

000 001 002 003 004 005 FSA: AN ALTERNATIVE EFFICIENT IMPLEMENTATION 006 OF NATIVE SPARSE ATTENTION KERNEL 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028 Recent advance in sparse attention mechanisms has demonstrated strong potential
029 for reducing the computational cost of long-context training and inference
030 in large language models (LLMs). Native Sparse Attention (NSA), one state-of-
031 the-art approach, introduces natively trainable, hardware-aligned sparse attention
032 that delivers substantial system-level performance boost while maintaining accuracy
033 comparable to full attention. However, the kernel implementation of NSA
034 forces a loop order that is only efficient with a relatively large number of query
035 heads in each Grouped Query Attention (GQA) group, whereas existing LLMs
036 widely adopt much smaller number of query heads in each GQA group — such
037 an inconsistency significantly limits the applicability of this sparse algorithmic
038 advance. In this work, we propose **Flash Sparse Attention (FSA)**, an alterna-
039 tive kernel implementation that enables efficient NSA computation across a wide
040 range of popular LLMs with varied smaller number of heads in each GQA group
041 on modern GPUs. Compared to vanilla NSA kernel implementation, our empirical
042 evaluation demonstrates that FSA achieves (i) up to $3.5\times$ and on average $1.6\times$
043 kernel-level latency reduction, (ii) up to $1.25\times$ and $1.09\times$ on average end-to-end
044 training speedup on state-of-the-art LLMs, and (iii) up to $1.36\times$ and $1.11\times$ on
045 average for prefill-phase speedup in LLM generative inference.

1 INTRODUCTION

046 Large Language Models (LLMs) with long context windows (OpenAI, 2024; Anthropic, 2024;
047 Young et al., 2024; Dubey et al., 2024) face prohibitive computational costs due to the full attention
048 mechanism’s quadratic time and memory complexity. As sequence length increases, attention
049 computation becomes a critical bottleneck — for instance, attention can account for 70–80% of total
050 decoding latency at a 64k token context (Yuan et al., 2025). In extreme cases, processing a 1
051 million-token prompt with an 8B model can take up to 30 minutes on a single GPU (Jiang et al.,
052 2024a). These observations underscore the urgent need for more efficient attention mechanisms in
053 long-context LLM training and inference. A recent promising direction is to exploit sparse attention,
054 whereby the query of each token only interacts with a subset of key and value, dramatically reducing
055 the computation load and HBM I/O volumes. However, implementing efficient sparse attention at
056 scale is non-trivial — In fact, the challenge of implementing high-performance kernels has become a
057 major obstacle to deploying state-of-the-art sparse attention techniques in practice. In this paper, we
058 want to explore: *Can we design and implement an efficient sparse attention kernel for a wide range
059 of current LLMs to fully unleash the potential of this algorithmic advance over modern GPUs?*

060 Addressing the above question is crucial because adopting sparse attention in long-context LLMs
061 could mitigate the quadratic cost and enable new applications (Xu et al., 2025a; Chen et al., 2024;
062 Acharya et al., 2024; Wang et al., 2024). By leveraging the inherent sparsity of attention patterns,
063 one can significantly cut down computation and memory overhead. Among such methods, one
064 promising example is Natively Sparse Attention (NSA) (Yuan et al., 2025), a recently proposed
065 sparse attention framework, which organizes keys/values into blocks and processes them via three
066 parallel attention modules — compressed coarse-grained tokens, selected fine-grained tokens, and
067 sliding local windows. By learning which tokens to compress or drop, NSA achieves long-context
068 efficiency without a predefined pattern, making it a natural choice for long-context LLM training.

Nevertheless, implementing an efficient sparse attention kernel, i.e., NSA, is challenging. The core difficulty lies in implementing the sparse mechanism in NSA (i.e., computing attention score based on selectively retained fine-grained tokens), where the query of each token needs to dynamically select a different set of keys and values. Such computation results in irregular HBM access patterns on modern GPUs, where each query processes distinct selected keys/values, potentially requiring unnecessary padding for query tiles before executing warp-/warpgroup- level matrix multiply-and-accumulate instructions (e.g., wmma or wgmma), and leading to the underutilization of tensor cores.

This scattered access pattern conflicts with the GPU hardware-efficient design principle: GPUs achieve their peak mathematical throughput when the warps execute dense (no-padded) matrix multiply and accumulation instructions. Thus, current sparse attention [implementations](#) fail to translate the theoretical floating-point operations (FLOPs) reduction into wall-clock speedups.

Vanilla NSA kernel implements a two-level loop: In the outer loop, NSA kernel loads one token and batches query attention heads that share the same key and value heads; in the inner loop, NSA kernel loads selected KV block iteratively and performs attention computation. This strategy reaches kernel efficiency only when each Grouped Query Attention (GQA) (Ainslie et al., 2023) group has sufficient number of query heads, so that no-padding is required to execute PTX instructions (e.g., wmma or wgmma) on modern GPUs.¹ However, such an assumption may not hold for a wide range of popular LLMs so that the original NSA kernel efficiency could drop considerably. With an insufficient number of query heads in each GQA group, batching query heads is inefficient to satisfy this hardware requirement. Thus, the original NSA kernel implementation must pad query attention heads to meet instruction requirements, resulting in unnecessary data loading and computations.

To resolve this issue, we propose FSA, which implements optimized kernels efficient for NSA under various GQA group settings. We make the following concrete contributions:

- **Contribution 1:** We propose an alternative implementation for the NSA kernel, which exchanges the two-level loop order in NSA implementation — FSA loops over KV blocks in the outer loop and loops over query tokens in the inner loop to accelerate this system bottleneck. Since the number of query tokens that attend to a given KV block is usually much larger than the hardware required value, FSA introduces no padding, significantly reducing unnecessary kernel memory access and FLOPs, thereby facilitating faster token selection kernel execution.
- **Contribution 2:** We analyze the trade-off between vanilla NSA and FSA implementation in terms of kernel efficiency and memory accessing paradigm, which illustrates the effective design and implementation of FSA. To maximize performance benefits of FSA kernel design, we implement dedicated optimizations for query token memory access, which is accessed in the inner loop of FSA kernel and employ separate optimized kernels for attention result reduction.
- **Contribution 3:** We conduct empirical studies to compare FSA with vanilla NSA and full attention. Concretely, we benchmark kernel execution latencies, end-to-end training and inference prefill phase latencies for state-of-the-art LLMs. Compared to NSA, results show that FSA delivers (i) up to $3.5\times$ and on average $1.6\times$ kernel-level latency reduction, (ii) up to $1.25\times$ and $1.09\times$ on average end-to-end training speedup, and (iii) up to $1.36\times$ and $1.11\times$ on average inference prefill-phase speedup. Compared to full attention, the performance boost is further amplified.

2 PRELIMINARIES AND RELATED WORK

2.1 GPU KERNEL IMPLEMENTATION

Parallelization in modern GPUs. Modern GPUs utilize massive threads to execute kernels concurrently. Optimized kernel implementations typically employ two-level parallelism: (i) Thread block-level parallelism: Optimized implementations partition input matrices into multiple tiles, assign them to thread blocks, and execute computations for each thread block in parallel. Common paradigm within a single thread block follows three key steps: Load matrix tiles into the GPU’s shared memory; perform computations using the loaded tiles; and store computed results to the output tensor. (ii) Warp-level parallelism: Within each thread block, optimized kernels further partition

¹Concretely, performance is downgraded due to hardware requirements on matrix shapes for warp-/warpgroup- level matrix multiply-and-accumulate instructions (e.g., wmma or wgmma) (NVIDIA, 2025), where each dimension of a matrix tile must be larger than specified value (e.g., at least 8 on Hopper GPUs).

108 assigned matrix tiles to multiple warps — each containing 32 threads on NVIDIA GPUs (NVIDIA,
 109 2024d) — to enable fine-grained parallel execution. Warp-level parallelism maximizes hardware
 110 efficiency through coalesced memory access and implicit synchronization within warps.

111 **Efficient kernel implementation.** Modern GPU architectures impose strict requirements on the
 112 shapes of matrix tiles used in low-level computations. Specifically, PTX warp-level matrix multiply-
 113 accumulate instructions (NVIDIA, 2025) require that for matrix multiplication $C = AB$, where
 114 $A \in \mathbb{R}^{m \times k}$ and $B \in \mathbb{R}^{k \times n}$, the dimensions m , n , and k must satisfy minimum size requirements
 115 for single-warp processing. On NVIDIA Hopper GPUs, m , n , k must be at least 8. To achieve
 116 higher efficiency, a thread block typically utilizes multiple warps for sufficient warp-level par-
 117 allelism. Additionally, modern GPUs perform optimally with coalesced and contiguous data loading
 118 and storing; non-contiguous memory access leads to a lower L2 cache hit rate, thereby reducing
 119 effective memory bandwidth and degrading overall kernel efficiency.

120 2.2 ATTENTION MECHANISMS

121 **Full attention.** Full attention with causality (Vaswani et al., 2017; Ainslie et al., 2023)—where each
 122 query token attends to all previous KV tokens—is standard in LLM training and inference. Formally,
 123 given sequence length N , query/key head dimension d_K , value head dimension d_V , h query heads,
 124 and h_K KV heads, attention computation involves query/key/value tensor $\mathbf{Q} \in \mathbb{R}^{N \times d_K \times h}$, $\mathbf{K} \in$
 125 $\mathbb{R}^{N \times d_K \times h_K}$, $\mathbf{V} \in \mathbb{R}^{N \times d_V \times h_K}$. For j -th ($j \in \{0, 1, \dots, h-1\}$) query head, $\lfloor j/h_K \rfloor$ -th (ranging from
 126 0 to h_K-1) key and value head, denote involved matrices as $\mathbf{Q}^j, \mathbf{K}^{\lfloor j/h_K \rfloor} \in \mathbb{R}^{N \times d_K}, \mathbf{V}^{\lfloor j/h_K \rfloor} \in$
 127 $\mathbb{R}^{N \times d_V}$. Full attention computation can be formalized as:

$$128 \mathbf{O}^j = \text{Softmax} \left(\frac{\mathbf{Q}^j (\mathbf{K}^{\lfloor j/h_K \rfloor})^T}{\sqrt{d_K}} \right) \mathbf{V}^{\lfloor j/h_K \rfloor} \quad (1)$$

129 On the system side, recent research (Dao, 2023; Kwon et al., 2023) has optimized full attention from
 130 various perspectives. Notably, Flash Attention (Dao, 2023) optimizes full attention with a two-level
 131 loop: Each thread block loads a block of query tokens and, while KV tokens remain, iteratively pro-
 132 cesses a block of KV tokens and accumulates intermediate results with online softmax (Milakov &
 133 Gimelshein, 2018). Results are finally written to the output tensor. This design minimizes redundant
 134 memory accesses for query and output tensors, thereby reducing attention execution latency.

