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Abstract

As more ICU EHR data becomes available, the interest in developing clinical
prediction models to improve healthcare protocols increases. However, lacking data
quality still hinders clinical prediction using Machine Learning (ML). Many vital
sign measurements, such as heart rate, contain sizeable missing segments, leaving
gaps in the data that could negatively impact prediction performance. Previous
works have introduced numerous time-series imputation techniques. Nevertheless,
more comprehensive work is needed to compare a representative set of methods
for imputing ICU vital signs to determine the best practice. In reality, ad-hoc
imputation techniques that could decrease prediction accuracy, like zero imputation,
are still used. In this work, we compare established imputation techniques to
guide researchers in improving clinical prediction model performance by choosing
the most accurate imputation technique. We introduce an extensible, reusable
benchmark with, currently, 15 imputation and 4 amputation methods created for
benchmarking on major ICU datasets. We hope to provide a comparative basis and
facilitate further ML development to bring more models into clinical practice.
Software Repository: https://github.com/rvandewater/YAIB

1 Introduction

Real-world environments like medical treatment centers often collect large amounts of data through
administration, tests, and monitoring equipment. Although patients get monitored frequently during
their ICU stay, many practical issues can lead to data loss and missingness; data quality is an ongoing
issue for clinical prediction modeling. Some of this is by design (an infrequent sample rate due to
staff shortage) or unintentionally (monitoring devices lose connection). Clinical prediction is a field
that emerged from Electronic Health Record (EHR) data that was formerly used for administration.
For example, we could predict mortality [2] or sepsis [26] within the ICU. In order to utilize EHRs to
create useful clinical models, the standard practice in ML is to use imputation methods, which are
algorithms to fill in missing data. Similarly to the increase of advanced methods in ML and Deep
Learning (DL) in recent years, the field of imputation has also rapidly developed, leaving us with the
question of which technique to use [50]. Additionally, we note that there could be a difference of the
performance of imputation methods when considering downstream tasks like the aforementioned
sepsis and mortality [36, 51].

Our work analyses three large open-access ICU datasets with four types and three quantities of
missingness in vital signs. In total, we benchmark 15 different models for imputation. This selection
includes numerous techniques, including recently introduced generative models (Diffusion) and
attention-based techniques. The methods are incorporated within a benchmarking framework to allow
for the replication of our experiments and reuse on current and future datasets. This setup allows
researchers to build upon our results and create, benchmark, and compare imputation methods on
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standard ICU datasets. Lastly, we provide a straightforward experiment pipeline to apply imputation
to any clinical dataset of choice.

2 Background & Related Work

2.1 Types of missingness

We define missingness as the absence of data where it is unexpected. For example, an absence of data
is expected when we consider time-series observations below the technical sampling frequency of a
vital sign recording device. We identify four significant types of missingness in this work: missing
completely at random (MCAR), missing at random (MAR), missing not at random (MNAR), and
Blackout (BO). Below, each method and the implementation in our framework to simulate this type
of missingness is detailed; we call the latter the amputation mechanism as it removes data to assess
imputation performance.

MCAR refers to where missingness introduces no statistical bias. For example, in a clinical trial, a
recording of a group of patients might be missing due to failing equipment. MAR does introduce
a bias, but this bias is systematically related exclusively to observed data. For example, we record
the sex as a response to a survey, and men are less likely to respond. With MNAR, data are missing,
that are systematically related to unobserved factors (i.e., events not measured in the experiment).
We again take the survey example but assume that sex is not recorded in this case; this gives us a
scenario where it is hard to account for bias introduced by the missingness. For BO an entire subset
of data is missing for several features during several timesteps and dimensions (or features). This
type of missingness is less commonly tested but has a basis in existing literature [1].

2.2 Datasets

We have used three major ICU datasets in our work provided in the Yet Another ICU Benchmark
(YAIB) [45] experiment framework. The framework already implements a flexible framework for
downstream tasks using most open access ICU datasets, thus, we judge it a good basis to further
expand. The MIMIC-III dataset [21] is the most commonly used ML prediction [42]. The newer
MIMIC-IV (MIIV) includes several improvements, including more and newer patient records and a
revised structure including regular hospital information; we use this version for our experiments. The
eICU Collaborative Research Database (eICU) [31] is the first sizable multi-center dataset. The High
tIme Resolution ICU dataset (HiRID) was collected at Bern University Hospital, Switzerland, and
has incorporated more observations than the other datasets [15]. A more comprehensive overview
can be found in Table 3 and Sauer et al. [35].

