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Abstract

This paper presents a novel approach to sparsify neural networks by transforming them
into implicit models characterized by an equilibrium equation rather than the conventional
hierarchical layer structure. Unlike traditional sparsification techniques reliant on network
structure or specific loss functions, our method simplifies the process to a simple constrained
least-squared problem with sparsity-inducing constraints or penalties. Additionally, we in-
troduce a scalable algorithm that can be parallelized, addressing the computational com-
plexities associated with this transformation while maintaining efficiency. Experimental
results on CIFAR-100 and 20NewsGroup datasets demonstrate the high effectiveness of our
method, particularly in scenarios with high pruning rates. This approach offers a versatile
and efficient solution for neural network parameter reduction. Furthermore, we observe
that a moderate subset of the training data suffices to achieve competitive performance,
highlighting the robustness and information-capturing capability of our approach.

Keywords: implicit models; neural network sparsification; constrained LASSO

1. Introduction

Compared to traditional neural networks, implicit neural network (Bai et al., 2019a; Chen
et al., 2018; Gu et al., 2020) offer the advantage that their model parameters are simple
data matrices. Consequently, after training an implicit model, we can perform model spar-
sification by running lease-squares-based feature selection tasks. In contrast, traditional
neural networks require retraining from scratch with different regularization parameters
for sparsification. The architecture of implicit neural networks, as proposed by El Ghaoui
et al. (2021); Bai et al. (2019b), has gained increasing popularity due to its simplicity and
ability to integrate various traditional neural network architectures. Theories and applica-
tions originally developed for traditional neural networks are progressively being extended
to implicit networks Peng et al. (2022); Gao and Gao (2022); Geng et al. (2021); Gu et al.
(2020).
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Deep neural networks are often found to be highly redundant, with a small subset of
network coefficients retaining the majority of inference power Ashouri et al. (2018); Denil
et al. (2013). This observation has spurred a branch of research dedicated to sparsifying
neural network coefficients without compromising inference efficiency. Common methods
for network sparsification include: 1) incorporating sparsity-inducing regularization terms
into the training objective Louizos et al. (2017); Scardapane et al. (2017), 2) modifying the
neural network architecture Wan et al. (2013), and 3) applying post-training sparsification
procedures Sun et al. (2016); Louizos et al. (2017); Garg and Candan (2020); Ashouri et al.
(2018) that strike a balance between accuracy and sparsity.

While existing sparsification methods yield satisfactory results on established networks,
they come with several limitations. Firstly, these techniques tend to be architecture-
dependent, necessitating distinct sparsification strategies for different network architectures.
Additionally, these methods must navigate the complex interplay between the training ob-
jective and sparsity, often resulting in challenging optimization problems. Consequently, de-
vising a universal sparsification scheme for traditional neural networks remains a formidable
challenge. In light of this, our paper explores the emerging branch of implicit deep learning
networks. As elaborated in the following section, sparsifying an implicit neural network
can be conceptualized as a straightforward least-squares problem with sparsity penalties or
constraints, irrespective of the underlying network architecture.

2. Constrained Implicit Learning Framework

Notations. Throughout the paper, we use n,m to denote the number of internal states
and input samples; p, q denote the dimension of input and output vectors, respectively.
Given a matrix V , |V | denotes taking its absolute value element-wise; ∥V ∥0 denotes the
number of non-zero entries; ∥V ∥∞ denotes matrix infinity norm; ∥V ∥F = (

∑
i,j V

2
ij)

1/2

denotes its Frobenious norm.

2.1. Implicit Model

We are given a dataset with input U ∈ Rp×m and output Y ∈ Rq×m, where each column of
U and Y represents an input or output vector. An implicit model consists of an equilibrium
equation (E) in a “state matrix” X ∈ Rn×m and a prediction equation (P):

X = ϕ(AX + BU) (E)

Ŷ (U) = CX + DU (P)

where ϕ : Rn×m → Rn×m is a strictly increasing nonlinear activation function such as
ReLU, tanh, or sigmoid. Matrices A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n and D ∈ Rq×p are
model parameters. In equation (E), the input feature matrix U ∈ Rp×m is passed through
a linear transformation B and the internal state matrix X is obtained as the fixed-point
solution to equation (E). The output prediction Ŷ is then obtained by feeding the state
X through the prediction equation (P). The structure is illustrated in Figure 1, where the
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[
A B
C D

]
ϕ

UŶ = CX + DU

X = ϕ(Z)Z = AX + BU

Figure 1: A diagram view of an implicit model, where Z is the pre-activation state “before”
passing through the activation function ϕ and X is the post-activation state
“after” passing through ϕ.