135 **Sparse attention.** Recent efforts in sparse attention algorithms (Yuan et al., 2025; Lu et al., 2025;
 136 Lee et al., 2023; Tay et al., 2020; Zhao et al., 2019; Tang et al., 2024; Xiao et al., 2024b; Zhu
 137 et al., 2024; Lai et al., 2025; Xu et al., 2025b; Zhang et al., 2023) and system side optimiza-
 138 tions efforts (Zhang et al., 2024b;a; 2025b) represent an emerging trend aimed at reducing attention
 139 computation costs in long-context LLM training and inference, where standard attention per-
 140 forms poorly due to its quadratic complexity with respect to sequence length. The most notable
 141 efforts in sparse attention include Native Sparse Attention (NSA) (Yuan et al., 2025). Formally,
 142 in NSA, for j -th query head, each query token $\mathbf{q}_t^j \in \mathbb{R}^{1 \times d_K}, t \in \{0, 1, \dots, N-1\}$ attends to
 143 $\tilde{N} \ll N$ KV tokens via three attention mechanisms $c \in \mathcal{C}$, where $\mathcal{C} = \{\text{cmp}, \text{sel}, \text{win}\}$, repre-
 144 senting compression, selection, and sliding window for keys and values. We denote KV tokens
 145 as $\tilde{\mathbf{K}}_c^{\lfloor j/h_K \rfloor} \in \mathbb{R}^{\tilde{N} \times d_K}, \tilde{\mathbf{V}}_c^{\lfloor j/h_K \rfloor} \in \mathbb{R}^{\tilde{N} \times d_V}$, which contains $\lfloor j/h_K \rfloor$ -th KV head and a subset of
 146 KV tokens of attention mechanism c . Given trainable gating scores $\tau_t^c \in [0, 1]$ for three attention
 147 modules, NSA combines the three attention mechanisms as follows:

$$148 \mathbf{o}_t^j = \sum_{c \in \mathcal{C}} \tau_t^c \cdot \text{Softmax} \left(\frac{\mathbf{q}_t^j (\tilde{\mathbf{K}}_c^{\lfloor j/h_K \rfloor})^T}{\sqrt{d_K}} \right) \tilde{\mathbf{V}}_c^{\lfloor j/h_K \rfloor} \quad (2)$$

149 Notably, the NSA kernel that selectively retains fine-grained tokens is a major system bottleneck
 150 across three attention mechanisms. This point is validated in §4.4. The NSA kernel allows each
 151 query token across query heads that share the same KV heads to attend to distinct T KV blocks,
 152 each with B_K contiguous KV tokens. Distinct KV block selection imposes challenges on effec-
 153 tively batching query tokens and performing computation with KV blocks within one thread block.
 154 Therefore, it is crucial to optimize the batching strategy for efficient NSA kernel execution.

155 3 FLASH SPARSE ATTENTION

156 We present FSA design and compare with vanilla NSA (§3.1), then introduce FSA implemen-
 157 tation and optimizations (§3.2). Finally, we provide a thorough analysis of FSA performance (§3.3).

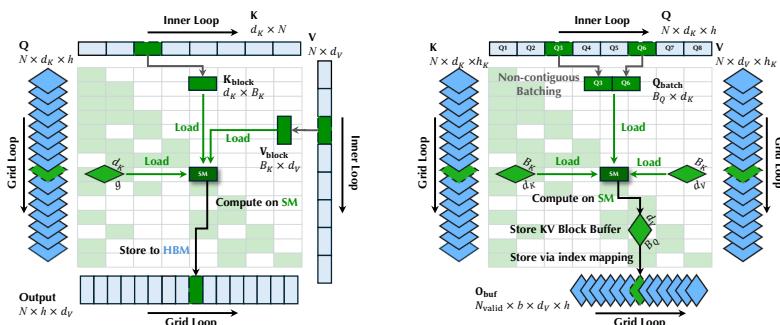


Figure 1: Left: Illustration of NSA kernel (Yuan et al., 2025), which iterates query tokens in outer loop, and processes KV blocks in the inner loop. Right: Illustration of FSA kernel, which alternatively iterate KV blocks in the outer loop, and processes query tokens in the inner loop — partial attention results are stored in output buffer O_{buf} for accumulation (see §3.2 for more details).

3.1 FSA KERNEL DESIGN

An efficient sparse attention kernel must translate theoretical FLOPs reduction into concrete savings in memory access and computation during GPU execution. Vanilla NSA kernel is insufficient in achieving this goal. As illustrated in Figure 1 (left), NSA kernel processes query tokens one by one in the outer loop and KV blocks in the inner loop, while batching query heads. However, if the number of query heads is insufficient, this method requires padding to meet the hardware’s matrix multiplication shape requirements, leading to wasteful memory access and computation.

To achieve higher kernel efficiency, FSA exchanges NSA kernel loop order and processes query heads one by one, looping over KV blocks in the outer loop and batches of query tokens in the inner loop. Since the number of such tokens is typically large enough to meet hardware requirements, this strategy requires no padding and eliminates the overhead of processing padded data.

However, due to inversion of kernel loop order, FSA encounters new challenges:

- **Non-contiguous memory access for query batches.** Due to the sparse nature of NSA token selection, for one KV block, only a subset of total query tokens are involved for attention computation and query token indices are typically non-contiguous. When processing query tokens in FSA inner loop, it is critical to minimize the negative impact of non-contiguous memory access.
- **Online softmax statistics and attention results accumulation.** Online softmax and attention results reduction for each query token across distinct KV blocks adds another layer of complexity. In the NSA token selection logic, computing the final output for a query token requires accumulating partial attention results from its distinct selected KV blocks. Since the NSA kernel’s outer loop iterates over query tokens, this accumulation process can be handled within one thread block. In contrast, FSA’s inverted loop order means that partial results for a single query are computed across different thread blocks, each processing a different KV block. This design necessitates a proper management strategy for accumulating attention results distributed across thread blocks.

3.2 FSA KERNEL IMPLEMENTATION AND OPTIMIZATION

To implement an efficient FSA kernel, we employ an optimized token selection kernel that minimizes the negative impact of non-contiguous memory access. Additionally, an online softmax and reduction kernel are designed to efficiently handle online softmax and attention result reduction.

FSA token selection kernel. FSA *mitigates the impact of non-contiguous memory access by employing index tensors to orchestrate data movement*. During forward pass, as illustrated in Figure 1 (right), each thread block in FSA kernel is assigned a single (Query Head, KV Block) pair. The KV block is loaded from main memory once per thread block. The kernel then iterates through batches of non-contiguous query tokens, which are loaded and stored using index tensors \mathcal{I}_i and \mathcal{O}_i for $i \in \{1, 2, \dots, b\}$, where b is the total number of KV blocks. These index tensors are pre-computed from the NSA sparse selection tensor $\mathbf{T} \in \mathbb{R}^{h_K \times N \times T}$, which records selected KV block indices for each query token. Due to the sparse nature of token selection, each KV block is attended by a subset of N query tokens. Consequently, index tensor \mathcal{I}_i , which contains query token indices attending to current KV block, typically holds fewer than N valid indices, i.e., $N_{valid} = |\mathcal{I}_i| \leq N$. To minimize

216 the impact of non-contiguous memory access, a thread block terminates early once it has processed
 217 all valid query indices in \mathcal{I}_i , avoiding further memory access or computation. Concurrently, index
 218 mapping tensor \mathcal{O}_i facilitates contiguous storage of intermediate results. Note that outputs from
 219 FSA token selection kernel are not final attention scores; they are partial results that are reduced
 220 for each query across different KV blocks in a separate reduction kernel, which we introduce next.
 221 In the backward pass, FSA kernel follows a similar logic, loading query tokens non-contiguously
 222 to compute gradients and storing intermediate gradients to buffers. The primary difference is that
 223 index tensors \mathcal{I}_i and \mathcal{O}_i , computed during the forward pass, are retrieved from cache.

224 *FSA handles query attention results and gradients reduction in separate kernels.* In forward pass,
 225 FSA parallel computation of attention scores — where a single query token’s results are reduced
 226 across multiple KV blocks — requires a careful implementation of online softmax and reduction
 227 logic to ensure numerical correctness. In backward pass, a similar reduction challenge exists for
 228 gradients of query tokens. FSA achieves efficient and correct accumulation in two kernels:

229 **FSA reduction kernel.** Since a query’s attention scores or gradients are computed across multiple
 230 thread blocks (each processing a different KV block in FSA token selection kernel), direct reduction
 231 into the output tensor in FSA kernel necessitates atomic additions (NVIDIA, 2024a) to prevent race
 232 conditions. Given the prohibitive overhead of atomic operations, FSA decouples computation from
 233 accumulation. It adopts a two-stage process:

- 234 • (i): FSA token selection kernel (see Figure 1 (right)) computes partial query attention results or
 235 gradients without reduction with online softmax and writes them to an intermediate buffer.
- 236 • (ii): A dedicated reduction kernel efficiently accumulates these partial results into a final output
 237 tensor with online softmax scaling, which we introduce next.

238 This two-stage arrangement effectively eliminates atomic operations and achieves efficient attention
 239 result accumulation. However, HBM memory overhead is increased due to intermediate buffers. To
 240 minimize memory overhead, we allocate a buffer sized only for N_{valid} query tokens relevant to each
 241 KV block, rather than for all N tokens. Index mapping tensor \mathcal{O}_i facilitates contiguous I/O into this
 242 compact buffer, thereby avoiding the significant overhead of allocating a full-sized buffer for each
 243 KV block. We present a detailed analysis of FSA buffer HBM memory overhead in Appendix E.