Choice of Features For our comparison of imputation methods, we chose six temporal vital signs
that showed significantly lower missingness than other recorded variables for each dataset: heart rate
(hr), respiratory rate (resp), oxygen saturation (o2sat), mean arterial pressure (map), systolic blood
pressure (sbp), and diastolic blood pressure (dbp). The nature of ICU data recording likely causes this
pattern: monitoring equipment is usually continuously attached and allows for non-invasive recording,
whereas, for example, lab values are taken at most several times per day and involve manual labor.
We select these variables from the 52 (4 static, 48 temporal) variables in the harmonized datasets
(downsampled to hour [45]) to ensure we have enough ground truth data to assess any imputation
method’s performance accurately. Figure 4 show missingness correlation between these features;
Figure 5 aims to explore informative missingness by comparing the population that died within the
ICU with those who survived.

2.3 Imputation methods

We have conducted a systematic literature review to discover promising imputation technologies.
Table 1 shows the imputation methods we benchmark in this work. We distinguish several categories,
as shown on the left side of the table. Baselines are still commonly used in many applications of
data preparation of ML modeling as they are deterministic and computationally cheap. Algorithmic
methods [4, 40], use statistical assumptions on the data to create iterative algorithms; the methods
are robust for simpler data. We include several Deep Learning (DL) methods, including a simple
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TABLE 1: Overview of the implemented imputation methods.

Abbreviation Original Publication Year Source Novelty

N
ai

ve
Zero - ω [28]1 Baseline
Median - ω [28]1 Baseline
Mean - ω [28]1 Baseline
MostFrequent - ω [28]1 Baseline

A
lg

o. MICE Buuren et al. [4] 2011 ω [18]2 Equation based benchmark
MissForest Stekhoven et al. [40] 2012 ω [18]2 Random forest based

D
ee

p
le

ar
ni

ng

MLP Junninen et al. [22] 2004 σ DL baseline

R
N

N BRITS Cao et al. [5] 2018 ω [9]4 Bidirectional RNN
GRU-D Che et al. [6] 2018 α [7]3 Bidirectional LSTM/GRU
M4IP Shi et al. [38] 2021 α [7]3 State decay RGRU-D

A
tt

. Attention Vaswani et al. [46] 2017 ω [9]4 Attention-based approach
Neural Processes Garnelo et al. [12] 2018 σ First Neural Processes
SAITS Du et al. [10] 2022 ω [9]4 SOTA Attention-based

G
en

. Diffusion Ho et al. [14] 2020 σ [27]5 Prob. Diff. model
CSDI Tashiro et al. [44] 2022 α [44]6 Conditional Diff. model

ω Wrapper framework α Adapted using open-acces code σ Self-implemented based on paper description 1 https://github.com/scikit-learn/scikit-learn
2 https://github.com/vanderschaarlab/hyperimpute 3 https://github.com/Graph-Machine-Learning-Group/grin 4https://github.com/
WenjieDu/PyPOTS 5 https://github.com/diff-usion/Awesome-Diffusion-Models 6 https://github.com/ermongroup/CSDI

Multilayer Perceptron. RNN-based methods [5, 6, 38] have traditionally performed well on time-
series prediction and imputation. Attention methods [10, 12, 46] have developed rapidly in the
past years and shown potential for various prediction tasks. Generative include the more recent
diffusion models [14, 44]. Although these methods are more complex than previous methods, they
have significantly impacted the field of DL in recent years.

