as that in CIFAR-10. For VGG16/19, the batch
size is 128 and the weight decay is 10−4. The VGGs are trained for 200 epochs with the learning rate starting
from 0.1 and divided by 5 at epochs 60, 120 and 160. These are also common used settings (Liu et al., 2017;
Lin et al., 2020). On ImageNet, following (He et al., 2016), we train ResNet34 for 90 epochs with batch size
is 256 and the learning rate starting from 0.1 and divided by 10 at epochs 30 and 60. For DeiT, we follow the
standard training configurations as stated in Touvron et al. (2021). The pruning threshold are set as follows.
For all CNNs experiments, we set depth pruning threshold τ0 = 0.5 and width pruning threshold τ1 = 0.01,
while for DeiT, τ0 = 1.0 and τ1 = 0.01. Finally, in the extra penalty-free training phase, we apply a linear
learning restarting strategy (Zimmer et al., 2022). Specifically, the initial learning rate is 0.1 for all models on
CIFAR-10/100 with 100 epochs and 0.01 for ResNet34 on ImageNet with 240 epochs. In addition, the DeiT
experiments do not involve extra training budgets, following Lin et al. (2024).

The selection strategy for penalty parameters and their settings. In AMSC, λ0 controls depth and λ1

controls width. Following our depth-first strategy, these parameters are selected sequentially. Specifically, λ0

is first selected by minimizing predictive error in the validation dataset without considering width compression
(λ1 = 0). Then, keeping λ0 fixed at the selected value, λ1 is chosen to specify the width. On CIFAR-10/100,
λ0 is chosen in {0.1, 0.5, 0.8, 1, 5, 8}, λ1 is chosen in {0.0001, 0.0005, 0.0008, 0.001, 0.002, 0.003}. On
ImageNet, for ResNet34 and ResNet50, λ0 is chosen in {0.05, 0.06, 0.07, 0.08, 0.09} and λ1 is chosen in
{0.00001, 0.00002, 0.00003}. For DeiT, both λ0 and λ1 are chosen from {0.00001, 0.00002, 0.00003}.

B.4 MORE RESULTS ON CIFAR-10/100

Experimental results on CIFAR-10 for VGG16, and CIFAR-100 for ResNet56, VGG16, and VGG19 are
summarized in Table 5. For CIFAR-10, AMSC achieves a more sufficient compression results with perfor-
mance guarantee. For CIFAR-100, across all three architectures, AMSC consistently achieves significantly
fewer FLOPs and reduced parameter counts when compared to existing methods, while maintaining a rel-
atively similar accuracy reduction. For ResNet56, although DLRFC (He et al., 2022) achieves a higher
accuracy decrement, AMSC delivers a substantial decrease in FLOPs (58.92M vs. 92.87M) accompanied by
a comparable decrease in accuracy (-0.44% vs. 0.27%). Similar patterns are observed for VGG16, where
AMSC and APIB (Guo et al., 2023a) present analogous outcomes. In the case of VGG19, methods such as

1The baseline models used in this study are directly implemented from the following GitHub repositories:
ResNet56/110: https://github.com/akamaster/pytorch_resnet_cifar10;
ResNet34: https://github.com/pytorch/examples/tree/main/imagenet;
DenseNet: https://github.com/andreasveit/densenet-pytorch;
VGG: https://github.com/weiaicunzai/pytorch-cifar100/tree/master;
DeiT: https://github.com/facebookresearch/deit.

20

https://github.com/akamaster/pytorch_resnet_cifar10
https://github.com/pytorch/examples/tree/main/imagenet
https://github.com/andreasveit/densenet-pytorch
https://github.com/weiaicunzai/pytorch-cifar100/tree/master
https://github.com/facebookresearch/deit

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2025

Table 5: Performance comparisons for ResNet56, VGG16 and VGG19 on CIFAR-100. Pruned and Acc.↑ denote pruned
accuracy and relative accuracy increase, respectively. The positive values in Acc.↑ are colored by blue and the best scores
in each block are highlighted via bold text.

Dataset Architecture Methods W D Baseline(%) Pruned(%) Acc↑(%) FLOPs(M) Params.(M)

CIFAR-10 VGG16

SDN(Chen & Zhao, 2019) ✓ 93.50 93.47 -0.03 191.38 1.79
GAL(Lin et al., 2019b) ✓ ✓ 93.96 92.03 -1.93 189.49 3.36
HRank(Lin et al., 2020) ✓ 93.96 93.43 -0.53 145.61 2.51
ELC(Wu et al., 2023) ✓ 93.56 93.25 -0.31 144.90 -

APIB(Guo et al., 2023a) ✓ 93.68 94.08 0.40 125.30 3.55
CPMC(Yan et al., 2021) ✓ 93.68 93.40 -0.28 106.50 -

AMSC(Ours) ✓ ✓ 93.60 93.46 -0.14 100.98 1.96

CIFAR-100

ResNet56

DLRFC(He et al., 2022) ✓ 71.14 71.41 0.27 92.87 -
SDN(Chen & Zhao, 2019) ✓ 70.01 69.78 -0.23 78.40 0.55
LPSR(Zhang & Liu, 2022) ✓ 71.39 70.17 -1.22 60.20 0.54
PGMPF(Cai et al., 2022) ✓ 72.92 70.21 -2.71 58.98 -
APIB(Guo et al., 2023a) ✓ 72.52 70.89 -1.63 58.98 -