“pre-activation” and “post-activation” state matrices Z,X are shown; in those matrices,
each column corresponds to a single data point.

We provide a simple example of constructing X and Z from a 3-layer fully-connected
network of the form:

ŷ(u) = W2x2, x2 = ϕ(W1x1) x1 = ϕ(W0x0), x0 = u,

where u is a single vector input. For notational simplicity, we exclude the bias terms, which
can be easily accounted for by considering the vector (u, 1) instead of u. Each column of Z
and X corresponds to the state from a single input. The column z is formed by stacking all
the intermediate layers before passing through ϕ and the column x is formed by stacking
all the intermediate layers after passing through ϕ:

z =

(
W1x1
W0x0

)
, x = ϕ(z) =

(
x2
x1

)
.

In this example, we can easily verify that its equivalent implicit form is as follows:

(
A B

C D

)
=


0 W1 0

0 0 W0

W2 0 0

 .

For a more complicated network, determining an equivalent implicit form can be a non-
trivial task.

2.2. Constrained Implicit Model

The constrained implicit learning framework trains an implicit model with a constraint: it
should match both the state X and output Ŷ of another “baseline” (implicit or layered)
model when the same inputs U are applied. The framework allows us to consider any
baseline deep neural networks without ever having to address this challenge: we simply
need to extract the pre- and post-activation state matrices. For a given baseline model, the
state matrix X can be obtained by running a set of fixed-point iterations (if the baseline is
implicit), or a simple forward pass (if the baseline is a standard layered network). In both
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cases, we can extract the pre-activation state matrix Z, such that the post-activation state
matrix satisfies X = ϕ(Z). Each column of matrices Z and X corresponds to a single data
point; when the baseline is a layered network, these matrices are constructed by stacking
all the intermediate layers into a long column vector, with the first intermediate layer at
the bottom and the last intermediate layer at the top.

The conditions Z = AX +BU and Ŷ = CX +DU characterize the implicit models that
match both the state and outputs of the baseline model. We then solve a convex problem
to find another well-posed model that satisfies Definition 1, with a desired task in mind,
under the matching conditions:

min
A,B,C,D

ℓ(A,B,C,D) (2a)

subject to Z = AX + BU, (2b)

Ŷ = CX + DU, (2c)

∥A∥∞ ≤ κ. (2d)

where ℓ is a user-defined loss function and κ ≤ 1 is a hyper-parameter for model well-
posedness define in Definition (1). The reader can refer to Appendix B for proof of the
sufficient condition for well-posedness.

Definition 1 (well-posedness) The n× n matrix A is said to be well-posed for ϕ if, for
any b ∈ Rn, the solution x ∈ Rn of the following equation x = ϕ(Ax + b) exists and is
unique.

2.3. Equality Constraints Relaxation

For the equality constraints (2b) and (2c) that match the internal state and exact output,
it is not necessary to insist on an exact match. This allows us to relax (2b) and (2c) by
introducing penalty terms into the objective function:

min
(A,B,C,D)∈C,∥A∥∞≤κ

ℓ(A,B,C,D) + λ1∥Z − (AX + BU)∥2F (3)

+λ2∥Ŷ − (CX + DU)∥2F

where ℓ and C are user-defined objective function and constraint set for model parameters.
λ1 and λ2 are hyper-parameters that control the degree of state- and output-matching.

