
Under review as a conference paper at ICLR 2021

GENERALIZING TREE MODELS FOR IMPROVING PRE-
DICTION ACCURACY

Anonymous authors
Paper under double-blind review

ABSTRACT

Can we generalize and improve the representation power of tree models? Tree
models are often favored over deep neural networks due to their interpretable
structures in problems where the interpretability is required, such as in the clas-
sification of feature-based data where each feature is meaningful. However, most
tree models have low accuracies and easily overfit to training data. In this work,
we propose Decision Transformer Network (DTN), our highly accurate and inter-
pretable tree model based on our generalized framework of tree models, decision
transformers. Decision transformers allow us to describe tree models in the con-
text of deep learning. Our DTN is proposed based on improving the generalizable
components of the decision transformer, which increases the representation power
of tree models while preserving the inherent interpretability of the tree structure.
Our extensive experiments on 121 feature-based datasets show that DTN outper-
forms the state-of-the-art tree models and even deep neural networks.

1 INTRODUCTION

Can we generalize and improve the representation power of tree models? The tree models learn a
structure where the decision process is easy to follow (Breiman et al., 1984). Due to this attractive
feature of tree models, various efforts are being put to improve their performance or to utilize them
as subcomponents of a deep learning model (Kontschieder et al., 2015; Shen et al., 2018).

Compared to typical deep neural networks, the main characteristic of tree models is that input data
are propagated through layers without a change in their representations; the internal nodes calculate
the probability of an input x arriving at the leaf nodes. The decision process that determines the
membership of a training example, i.e., the process of constructing the subsets of training data at
each leaf, is the core operation in tree models, which we generalize and improve in this work.

Previous works on tree models consider the decisions at different nodes as separate operations, i.e.,
each node performs its own decision independently from the other nodes in the same layer, based
on the arrival probability of an input x to the node. The independence of decisions allows learning
to be simplified. However, in order to obtain a comprehensive view, the decisions of multiple nodes
must be considered simultaneously. Furthermore, a typical tree model with a depth of L requires
bL − 1 decision functions, where b is a branching factor, which makes it intractable to construct a
deep tree model.

In this work, we suggest that many tree models can be generalized to what we term as the decision
transformer as Proposition 1. A decision transformer generalizes existing tree models by treating
the decisions of each layer as a single operation involving all nodes in that layer. More specifically,
the decision transformer views each layer as a stochastic decision (Def. 2) which linearly transforms
the membership of each training data by a learned stochastic matrix (Def. 1). The aggregated layer-
wise view allows the decision transformer to reduce the complexity of analysis to O(L), where L is
the tree depth. Furthermore, formulating the tree models in a probabilistic context allows them to
be understood by the deep learning framework and provides us a theoretical foundation for deeply
understanding the advantages and the limitations of existing tree models in one framework.

The in-depth understanding of tree models as decision transformers allows us to propose Decision
Transformer Network (DTN), a novel architecture that inherits the interpretability of tree models
while improving their representation power. DTN is an extension of tree models into deep networks

1

Under review as a conference paper at ICLR 2021

that creates multiple paths between nodes based on stochastic decisions. We propose two versions
of DTN: DTN-D with full dense connections and DTN-S with sparse connections where the edges
are connected in a locality-sensitive form. Our experiments show that DTN outperforms previous
tree models and deep neural networks on 121 tabular datasets.

Our contributions are summarized as follows. First, we introduce a generalized framework for tree
models called the decision transformer and perform theoretical analysis on its generalizability and
interpretability (Section 3). Second, we propose dense and sparse versions of Decision Transformer
Network (DTN), our novel decision-based model that is both interpretable and accurate (Section 4).
Third, we undergo extensive experiments on 121 tabular datasets to show that DTN outperforms the
state-of-the-art tree models and deep neural networks (Section 5).

2 RELATED WORKS

A tree model refers to a parameterized function that passes an example through its tree-structured
layers without changing its representations. We categorize tree models based on whether it utilizes
linear decisions over raw features or neural networks in combination with representation learning.