Medical time series imputation benchmarks We recognize several earlier attempts at collecting
and benchmarking imputation methods [16, 18, 24, 29, 32, 36, 41] (Table 4). Jäger et al. [16]
investigated the performance of six imputation methods; however, there was no medical time-series
among the tested datasets. Perez-Lebel et al. [30] focused on ML and algorithmic methods of
imputation; they do not include any DL imputation methods in the analysis. Psychogyios et al. [32]
conducted a benchmark of imputation methods on a closed-source tabular dataset. Luo [24] reports
on a challenge; the investigated dataset and methods limit the applicability to current data. Jarrett
et al. [18] introduces the HyperImpute framework; we provide a more comprehensive medical vital
sign analysis [11]. Sun et al. [41] investigates nine imputation methods on medical datasets. However,
they do not provide an open-access extensible framework for implementing the imputation methods
in a downstream task. Finally, Shadbahr et al. [36] investigates five imputation methods; the choice
of methods and datasets is limited compared to our approach.

Our work uses a variety of missingness patterns. It allows for evaluating both the imputation
and downstream classification task, ensuring that the benchmarks indicate real-world performance.
Additionally, we utilize three ICU datasets and provide a transparent, publicly available, experimental
setup, ensuring reproducibility and enabling easier comparison of results. Future work includes more
imputation methods (>25 in total, see Table 4) results once we have verified their implementation.

3 Comparing imputation technique performance

We provide a standardized interface for imputation methods. We have utilized this to 1) wrap interfaces
of earlier frameworks [18, 28], 2) adapt open-source code to our interface [1, 7, 44], and 3) create
imputation methods without an existing code-base. We use the Hyperimpute [18] and PyPOTS [9]
frameworks as we judged them to be stable and flexible enough to use. The rest of the methods
are implemented directly in YAIB [45]. Hyperparameter tuning was performed for the DL and ML
methods. Both the methods from the imputation packages and the methods implemented within
YAIB are wrapped in an ImputationWrapper interface, which derives from a Pytorch-lightning
DLWrapper module (see Appendix D to implement new imputation methods). Additionally, we
developed the ampute_data(missing_type, missing_amount) functionality which generates
the dataset with artificially introduced missing values and a boolean mask indicating their location.
The code is provided in the appendix. Using this function, one can quickly generate datasets with
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different types and levels of missingness to test and evaluate current and future imputation methods.
We shortly describe the implementation of each missingness technique.

The MCAR amputation mechanism generates missing values randomly without considering any
additional input from the data or its characteristics. For the MAR amputation mechanism, we select a
subset of fully observed variables. Then, missing values are introduced to the remaining variables by
a logistic model [25]. The proportion of missing values in these variables is re-scaled to match the
desired proportion of overall missingness. The MNAR also utilizes a logistic masking model. We
split the variables into a set of inputs for a logistic model and a set whose missing probabilities are
determined by the logistic model. The coefficients for the logistic masking model are selected such
that W⊤x has a unit variance, where W is the subset of observed variables, and x is the corresponding
missing variable [39]. Then, inputs are masked; the missing values from the second set will depend
on masked values. Finally, the BO implementation takes a proportion of missing values; the function
randomly selects rows in the data matrix and sets all their values to missing.

We have chosen Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Jensen-Shannon
Divergence (JSD) (lower is better for each) as evaluation metrics to show 1) the averaged error
over every time-series 2) penalize higher individual errors more strongly, and 3) demonstrate if an
imputation method is capable of reconstructing the original distribution.
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FIGURE 1: Performance in MAE across the selected imputation methods in three dimensions. Top: imputation
methods separated by missingness proportion for MNAR. Middle: aggregated performance per missingness
type. Bottom: aggregated performance for each dataset.
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TABLE 2: The three best RNN, Attention, and Generative type imputation methods. We embolden the best
method per missingness type and metric including those within a standard deviation (±).

Missingness Metric GRU-D Attention CSDI

MCAR
RMSE 5±0 374±4 4±0
MAE 0.18±0.00 0.14±0.00 0.15±0.00
JSD 0.02±0.00 0.02±0.00 0.02±0.00

MAR
RMSE 5±0 372±32 6±4
MAE 0.19±0.02 0.13±0.01 0.18±0.08
JSD 0.04±0.01 0.02±0.00 0.03±0.01

MNAR
RMSE 5±0 419±27 5±0
MAE 0.20±0.01 0.16±0.01 0.17±0.01
JSD 0.03±0.00 0.02±0.00 0.02±0.00

BO
RMSE 5±0 485±30 5±1
MAE 0.18±0.00 0.20±0.02 0.19±0.00
JSD 0.03±0.00 0.03±0.01 0.02±0.00

3.1 Results

We performed experiments with the introduced amputation methods, datasets, and imputation methods
(Table 1). Figure 1 presents the results per imputation mechanism and the amount of missingness for
MAE. Results for RMSE (Figure 2) and JSD (Figure 3) can be found in the appendix.