244 **FSA online softmax kernel.** In the forward pass, to ensure numerical correctness, FSA needs to
 245 include online softmax statistics in two aspects:

- 246 • (i): In the FSA token selection kernel, computation results between each query token and key
 247 block must be scaled with *historical* running maximum (Milakov & Gimelshein, 2018)).
- 248 • (ii): In the reduction kernel, partial attention outputs of query tokens regarding selected KV blocks
 249 stored in the output buffer must be scaled with online softmax statistics. Additionally, final output
 250 for a query token must be scaled with log-sum exponentials (Milakov & Gimelshein, 2018).

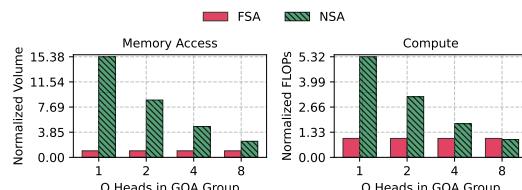
251 Computing online softmax statistics within the FSA token selection kernel produces incorrect attention
 252 results. When multiple thread blocks process the same query token, each block computes only
 253 *partial* statistics, leading to incorrect maximum values and attention outputs. To address this challenge,
 254 FSA introduces a separate online softmax kernel that pre-computes online softmax statistics
 255 using query and key tensor \mathbf{Q} and key tensor \mathbf{K} and stores them in a buffer.

256 3.3 FSA PERFORMANCE ANALYSIS

257 We analyze FSA performance by answering
 258 two critical questions regarding FSA and NSA
 259 kernel performance:

260 **Question 1:** *Do additional auxiliary kernels
 261 like online softmax and reduction implemented
 262 in FSA incur additional memory access and
 263 computation overhead?*

264 To answer this question, we conduct detailed
 265 memory footprint and computation load analy-
 266 sis and derive the following theorem:



267 Figure 2: Comparison on memory access and FLOPs,
 268 block size is 64, top-k is 16. FSA’s memory volume or
 269 FLOPs are normalized to 1.

270 **Theorem:** Across popular GQA group settings, where each GQA group contains $g \in \{1, 2, 4, 8\}$ 271 query heads, aggregate memory access volume and FLOPs of FSA token selection, online softmax, 272 and reduction kernel are lower than vanilla NSA kernel. Comparisons are presented in Figure 2. 273 Additional memory access introduced by auxiliary kernels, i.e., FSA online softmax and reduction 274 kernels, remains manageable, falling significantly below memory access wasted on padded data in 275 the original NSA kernel (see more details in Appendix E).

276 **Question 2:** Since FSA introduces non- 277 contiguous memory access on loading query 278 tokens and requires additional auxiliary 279 kernels, is FSA generally applicable across vari- 280 ous GPU types, and does it consistently provide 281 performance improvements over NSA kernels?

282 To answer this question, we conduct a group of 283 micro-benchmarks and enumerate the follow- 284 ing analysis of empirical results:

285 **Empirical analysis:** Profiling results (shown 286 in Figure 3) across various GPU types and 287 GQA group settings confirm superior perfor- 288 mance of FSA. Optimized FSA outperforms 289 vanilla NSA across popular GPU architectures 290 and GQA group settings, despite being compromised by non-contiguous memory access and reduc- 291 ing attention results in a separate kernel. When each GQA group contains fewer than 8 query heads, 292 FSA usually demonstrates superior performance to NSA. These empirical results demonstrate that 293 FSA kernel’s performance gains from overall reduced unnecessary memory access and FLOPs more 294 than compensate for the overhead of non-contiguous memory access and executing multiple kernels.

296 4 EVALUATION

297 This section presents a comprehensive evaluation of FSA across various NSA configurations. We 298 aim to investigate the following research questions:

- 300 • *Q1: What is the kernel-level performance of FSA compared with NSA and full attention across 301 diverse NSA algorithmic configurations?*
- 302 • *Q2: What is the impact of FSA on end-to-end training and inference performance in practice?*
- 303 • *Q3: What is the breakdown performance of FSA, and how effective is each part of FSA?*

305 4.1 EXPERIMENTAL SETUP

306 **Experimental setups.** We use two GPU types for evaluations: NVIDIA H20 GPUs (NVIDIA, 307 2024b), which provide 148 TFLOPS tensor core computational power and 4 TB/s memory band- 308 width; and NVIDIA H200 GPUs (NVIDIA, 2024c), which deliver 989 TFLOPS tensor core computa- 309 tional power and 4.8 TB/s memory bandwidth. For end-to-end training and inference evaluations, 310 GPUs are interconnected via NVLink, providing 450 GB/s inter-GPU bandwidth. [In our evaluations, 311 we use BF16 for training and FP16 for inference.](#)

312 **Baselines.** We compare FSA with two baselines:

- 314 • **NSA (Native Sparse Attention) (Yuan et al., 2025).** Our primary baseline is vanilla NSA imple- 315 mentation, which introduces natively hardware-aligned trainable sparse attention. NSA maintains 316 algorithmic performance comparable to full attention while substantially reducing computational 317 complexity. We utilize Triton-based NSA kernel (Organization, 2024) for evaluation.
- 318 • **Full attention (Flash Attention) (Dao, 2023).** Due to limited hardware resource utilization, theo- 319 retical FLOPs reductions achieved by NSA or FSA may not translate to proportional performance 320 gains. Therefore, the full attention baseline (with causality), which has no sparsity constraints, is 321 essential to demonstrate the practical effectiveness of both NSA and FSA. We utilize an efficient 322 Triton-based Flash Attention kernel (Triton, 2024) for fair comparison.

323 **Experimental configurations.** To ensure comprehensive evaluation, we systematically test FSA and two baselines under varying NSA configurations: (i) GQA settings $g \in \{1, 2, 4, 8\}$, where g is

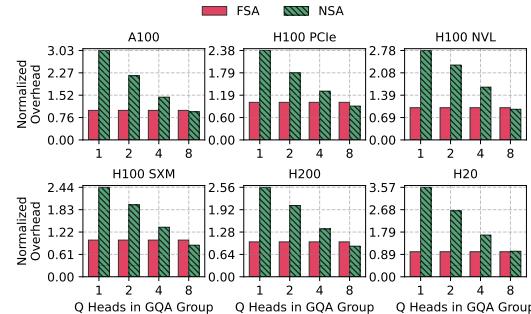


Figure 3: Real-time profiling results of the FSA and NSA kernel execution overhead across different GPUs, under block size $B_K = 64$, and top-k value $T = 16$. FSA latency is normalized to 1.

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

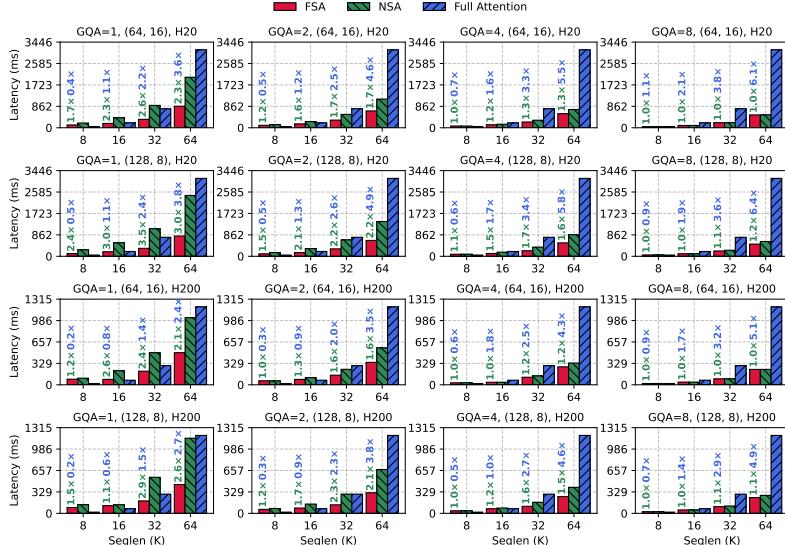


Figure 4: Performance comparison of Triton-based FSA, NSA, and full attention (enabled by Flash Attention) kernels under block sizes and top-k values of (B_K, T) equals to $(64, 16)$ and $(128, 8)$.

number of query heads in one GQA group; (ii) NSA hyperparameter block size B_K and top-k T combinations of $(B_K, T) \in \{(64, 16), (128, 8)\}$; and (iii) sequence lengths of $\{8K, 16K, 32K, 64K\}$ tokens. For end-to-end training and inference evaluations, we evaluate performance using Llama3-8B (Dubey et al., 2024), Qwen3-14B (Yang et al., 2025), and Qwen2.5-32B (Team, 2024) with sequence lengths of 32K and 64K. When the entire model is too large to fit on a single GPU for training, we use pipeline parallelism (Shoeybi et al., 2019) to distribute model across multiple GPUs.

Evaluation metrics. Following established practices in prior research (Yuan et al., 2025; Lu et al., 2025; Dao, 2023), we employ two metrics to evaluate system efficiency: (i) Kernel execution latency, which measures computational time required for attention operations, and (ii) training and inference latency, which measures end-to-end time required to process a single batch of data during model training and inference. These metrics directly assess FSA’s computational efficiency.