The training problem (3) can be decomposed into a series of parallel, smaller problems,
each involving a single row, or a block of rows, if ℓ is decomposable. This is usually the
case for most objective functions used in neural network training. For a single row (a⊤, b⊤)
of (A,B), and with z⊤ the corresponding row in Z, the problem reduces to

min
a,b

ℓ(a, b) + λ1

∥∥∥z − (X⊤, U⊤)(a
b

)∥∥∥2 (4)

subject to ∥a∥1 ≤ κ,
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where ∥a∥1 ≤ κ is the well-posedness condition since ∥A∥∞ is separable in terms of rows.
The problem of finding C,D is independent of that relative to A,B and takes the same
form as problem (4) without having to satisfy the well-posedness condition:

min
c,d

ℓ(c, d) + λ2

∥∥∥ŷ − (X⊤, U⊤)(c
d

)∥∥∥2. (5)

When ℓ = 0, (4) reduces to the basis pursuit problem introduced in Chen and Donoho
(1994), for which efficient optimization algorithms have been established in the past years
Toh and Yun (2010); Polson et al. (2015). We note that ℓ(c, d) can be set to a common
sparsity-inducing penalty such as ℓ1-norm. In the next section, we provide tailored algo-
rithms for implicit model sparsification for solving problem (4).

3. Algorithm for Model Sparsification

In this section, we discuss algorithms for model sparsification on implicit models. On the
one hand, note that (5) is a least squares problem and any SGD with its variants can solve it
efficiently (Garrigos and Gower, 2023). On the other hand, (4) is more challenging due to the
ℓ1 constraint, and is also known to be LASSO in the constrained form (Tibshirani, 1996).
Although variants of projected gradient descent might also work when directly applied
to (4), each projection involve a projection onto ℓ1 norm ball (Laurent, 2016), which is
less practical when dimension of (a, b) is large. Moreover, state-of-the-art preprocessing
techniques cannot be directly applied to this constrained formulation (Wang, 2015; Ghaoui
et al., 2010).

In view of the aforementioned challenge, we propose an alternative algorithm that solves
(4) by reducing it to a sequence of least-squares problems with ℓ1 penalty, to which state-
of-the-art LASSO techniques apply. Our algorithm performs bisection on the LASSO regu-
larization path, till an approximate regularization parameter is found to solve the original
constrained problem.

3.1. Algorithm Design

For brevity of exposition, we overload notation and let

M := (X⊤, U⊤), a := (a, b),

thereby getting the following constrained LASSO problem

P (κ) := min
a

1

2
∥Ma− z∥2 subject to ∥a∥1 ≤ κ,

We assume that the constraint is not trivially satisfied.

A1: (Non-trivial solution) 0 ≤ κ < ∥(M⊤M)−1M⊤z∥1.
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Note that now ∥a∥1 ≤ κ simultaneously imposes both the sparsity and the well-posedness
constraint.

We define h(a) := 1
2∥Ma − z∥2 and use h(a) and 1

2∥Ma − z∥2 interchangeably. Before
we proceed, we first introduce the unconstrained LASSO problem, which will serve as an
important subroutine of our analysis:

Q(λ) := min
a

h(a) + λ∥a∥1 (Unconstrained LASSO).

3.2. P (κ) and Root Finding

Our method is closely related to the following function

g(λ) := ∥a∗Q(λ)∥1, (6)

a∗Q(λ) = arg min
a
{h(a) + λ∥a∥1} (7)

and we apply a bisection method to identify some λ such that g(λ) = κ. Before we establish
our algorithm, we first show the intuition of our method by analyzing basic properties of
g(λ).

Lemma 2 g(λ) satisfies the following properties:

• g(λ) is continuous and piecewise linear. (Osborne et al., 2000)

• g(λ1)− g(λ2) ≤ 0 if λ1 > λ2. That is, g(λ) is monotonically decreasing.

• g(0) = ∥(M⊤M)−1M⊤z∥ ≤ 1
m∥M⊤z∥.

• g(λ) = 0 if λ ≥ ∥M⊤z∥∞.

Lemma 3 Given 0 < κ < ∥(M⊤M)−1M⊤z∥1, there exists λκ > 0 such that a∗P (κ) = a∗Q(λκ)

Lemma 2 shows that by identifying a correct λ, the solution to Q(λ) and P (κ) coincide.
Lemma 3 implies that g(λ) is monotonic and that finding λκ such that g(λκ) = κ suffices
to give us a∗P (κ). Therefore it is natural to employ a bisection routine to identify λκ.

Now we are ready to propose the bisection method that searches for the matching λκ

over the LASSO regularization path.