Tree Models with Linear Decisions Traditional tree models perform linear decisions over a raw
feature. Given an example x, decision trees (DT) (Breiman et al., 1984) compare a single selected
element to a learned threshold at each branch to perform a decision. Soft decision trees (SDT) (Irsoy
et al., 2012) generalize DTs to use all elements of x by a logistic classifier, making a probabilistic
decision in each node. SDTs have been widely studied and applied to various problems due to its
simplicity (Irsoy & Alpaydin, 2015; Frosst & Hinton, 2017; Linero & Yang, 2018; Yoo & Sael,
2019). Deep neural decision trees (Yang et al., 2018) also extend DTs to a multi-branched tree by
splitting each feature element into multiple bins. These models provide a direct interpretation of
predictions and decision processes. There are also well-known ensembles of such linear trees, such
as random forests (Breiman, 2001) and XGBoost (Chen & Guestrin, 2016). These ensemble models
tboost the performance of tree models at the expense of interpretability.

Tree Models with Representation Learning There are recent works combining tree models with
deep neural networks, which add the ability of representation learning to the hierarchical decisions
of tree models. A popular approach is to use abstract representations learned by convolutional neural
networks (CNNs) as inputs of the decision functions of tree models (Kontschieder et al., 2015; Roy
& Todorovic, 2016; Shen et al., 2017; 2018; Wan et al., 2020), sometimes with multilayer percep-
trons instead of CNNs (Bulò & Kontschieder, 2014). Another approach is to categorize raw exam-
ples by hierarchical decisions and then apply different classifiers to the separate clusters (Murthy
et al., 2016). There are also approaches that improve the performance of deep neural networks by
inserting hierarchical decisions as differentiable operations into a neural network, instead of build-
ing a complete tree model (Murdock et al., 2016; McGill & Perona, 2017; Brust & Denzler, 2019;
Tanno et al., 2019). In this work, we focus on models having complete trees in its structure.

3 GENERALIZING TREE MODELS

We first introduce a decision transformer, our unifying framework that represents a tree model as a
series of linear transformations over probability vectors. We then analyze the properties of decision
transformers: the generalizability to existing tree models and the interpretability.

3.1 DECISIONS TRANSFORMERS

Definition 1 (Stochastic matrix). A matrix T is (left) stochastic if T ≥ 0 and
∑

i aij = 1 for all j.
A vector p is stochastic if it satisfies the condition as a matrix of size |p| × 1. We denote the set of
all stochastic vectors and matrices as P , i.e., we represent that T ∈ P or p ∈ P .

Definition 2 (Stochastic decision). A function f is a stochastic decision if it linearly transforms an
input vector π by a left stochastic matrix as f(π) = Tπ, where T ∈ P is independent of π.

Corollary 1. Given a stochastic decision f and a vector π, f(π) ∈ P if π ∈ P .

2

Under review as a conference paper at ICLR 2021

13

6

12

5

10 11

21

4

9

0

3

87 14

(a) A tree model by a traditional view. (b) A tree model as a decision transformer ŷ = M(x).

Figure 1: Illustrations of a binary tree model by (a) a traditional node-and-branch structure and (b)
our representation as a decision transformer. The traditional view treats the prediction as a sequence
of decisions d0, d1, d4, and d9 following the path of x. We understand the same model as a decision
transformer represented as a series of linear transformations regardless of the actual path of x.

Based on the observation that each layer of a tree model can be represented as a stochastic decision
that eventually learns the membership probability of an input x to the leaf nodes, we propose deci-
sion transformers which represent a tree model as a series of stochastic decisions whose transition
matrices are determined by x.

Proposition 1 (Decision transformer). A parameterized classifierM is a decision transformer if it
can be represented as

M(x; Θ) = FTL−1 · · ·T1T0π0 ∈ RC , (1)

whereC is the number of target classes, π0 ∈ P is the initial decision probability, L is the number of
decisions, Tl ∈ P is a transition matrix, and F ∈ P is a classifier matrix. Tl and F are calculated
from parameterized functions Tl and F , respectively, that take x as inputs:

Tl = Tl(x; θl) ∈ RNl+1×Nl F = F(x; θL) ∈ RC×NL , (2)

whereNl is the size of decision vectors after the l-th transformation. The initial decision probability
π0 is typically given as a hyperparameter, and thus Θ = {θ0, · · · , θL}.