4.2 FSA KERNEL BENCHMARKING RESULTS (Q1)

FSA kernel performance. We evaluate the kernel performance of FSA across both H20 and H200 GPUs under various configurations. As shown in Figure 4, the evaluation results demonstrate that FSA outperforms both NSA and full attention across most of the tested scenarios:

- **Comparison with NSA.** FSA outperforms NSA with significantly lowered memory access volume and FLOPs in NSA token selection module, despite introducing non-contiguous memory access and auxiliary kernels (see details in §3). FSA achieves up to $3.5\times$ speedup and on average $1.8\times$ lower kernel latency on H20 GPUs, and up to $2.9\times$ speedup and on average $1.4\times$ lower kernel latency on H200 GPUs compared to NSA. Performance gap between FSA and NSA widens with smaller GQA group settings ($g \in \{1, 2\}$) and longer sequence lengths (32K and 64K tokens), with peak performance improvement of $3.5\times$ observed at $g = 1$ (one query head in one GQA group) and sequence length of 32K tokens. Furthermore, FSA maintains consistent performance improvements across different NSA algorithmic configurations, e.g., where $(B_K, T) = (64, 16)$ and $(B_K, T) = (128, 8)$, demonstrating robust efficiency gains across diverse parameter settings.
- **Comparison with full attention.** For long sequences, FSA outperforms full attention with an efficient NSA algorithm and even more efficient token selection. FSA achieves up to $6.4\times$ speedup and on average $2.4\times$ lower kernel latency on H20 GPUs, and up to $4.9\times$ speedup and on average $2.3\times$ lower kernel latency on H200 GPUs compared to full attention. Performance gap between FSA and full attention increases dramatically with a larger number of query heads in each GQA group, with the most substantial improvement of $6.4\times$ observed at $g = 8$ (8 query heads in one GQA group) and sequence length of 64K tokens. Similarly, FSA maintains superior efficiency across $(B_K, T) \in \{(64, 16), (128, 8)\}$ settings, demonstrating consistent and substantial performance advantages over full attention. On the other hand, vanilla NSA lags behind full attention in many tested cases, even with its sparse attention mechanism. For example, when the sequence

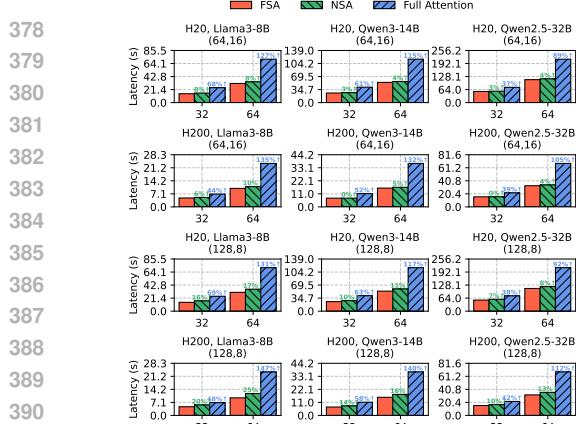


Figure 5: End-to-end training latency of FSA, NSA, full attention.

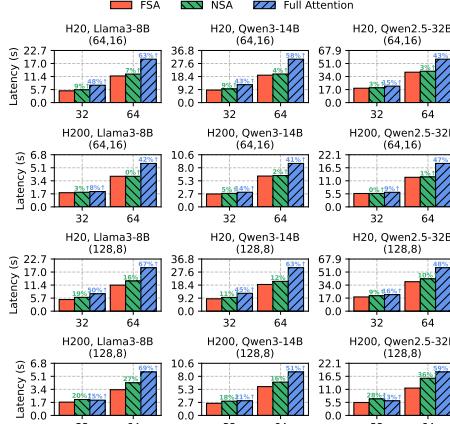


Figure 6: Inference Prefill latency of FSA, NSA, full attention.

length is 32K, one GQA group contains one query head, NSA consistently falls short of full attention, while FSA demonstrates superior performance than full attention.

4.3 END-TO-END PERFORMANCE COMPARISON (Q2)

End-to-end training performance. We benchmark end-to-end training performance of FSA against NSA and full attention across various models and hardware setups. As shown in Figure 5, results demonstrate that FSA consistently reduces training latency across all evaluated cases. Specifically, FSA achieves up to $1.25\times$ speedup and on average $1.09\times$ speedup compared to NSA, and delivers up to $2.47\times$ speedup and an average of $1.86\times$ speedup compared to full attention. These efficiency gains are pronounced with longer sequences and on higher-performance hardware like the H200, demonstrating FSA’s effectiveness in accelerating computation-intensive training scenarios.

Inference performance. For prefill latency, we benchmark FSA against NSA and full attention across various models and hardware setups. As shown in Figure 6, our results demonstrate that FSA achieves lower prefill latency across most evaluated configurations. Specifically, FSA achieves up to $1.36\times$ speedup and on average $1.11\times$ speedup compared to NSA. FSA performance advantages are even more significant when compared to full attention, where FSA delivers up to $1.69\times$ speedup and an average of $1.39\times$ speedup. Taken together, these results underscore FSA’s efficacy in accelerating the prefill phase of LLM inference. In terms of decoding latency, FSA matches that of NSA, which reduces memory access of the decoding phase by only loading a sparse subset composed of compressed tokens, selected tokens, and recent tokens from a sliding window (Yuan et al., 2025).

4.4 PERFORMANCE BREAKDOWN & ABLATION STUDIES (Q3)

In this section, we evaluate FSA at both kernel and end-to-end (training or inference) levels. At the kernel level, we analyze forward and backward performance separately, and examine each of the three attention mechanisms within NSA: Compression, selection, and sliding window on key/value tokens. We conduct ablation studies to assess the effectiveness of FSA kernel optimizations. We validate the implementation correctness of FSA by comparing training loss across FSA, NSA, and full attention in Appendix D.

Forward and backward breakdown. We conduct a detailed breakdown to analyze forward and backward attention computation latencies of FSA, NSA, and full attention across various NSA configurations. As shown in Figure 7, FSA demonstrates superior performance in both forward and backward attention computations across all evaluated scenarios. For forward computation, FSA achieves up to $2.36\times$ speedup and on average $1.62\times$ lower latency compared to NSA, and up to $3.23\times$ speedup and on average $1.83\times$ lower latency compared to full attention. Backward computation analysis reveals even more pronounced advantages, since FSA avoids computation costs for index tensors $\mathcal{I}_i, \mathcal{O}_i$ for i -th KV block (see details in §3.2). FSA achieves up to $4.32\times$ speedup and on average $2.59\times$ lower latency compared to NSA, and up to $7.45\times$ speedup and on average $6.89\times$ lower latency compared to full attention. Performance improvements remain consistent across different NSA configurations, demonstrating that FSA provides robust efficiency gains.

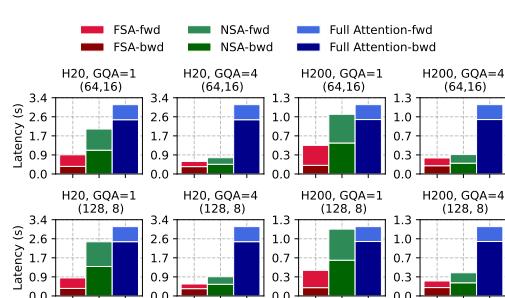


Figure 7: Experimental breakdown of FSA, NSA, and full attention latencies during forward and backward computation.

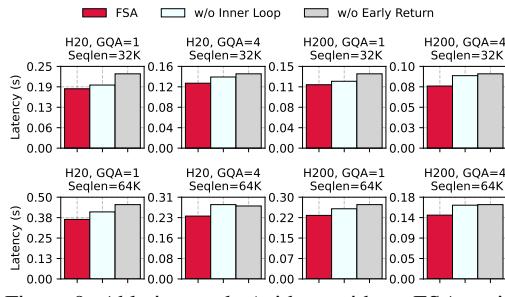


Figure 9: Ablation study (with or without FSA optimizations) on FSA kernel.

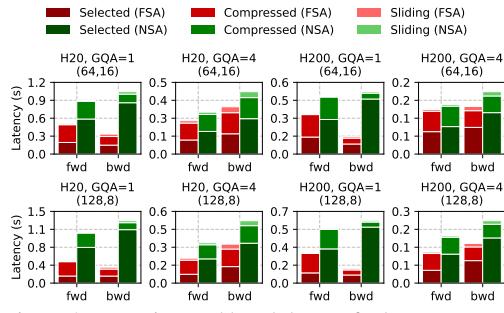


Figure 8: Experimental breakdown of token compression, selection, and sliding window attention overhead during forward/backward pass.

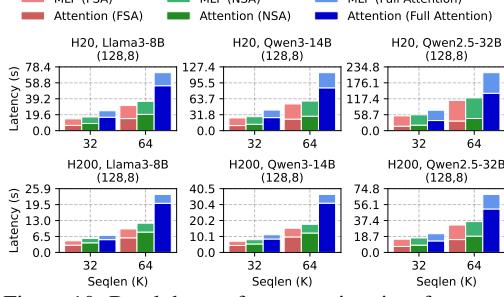


Figure 10: Breakdown of computation time for attention and MLP during end-to-end training.

Compression, selection, and sliding window breakdown. We conduct detailed breakdown experiments for the three essential steps in NSA. As demonstrated in Figure 8, the token selection phase dominates overall attention computation performance, accounting for up to 79% and on average 65% of total attention overhead across all evaluated configurations. And FSA achieves substantial performance improvements in token selection, delivering up to $7.6 \times$ speedup and on average $3.4 \times$ lower latency compared to NSA in this critical phase. These results highlight that FSA’s primary performance advantages stem from its efficient handling of token selection computation.

Ablation study on sparse attention performance. We present an ablation study of FSA kernel performance in Figure 9, where we disable each of additional optimizations of FSA we mentioned in §3. Results demonstrate that by disabling the inner loop (one thread block for one query batch), performance of FSA kernel drops by up to 18.9% and on average 11.9%, and by disabling early return optimization, performance drops by up to 25.2% and on average 18.2%. These empirical results demonstrate the importance of each component of our FSA optimization in enhancing performance.

End-to-end training breakdown. To isolate the source of performance improvements, we conduct a breakdown analysis of the end-to-end training latency. As shown in Figure 10, results demonstrate that FSA’s performance improvements originate from attention computation. Within this component, FSA achieves up to $1.4 \times$ and on average $1.23 \times$ lower latency than NSA, and realizes a speedup of up to $3.87 \times$ and on average $2.91 \times$ over full attention. This analysis confirms that overall end-to-end speedup is driven by FSA’s fundamental optimizations in NSA token selection.

5 CONCLUSION

We presented Flash Sparse Attention (FSA), a kernel design that broadens the applicability of Native Sparse Attention (NSA) to modern LLMs where each GQA group contains a small number of query heads. By inverting kernel loop order and introducing tailored optimizations for non-contiguous memory access, online softmax, and accumulation, FSA eliminates padding inefficiencies that limit NSA on current GPUs. Evaluation demonstrates that FSA achieves substantial improvements in both kernel-level and end-to-end performance, offering consistent speedups in training/inference across state-of-the-art long-context LLMs. These results highlight that algorithm–system co-design is critical for translating theoretical efficiency of sparse attention into practical acceleration. We believe FSA provides a foundation for future exploration of hardware-efficient sparse attention.

486 REFERENCES
487

488 Shantanu Acharya, Fei Jia, and Boris Ginsburg. Star attention: Efficient llm inference over long
489 sequences. *arXiv preprint arXiv:2411.17116*, 2024.