AMSC(Ours) ✓ ✓ 70.05 69.61 -0.44 58.92 0.49

VGG-16

SDN(Chen & Zhao, 2019) ✓ 72.38 73.43 1.05 210.18 3.12
CPGMI(Lee et al., 2020) ✓ 73.80 73.53 -0.27 197.34 -
CPMC(Yan et al., 2021) ✓ 73.80 73.01 -0.79 162.88
PGMPF(Cai et al., 2022) ✓ 73.80 73.66 -0.14 162.88 -
APIB(Guo et al., 2023a) ✓ 73.80 73.89 0.09 162.88 -

AMSC(Ours) ✓ ✓ 73.61 73.54 -0.07 148.20 2.58

VGG-19
Slimming(Liu et al., 2017) ✓ 73.26 70.92 -2.34 127.00 -

ELC(Wu et al., 2023) ✓ 71.28 70.03 -1.25 124.50 -
AMSC(Ours) ✓ ✓ 72.18 71.73 -0.45 133.94 2.34

Slimming (Liu et al., 2017) and ELC (Wu et al., 2023) sacrifice accuracy to compress the network. In stark
contrast, AMSC achieves comparable reductions in FLOPs with negligible loss in accuracy. These results
underscore AMSC’s capability to preserve accuracy while achieving a minimal architecture. Furthermore,
the architectures optimized via AMSC for both VGG16 and VGG19 demonstrate comparable accuracy and
FLOPs. This consistency again shows the existence of a minimal architecture that is robust across various
initial architectures and the ability of AMSC to achieve it.

B.5 MORE EMPIRICAL VERIFICATION OF ASSUMPTION 4.1

We verify the monotonic relationship between dep(θ) and Qd(θ) for any θ∗ ∈ Θ∗ in Figure 5 based on six
ResNets on CIFAR-10.

We verify the monotonic relationship between dep(θ) and Qd(θ) for any θ∗ ∈ Θ∗ in various width in Figure
6 based on ResNet56 on CIFAR-10.

B.6 MORE RESULTS ABOUT THE INFLUENCE OF λ0 AND λ1

We further demonstrate the influence of λ0 in Figure 7 based on various ResNets on CIFAR-10. All results
show a similar pattern.

B.7 INFLUENCE OF PRUNING THRESHOLDS

We investigate the influence of pruning thresholds in this section. Because of the adaptive weight in penalty
terms where the weights for unimportant components are considerably large, the L2 norm of the unimportant
components are almost zero when using AMSC. As shown in Table 6, the L2 norm of pruned layers (filters)
is markedly smaller than that of remained layers (filters). Hence, the threshold can be easily set and the final
network structure is quite robust to the threshold.

21

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2025

Figure 5: Relationship between dep(θ) and Qd(θ) for any θ∗ ∈ Θ∗ in different architectures. The accuracy
of each point meets or exceeds the baseline and varies by less than 1% across different points within the same
architecture. Therefore, these points can be approximately considered as elements of Θ∗.

Figure 6: Relationship between dep(θ) and Qd(θ) for any θ∗ ∈ Θ∗ for ResNet56 on different width. The
accuracy of each point meets or exceeds the baseline and varies by less than 1% across different points within
the same architecture. Therefore, these points can be approximately considered as elements of Θ∗.

Table 6: The L2 norm of pruned and remained layers (filters)

Datasets Architecture Pruned layers Remained layers Pruned filters Remained filters

CIFAR-10 ResNet56 0.012 4.578 0.001 0.811
ImageNet ResNet34 0.030 12.196 0.002 0.881
ImageNet DeiT-tiny 0.091 11.971 0.005 0.433

22

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2025

(a) ResNet56(1x) (b) ResNet110(1x) (c) ResNet164(1x)

(d) ResNet26(4x) (e) ResNet32(4x) (f) ResNet38(4x)

Figure 7: The accuracy and depth of different ResNets vary with the penalty parameter λ0 on CIFAR-10. In each figure,
the left Y-axis denotes the accuracy and the right Y-axis denotes the depth.

23

	Introduction
	Related works
	Adaptive Multi-dimension compression
	Consistency in architecture selection
	Experiments
	Implement details and experimental settings
	Results and Analysis
	Ablation study and discussion
	An empirical verification of assumption 4.1
	The influence of 0 and 1
	Choice of (l) and (l,j)
	Multi-dimensional compression v.s. Single-dimensional compression
	Training budgets and Inference time

	Conclusion
	Proof of main theorems in Section 4
	Proof of Theorem 4.1
	Related lemmas

	Detailed implement details and more results
	Algorithms
	The architecture modification of VGGs
	Experimental settings
	More Results on CIFAR-10/100
	More empirical verification of Assumption 4.1
	More results about the influence of 0 and 1
	Influence of pruning thresholds