We define Tl and F separately since internal and leaf nodes have different functionality in most tree
models, although they are basically the same. For example, the lth internal layer of a typical decision
tree updates a one-hot membership probability of x by a stochastic matrix Tl, which is generated by
comparing an element of x to a learned threshold. In this case, Tl is a rectangular block-diagonal
matrix having nonzero elements at (2j, j) and (2j + 1, j) for every node j in the layer. On the other
hand, the leaf layer utilizes a dense classification matrix F that makes the final prediction.

Figure 1 illustrates two views of a binary tree model. Figure 1a treats a tree model as a set of inde-
pendent decisions that are selected based on the path of x. On the other hand, Figure 1b represents
the tree as a series of linear transformations, based on our framework of decision transformers.

3.2 GENERALIZING BINARY TREE MODELS

We now represent existing tree models as decision transformers and determine their characteristics.
We work with binary trees for simplicity, but the analysis can be naturally extended to tree models
having higher branching factors (Yang et al., 2018; Murthy et al., 2016; Tanno et al., 2019). Binary
tree models can be represented with block diagonal transition matrices with nonzero values on the
2 × 1 diagonal blocks, such that each column contains at most two nonzero elements that sum to
one. Corollary 2 formalizes this notion.

Corollary 2. The l-th transition function Tl of a binary tree model is represented as

Tl(x) = diag

([
d1(x)

1− d1(x)

]
, · · · ,

[
dn(x)

1− dn(x)

])
∈ R2l+1×2l , (3)

where diag(·) generates a rectangular block diagonal matrix, and di is the unit decision function of
node i, which measures the probability of x for taking the left branch at node i.

3

Under review as a conference paper at ICLR 2021

Table 1: Summary of binary tree models and their representations as decision transformers: decision
trees (DT), soft decision trees (SDT), neural decision forests (NDF), deep neural decision forests
(DNDF), and neural regression forests (NRF). Detailed explanations are presented in Section 3.2.

Model di(x) Fj(x)

DT (Breiman et al., 1984) I(si(1>i x− bi) > 0) Onehot(θj)
SDT (Irsoy et al., 2012) σ(w>i x + bi) Categorical(θj)

NDF (Bulò & Kontschieder, 2014) MLPi(rand(x)) Categorical(θj)
DNDF (Kontschieder et al., 2015) CNN(x; i) Categorical(θj)
NRF (Roy & Todorovic, 2016) CNN(x; i,depth(i)) Gaussian(θj)

Based on Corollary 2, we represent various tree models with specific forms of transition functions
as summarized in Table 1. The unit decision function of decision trees (DT) selects a single feature
of x by a one-hot vector 1i and then compares it to a threshold bi considering a learnable sign si.
Each leave returns a one-hot vector of length C as a prediction, where C is the number of classes.
Soft decision trees (SDT) extend DTs by a) producing a probabilistic decision utilizing all features
of x at each internal node and b) returning a soft categorical distribution at each leaf as a prediction.
The decision functions of these two models are linear with respect to the raw feature x and thus the
decision processes are naturally interpretable.

Complex models that utilize deep neural networks for decision functions can also be generalized
with the decision transformer. Neural decision forests (NDF) use a randomized multilayer percep-
tron (MLP) as a decision function. Deep neural decision forests (DNDF) use a shared convolutional
neural network (CNN) for all decisions with changing only the last fully-connected layer. Neural
regression forests (NRF) improve DNDFs by adopting a hierarchical CNN having different numbers
of convolution operations based on the depth of node i in addition to the last fully-connected layer.
Other models (Shen et al., 2017; 2018) that have an identical structure to DNDFs and NRFs.