The top graph compares imputation methods for missing not at random, a realistic missingness
type for ICU data. This plot shows that, as expected, higher missingness is harder to impute and
results in higher standard deviations. 30% missingness has at least half the MAE of 70%. In the
middle, we can conclude that BO and MNAR are generally the hardest to impute. Moreover, CSDI
has a high variance, which might indicate more iterations are needed for these experiments. The
below plot shows HiRID is generally the easiest to impute, followed by eICU. In these plots we
see that Attention imputation slightly bests the other methods for MAE in each of the dimensions
(missingness proportion, missingness type, and dataset).

Curiously, we do not observe a decisive trend which indicates that more recent models perform
better; a relatively older model, GRU-D, seems to compete with more sophisticated models. Table 2,
further describes the performance of the three best imputation techniques per category for each type
of missingness and performance metric. The results are comparable for MAE and JSD, where the
three methods are comparable; attention slightly besting the other methods. When it comes to RMSE,
however, GRU-D and CSDI demonstrate significantly better performance; this could indicate that
Attention imputation, along with several other methods (Figure 2), has a large error for the value
of individual predictions. If we require an algorithmic method, for example, we have no GPUs or
explainability is required, MICE seems to be the best choice. Lastly, naive methods have comparable
performance although median has the best performance across metrics.

4 Discussion

Whereas newer methods often promise SOTA performance, the results depend on the type of task,
and benchmarking may involve cherry-picking. RNN-type, attention, and generative models show
promise for imputing time-series vital signs. The best technique depends on the type of missingness,
the percentage of missingness, and the desired metric to minimize. We provide an openly accessible,
extensible, testbed to compare current and future imputation techniques on a medical dataset set of
choice using YAIB.

To make our comparison more robust, future work aims to include more diverse features, datasets,
types of imputation methods. Additionally, we recognize the importance of including downstream
task performance as well as a more thorough discussion on the clinical applicability of imputation
methods in terms. Our aim is to work towards a decision guide for machine learning in health that
can be used by clinicians and ML-researchers and increase common understanding.
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A Background and related work

TABLE 3: Supplemental details of openly accessible ICU datasets. Note that accessing each dataset requires
completing a credentialing procedure.

Dataset MIMIC-III / IV eICU HiRID
Stays* 40k / 73k 201k 34k
Version v1.4 / v2.2 v2.0 v1.1.1
Frequency 1 hour 5 minutes 2 / 5 minutes
Origin USA USA Switzerland
Published 2015 [21] / 2020 [20] 2017 [31] 2020 [15]
Benchmark [3, 13, 17, 19, 33, 43, 47]/ [48] [37, 43] [49]
Repository link Physionet/ Physionet Physionet Physionet

TABLE 4: Imputation benchmarks for medical time series.
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Task Imputation ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓
Downstream Task ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓

Methods Naive ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓
Algorithmic ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓
Machine Learning ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓
GAN-based ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓
RNN-based ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓
AE-based ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓
Attention-based ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Diffusion Models ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Neural Processes ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Available methods ¶ - - 5 - - 1 13 25
Benchmarked methods 6 9 5 5 8 12 13 15

Missingness MCAR ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓
MAR ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓
MNAR ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓
BO ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Native ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓

Datasets MIMIC† ✗ III III III ✗ III ✗ III/IV
eICU ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
HIRID ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
AUMCdb ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Other medical ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

Functionality Hyperparameter Tuning ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓
Code Availability ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓
Time-Series Data ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓
Data Amputation ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Extensibility ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓
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B Extended Results

Note that we aggregate the means and standard deviations over several different runs. We aim to get
a comprehensive result summarization with this method.