3.3. Analysis of the Bisection Method

Now that we have established the intuition of the bisection method, we turn to the analysis
of method. Now that we know that λκ ∈ (0, ∥M⊤z∥∞). Bisection method ends in at most

T = O(log(1/ε))

iterations. Combined with the standard result on proximal gradient method, we immedi-
ately get a complexity for the number of internal iterations.
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Algorithm 1 Bisection algorithm on LASSO regularization path

input κ,M, z, ε
initialize u = ∥M⊤z∥, l = 0
while u− l ≥ ε

set λ = 1
2(u + l)

solve a∗Q(λ) = arg mina{h(a) + λ∥a∥1}
if ∥a∗Q(λ)∥1 ≥ κ
l← λ

else
u← λ

end
output λ, a∗Q(λ)

Lemma 4 (Karimi et al. (2016)) If we apply proximal gradient method to Q(λ), then

h(ak)− h(a∗) ≤ exp(−(µ/L)K){h(a0)− h(a∗)}
where L is the largest eigenvalue of M⊤M and µ is the Polyak-Lojasiewicz constant of the
problem; ak is the output of the k-th iteration; a∗ is the unique optimal solution to Q(λ).

Intuitively we have linear convergence in both internal and external loops, giving

K = O(T · log(1/ε)) = O(log2(1/ε))

worst-case iteration complexity. However, in the next subsection, we show that we can
further improve the convergence rate by warm-starting consecutive bisection problems.

3.4. Effect of Warm-Starting

Lemma 5 (Effect of warm-starting) Given λ1, λ2, we have

h(a∗Q(λ1)
) + λ1∥a∗Q(λ1)

∥1 − [h(a∗Q(λ2)
) + λ2∥a∗Q(λ2)

∥1] ≤
√
n|λ1 − λ2|A,

where A = supλ ∥a∗Q(λ)∥∞.

Given Lemma 4, we are guaranteed that if λ1, λ2 are sufficiently close, warming-starting
Q(λ1) with the optimal solution to Q(λ2) would result in a small initial optimality gap
bounded by

√
n|λ1−λ2|A. In other words, the closer we are to λκ, the faster each subproblem

can be solved.

Theorem 6 If we warm-start each Q(λ), then K = O(log2(1/ε)).

Theorem 6 establishes that employing a warm-start strategy for initializing each Q(λ)
restricts the computational complexity K to grow at a rate slower than the square of the
logarithm of the inverse of the desired precision ε. This finding facilitates the initialization
of the problem with a warm start, leading to notable performance enhancements across
successive solver iterations. The complete algorithm is presented in Algorithm 2.
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Algorithm 2 Constrained Implicit Model Sparsification

input Data matrix U ; A trained standard (layered) neural network N : R× R→ R× R;
Hyper-parameter κ ≤ 1 and ε.
initialize Run a single forward pass on N with U to obtain outputs Ŷ , i.e., Ŷ = N (U).
Collect all intermediate layers before and after passing through the activation ϕ.
Construct Z and X by stacking all intermediate layers.
set M := (XT UT ),W := (A,B) = 0
for each row zi of Z

warm start Q(λi) with the optimal solution to Q(λi−1)
solve Q(λi) with Algorithm 1
update row i of W ← a∗i Q(λ)

end
output W

4. Numerical Experiments

We demonstrate the effectiveness of the implicit model sparsification on CIFAR-100 (Krizhevsky,
2009) and 20NewsGroup1, leveraging the existing ResNet-20 network (Devries and Taylor,
2017) and DistilBERT model2 (Sanh et al., 2019) as baseline architectures. The test accu-
racy is 92.1% for CIFAR-100 and 92.8% for 20NewsGroup, respectively. Throughout the
remainder of our paper, we maintain a fixed ε = 0.01. These experiments were solved using
Mosek (ApS, 2022) optimization solvers. We also measure the efficiency of the method
in terms of the total number of iterations required on the traversal of all rows within the
weight matrix.

Table 1: Sparsity levels and accuracy on the CIFAR-100 and 20NewsGroup data.