3.3 ADVANTAGES OF USING MULTIPLE LAYERS

The transition matrices of a decision transformer in Proposition 1 can be collapsed to form a single
transition matrix. However, there are two practical advantages to keeping them long. First, dividing
a strong black box learner into a series of weak learners improves both the generalizability and inter-
pretability of a model. Using a deep neural network as a single strong classifier is a popular approach
in many domains, but is known to overfit easily especially in tabular data having insufficient training
examples. We split it into multiple weak learners which linearly accumulate their representation
power by matrix multiplications. Thus, it is possible to adjust the learning capacity of each weak
learner individually, based on the complexity of the target problem and avoiding overfitting.

Second, the output πi from each layer i is itself interpretable as a probability vector that represents
the property of the input x during the decision process. The previous works that combine tree models
with deep neural networks focus on this advantage of hierarchical decisions, as the given examples
are clustered into separate bins based on their properties with respect to the target classes. This gives
us a novel insight into the given data, separately from the accuracy of predictions.

3.4 THEORETICAL ANALYSIS ON INTERPRETABILITY

It has been taken for granted that tree models are interpretable. However, with the integration of
deep neural networks, i.e., representative black-box models, the interpretability of tree models in
general becomes questionable. For a better understanding of the interpretability of tree models, we
provide a theoretic description of the relationship between the interpretability of decision functions
and the whole model with respect to a score function for each feature element in Theorem 1.

Theorem 1. Given layer l of a decision transformer, assume that the transition function Tm of every
layer m ≤ l is explainable by a nonnegative score function s(·) such that s(xk, v(x)) quantifies the
contribution of xk to v(x) as a normalized score, i.e.,

∑
k s(xk, v(x)) = 1. Then, the output πl of

layer l is explainable by the same score function s(xk, πlj) for every j.

4

Under review as a conference paper at ICLR 2021

(a) Binary tree model. (b) DTN-D. (c) DTN-S.

Figure 2: A comparison between (a) a binary tree model, (b) DTN-D, and (c) DTN-S, assuming
three layers each of which has four nodes. A tree model propagates an example through a single path
denoted by the bold lines. DTN-D uses all nodes at the internal layer in the propagation, as all pairs
of nodes are connected. DTN-S simplifies the structure of DTN-D by imposing a spatial locality,
minimizing the number of parameters, still allowing a change of information between nodes.

Proof. The following equations hold for positive output values v1(x) and v2(x):
s(xk, v1(x) + v2(x)) = v1(x)s(xk, v1(x)) + v2(x)s(xk, v2(x)) (4)

s(xk, v1(x)v2(x)) =
s(xk, v1(x))s(xk, v2(x))∑
n s(xn, v1(x))s(xn, v2(x))

(5)

The first equation is derived from the fact that xk contributes to the sum of two values based on their
sizes and the score for each value. The second equation involves a normalization for all elements of
x, as a multiplication does not preserve the normalized scores. Based on these properties, we derive
the score s(xk, πli(x)) for the i-th element of πl(x) recursively as

s(xk, πli) =
1

z(x)

∑
j

tlij(x)πl−1j(x)s(xk, tlij(x))s(xk, πl−1j(x)), (6)

where tlij(x) represents the element at position (i, j) of Tl(x), and z(x) is a normalization constant.
We prove the theorem given that the initial score is a constant as s(xk, π0i) = 1/|x|.

Corollary 3. The prediction of a decision transformerM for any target class y is explainable by a
score function s if the transition function Tl of every layer l is explainable by s.

A decision transformer extends the interpretability of transition functions since they are combined
by linear transformations; it is not possible to apply Equation 6 if a nonlinear activation function
or a bias term exists between transition matrices. It is notable that our theoretical claim in this
section should be distinguished from the structural interpretability of tree models that comes from
their property that every hidden layer produces a probability vector. Corollary 3 focuses on how
the interpretability of each layer relates to the interpretability of the whole model, based on our
understanding of tree models as a decision transformer which aggregates all decisions at each layer
as a single operation.