Figure 2 and Figure 3 display the results in the same manner as Figure 1 in the main text, but for
RMSE and JSD.

Table 5 shows the missingness results averaged over each dataset (row) and missingness mechanism
(grouped columns) for every metric (individual columns). Table 6 shows the RMSE and MAE for
each imputation metric over missingness quantities.
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FIGURE 2: Performance in RMSE across the selected imputation methods in three dimensions. Note that we use
a log scale for readability. Top: imputation methods separated by missingness proportion for MNAR. Middle:
aggregated performance per missingness type. Bottom: aggregated performance for each dataset.
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FIGURE 3: Performance in JSD across the selected imputation methods in three dimensions. Top: imputation
methods separated by missingness proportion for MNAR. Middle: aggregated performance per missingness
type. Bottom: aggregated performance for each dataset.

C Data characteristics

We have analyzed the datasets we used in this work to discover patterns that might be interesting for
imputation performance.

Figure 4 shows the missingness correlation of the features of each dataset. We can see that some
features are heavily missing at the same timestep, depending on the dataset. This can have impact on
the result of multiple imputation methods.

Figure 5 explores the concept of informative missingness: we observe a generally higher missingness
for survivors than for non-survivors, although this difference is not dramatic. We might ascribe this
to a clinical decision to monitor patients in a worse state more frequently.

Figure 6 models a single patient and the imputed values for different models for the six vital signs we
impute.
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TABLE 5: Results of all benchmarked imputation methods aggregated by missingness type averaged by dataset.

Type MCAR MAR MNAR BO
RMSE MAE JSD RMSE MAE JSD RMSE MAE JSD RMSE MAE JSD

Dataset
MIIV 325 0.32 0.07 305 0.30 0.06 362 0.38 0.08 505 0.52 0.10
eICU 604 0.33 0.07 527 0.28 0.06 634 0.36 0.07 978 0.53 0.10
HiRID 159 0.32 0.07 142 0.28 0.06 171 0.36 0.07 244 0.50 0.10

TABLE 6: Base results averaged over four amputation mechanisms and three datasets, grouped by missingness
level (30%, 50%, 70%). We embolden the best model per column and those within a standard deviation (±).
RMSE: Root Mean Squared Error (↓, i.e., lower is better), MAE: Mean Absolute Error (↓)

Missingness Quantity
30% 50% 70%

Model RMSE MAE RMSE MAE RMSE MAE
Zero 386.6±8 0.23±0.00 496.4±8.3 0.37±0.00 586.1±8.7 0.52±0.01
Median 391.6±10.2 0.22±0.01 503.9±11 0.37±0.01 597.6±12.2 0.52±0.01
Mean 387.4±8.6 0.23±0.00 498.8±9.6 0.38±0.01 635.7±12.4 0.53±0.01
MostFrequent 445.7±15.2 0.25±0.01 573±16.8 0.41±0.01 678.6±18.8 0.58±0.02
MICE 337.5±8.5 0.18±0.00 467.7±12.5 0.33±0.01 611.4±15.8 0.49±0.01
MissForest 349.1±5.8 0.19±0.00 497.3±23.1 0.36±0.02 672.7±62.6 0.59±0.06
MLP 5.9±0.1 0.20±0.00 7.6±0.1 0.33±0.01 9.0±0.1 0.47±0.01
BRITS 261.6±13.2 0.13±0.01 368.2±14.2 0.24±0.01 458.3±15.9 0.34±0.01
GRU-D 3.7±0.2 0.11±0.00 5.0±0.2 0.19±0.01 7.2±0.2 0.28±0.01
M4IP 4.3±0.2 0.13±0.00 5.8±0.2 0.23±0.01 8.1±0.2 0.33±0.01
Attention 179.4±7.1 0.08±0.00 258.1±11.4 0.15±0.01 343±18.6 0.24±0.01
NP 4.9±0.2 0.16±0.01 6.6±0.3 0.28±0.02 10.1±0.6 0.41±0.02
SAITS 180.8±8.8 0.08±0.00 267.7±17.5 0.16±0.01 369.1±22 0.28±0.02
Diffusion 6.6±0.1 0.23±0.00 8.5±0.1 0.38±0.00 10.0±0.1 0.53±0.01
CSDI 4.0±1.6 0.10±0.02 6.3±2.5 0.19±0.03 18.0±13.2 0.37±0.14