CIFAR-100 20NewsGroup

κ Accuracy (%) Sparsity (%) Accuracy (%) Sparsity (%)

0.005 76.7 98.1 60.9 97.8
0.01 79.1 96.4 74.2 95.9
0.05 84.2 95.2 80.2 95.3
0.1 87.1 93.8 87.2 93.3
0.5 89.0 93.3 88.8 90.7
0.99 91.0 90.1 90.6 87.4

Dense 92.1 0 92.8 0

Table 1 illustrates the trade-off between sparsity and test performance for the CIFAR-
100 and 20NewsGroup datasets, employing warm-starting as outlined in Algorithm 2. The
hyper-parameter κ serves as a direct control for the sparsity level of the model, where higher
κ values correspond to lower sparsity levels. Our results demonstrate the algorithm’s ca-
pability in computing highly sparse networks, with a mere 2% reduction in test accuracy

1. http://qwone.com/~jason/20Newsgroups/
2. https://huggingface.co/docs/transformers/model_doc/distilbert

http://qwone.com/~jason/20Newsgroups/
https://huggingface.co/docs/transformers/model_doc/distilbert
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observed on both datasets compared to the original dense networks. As the number of
non-zero elements increases (i.e., sparsity decreases), a gradual decline in test accuracy is
evident, which is the common trade-off between model complexity and performance. How-
ever, even with approximately 10% of the model weights retained, the models maintain
competitive performance levels, exhibiting only a marginal decrease. This resilience high-
lights the robustness of our method in scenarios where a significant portion of the model
undergoes pruning.

Table 2: Sparsity levels and accuracy on the CIFAR-100 and 20NewsGroup data.

CIFAR-100 20NewsGroup

Method Accuracy (%) Sparsity (%) Accuracy (%) Sparsity (%)

SSS 88.4 44.4 89.5 48.7
SPR 89.8 45.9 90.6 50.5
MLA 89.1 50.0 90.3 51.8
Ours 91.0 90.1 90.6 87.4

Dense 92.1 0 92.8 0

In our evaluation, we compare our method with several optimization-based parameter
reduction techniques: SSS (Huang and Wang, 2018), SPR (Cacciola et al., 2022), and MLA
(Hu et al., 2019). SSS and SPR approach the task as a sparse regularized optimization prob-
lem, using ℓ1-relaxation and perspective relaxation, respectively. MLA focuses on aligning
semantic information between intermediate outputs and overall model performance by in-
corporating feature and semantic correlation losses along with a classification loss, similar
to our state- and outputs-matching conditions. We use ResNet-20 for SSS and SPR and
ResNet-18 for MLA when experimenting on CIFAR-100 to ensure comparability with the
original papers. We replicate the same hyper-parameter settings as reported in the original
paper. Table 2 demonstrates that our method surpasses all the baselines while achieving a
significantly larger reduction in parameters.
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Figure 2: Performance of different κ at each iteration on CIFAR-100 and 20NewsGroup.

Figure 2 depicts individual runs of the algorithm across various values of κ, illustrating
the corresponding test performance at each iteration. To accelerate the runtime, we lever-
age warm-starting within the bisection inner loop, initializing it with the optimal solution
obtained from the preceding inner iteration. This strategy allows for a more efficient ex-
ploration of the solution space. Comparison between κ = 1, 0.1, and 0.5, with and without
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warm-starting, is presented in Figure 3. Warm-starting yields an average speedup of 1.8x
in convergence and reduces computational overhead.
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Figure 3: Performance of different κ at each iteration with warm starting.

In solving the problem (4), the input matrix U ∈ Rp×m need not encompass the entire
training dataset. To investigate the minimum sample size required for effectively training
a sparse implicit model, we conducted experiments varying the number of samples. Figure
4 illustrates the performance of different κ values trained with partial data. As the per-
centage of total training samples increases, corresponding to higher m for the input matrix
U , the dimension of M also increases. From Figure 4, it’s evident that test performance
initially improves with increasing training data. However, it eventually reaches a plateau,
stabilizing at around 20% of the training data for CIFAR-100 and approximately 30% for
20NewsGroup. For very small values of κ, the model may be excessively sparse, hindering
effective learning. Conversely, with sufficiently large κ, training can be streamlined by uti-
lizing only a partial dataset. These results highlight the significance of the state matrix X
as a high-quality representation, capable of capturing a substantial amount of underlying
information. Consequently, it’s feasible to train a model with significantly fewer training
samples. Furthermore, Table 3 presents the computational speed-up achieved during train-
ing, highlighting the significant efficiency gains associated with utilizing partial datasets.
This analysis presents the practical implications of our findings in terms of computational
scalability and resource utilization.
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Figure 4: Performance of different κ trained with partial data.
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Table 3: Training computational speed up by using warm-start and partial data matrix U .