4 DECISION TRANSFORMER NETWORKS

Our decision transformer suggests that decision-based models that propagate an input by stochastic
decisions are not restricted to a tree structure. We propose Decision Transformer Network (DTN),
an extension of tree models into a deep network having a fixed number of nodes at each layer. This
solves the limitation of tree models that they have an exponential number of nodes with respect to a
tree depth, which prevents them from having a large depth. Our DTN creates multiple paths from a
decision node to nodes at the lower layers, improving the representation power, along with its deep
structure. Nevertheless, DTN is still interpretable as shown in Corollary 3.

We introduce two versions of DTN. DTN-D is a basic model having full dense connections between
layers. DTN-S improves the efficiency and accuracy of DTN-D by utilizing locality-sensitive sparse
connections and the spherical softmax function. Figure 2 compares the structures of a tree model,
DTN-D, and DTN-S. A tree model creates a single path from a node to another, allowing no change
of information between nodes once the branch is split. On the other hand, DTNs generate multiple
paths between nodes, improving the representation power of tree models.

5

Under review as a conference paper at ICLR 2021

Table 2: Tested 121 datasets that are divided into three categories based on the numbers of examples.

Category # of Datasets # of Examples # of Features # of Labels
Min Max Avg Avg ± Std Avg ± Std

Large 9 10,992 130,064 43,943 19.0 ± 15.8 8.2 ± 8.5
Mid 37 1,000 8,124 3,453 40.2 ± 48.4 12.2 ± 26.6
Small 75 10 990 371 24.4 ± 37.9 4.1 ± 3.7

All 121 10 130,064 4,555 28.8 ± 40.8 6.9 ± 15.5

4.1 DENSE MODEL WITH ALL PAIRWISE CONNECTIONS

Our DTN-D generates a stochastic transition matrix from a weighted linear function of an input x
followed by the softmax activation. We first set π0 = 1, making sure that every example is fed to the
root node and then distributed to multiple nodes at lower layers. We then define the (i, j)-th element
tlij of the transition function Tl at layer l as follows:

tlij(x) =
exp(w>lijx + blij)∑Nl+1

k=1 exp(w>lkjx + blkj)
, (7)

where wlij and blij are the learnable parameters for the index (i, j) at layer l. We define the classifier
function F also as Equation 7, without separating T and F in the network.

4.2 SPARSE MODEL WITH LOCALITY-SENSITIVE DECISIONS

We propose DTN-S to improve the efficiency of DTN-D by generating sparse connections between
adjacent layers. DTN-S limits the output field of each node to itsW -hop neighbors at the next layer,
imposing a spatial locality between nodes; it makes each node learn its characteristics based on its
position. As a result, DTN-S has O(NLD) parameters, which is N times smaller than O(N2LD)
of DTN-D, safely assuming that W is a small constant.1 N and D represent the number of nodes at
each layer and the size of feature vectors, respectively.

At the same time, DTN-S uses the spherical softmax function (Martins & Astudillo, 2016) instead
of the softmax to support generating sparse probability vectors. The softmax function at Equation 7
cannot produce a zero probability due to the exponential function. On the other hand, the spherical
softmax makes each element positive by the square function as spherical(z)i = z2i /

∑
k z

2
k instead

of the exponential. As a result, along with the locality-sensitive connections, DTN-S can effectively
choose the target nodes to pass a given example x by stochastic decisions.

As a result, each element tlij of the transition function Tl of DTN-S is defined as follows:

tlij(x) =
(w>lijx + blij)

2∑Nl+1

k=1 (w>lkjx + blkj)2
if |i− j| ≤W otherwise 0. (8)

5 EXPERIMENTS

We evaluate our proposed DTN models on tabular datasets where tree models have extensively been
adopted. We use 121 datasets of the UCI Machine Learning Repository (Dua & Graff, 2017), which
have been used as a benchmark dataset in recent works (Delgado et al., 2014; Olson et al., 2018).
We download preprocessed datasets, scale each feature into the zero mean and unit variance, and
divide each dataset into the 8:2 ratio for training and test.2 We categorize the datasets by the number
of examples as in Table 1 into large (≥ 10K), medium (≥ 1K and< 10K), and small (< 1K). We run
each model five times for each category and report the average and standard deviation of accuracy.

