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Abstract

Event Argument Extraction (EAE) deals with001
the task of extracting event-specific informa-002
tion from texts. EAE models usually require003
a large amount of annotated data for training,004
but procuring annotations is expensive for each005
new event type. To cater to the emerging event006
types and new domains in a realistic setting,007
it is growingly imperative for EAE models to008
be generalizable. However, most existing EAE009
benchmark datasets like ACE and ERE have010
limited diversity and coverage in terms of event011
types and cannot adequately evaluate the gen-012
eralizability of EAE models. To alleviate this013
issue, we introduce GENEVA, a new dataset014
covering a diverse range of 115 event types and015
187 argument role types. We create four bench-016
marking test suites in GENEVA to assess EAE017
models’ generalizability. Additionally, we pro-018
pose a new model AutoDEGREE which estab-019
lishes a strong benchmark on these test suites.020
Lastly, we evaluate the generalizability of re-021
cent EAE systems from different model fami-022
lies and analyze their behaviors on GENEVA.1023

1 Introduction024

Event Argument Extraction (EAE) aims at extract-025

ing structured information of event-specific argu-026

ments and their roles for events from a pre-defined027

taxonomy. EAE has been studied for a long time028

(Sundheim, 1992; Grishman and Sundheim, 1996)029

and has been elemental in a wide range of applica-030

tions like building knowledge graphs (Zhang et al.,031

2020), question answering (Berant et al., 2014),032

and various other NLP applications (Hogenboom033

et al., 2016; Yang et al., 2019b).034

Previous works usually assume the availability035

of extensive and high-quality human annotations036

for training EAE models. However, in practice,037

there are a wide range of diverse events which038

usually have zero or few annotations as procuring039

annotations is an expensive process (Zhang et al.,040

1We will release our dataset and code upon acceptance.

Figure 1: Distribution of event types into various
abstractions for GENEVA, ACE, ERE, RAMS, and
WikiEvents datasets. We observe that GENEVA is rel-
atively more diverse in event type coverage. Abstract
event types are defined as the top nodes of the event
ontology tree created by MAVEN (Wang et al., 2020).

2021). Hence, recent works focusing on generaliz- 041

able EAE have gained more interests (Huang et al., 042

2018; Lyu et al., 2021; Sainz et al., 2022). These 043

works utilize existing EAE datasets like ACE (Dod- 044

dington et al., 2004) and ERE (Song et al., 2015) to 045

verify the generalizability of the proposed models. 046

However, as we show in Figure 1, these datasets 047

have limited diversity and focus only on specific 048

abstract event types. This limited diversity and re- 049

duced coverage restricts the ability of the existing 050

datasets to more robustly evaluate the generalizabil- 051

ity of EAE models. 052

Towards this end, we introduce GENEVA 053

(Generalizability BENchmarking Dataset for 054

EVent Argument Extraction), a new diverse event 055

argument extraction dataset covering a broad range 056

of 115 event types spanning various abstract event 057

types (Figure 1) and 187 argument roles to evaluate 058

the generalizability of EAE models. GENEVA is 059

repurposed from an existing semantic role labeling 060

dataset, FrameNet (Baker et al., 1998), with manual 061

selective filtering and merging. In order to test the 062

models’ ability to learn from limited training data 063

and generalize to unseen event types, we design 064

four benchmarking test suites. These test suites are 065

distinctly different based on the training and test 066
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data creation – (1) low resource, (2) few-shot, (3)067

