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1 Background

The inference capabilities of large language models (LLMs) have garnered significant attention
due to their potential for addressing complex scientific problems. With rapid advancements, these
capabilities are now approaching the upper limits of current evaluation benchmarks. For instance,
Llama3 [1] demonstrated remarkable improvements on MATH and GSM8k benchmarks, achieving
score increases of 1690% and 668% over Llama1 [2] within just 1.5 years (from 2.9 to 51.9 and 11.0
to 84.5, 7&8B model respectively) [3, 4]. However, informal mathematical tasks, such as those in
GSM8k (Grade School Math problems involving word-based puzzles), may not accurately reflect a
model’s reasoning abilities due to their high sensitivity to prompt formulation [5, 6].

To address these limitations, Lean—a proof assistant and functional programming language [7]—has
emerged as a promising framework for evaluating and advancing LLM inference capabilities. Recent
research [8, 9] integrating LLMs with Lean has generated significant interest in formal inference and
automated theorem proving, demonstrating LLMs’ potential to independently discover new theorems
while maintaining robustness against prompt variations. Although current LLM performance on
Lean-based benchmarks remains below that of informal benchmarks like GSM8k and MATH, there
is an increasing need for a more comprehensive question set and a scalable, automated evaluation
pipeline. These resources are crucial for rigorously assessing and advancing LLMs’ reasoning
capabilities within formal mathematical domains.

2 Definition

We describe the process of transforming an informal dataset into a formal one for use in Lean. Let I
represent the informal dataset, consisting of problems and solutions in natural language. The formal
dataset, F , contains these problems translated into a formal language.

Each problem xi ∈ I and its solution yi are mapped to formal representations using a function
F . This formalization function F : I → F converts (xi, yi) into a formal theorem and proof
(F (xi), F (yi)).

Benchmark testing, denoted as B, evaluates the performance of language models by compiling their
outputs. The compiler determines success with C(LLM(F (xi))) = 1 if it compiles, and 0 otherwise.

The accuracy is calculated as: Accuracy =
∑N

i C(LLM(F (xi)))

N , where N is the total number of outputs.
This method ensures an accurate assessment of the model’s reasoning capabilities.

3 Related Work

Benchmarks. To evaluate the theorem-proving capabilities of existing methods in Lean, several
efforts have focused on gathering formal benchmarks from real competitions and textbook materials.
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The miniF2F dataset [10] collects high-school-level problems from AIME, AMC, and IMO, con-
verting them into formal theorems and proofs. ProofNet [11] provides undergraduate-level informal
theorems with their proofs but only includes the formal theorems without proofs. The FIMO bench-
mark [12], sourced from the IMO competition, is rarely used now due to its high difficulty and lack
of support for the Lean 4 framework. PUTNAMBENCH [9] consists of formalized problems from
the Putnam competition, targeting undergraduate students. Although there are a few benchmarks for
evaluating Lean 4 theorem proving, they lack diversity in mathematical areas and difficulty levels,
and the number of samples is insufficient. Additionally, these benchmarks struggle to elegantly
handle certain problems in formalization, such as calculation problems, problems requiring the solver
to independently find the answer, or those with commonsense elements in their natural language
representation that are difficult to translate into formal language.

Datasets. In addition to benchmarks for evaluation, various datasets are utilized for training
automated theorem provers. Some of these datasets are large-scale and synthesized through rejection
sampling, using the Lean compiler on a set of seed problems. For example, AlphaProof [13] generated
approximately 100 million formal problems using a method similar to AlphaZero. Deepseek-
Prover [14] employs a Monte Carlo Tree Search (MCTS)-like strategy to create a training set of 9
million problems. Other datasets leverage existing Lean code authored by humans. LeanDojo [8]
compiles 60,000 samples by collecting theorems from the Mathlib of Lean 4. LEAN-GitHub [15]
aggregates Lean repositories from GitHub to extract usable theorems, resulting in a dataset of 28,000
samples.

4 Proposed Method

Formalization. Our formalization pipeline begins with human-annotated problems sourced from
high school, competitions, and undergraduate textbooks. After filtering out unsuitable cases, such as
theorems lacking proofs or problems heavily reliant on images, we will use LLMs like GPT-4o for
formalization. To achieve high formalization accuracy, we plan to employ several strategies:

• Few-shot prompting with RAG: Inspired by ProofNet, we utilize Retrieval Augmented Gen-
eration (RAG) to retrieve the top-k informal problems with ground truth that closely resemble
the target problem. This allows us to construct a few-shot prompt, enhancing accuracy through
In-Context Learning (ICL).

• Rejection sampling: This strategy, commonly used in data selection, involves employing the
Lean compiler to reject non-compiling code. The error information can then help the LLM
modify the code for better results.

• Backward translation: Ensuring equivalence is crucial in auto formalization, as LLMs may
simplify formal theorems by omitting important premises. To address this, we translate the
formal representation back into informal problems and check for equivalence, preventing the loss
of key elements. Moreover, with both the problem and reference answer, their formalization can
be verified through a one-to-one correspondence.

Research problems. To generate equivalent formal representations in Lean, several research
problems need to be considered:

• Finding solutions: Lean supports induction to work backward from the goal to the hypothesis,
but this requires all theorems to have a well-defined goal. For arithmetic tasks or existence
problems, the final answer must be explicitly presented as a goal. PUTNAMBENCH attempted
to address this but only provided a workaround. We propose defining only the type of the goal,
not the value, allowing the solution-finding process to occur within the Lean environment, which
is highly verifiable without needing the goal to be predefined.

• Progressive proving: An important skill for a math expert is the ability to break down a complex
proof into several lemmas, proving it step by step. We’ve noticed that some problems in our
dataset have dependencies between subproblems or rely on other problems. Therefore, we plan
to construct a subset to evaluate the prover’s ability to utilize not only the standard library but
also previously proven results in its context. This is a crucial skill for solving truly complex
problems.
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