We compare DTNs with existing tree models for tabular datasets, including multilayer perceptrons
(MLP) that have been recently tuned for the datasets (Olson et al., 2018) that we experiment with.

1We fix W to one in all of our experiments to show that even the smallest W performs well.
2The datasets are available at http://persoal.citius.usc.es/manuel.fernandez.delgado/papers/jmlr

6

http://persoal.citius.usc.es/manuel.fernandez.delgado/papers/jmlr

Under review as a conference paper at ICLR 2021

Table 3: The accuracy of DTNs and competitors on four categories of datasets. The out of memory
represents the shortage of GPU memory. DTNs show the highest accuracy in most categories.

Model(-layers) Large Medium Small All
MLP 91.25 ± 8.85 84.51 ± 13.92 79.08 ± 17.77 81.65 ± 16.56
DT 84.29 ± 18.28 80.84 ± 14.77 77.43 ± 17.97 78.98 ± 17.21
DNDT 88.63 ± 6.76 78.30 ± 17.38 75.23 ± 16.25 77.16 ± 16.49

SDT-10 87.23 ± 14.01 80.78 ± 16.44 76.88 ± 17.18 78.85 ± 17.00
SDT-12 88.10 ± 13.31 81.69 ± 15.62 77.25 ± 17.24 79.41 ± 16.79
SDT-14 88.63 ± 12.57 82.11 ± 15.46 77.49 ± 17.39 79.73 ± 16.82
SDT-16 out of memory

DTN-D (ours) 91.13 ± 7.80 83.09 ± 14.04 78.19 ± 17.36 80.65 ± 16.21
DTN-S (ours) 91.40 ± 7.98 84.22 ± 13.78 79.63 ± 16.87 81.91 ± 15.84

MLPs have 2 hidden layers of 128 units, He-initialization (He et al., 2015), ELU activation (Clevert
et al., 2016), and dropout (Srivastava et al., 2014).3 For tree models, we implemented soft decision
trees (SDT) (Frosst & Hinton, 2017) and deep neural decision trees (DNDT) (Yang et al., 2018)
with PyTorch and used the scikit-learn implementation of decision trees (DT). Since DNDTs have
an exponential number of parameters with respect to the number of features, we select 20 features
for each dataset based on the importance scores computed by DTs. We train the models 200 epochs
each using the Adam optimizer (Kingma & Ba, 2015) with the initial learning rates between 0.001
and 0.01: 0.001 in MLPs, 0.01 in SDTs and DNDTs, and 0.005 in DTNs. We ran all experiments
on a workstation with GTX 1080 Ti, using PyTorch for GPU computations.

5.1 COMPARISON WITH OTHER MODELS

We compare the accuracy of DTNs and competitors in Table 3. The tree models show lower accu-
racy compared to MLPs, as they focus on the interpretability of decisions rather than the represen-
tation power. Even though MLPs maximize the accuracy with a black box structure, our DTNs out-
perform them in most categories of datasets, while being comparable in the medium-sized datasets.
It is also shown from the small standard deviations that the predictions of DTNs are robust as well
as accurate, which is an important advantage as an off-the-shelf classifier.

The table also shows the limitation of typical tree models, i.e., a large tree depth cannot be adopted
due to an exponential number of nodes. The accuracy of SDTs improves as we increase the number
of layers until 14, however, deeper layers after 14 causes the out-of-memory error. As a result, the
accuracy of SDTs is worse than that of MLPs. DTs and DNDTs perform worse than SDTs as they
use each feature independently by simply comparing its value to a learned threshold. Our proposed
DTNs achieve high accuracy while maintaining interpretable as an improved tree model.

5.2 INTERPRETABILITY OF DECISIONS

We visualize in Figure 3 the decision maps of DTN-S on the Iris dataset in the small category.4 The
dataset contains four features and three classes for classifying the class of an iris plant. The number
of nodes is set to 4 for clear visualization. The figures show that the examples are categorized into
random clusters at the root layer, but the clusters become clearer as the number of layers increases,
approaching the final classes. The blue and green classes are easily separated by the leaf classifier
and thus mapped to the same cluster in Figure 3b. On the other hand, the examples of the orange
class have several mixed clusters in Figure 3b, since they are located close to the green class.