zero-shot, and (4) cross-type transfer settings.068

With the goal of pushing the limit of gener-069

alizability for EAE, we introduce a new model070

AutoDEGREE which inherits the current state-071

of-the-art EAE model in low-resource regime072

— DEGREE (Hsu et al., 2022). Like DEGREE,073

AutoDEGREE performs EAE via generating sen-074

tences that summarize all the event argument infor-075

mation using automated natural language prompts.076

On the other hand, AutoDEGREE enhances gener-077

alizability by introducing automated refinements to078

eliminate the human effort required for scaling up079

DEGREE to a wide range of events. We evaluate080

AutoDEGREE along with various other EAE mod-081

els on the GENEVA test suites and demonstrate that082

AutoDEGREE establishes a strong generalizability083

benchmark on these test suites.084

To sum up, we make the following contribu-085

tions: (1) We introduce a new diverse EAE dataset086

GENEVA and design four benchmarking test suites087

to test the different aspects of generalizability of088

EAE models. (2) We introduce AutoDEGREE, a089

new EAE model which serves as a strong bench-090

mark for the test suites in GENEVA. (3) We con-091

duct a thorough evaluation of various EAE models092

on the test suites in GENEVA and show superior093

generalizability of generation-based models over094

classification-based models.095

2 Related Work096

Event Extraction Datasets: ACE (Doddington097

et al., 2004) is one of the earliest and most used098

Event Extraction datasets. The ACE event schema099

is further simplified and extended to ERE (Song100

et al., 2015). ERE was later used to create vari-101

ous TAC KBP Challenges (Ellis et al., 2014, 2015;102

Getman et al., 2017). These datasets cover only a103

limited amount of event types and argument roles,104

and thus, can’t be utilized to adequately evalu-105

ate the generalizability of EAE models. MAVEN106

(Wang et al., 2020) introduced a massive and di-107

verse dataset spanning a wide range of event types.108

However, the applicability of this dataset is limited109

to the task of Event Detection2 and it does not con-110

tain argument role annotations. Recent works have111

introduced datasets like RAMS (Ebner et al., 2020),112

WikiEvents (Li et al., 2021), and DocEE (Tong113

et al., 2022); but the diversity of these datasets is114

2Event Detection aims at only identifying the event type
documented in the sentence.

restrictive to specific event categories as shown in 115

Figure 1. Furthermore, these datasets are built with 116

a focus on document-level event extraction task, 117

while we target on evaluating generalizability of 118

EAE models in sentence-level. 119

Event Argument Extraction Models: Tra- 120

ditionally, EAE has been formulated as a 121

classification problem (Nguyen et al., 2016). 122

Previous classification-based approaches have 123

utilized pipelined approaches (Yang et al., 2019a; 124

Wadden et al., 2019) as well as incorporating 125

global features for joint inference (Li et al., 126

2013; Yang and Mitchell, 2016; Lin et al., 2020). 127

However, most of these classification approaches 128

are data-hungry and do not generalize well in 129

the low-data setting (Liu et al., 2020; Hsu et al., 130

2022). To improve generalizability, some works 131

have explored better usage of label semantics by 132

formulating EAE as a question-answering task 133

(Liu et al., 2020; Li et al., 2020; Du and Cardie, 134

2020). Recent approaches have explored the 135

use of natural language generative models for 136

classification and structured prediction for better 137

generalizability (Schick and Schütze, 2021a,b). 138

TANL (Paolini et al., 2021) treats EAE as a 139

translation between augmented languages, whereas 140

Bart-Gen (Li et al., 2021) is another generative 141

approach that focuses on document-level EAE. 142

DEGREE (Hsu et al., 2022) is a recently introduced 143

state-of-the-art generative model which has shown 144

better performance in the limited data regime. 145

Another set of works transfer knowledge from 146

similar tasks like abstract meaning representation 147

and semantic role labeling (Huang et al., 2018; Lyu 148

et al., 2021; Zhang et al., 2021) to perform EAE. 149

Since the evaluation of these models is done 150

on previous EAE datasets, it is unclear if these 151

approaches can be generalized to handle a diverse 152

set of events. In our work, we benchmark various 153

classes of previous models on our benchmarking 154

test suites. Furthermore, we propose a new model 155

AutoDEGREE which outperforms previous models 156

and serves as a strong baseline for future works. 157

3 GENEVA Dataset 158

Annotating data for EAE for a diverse set of events 159

is a resource-heavy and expensive process. Rather, 160

we take advantage of the shared properties between 161

Semantic Role Labeling (SRL) and EAE and uti- 162

lize an existing dataset FrameNet to create a wide- 163

coverage dataset for EAE. We follow the event 164
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Frame Arrest Visiting Travel
Authorities, Charges, Offense, Agent, Entity, Frequency, Traveler, Path, Source, Goal, Direction,
Suspect, Co-participant, Time, Depictive, Duration, Means, Mode of Transportation, Area, Explanation,

Frame Means, Place, Purpose, Type, Iterations, Manner, Purpose, Frequency, Baggage, Depictive, Iterations,
Elements Source of legal authority, Normal location, Place, Co-participant, Duration, Manner, Speed,

Manner Dependent state, Time Time, Descriptor, Period of iterations,
Distance, Means, Purpose, Result

Table 1: An illustration of the complex structure for different frames from FrameNet. During GENEVAcreation,
frame elements in the same color are merged into a single argument role, while those in italics are filtered out.

“Event” relation
based filtering

EAE structure
based filtering

Event Type
merging

Arg Role filtering 
and merging

Data based
filtering

GENEVA
1 2 3 4 5

Human
Validation

6

Figure 2: Figure highlighting the various operations performed to create our proposed EAE dataset GENEVA from
the SRL dataset FrameNet.