490 Saurabh Agarwal, Bilge Acun, Basil Hosmer, Mostafa Elhoushi, Yejin Lee, Shivaram Venkataraman,
491 Dimitris Papailiopoulos, and Carole-Jean Wu. Chai: clustered head attention for efficient
492 llm inference. In *Proceedings of the 41st International Conference on Machine Learning*, pp.
493 291–312, 2024.

494 Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
495 Sanghi. Gqa: Training generalized multi-query transformer models from multi-head check-
496 points. *arXiv preprint arXiv:2305.13245*, 2023.

497 Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. URL https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf.

498 Yaofu Chen, Zeng You, Shuhai Zhang, Haokun Li, Yirui Li, Yaowei Wang, and Mingkui
499 Tan. Core context aware transformers for long context language modeling. *arXiv preprint*
500 *arXiv:2412.12465*, 2024.

501 Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. *arXiv*
502 *preprint arXiv:2307.08691*, 2023.

503 Tri Dao, Daniel Haziza, Francisco Massa, and Grigory Sizov. Flash-decoding for long-context
504 inference, 2023. URL <https://pytorch.org/blog/flash-decoding/>.

505 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
506 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
507 *arXiv e-prints*, pp. arXiv–2407, 2024.

508 Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
509 Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
510 for long-context llms via dynamic sparse attention. *Advances in Neural Information Processing*
511 *Systems*, 37:52481–52515, 2024a.

512 YOUHE JIANG, Ran Yan, and Binhang Yuan. Hexgen-2: Disaggregated generative inference of
513 llms in heterogeneous environment. In *The Thirteenth International Conference on Learning*
514 *Representations*.

515 Youhe Jiang, Ran Yan, Xiaozhe Yao, Yang Zhou, Beidi Chen, and Binhang Yuan. Hexgen: gener-
516 ative inference of large language model over heterogeneous environment. In *Proceedings of the*
517 *41st International Conference on Machine Learning*, pp. 21946–21961, 2024b.

518 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
519 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
520 serving with pagedattention. In *Proceedings of the 29th symposium on operating systems prin-
521 ciples*, pp. 611–626, 2023.

522 Xunhao Lai, Jianqiao Lu, Yao Luo, Yiyuan Ma, and Xun Zhou. Flexprefill: A context-aware sparse
523 attention mechanism for efficient long-sequence inference. 2025.

524 Heejun Lee, Jina Kim, Jeffrey Willette, and Sung Ju Hwang. Sea: Sparse linear attention with
525 estimated attention mask. *arXiv preprint arXiv:2310.01777*, 2023.

526 Enzhe Lu, Zhejun Jiang, Jingyuan Liu, Yulun Du, Tao Jiang, Chao Hong, Shaowei Liu, Weiran He,
527 Enming Yuan, Yuzhi Wang, et al. Moba: Mixture of block attention for long-context llms. *arXiv*
528 *preprint arXiv:2502.13189*, 2025.

529 Maxim Milakov and Natalia Gimelshein. Online normalizer calculation for softmax. *arXiv preprint*
530 *arXiv:1805.02867*, 2018.

540 NVIDIA. Cuda c++ programming guide. <https://docs.nvidia.com/cuda/cuda-c-programming-guide/>, 2024a. Section on Atomic Functions.

541

542

543 NVIDIA. Nvidia h20 solution brief. <https://images.nvidia.com/content/pdf/dgx-apps/NVIDIA-H20-Solution-Brief-June17.pdf>, 2024b.

544

545 NVIDIA. H200 tensor core gpu. <https://www.nvidia.com/en-us/data-center/h200/>, 2024c.

546

547

548 NVIDIA. Cuda c++ best practices guide. <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/>, 2024d.

549

550 NVIDIA. Parallel thread execution isa version 9.0 — warp-level matrix instructions. <https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions>, 2025.

551

552

553 OpenAI. Openai gpt-4o, 2024. URL <https://platform.openai.com/docs/models/gpt-4o>.

554

555

556 FLA Organization. Native sparse attention. <https://github.com/fla-org/native-sparse-attention>, 2024.

557

558 Mohammad Shoeybi, Mostafa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro. Megatron-Lm: Training multi-billion parameter language models using model parallelism. *arXiv preprint arXiv:1909.08053*, 2019.

559

560

561 Connor Shorten. ML-axiv-papers. <https://huggingface.co/datasets/CShorten/ML-ArXiv-Papers>, 2024.

562

563

564 Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest: query-aware sparsity for efficient long-context llm inference. In *Proceedings of the 41st International Conference on Machine Learning*, pp. 47901–47911, 2024.

565

566

567 Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse sinkhorn attention. *arXiv preprint arXiv:2002.11296*, 2020.

568

569

570 Qwen Team. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2024.

571

572 Triton. Fused attention tutorial. <https://triton-lang.org/main/getting-started/tutorials/06-fused-attention.html>, 2024.

573

574 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.

575

576

577 Xindi Wang, Mahsa Salmani, Parsa Omidi, Xiangyu Ren, Mehdi Rezagholizadeh, and Armaghan Eshaghi. Beyond the limits: A survey of techniques to extend the context length in large language models. *arXiv preprint arXiv:2402.02244*, 2024.

578

579

580 Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan Liu, and Maosong Sun. Inflm: Training-free long-context extrapolation for llms with an efficient context memory. *Advances in Neural Information Processing Systems*, 37:119638–119661, 2024a.

581

582

583

584

585 Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Shang Yang, Haotian Tang, Yao Fu, Song Han, et al. Duoattention: Efficient long-context llm inference with retrieval and streaming heads. In *The Thirteenth International Conference on Learning Representations*, 2024b.

586

587

588 Chejian Xu, Wei Ping, Peng Xu, Zihan Liu, Boxin Wang, Mohammad Shoeybi, Bo Li, and Bryan Catanzaro. From 128k to 4m: Efficient training of ultra-long context large language models. *arXiv preprint arXiv:2504.06214*, 2025a.

589

590

591 Ruyi Xu, Guangxuan Xiao, Haofeng Huang, Junxian Guo, and Song Han. Xattention: Block sparse attention with antidiagonal scoring. In *Proceedings of the 42nd International Conference on Machine Learning (ICML)*, 2025b.

592

593

594 Ran Yan, Youhe Jiang, Xiaonan Nie, Fangcheng Fu, Bin Cui, and Binhang Yuan. Hexiscale: Ac-
 595 commodating large language model training over heterogeneous environment. *arXiv preprint*
 596 *arXiv:2409.01143*, 2024.

597 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 598 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 599 *arXiv:2505.09388*, 2025.

600 Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
 601 Zhu, Jianqun Chen, Jing Chang, et al. Yi: Open foundation models by 01. ai. *arXiv preprint*
 602 *arXiv:2403.04652*, 2024.

603 Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
 604 YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
 605 trainable sparse attention. *arXiv preprint arXiv:2502.11089*, 2025.

606 Organization Zai. Longbench: A benchmark for long-context language models., 2023. URL
 607 <https://huggingface.co/datasets/zai-org/LongBench>.

608 Jintao Zhang, Haofeng Huang, Pengle Zhang, Jia Wei, Jun Zhu, and Jianfei Chen. Sageatten-
 609 tion2: Efficient attention with thorough outlier smoothing and per-thread int4 quantization. *arXiv*
 610 *preprint arXiv:2411.10958*, 2024a.

611 Jintao Zhang, Jia Wei, Haofeng Huang, Pengle Zhang, Jun Zhu, and Jianfei Chen. Sageat-
 612 tention: Accurate 8-bit attention for plug-and-play inference acceleration. *arXiv preprint*
 613 *arXiv:2410.02367*, 2024b.

614 Jintao Zhang, Rundong Su, Chunyu Liu, Jia Wei, Ziteng Wang, Pengle Zhang, Haoxu Wang,
 615 Huiqiang Jiang, Haofeng Huang, Chendong Xiang, Haocheng Xi, Shuo Yang, Xingyang Li,
 616 Yuezhou Hu, Tianyu Fu, Tianchen Zhao, Yicheng Zhang, Youhe Jiang, Chang Chen, Kai Jiang,
 617 Huayu Chen, Min Zhao, Xiaoming Xu, Jun Zhu, and Jianfei Chen. A survey of efficient attention
 618 methods: Hardware-efficient, sparse, compact, and linear attention. 2025a.

619 Jintao Zhang, Jia Wei, Pengle Zhang, Xiaoming Xu, Haofeng Huang, Haoxu Wang, Kai Jiang,
 620 Jun Zhu, and Jianfei Chen. Sageattention3: Microscaling fp4 attention for inference and an
 621 exploration of 8-bit training. *arXiv preprint arXiv:2505.11594*, 2025b.

622 Li Zhang, Youhe Jiang, Guoliang He, Xin Chen, Han Lv, Qian Yao, Fangcheng Fu, and Kai
 623 Chen. Efficient mixed-precision large language model inference with turbomind. *arXiv preprint*
 624 *arXiv:2508.15601*, 2025c.

625 Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
 626 Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
 627 erative inference of large language models. *Advances in Neural Information Processing Systems*,
 628 36:34661–34710, 2023.

629 Guangxiang Zhao, Junyang Lin, Zhiyuan Zhang, Xuancheng Ren, Qi Su, and Xu Sun. Ex-
 630 plicit sparse transformer: Concentrated attention through explicit selection. In *arXiv preprint*
 631 *arXiv:1912.11637*, 2019.

632 Qianchao Zhu, Jiangfei Duan, Chang Chen, Siran Liu, Xiuhong Li, Guanyu Feng, Xin Lv, Huanqi
 633 Cao, Xiao Chuanfu, Xingcheng Zhang, et al. Sampleattention: Near-lossless acceleration of long
 634 context llm inference with adaptive structured sparse attention. *arXiv preprint arXiv:2406.15486*,
 635 2024.