3We have tested deeper layers, however, MLPs showed lower accuracies for layers deeper than 2.
4http://archive.ics.uci.edu/ml/datasets/Iris/

7

http://archive.ics.uci.edu/ml/datasets/Iris/

Under review as a conference paper at ICLR 2021

(a) Layer 0. (b) Layer 15. (c) Predictions. (d) Labels.

Figure 3: The decision map at each layer of DTN-S for the Iris dataset in the small category. All
feature vectors have been transformed by the principal component analysis (PCA) for visualization.
Each point represents a feature vector, whose color represents the node with the maximum member-
ship probability. The decision maps of intermediate layers give valuable insight into the dataset.

Table 4: The accuracy of DTNs with various options of activation and sparsification functions. The
spherical softmax consistently outperforms the softmax function, and locality-sensitive connections
show similar accuracy to dense connections even with fewer parameters.

Sparsity(-activation) Large Mid Small All
Dense-softmax (DTN-D) 91.13 ± 7.80 83.09 ± 14.04 78.19 ± 17.36 80.65 ± 16.21
Dense-spherical 91.72 ± 7.51 84.56 ± 13.59 79.07 ± 16.99 81.69 ± 15.93
Pruned-softmax 90.49 ± 8.67 83.28 ± 14.26 79.11 ± 16.92 81.23 ± 15.91
Pruned-spherical 91.60 ± 7.89 83.99 ± 13.90 79.44 ± 16.58 81.74 ± 15.61
Local-softmax 90.60 ± 8.20 83.42 ± 14.19 79.13 ± 16.81 81.30 ± 15.89

Local-spherical (DTN-S) 91.40 ± 7.98 84.22 ± 13.78 79.63 ± 16.87 81.91 ± 15.84

5.3 ABLATION STUDY OF DTNS

We further compare various activation functions and sparsification methods of DTN in Table 4. We
implement an additional baseline of sparse DTN for a fair comparison, which randomly prunes the
connections between adjacent layers to maintain the same sparsity as in DTN-S.

The accuracy of DTN improves as we adopt locality-sensitive connections and spherical softmax.
The spherical softmax outperforms the softmax in all cases, regardless of the sparsity of connections,
showing the importance of generating sparse probability vectors with a simple activation function.
The locality-sensitive connections improve the accuracy of dense connections especially in the small
datasets, where the efficiency and robustness are important for achieving high accuracy. The random
sparse connections show generally lower accuracy than the locality-sensitive connections, due to the
random nature that does not consider the positions of nodes in generating probabilities.

6 CONCLUSION

In this work, we propose Decision Transformer Network (DTN), an extension of tree models into
a deep network, which improves their representation power by generating multiple paths between
nodes. In order to devise DTN, we first propose a decision transformer, our novel framework that
generalizes existing tree models in the context of deep learning by formulating tree layers as stochas-
tic decisions. Understanding tree models as a decision transformer gives us a theoretical foundation
for analyzing the stochastic nature of tree models regardless of the decision functions used.

Two versions of DTN are introduced: DTN-D, a basic dense version, and DTN-S, a sparse version
having improved accuracy and efficiency. DTN-D utilizes a series of linear transformations with the
softmax activation, while DTN-S adopts locality-sensitive connections and the spherical softmax to
improve the accuracy and efficiency of DTN-D. We show that our DTN-S outperforms existing tree
models and deep neural networks in 121 tabular datasets, demonstrating its representation power
and robustness at the same time while generating interpretable decision processes.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, 2001.

Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees.
Wadsworth, 1984. ISBN 0-534-98053-8.

Clemens-Alexander Brust and Joachim Denzler. Integrating domain knowledge: Using hierarchies
to improve deep classifiers. In ACPR, volume 12046 of Lecture Notes in Computer Science, pp.
3–16. Springer, 2019.

Samuel Rota Bulò and Peter Kontschieder. Neural decision forests for semantic image labelling. In
CVPR, pp. 81–88. IEEE Computer Society, 2014. doi: 10.1109/CVPR.2014.18.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In KDD, pp. 785–794.
ACM, 2016.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). In ICLR, 2016.