CIFAR-100 20NewsGroup

κ Warm Start 20% Data Warm Start 30% Data

0.1 2.2x 9.1x 1.5x 8.7x
0.5 2.0x 7.8x 1.6x 8.4x
0.99 1.7x 7.5x 1.7x 7.4x

5. Discussion

In conclusion, this work introduces a novel paradigm in neural network sparsification—
Implicit Model Sparsification. Departing from conventional techniques that often rely on
complex network structures or specialized loss functions, our method offers a simplified ap-
proach. Implicit Model Sparsification is achieved through a straightforward least-squares
problem, augmented with sparsity-inducing constraints or penalties. This simplicity en-
hances the applicability of the approach to a broad spectrum of neural network archi-
tectures. To ensure the scalability and practicality of our method, we have developed a
parallel algorithm. This algorithm addresses the computational complexities inherent in
transforming neural networks into implicit models, while preserving efficiency and effec-
tiveness. Our experimental findings on CIFAR-100 and 20NewsGroup datasets show the
remarkable efficacy of our approach, particularly its robust performance in scenarios in-
volving high pruning rates. Furthermore, our investigation into the optimal sample size for
training sparse implicit models reveals insightful trends. We observe that a moderate subset
of the training data suffices to achieve competitive performance, highlighting the resilience
and information-capturing capability of our approach. In essence, Implicit Model Sparsifi-
cation offers a versatile and new paradigm for neural network compression, with promising
implications for real-world applications through its simplicity, scalability, and effectiveness.
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Appendix A. Proof of main results

A.1. Proof of Lemma 2

Recall that λ1 > λ2. Then by optimality condition we have

1

2
∥Ma∗Q(λ1)

− z∥2 + λ1∥a∗Q(λ1)
∥1 ≤

1

2
∥Ma∗Q(λ2)

− z∥2 + λ1∥a∗Q(λ2)
∥1

1

2
∥Ma∗Q(λ2)

− z∥2 + λ2∥a∗Q(λ2)
∥1 ≤

1

2
∥Ma∗Q(λ1)

− z∥2 + λ2∥a∗Q(λ1)
∥1

Summing over the above two relations and re-arranging the terms, we have

(λ1 − λ2)(g(λ1)− g(λ2)) = (λ1 − λ2)(∥a∗Q(λ1)
∥1 − ∥a∗Q(λ2)

∥1) ≤ 0.

Dividing both sides by λ1 − λ2 > 0 completes the proof of monotonicity.

For the second condition, we know that a∗Q(0) = (M⊤M)−1M⊤y and

∥a∗Q(0)∥1 = ∥(M⊤M)−1M⊤z∥ ≤ ∥(M⊤M)−1∥ · ∥M⊤z∥ ≤ 1

m
∥M⊤z∥.

also we have

1

2
∥z∥2 =

1

2
∥Ma− z −Ma∥2

=
1

2
∥Ma− z∥2 − ⟨Ma,Ma− z⟩+

1

2
∥Ma∥2

=
1

2
∥Ma− z∥2 + ⟨Ma, z⟩

≤ 1

2
∥Ma− z∥2 + ∥M⊤z∥∞∥a∥1.

and this completes the proof.

A.2. Proof of Lemma 3

First by Lemma 2 we know there exists λκ such that g(λκ) = κ ∈ (0, ∥(M⊤M)−1M⊤z∥1).
Then we verify that for any a∗Q(λκ)

= arg min
{
1
2∥Ma− z∥2 + λκ∥a∥1

}
,

a∗Q(λκ)
= arg min

∥a∥1≤κ

{
1

2
∥Ma− z∥2

}
.