636

637

638

639

640

641

642

643

644

645

646

647

648 **A THE USE OF LARGE LANGUAGE MODELS**
649650 In this paper, we leverage LLMs to enhance academic writing quality by ensuring grammatical
651 correctness and improving sentence structure.
652653 **B NOTATIONS**
654655 The notations used in this paper are summarized in Table 1.
656657 Table 1: Notations and Explanations.
658

659 Notation	660 Explanation
661 N	662 Sequence length.
662 d_K	663 Head dimension for query and key tensor.
663 d_V	664 Head dimension for value tensor.
664 d	665 Uniform head dimension, i.e., $d = d_K = d_V$.
665 h	666 Number of Q heads.
666 h_K	667 Number of KV heads.
667 g	668 GQA group size, defined as $g = \frac{h}{h_K}$.
668 T	669 Number of selected KV blocks of each query token. (Hyperparameter of the NSA sparse attention module.)
669 B_K	670 Block size of each KV block; a NSA hyperparameter.
670 b	671 Number of KV blocks; $b = \frac{N}{B_K}$.
671 B_Q	672 Query batch size in FSA; a FSA hyperparameter.
672 \mathcal{I}_i	673 The set of query indices attending to the i -th KV block. (\mathcal{I}_i contain non-contiguous query indices, usually $ \mathcal{I}_i \leq N$.)
673 \mathcal{O}_i	674 The output tensor mapping for the i -th KV block; e.g., $\mathcal{O}_i[j]$ gives the storage position of token j in the output buffer.
674 N_{valid}	675 The number of valid query tokens in \mathcal{I}_i .
675 \mathbf{T}	676 Sparse selected KV block indices in NSA.
676 $\mathbf{Q}, \mathbf{K}, \mathbf{V}$	677 Full query, key, and value tensor for attention computation.
677 $\mathbf{Q}_{\text{batch}}$	678 Non-contiguous Query batches introduced in FSA. (One thread block processes multiple $\mathbf{Q}_{\text{batch}}$.)
678 $\mathbf{K}_i, \mathbf{V}_i$	679 The i -th KV block with B_K contiguous KV tokens.
679 \mathbf{O}_{buf}	680 Intermediate buffer which holds query attention results without scaling with online softmax in FSA.

685 **C FSA IMPLEMENTATION DETAILS**
686687 FSA is implemented using 10K lines of Python and Triton code. To optimize system performance:
688 (i) We apply fine-grained control over FSA selected attention kernel and reduction kernel to op-
689 timize warp-level parallelism. FSA usually assigns 4 warps per thread block for FSA selected
690 attention kernel, which contains matrix multiplication operations, to enable sufficient computational
691 resources of a given thread block. FSA usually assigns 1 to 2 warps per thread block for reduction
692 kernel, which mainly consists of elementwise operations. Warp assignment for reduction kernel
693 efficiently utilizes warp-level parallelism, reducing reduction kernel execution latency. (ii) We spec-
694 ulatively compute online softmax statistics once per KV heads. Due to invariant nature of online
695 softmax (Milakov & Gimelshein, 2018), correctness of FSA is maintained, while significant cost
696 for computing online softmax statistics is amortized.
697698 **D FSA CORRECTNESS**
699700 **FSA correctness.** To evaluate correctness of FSA kernels, we fine-tune Llama3-8B model using
701 ML-ArXiv-Papers dataset (Shorten, 2024). We replace attention module of Llama3-8B model with

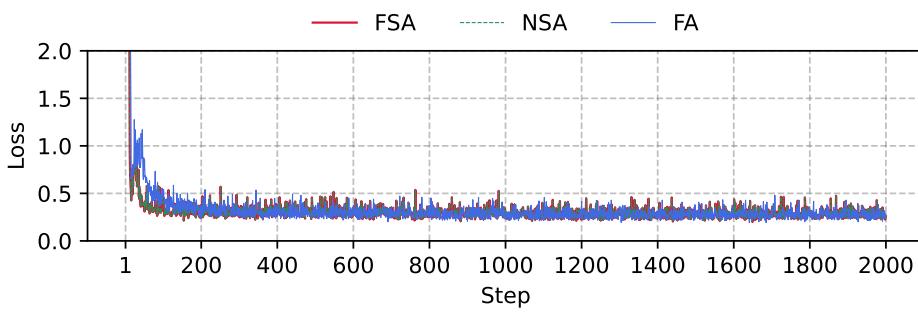


Figure 11: Loss comparison of FSA/NSA/full attention in end-to-end Llama3-8B training.

either FSA or NSA, while initializing all other components with pretrained model checkpoints provided by Meta. For fair comparison with full attention, we reinitialize the parameters of the attention module. Loss comparison among FSA, NSA, and full attention is presented in Figure 11. Results demonstrate that all three methods achieve stable and similar convergence, and FSA exhibits a similar loss curve to NSA, validating the correctness of the FSA kernel.

Further analysis. To strengthen our accuracy evaluation, we conduct additional experiments by fine-tuning smaller models across diverse tasks. Specifically, we fine-tune Llama-3.2-1B, Llama-3.2-3B, and Llama-3.1-8B Dubey et al. (2024) on three representative LongBench Zai (2023) tasks: multi-document QA (MQA) on the HotpotQA dataset, single-document QA (SQA) on the Qasper dataset, and synthetic-data QA (Synthetic) on the PassR-EN dataset. For Llama-3.2-1B and Llama-3.2-3B, we report the average loss after convergence over 2K training steps, comparing FSA, NSA, and Full Attention; these results appear in Table 2. To more comprehensively assess accuracy preservation, we further evaluate perplexity and QA F1 across all three models and tasks. The results, summarized in Tables 3 and 4, consistently show that FSA matches the accuracy of NSA and Full Attention.

Table 2: Converged Loss Across Datasets and Attention Modes.

Model Size	MQA (HQA)			SQA (Qasper)			Synthetic (PassR-EN)		
	FA	FSA	NSA	FA	FSA	NSA	FA	FSA	NSA
1B	0.200	0.182	0.187	0.216	0.191	0.184	0.231	0.224	0.231
3B	0.173	0.153	0.166	0.087	0.082	0.078	0.123	0.119	0.118

Table 3: PPL Across Datasets, Models, and Attention Modes.

Model Size	MQA (HQA)			SQA (Qasper)			Synthetic (PassR-EN)		
	FA	FSA	NSA	FA	FSA	NSA	FA	FSA	NSA
1B	5.40	6.79	6.82	8.77	9.48	9.45	3.48	2.52	2.49
3B	2.42	1.50	1.48	1.20	2.64	2.62	1.87	1.94	1.96
8B	1.57	1.17	1.16	1.28	1.71	1.70	1.21	1.26	1.27

Table 4: QA F1 Across Datasets, Models, and Attention Modes.

Model Size	MQA (HQA)			SQA (Qasper)			Synthetic (PassR-EN)		
	FA	FSA	NSA	FA	FSA	NSA	FA	FSA	NSA
1B	0.05	0.10	0.11	0.08	0.07	0.06	0.22	0.32	0.31
3B	0.28	0.35	0.33	0.15	0.11	0.12	0.39	0.47	0.48
8B	0.32	0.38	0.37	0.23	0.20	0.19	0.83	0.86	0.86

E FSA AND NSA THEORETICAL MEMORY ACCESS AND FLOPs ANALYSIS

To demonstrate how FSA outperforms NSA selected attention, we analyze as follows. For simplicity, we assume query/key/value have the same head dimension, i.e. $d = d_K = d_V$.

756 **FSA analytic advantages.** Theoretically, FSA introduces lower memory access volume and number
 757 of floating-point operations (FLOPs) for small GQA group sizes. We analyze FSA/NSA as
 758 follows:

759 FSA *memory access volume and FLOPs*. We analyze the three key components in FSA as follows:
 760

- 761 • **FSA selected attention kernel** launches hb thread blocks, where h is the number of query attention
 762 heads, and b is the total number of KV blocks. For a sequence of N tokens, the number of
 763 KV blocks $b = \frac{N}{B_K}$, where B_K is the KV block size. In one thread block, FSA selected attention
 764 kernel runs a two-level loop. In the outer loop, it loads $2B_Kd$ KV tokens; in the inner loop, it iter-
 765 atively loads B_Qd query tokens, performs attention computation with a FLOPs of $4B_QB_Kd$, and
 766 stores B_Qd query attention results. We estimate the number of our inner loop as follows. Assume
 767 each query token attends to each KV block with equal probability. Therefore, each query token
 768 attends to a given KV block with a probability of $\frac{T}{b}$, resulting in an average number of tokens
 769 attending to a given KV block of $\frac{NT}{b}$, and an average number of query batches for one KV block
 770 of $\frac{NT}{bB_Q}$. Assuming each data occupies 2 bytes, we can calculate memory accessed in bytes by
 771 FSA selected attention kernel as $4dhN(1 + T)$, and FLOPs as $4dhNB_KT$.
- 772 • **FSA online softmax kernel** operates similarly to the FSA selected attention kernel, with three
 773 key differences: It is called per KV head, omits V tensor loading and computation, and interme-
 774 diate attention scores storage, storing only a single scalar value per (query token, KV block) pair.
 775 Following a similar estimation logic as FSA selected attention kernel, the online softmax kernel
 776 introduces $2dh_KN(1 + T)$ memory access volume in bytes, and $2dh_KNB_KT$ FLOPs.
- 777 • **FSA reduction kernel** introduces negligible FLOPs, but for each query token, it involves loading
 778 attention results of T KV blocks and storing the final attention results. Therefore, FSA reduction
 779 kernel introduces $2dhN(1 + T)$ memory access in bytes.

780 In total, FSA incurs $dN(6h + 2h_K)(1 + T)$ memory access in bytes, and $dNB_KT(4h + 2h_K)$
 781 FLOPs.

782 *NSA Memory access volume and FLOPs.* NSA selected attention kernel launches h_KN thread
 783 blocks, where h_K is the number of KV heads. In each thread block, NSA kernel runs a two-level
 784 loop. In the outer loop, NSA kernel loads one query token and $g = \frac{h}{h_K} Q$ heads that share the
 785 same KV head. Due to the hardware requirements on matrix multiplication shapes, when GQA
 786 < 8 , NSA kernels must load 8 query heads (8d elements), perform computation, and mask out
 787 the undesired computation results. In the inner loop, NSA kernel iteratively (up to T times) loads
 788 one KV block ($2B_Kd$ elements) and performs attention computation with a FLOPs of $32B_Kd$. To
 789 maintain the causal property, i.e., avoiding query tokens to attend to future KV tokens, the actual
 790 number of KV blocks that need to be loaded and participate in computations within a thread block
 791 is on average $\frac{T}{2}$. Finally, NSA kernel stores the attention results in the output tensor, incurring gd
 792 memory access. Therefore, we can estimate the memory access volume (2 bytes per data) for NSA
 793 kernel as $2dh_KN(B_KT + g + 8)$. The FLOPs for NSA kernel are $32dh_KNB_KT$.