Manuel Fernández Delgado, Eva Cernadas, Senén Barro, and Dinani Gomes Amorim. Do we need
hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res., 15(1):
3133–3181, 2014.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

Nicholas Frosst and Geoffrey E. Hinton. Distilling a neural network into a soft decision tree. In
CEx@AI*IA, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In ICCV, 2015.

Ozan Irsoy and Ethem Alpaydin. Autoencoder trees. In ACML, volume 45 of JMLR Workshop and
Conference Proceedings, pp. 378–390. JMLR.org, 2015.

Ozan Irsoy, Olcay Taner Yildiz, and Ethem Alpaydin. Soft decision trees. In ICPR, 2012.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and Samuel Rota Bulò. Deep neural
decision forests. In ICCV, pp. 1467–1475. IEEE Computer Society, 2015.

Antonio R Linero and Yun Yang. Bayesian regression tree ensembles that adapt to smoothness
and sparsity. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(5):
1087–1110, 2018.

André F. T. Martins and Ramón Fernández Astudillo. From softmax to sparsemax: A sparse model
of attention and multi-label classification. In ICML, 2016.

Mason McGill and Pietro Perona. Deciding how to decide: Dynamic routing in artificial neural net-
works. In Doina Precup and Yee Whye Teh (eds.), ICML, volume 70 of Proceedings of Machine
Learning Research, pp. 2363–2372. PMLR, 2017.

Calvin Murdock, Zhen Li, Howard Zhou, and Tom Duerig. Blockout: Dynamic model selection for
hierarchical deep networks. In CVPR, pp. 2583–2591. IEEE Computer Society, 2016.

Venkatesh N. Murthy, Vivek Singh, Terrence Chen, R. Manmatha, and Dorin Comaniciu. Deep
decision network for multi-class image classification. In CVPR, 2016.

Matthew Olson, Abraham J. Wyner, and Richard Berk. Modern neural networks generalize on small
data sets. In NeurIPS, 2018.

Anirban Roy and Sinisa Todorovic. Monocular depth estimation using neural regression forest. In
CVPR, pp. 5506–5514. IEEE Computer Society, 2016.

9

Under review as a conference paper at ICLR 2021

Wei Shen, Kai Zhao, Yilu Guo, and Alan L. Yuille. Label distribution learning forests. In NIPS, pp.
834–843, 2017.

Wei Shen, Yilu Guo, Yan Wang, Kai Zhao, Bo Wang, and Alan L. Yuille. Deep regression forests
for age estimation. In CVPR, pp. 2304–2313. IEEE Computer Society, 2018.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):
1929–1958, 2014.

Ryutaro Tanno, Kai Arulkumaran, Daniel C. Alexander, Antonio Criminisi, and Aditya V. Nori.
Adaptive neural trees. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), ICML, volume 97
of Proceedings of Machine Learning Research, pp. 6166–6175. PMLR, 2019.

Alvin Wan, Lisa Dunlap, Daniel Ho, Jihan Yin, Scott Lee, Henry Jin, Suzanne Petryk, Sarah Adel
Bargal, and Joseph E. Gonzalez. NBDT: neural-backed decision trees. CoRR, abs/2004.00221,
2020.

Yongxin Yang, Irene Garcia Morillo, and Timothy M. Hospedales. Deep neural decision trees. ICML
Workshop on Human Interpretability in Machine Learning, 2018.

Jaemin Yoo and Lee Sael. EDiT: interpreting ensemble models via compact soft decision trees. In
ICDM, 2019.

10

	Introduction
	Related Works
	Generalizing Tree Models
	Decisions Transformers
	Generalizing Binary Tree Models
	Advantages of Using Multiple Layers
	Theoretical Analysis on Interpretability

	Decision Transformer Networks
	Dense Model with All Pairwise Connections
	Sparse Model with Locality-Sensitive Decisions

	Experiments
	Comparison with Other Models
	Interpretability of Decisions
	Ablation Study of DTNs

	Conclusion