First recall that the optimality condition of Q(λκ) tells that

0 ∈ ∂a=a∗
Q(λκ)

{
1
2∥Ma− z∥2 + λκ∥a∥1

}
= M⊤(Ma∗Q(λκ)

− y)

+λκ∂(∥a∗Q(λκ)
∥1)

Then we can plug a∗Q(λκ)
, λκ into the optimality conditions of P (κ) and verify that
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∥a∗Q(λκ)
∥1 ≤κ
λκ ≥0

λκ(κ− ∥a∗Q(λκ)
∥1) =0

∂a=a∗
Q(λκ)

{
1

2
∥Ma− z∥2 + λκ(∥a∥1 − κ)

}
∋0,

which completes the proof.

A.3. Proof of Lemma 4

Without loss of generality assume that λ1 > λ2. Then

h(a∗Q(λ1)
) + λ1∥a∗Q(λ1)

∥1 ≤ h(a∗Q(λ2)
) + λ1∥a∗Q(λ2)

∥1
= h(a∗Q(λ2)

) + λ2∥a∗Q(λ2)
∥1 (8)

+ (λ1 − λ2)∥a∗Q(λ2)
∥1

≤ h(a∗Q(λ2)
) + λ2∥a∗Q(λ2)

∥1 (9)

+
√
n|λ1 − λ2|A.

Exchanging the position of λ1, λ2, this completes the proof.

A.4. Proof of Theorem 6

Let I(γ, ε) be the number of iterations for proximal gradient method to converge, given
tolerate ε and initial optimality gap γ. We know, from Lemma 3 that

I(γ, ε) = µ−1L log(γ/ε).

Defining ∆ = ∥(M⊤M)−1M⊤z∥1 ·A, we have, for iteration t, that

γt ≤ 2−t√n∆ + εt−1

and

I(γt, εt) ≤ µ−1L log

(
2−t√n∆ + εt−1

ε⊤

)
.

Taking ε⊤ ≡ ε, T = log2(1/ε), we have
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K =
⊤∑
t=1

I(γt, εt)

≤ µ−1L

⊤∑
t=1

log

(√
n∆

ε
2−t + 1

)

≲ µ−1L
⊤∑
t=1

log

(√
n∆

2t−T
+ 1

)
= O(log2(1/ε))

Appendix B. Sufficient Condition for Well-posedness

The forward pass of an implicit model relies on the fixed-point solution of the underlying
equilibrium equation, while a backward pass requires one to differentiate this equation with
respect to the model parameters (A,B,C,D). The solution to the equilibrium equation (E)
does not necessarily exists nor be unique. We say that an equilibrium equation with acti-
vation map ϕ is well-posed if the following well-posedness condition is satisfied (El Ghaoui
et al., 2021).

Theorem 7 (PF sufficient condition for well-posedness) Assume that ϕ is strictly
increasing. Then, A is well-posed for any such ϕ if λpf(|A|) < 1. Moreover, the solution x
of equation (E) can be computed via the fixed point iterations x → ϕ(Ax + b), with initial
condition x = 0.

Theorem 8 (Re-scaled implicit model) Assume that ϕ is strictly increasing and posi-
tively homogeneous, i.e., ϕ(αx) = αϕ(x) for any α ≥ 0 and x. For a neural network N with
its equivalent implicit form (AN , BN , CN , DN , ϕ), where AN satisfies PF sufficient condi-
tion for well-posedness of Theorem (7), there exists a linearly-rescaled equivalent implicit
model (A′

N , B′
N , C ′

N , D′
N , ϕ) with ∥A′

N ∥∞ < 1 that gives the same output Ŷ as the original
N for any input U .

Consider a standard layer-based neural network N : R × R → R × R with non-linear
activation ϕ that is strictly increasing and maps input feature matrix U ∈ Rp×m to outputs
Y = N (U) via hidden layers. As shown in El Ghaoui et al. (2021), for such networks,
there exists an equivalent implicit model, (AN , BN , CN , DN , ϕ) as in (1). Without loss of
generality, we may re-scale the original weight matrices of N to obtain a strongly well-posed
implicit model, (A′

N , B′
N , C ′

N , D′
N , ϕ), by Theorem (8), in the sense that ∥A′

N ∥∞ < 1. This
result also allows us to consider the convex constraint ∥A∥∞ < 1 as a sufficient condition as
opposed to the non-convex PF sufficient condition, in light of the bound λpf(A) ≤ ∥A∥∞.
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