794 *FSA selected attention kernels exhibit lower memory access volume and FLOPs.* With $(B_K, T) =$
 795 $(64, 16)$ and sequence length of 64K, which is the same configuration as presented in the NSA paper,
 796 we observe that compared to the NSA selected attention kernel, our method incurs lower memory ac-
 797 cess volume and FLOPs for $\text{GQA} \leq 8$, detailed comparisons are presented in Figure 2. In particular,
 798 for $\text{GQA}=4$, a common configuration in LLMs, our method theoretically reduces memory access
 799 volume to 21.3% and FLOPs to 56.2% of those in NSA. Benefits from the more efficient hardware-
 800 aligned kernel design, our method substantially outperforms NSA across various GQA group sizes.
 801 Additionally, our method demonstrates superior performance as the NSA hyperparameter B_K in-
 802 creases. This advantage stems from NSA’s inherent inefficiency with larger KV blocks. Although
 803 NSA can easily skip loading KV blocks that fully violate causal property, to maintain causality con-
 804 straints for KV blocks that partially violate causal property, NSA must mask out many KV tokens
 805 within the KV block, leading to wasteful memory accesses where loaded data is only partially valid
 806 for computation. As the KV block size B_K grows larger, this inefficiency becomes increasingly
 807 pronounced, as a greater proportion of the loaded KV block remains unused due to causal masking.
 808 In contrast, our method processes all query tokens that attend to a given KV block within a single
 809 thread block, naturally satisfying causal constraints without requiring extensive masking. This ap-
 810 proach achieves superior memory efficiency by ensuring that all loaded KV data contributes to the
 811 computation, resulting in significantly lower memory access overhead.

810 **FSA trade-offs.** FSA trades lowered memory access volume and FLOPs with non-contiguous
 811 loading and more buffer overhead. Theoretical advantages of FSA come at the price of involving
 812 non-contiguous memory access and more buffers that occupy HBM memory. We analyze how
 813 these factors compromise FSA performance and how FSA optimizes memory access and buffer
 814 management as follows:

815 • **Optimize memory access.** The non-contiguous loading on query batches, which is inefficient
 816 on modern GPUs, compromises FSA selected attention kernel performance. Modern GPUs usu-
 817 ally operate more efficiently under coalesced and contiguous memory access, which can improve
 818 the L2-cache hit rate and thereby kernel efficiency (NVIDIA, 2024d). Therefore, the theore-
 819 tical advantages of our method cannot be fully reflected in actual hardware, due to inevitably
 820 degraded performance of non-contiguous memory access. Nonetheless, to our best effort, FSA
 821 optimizes memory access with fine-grained early return mechanisms that filter out unnecessary
 822 query batches loading. For example, for i -th KV block, FSA compactly stores query indices in
 823 set \mathcal{I}_i , which is computed via a full index table. For each query token, the full index table records
 824 whether it should attend to i -th KV block, and \mathcal{I}_i filters the tokens that do not attend to i -th KV
 825 block. Therefore, when all query tokens in \mathcal{I}_i are exhausted, FSA returns early.

826 • **Optimize buffer management.** The newly introduced buffers, \mathbf{O}_{buf} appeared in Figure 1 (right),
 827 bring memory overhead. FSA minimizes buffer overhead from two aspects: (i) FSA Token se-
 828 lection kernel processes a subset of query heads at each time, reusing the buffers for subsequent
 829 query heads computations. (ii) FSA introduces an output index mapping tensor to store results
 830 compactly. For each query head, FSA only reserves buffers for maximum query tokens that attend
 831 to a given KV block. On average, this value is $B_K T$, combining that $b = \frac{N}{B_K}$, FSA introduces
 832 an output buffer with dNT elements. Assume each data in the output buffer occupies 2 bytes,
 833 for a sequence with 64K tokens, T at 16, and d at 128, \mathbf{O}_{buf} occupies 1 GB HBM memory (This
 834 also applies for the buffer for intermediate gradients with respect to \mathbf{Q}). Compared to the high
 835 HBM memory capacity in modern GPUs, e.g., 96 GB HBM memory on H20 (NVIDIA, 2024b)
 836 and 141 GB memory on H200 (NVIDIA, 2024c), the additional buffer overhead in FSA remains
 837 manageable.

838 **Attention Sink Optimizations.** The attention sink phenomenon in NSA sparse token selection
 839 presents a challenge for FSA’s buffer management strategy. The initial KV block receives attention
 840 from all query tokens, while subsequent KV blocks exhibit more selective attention patterns. This
 841 asymmetry creates a buffer allocation dilemma: In practice, FSA allocates uniform buffer sizes
 842 based on the maximum number of valid tokens across all KV blocks. However, the attention sink
 843 property forces this maximum as full sequence length, thereby negating the memory efficiency gains
 844 that FSA’s sparse buffer management is designed to achieve. To address this inefficiency, we im-
 845 plement a dual-buffer allocation strategy. We maintain separate buffer allocations for the attention
 846 sink (first KV block) and the remaining KV blocks. The attention sink buffer accommodates the full
 847 query sequence, while buffers for subsequent KV blocks are sized according to their maximum valid
 848 query tokens, which are usually much smaller than full sequence length. This approach preserves
 849 the memory optimization benefits for the majority of KV blocks while handling the attention sink’s
 dense connectivity requirements.

850 **FSA online profiling module.** In real-world deployment, FSA dynamically selects kernel config-
 851 uration via online profiling, and potentially falls back to original NSA implementation. To ensure
 852 optimal performance across diverse NSA configurations, FSA incorporates a one-time online pro-
 853 filing mechanism. Upon its first execution with a new set of hyperparameters (e.g., sequence length,
 854 GQA group size), FSA benchmarks its kernel performance across several candidate query batch
 855 sizes (e.g., 1, 64, 128). When GQA group size is sufficiently large, a query batch size of 1 is addi-
 856 tionally searched and serves as a potential fallback to original NSA strategy of batching query heads.
 857 Once profiling is complete, the fastest configuration is cached. All subsequent calls with the same
 858 hyperparameters directly use this optimal configuration, bypassing profiling step until hyperparam-
 859 eters change.

860 **Actual memory footprint of FSA buffers.** We conduct additional micro-benchmarks to measure
 861 the memory footprint of FSA buffers. Concretely, we set the head dimension at 128 and use the NSA
 862 hyperparameters $(B_K, T) = (64, 16)$ or $(128, 8)$, and report the profiled buffer overheads for sequence
 863 lengths ranging from 32K to 256K in Table 5. Under extreme cases, i.e., when the sequence length
 is 128K or 256K, FSA introduces 5.01GB or 12.36 GB buffer memory overhead, which is still much

864 smaller than the memory capacity of modern GPUs (e.g., H200 has 141GB memory). These results
 865 confirm that the FSA buffer memory overhead remains acceptable.
 866

867 Table 5: Profiled Buffer Overhead.
 868

(B_K, T)	Seqlen (K)	Profiled Buffer Overhead (GB)
(64, 16)	32	0.52
(64, 16)	64	1.88
(64, 16)	128	5.01
(64, 16)	256	12.36
(128, 8)	32	0.26
(128, 8)	64	0.91
(128, 8)	128	2.28
(128, 8)	256	6.15

880

F EVALUATIONS FOR ULTRA LONG SEQUENCE LENGTHS.

881
 882 We extend our evaluations to 128K and 256K sequence lengths. Fixing the head dimension at 128
 883 and the number of query heads at 64, while varying the number of key and value heads, we evaluate
 884 configurations where a GQA group contains 1 to 8 query heads. Using the NSA hyperparameters
 885 with $(B_K, T) = (64, 16)$ or $(128, 8)$, we benchmark the performance of FSA, NSA, and Full
 886 Attention (FA) on both H20 and H200 GPUs.
 887

888

F.1 INFERENCE PREFILL AND TRAINING EVALUATIONS

889
 890 **Results discussion:** The experimental results in Table 6 and 7 show that FSA also outperforms NSA
 891 for ultra-long sequence lengths. For inference prefill execution latency, FSA achieves up to $1.47\times$
 892 speedup and an average of $1.20\times$ lower kernel latency on H20 GPUs, and up to $1.86\times$ speedup with
 893 an average of $1.23\times$ lower kernel latency on H200 GPUs, compared to NSA. For training execution
 894 latency — measured over one forward and one backward pass — FSA achieves up to $1.91\times$ speedup
 895 and an average of $1.37\times$ lower kernel latency on H20 GPUs, and up to $2.55\times$ speedup with an
 896 average of $1.49\times$ lower kernel latency on H200 GPUs, relative to NSA.
 897

898 Table 6: H20 GPU, Inference Prefill and Training Latency for Different (B_K, T) .
 899

(B_K, T)	GQA	Seq Len (K)	FSA Fwd (s)	NSA Fwd (s)	FA Fwd (s)	FSA F + B (s)	NSA F + B (s)	FA F + B (s)
(64,16)	1	128	1.42	2.08	2.64	2.36	4.51	12.08
	1	256	6.40	7.18	10.5	8.70	13.29	48.23
	2	128	0.87	1.17	2.62	1.79	2.71	12.04
	2	256	3.74	4.07	10.53	6.03	8.43	48.27
	4	128	0.52	0.61	2.65	1.43	1.75	12.07
	4	256	2.41	2.44	10.52	4.66	5.98	48.24
	8	128	0.45	0.45	2.61	1.38	1.39	12.05
	8	256	1.63	1.64	10.51	3.99	4.75	48.26
(128,8)	1	128	1.24	1.68	2.64	2.15	3.50	12.08
	1	256	5.34	7.50	10.5	7.56	13.65	48.23
	2	128	0.90	1.29	2.62	1.66	2.22	12.04
	2	256	3.18	4.24	10.53	5.40	8.33	48.27
	4	128	0.45	0.49	2.65	1.35	1.52	12.07
	4	256	2.10	2.53	10.52	4.29	5.55	48.24
	8	128	0.42	0.43	2.61	1.31	1.41	12.05
	8	256	1.56	1.68	10.51	3.74	4.17	48.28