(A) eICU (B) MIMIC-IV

(C) HiRiD (D) HiRiD - 5-minute resolution

FIGURE 4: Missingness correlation of the selected features for each dataset.
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(A) eICU (B) MIMIC-IV (C) HiRiD

FIGURE 5: Missingness rate for five features with the highest difference in missing rates between the classes
survivor (blue) and non-survivor (red) in each dataset.

FIGURE 6: Imputed values across models for a single ICU patient.
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D Extensibility

We have added a range of imputation methods to YAIB [45], including interfaces to existing impu-
tation libraries [8, 18]. Here, we describe the addition of a recently introduced method that uses
conditional score-based diffusion models conditioned on observed data: the Conditional Score-based
Diffusion Model for Probabilistic Time Series Imputation (CSDI)[44]. To make the process of
implementing these models easier, we have created the ImputationWrapper class that extends the
pre-existing DLWrapper (itself a subclass of the LightningModule of Pytorch-lightning) with extra
functionality.

The CSDI model is a diffusion model that follows the general architecture of conditional diffusion
models [14]; It introduces noise into a subset of time series data used as conditional observations
to later denoise the data and predict accurate values for the imputation targets. CSDI is based on a
U-Net architecture[34] including residual connections.

[44] included two additional features into their model, which are inspired by DiffWave [23]: an
attention mechanism and the ability to input side information. The attention mechanism uses
transformer layers, as shown in Figure 7. An input with K features, L length, and C channels is
reshaped first to apply temporal attention and later reshaped again to apply feature attention. The
second additional feature allows side information to be used as input to the model by a categorical
feature embedding [44].

FIGURE 7: The attention mechanism of CSDI adapted from [44].

See Code Listing 1 for the most important implementation code: the model initialization. We note
that of this code, very little has been adapted from the original code repository1 included in the
original publication [44].

1https://github.com/ermongroup/CSDI/tree/main
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CODE LISTING 1: Implementing the CSDI architecture in YAIB. Note that our implementation is very similar
to the original github repository, which demonstrates the flexibility of implementing new models in YAIB.

1{
2def __init__(
3self, input_size, time_step_embedding_size, feature_embedding_size, unconditional, target_strategy,

num_diffusion_steps, diffusion_step_embedding_dim, n_attention_heads, num_residual_layers, noise_schedule,
beta_start, beta_end, n_samples, conv_channels, *args, **kwargs,

4):
5super().__init__(...)
6self.target_dim = input_size[2]
7self.n_samples = n_samples
8
9self.emb_time_dim = time_step_embedding_size
10self.emb_feature_dim = feature_embedding_size
11self.is_unconditional = unconditional
12self.target_strategy = target_strategy
13
14self.emb_total_dim = self.emb_time_dim + self.emb_feature_dim
15if not self.is_unconditional:
16self.emb_total_dim += 1 # for conditional mask
17self.embed_layer = nn.Embedding(num_embeddings=self.target_dim, embedding_dim=self.emb_feature_dim)
18
19input_dim = 1 if self.is_unconditional else 2
20self.diffmodel = diff_CSDI(
21conv_channels,
22num_diffusion_steps,
23diffusion_step_embedding_dim,
24self.emb_total_dim,
25n_attention_heads,
26num_residual_layers,
27input_dim,
28)
29
30# parameters for diffusion models
31self.num_steps = num_diffusion_steps
32if noise_schedule == "quad":
33self.beta = np.linspace(beta_start**0.5, beta_end**0.5, self.num_steps) ** 2
34elif noise_schedule == "linear":
35self.beta = np.linspace(beta_start, beta_end, self.num_steps)
36
37self.alpha_hat = 1 - self.beta
38self.alpha = np.cumprod(self.alpha_hat)
39self.alpha_torch = torch.tensor(self.alpha).float().unsqueeze(1).unsqueeze(1)
40
41}
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