918 Table 7: H200 GPU, Inference Prefill and Training Latency for Different (B_K, T) .
919

(B_K, T)	GQA	Seq Len (K)	FSA Fwd (s)	NSA Fwd (s)	FA Fwd (s)	FSA F + B (s)	NSA F + B (s)	FA F + B (s)
(64,16)	1	128	0.78	1.01	1.01	1.12	2.17	4.70
	1	256	3.92	3.97	3.96	4.81	6.99	18.75
	2	128	0.46	0.57	0.98	0.80	1.24	4.68
	2	256	2.14	2.17	3.98	3.04	4.12	18.77
	4	128	0.27	0.33	0.99	0.60	0.82	4.71
	4	256	1.20	1.29	3.99	2.15	2.70	18.76
	8	128	0.18	0.18	0.97	0.50	0.52	4.67
	8	256	0.73	0.73	3.97	1.72	2.01	18.78
(128,8)	1	128	0.65	1.20	1.00	0.97	2.47	4.70
	1	256	3.16	4.10	3.96	3.99	6.79	18.75
	2	128	0.38	0.66	0.98	0.70	1.40	4.68
	2	256	1.76	2.21	3.99	2.58	3.90	18.77
	4	128	0.21	0.28	0.99	0.53	0.73	4.71
	4	256	1.06	1.24	3.97	1.87	2.44	18.76
	8	128	0.17	0.20	0.97	0.48	0.58	4.67
	8	256	0.71	0.75	3.95	1.52	1.70	18.78

937
938 F.2 INFERENCE END-TO-END EVALUATIONS
939940 By further fixing the number of generated tokens at 512, we evaluate the end-to-end inference
941 execution latency of FSA, NSA, and Full Attention on both H20 and H200 GPUs.
942943 **Results and discussion:** The experimental results in Table 8 and 9 demonstrate that FSA’s performance
944 scales well for extremely long sequences. For inference execution latency: (i) compared to
945 NSA, FSA achieves up to $1.40\times$ speedup and on average $1.16\times$ lower kernel latency on H20 GPUs,
946 and up to $1.59\times$ speedup and on average $1.15\times$ lower kernel latency on H200 GPUs. (ii) Compared
947 to Full Attention, FSA achieves up to $7.20\times$ speedup and on average $4.61\times$ lower kernel latency on
948 H20 GPUs, and up to $4.71\times$ speedup and on average $2.96\times$ lower kernel latency on H200 GPUs.
949950 Table 8: H20 Inference Latency (s) for (B_K, T) at (64,16) and (128,8).
951

Method	(B_K, T)	GQA = 1		GQA = 2		GQA = 4		GQA = 8	
		128K	256K	128K	256K	128K	256K	128K	256K
FSA	(64,16)	1.67	6.71	1.12	4.05	0.77	2.72	0.70	1.94
	(128,8)	1.49	5.65	1.15	3.49	0.70	2.41	0.67	1.87
NSA	(64,16)	2.33	7.49	1.42	4.38	0.86	2.75	0.70	1.95
	(128,8)	1.93	7.81	1.54	4.55	0.74	2.84	0.68	1.99
FA	–	4.34	13.45	4.32	13.48	4.35	13.47	4.31	13.46

958 Table 9: H200 Inference Latency (s) for (B_K, T) at (64,16) and (128,8).
959

Method	(B_K, T)	GQA = 1		GQA = 2		GQA = 4		GQA = 8	
		128K	256K	128K	256K	128K	256K	128K	256K
FSA	(64,16)	1.06	4.24	0.74	2.46	0.55	1.52	0.46	1.05
	(128,8)	0.93	3.48	0.66	2.08	0.49	1.38	0.45	1.03
NSA	(64,16)	1.29	4.29	0.85	2.49	0.61	1.61	0.46	1.05
	(128,8)	1.48	4.42	0.94	2.53	0.56	1.56	0.48	1.07
FA	–	1.88	4.86	1.85	4.88	1.86	4.89	1.84	4.87

968 G COMPARISON WITH FLASHDECODING
969970 To compare with the state-of-the-art FlashDecoding kernel Dao et al. (2023), we conducted ad-
971 dditional experiments measuring decoding execution latency for FlashDecoding and FSA. Given a

prefill sequence length (ranging from 32K to 256K), we present the average decoding latency across 1K generated tokens. We fixed the number of attention heads at 64 and the head dimension at 128. For FSA, the sparse-attention hyperparameters were set to a block size B_K of 64 and TopK Value T of 16.

Result discussions: Experimental results in Table 10 demonstrate that FSA achieves superior performance to FlashDecoding. Compared to FlashDecoding, FSA demonstrates an average speedup of 5.46x on H20 GPU and 2.16x on H200 GPU. During the decoding phase, FlashDecoding partitions the key and value tokens and distributes the resulting attention computation tasks across multiple thread blocks, thereby increasing kernel-level parallelism and improving decoding throughput. However, due to the sparsity in FSA, the FSA decoding throughput is still superior to FlashDecoding.

Table 10: Decoding Latency on H20 and H200 GPUs.

Seq Len (K)	H20 Latency (ms)			H200 Latency (ms)		
	FlashDecoding	NSA	FSA	FlashDecoding	NSA	FSA
32	0.88	0.46	0.45	0.51	0.48	0.47
64	1.71	0.46	0.48	0.88	0.53	0.54
128	3.32	0.50	0.48	1.70	0.55	0.54
256	5.76	0.62	0.61	1.75	0.62	0.63

H COMPLIATION OVERHEAD

To determine the optimal Triton kernel hyperparameters, both FSA and NSA incur a compilation overhead. For a given NSA hyperparameter combination, this overhead occurs only once. Setting (B_K, T) at (64, 16) or (128, 8), we evaluate the compilation overhead of FSA and NSA for sequence length across diverse sequence lengths. The experimental results are summarized in Table 11.

Table 11: Compilation Overhead on H20 and H200 GPUs.

Seqlen (K)	Framework	H20 Overhead (s)	H200 Overhead (s)
32	FSA	2.16	1.82
32	NSA	2.12	1.78
64	FSA	2.37	2.01
64	NSA	2.33	1.95
128	FSA	2.59	2.24
128	NSA	2.55	2.19
256	FSA	2.80	2.36
256	NSA	2.76	2.30

I EVALUATIONS ON DISTRIBUTED PERFORMANCE.

I.1 DISTRIBUTED INFERENCE EVALUATION OF THE ATTENTION MODULE

Table 12: Distributed inference latency of the attention module on H20 GPU.

(B_K, T)	Seq Len (K)	Framework	TP=1 (ms)	TP=2 (ms)	TP=4 (ms)	TP=8 (ms)
(64, 16)	32	FSA	82.50	45.00	25.94	16.25
(64, 16)	32	NSA	99.53	53.44	28.75	16.56
(64, 16)	64	FSA	195.84	110.63	61.25	38.63
(64, 16)	64	NSA	221.49	122.81	65.31	39.94
(128, 8)	32	FSA	80.31	43.44	24.69	15.63
(128, 8)	32	NSA	105.10	54.38	28.68	16.75
(128, 8)	64	FSA	187.50	102.68	56.25	33.75
(128, 8)	64	NSA	243.88	130.31	70.69	40.00

Table 13: Distributed inference latency of the attention module on H200 GPU.

(B_K, T)	Seq Len (K)	Framework	TP=1 (ms)	TP=2 (ms)	TP=4 (ms)	TP=8 (ms)
(64, 16)	32	FSA	43.44	25.00	15.63	11.88
(64, 16)	32	NSA	50.31	27.19	17.63	12.69
(64, 16)	64	FSA	110.00	63.13	39.38	26.13
(64, 16)	64	NSA	121.56	66.81	40.75	27.00
(128, 8)	32	FSA	40.63	23.13	14.38	10.00
(128, 8)	32	NSA	59.06	31.25	17.50	11.63
(128, 8)	64	FSA	96.25	53.75	32.50	22.81
(128, 8)	64	NSA	124.38	65.69	37.50	25.56

We conduct additional experiments to evaluate the distributed inference performance of the attention module using FSA and NSA on H20 and H200 GPUs. We fix the number of query heads at 32, and the number of key and value heads at 8. This setting indicates that one GQA group contains 4 query heads. The results for both methods — measured across different NSA hyperparameters, sequence lengths, and tensor-parallel degrees — are summarized in the Table 12 and 13. Compared to NSA, FSA achieves an average speedup of 1.16x on H20 GPUs and 1.17x on H200 GPUs.

I.2 END-TO-END DISTRIBUTED INFERENCE EVALUATION

Following the same configuration as Figure 6, we evaluate the distributed inference performance of the Llama-3-8B model on H20 and H200 GPUs. The results for NSA and FSA, measured under varying NSA hyperparameters, sequence lengths, and tensor-parallel degrees, are presented in the Table 14 and 15. Compared to NSA, FSA achieves an average speedup of 1.13x on H20 GPUs and 1.11x on H200 GPUs.

Table 14: End-to-end distributed inference latency on H20 GPU.

(B_K, T)	Seqlen (K)	Framework	TP=1 (s)	TP=2 (s)	TP=4 (s)	TP=8 (s)
(64, 16)	32	FSA	5.28	2.88	1.66	1.04
(64, 16)	32	NSA	6.00	3.22	1.84	1.06
(64, 16)	64	FSA	11.14	7.08	3.92	2.60
(64, 16)	64	NSA	12.04	7.86	4.18	2.66
(128, 8)	32	FSA	5.14	2.78	1.58	1.00
(128, 8)	32	NSA	6.40	3.32	1.80	1.10
(128, 8)	64	FSA	12.00	6.38	3.60	2.16
(128, 8)	64	NSA	13.72	7.10	4.00	2.12

Table 15: End-to-end distributed inference latency on H200 GPU.

(B_K, T)	Seqlen (K)	Framework	TP=1 (s)	TP=2 (s)	TP=4 (s)	TP=8 (s)
(64, 16)	32	FSA	1.95	1.12	0.70	0.46
(64, 16)	32	NSA	1.97	1.22	0.70	0.49
(64, 16)	64	FSA	4.51	2.83	1.48	1.09
(64, 16)	64	NSA	4.61	2.81	1.51	1.16
(128, 8)	32	FSA	1.82	1.04	0.64	0.45
(128, 8)	32	NSA	2.37	1.33	0.78	0.53
(128, 8)	64	FSA	3.61	2.13	1.34	0.98
(128, 8)	64	NSA	4.62	2.63	1.61	1.15