definition from ACE (Doddington et al., 2004) (de-165

scribed in Appendix A). Here, we focus on dis-166

cussing our data creation process.167

3.1 FrameNet for EAE168

SRL and EAE are similar tasks in that SRL assigns169

semantic roles to phrases in the sentence and EAE170

aims at extracting event-specific argument roles171

from the sentence. Owing to these similarities, we172

utilize FrameNet (Baker et al., 1998)3 - a compre-173

hensive SRL dataset comprising of 1200+ semantic174

frames (Fillmore et al., 1976) - to create an EAE175

dataset. The definition of a frame is rather loose176

and can be understood as the holistic background177

that unites similar words.4 Each frame is annotated178

with frame-specific semantic roles (frame elements)179

and words that evoke the frame (lexical units). We180

utilize FrameNet for EAE by mapping selective181

frames that have "Event" relations as events. Cor-182

respondingly, we can map the lexical units as event183

triggers and frame elements as argument roles. For184

example in Table 1, the frame Arrest and its frame185

elements can be mapped to the event Arrest-Jail of186

the ACE dataset and its argument roles respectively.187

However, the applicability of FrameNet for188

EAE has been limited. This is primarily because189

FrameNet prioritizes lexicographic and linguistic190

completeness (Aguilar et al., 2014), while EAE is191

a higher-level task requiring extraction of distinct192

and succinct information. This difference leads to193

two major challenges in using FrameNet for EAE:194

(1) FrameNet frames are too fine-grained and many195

3FrameNet Data Release 1.7 by http://framenet.icsi.
berkeley.edu is licensed under a Creative Commons Attri-
bution 3.0 Unported License.

4www.web.stanford.edu/~jurafsky/slp3/19.pdf

times indistinguishable from the aspect of EAE, and 196

(2) FrameNet frames have a complex structure com- 197

prising of a wide range of frame elements which 198

may all not be relevant for EAE. 199

We provide an example of these challenges in 200

Table 1 where we show two distinct frames from 201

FrameNet - Visiting and Travel. However, from the 202

perspective of EAE, these frames are similar and 203

can be merged into a single event (first challenge). 204

Furthermore, we observe that these frames have a 205

wide range of frame elements many of which are 206

rarely used (e.g. Periods of iteration) while some 207

of them are quite generic (eg. Manner). Only a 208

partial portion of these frame elements are indeed 209

relevant for EAE (highlighted in non-italics in Ta- 210

ble 1) which demonstrates the second challenge. 211

3.2 Creation of GENEVA 212

In order to bridge the differences between the task 213

definitions of SRL and EAE (discussed in Sec- 214

tion 3.1), we perform several merging and filtering 215

operations to create more distinctive and represen- 216

tative event types and argument roles. We also per- 217

form a human validation to ensure the significance 218

of these operations. We show the transformation of 219

FrameNet into GENEVA in Figure 2 and describe 220

each of these operations in detail below. 221

Event Filtering: This operation deals with filtering 222

of frames from FrameNet which are relevant for 223

the task of EAE. The first set of filtering is done 224

by selecting frames which have a relation with the 225

"Event" frame inspired by Li et al. (2019) and leads 226

to a total of 289 frames (Step 1 in Figure 2). Next, 227

we use the structure of events and filter out frames 228

which do not have any arguments or datapoints 229

3
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Dataset #Sentences #Event #Arg #Event #Arg Avg. Event Avg. Arg
Types Types Mentions Mentions Mentions Mentions

ACE 18,927 33 22 5,055 6,040 153.18 274.55
ERE 17,108 38 21 7,284 10,479 191.68 499
GENEVA 3,673 115 187 7,576 11,163 65.88 59.7

Table 2: Statistics for the different datasets for Event Argument Extraction. The third and fourth columns indicate the
unique number of event types and argument roles. The fifth and sixth column are the number of event and argument
mentions in the dataset. The last two columns indicate the average number of mentions per event and argument role.

(Step 2). This yields a total of 230 frames.230

Event Merging: This operation deals with merg-231

ing similar frames into a single event type (e.g.232

Visiting and Travel). Following their hierarchical233

event ontology from MAVEN (Wang et al., 2020)234

we manually merge similar and fine-grained frames235

to reduce the total number of event types to 158236

(Step 3), covering upto 36% annotated sentences237

of the FrameNet dataset.238

Argument Role Filtering and Merging: Each239

frame comprises of a large set of frame elements in240

FrameNet. At this step, we aim to filter and merge241

them into a reduced set of argument roles (Step242

4). We filter frame elements with high precision by243

removing all the non-core frame elements as they244

are generic and not frame-specific by definition245

(highlighted in gray in Table 1). We further remove246

all argument roles with no mentions in the data. To247

facilitate better overlap of argument roles across248

events and reduce redundancy, we manually merge249

frame elements (e.g. Agent in Visiting frame and250

Traveler in Travel frame) based on their relevance251

and similarity to each other. This yields us with a252

total of 250 argument roles.253

Data Based Filtering: We set a minimum data254

requirement to 5 event mentions (in order to aid255

better evaluation) and remove event types that do256

not meet that criteria (e.g. Lighting). The final257

event schema of GENEVA comprises of 115 event258

types and 187 argument roles. We also organize our259

events into the hierarchical event schema devised260

by MAVEN (shown in Appendix D).261

Human Validation: In order to distinguish262

GENEVA from FrameNet and validate the utility of263

our merging operations, we set up a human valida-264

tion experiment (Step 6). We present the human265

annotators with three sentences - one primary and266

two candidates - and ask them if the event type267

described in the primary sentence is similar to the268

event types in either of the candidates or distinct269

from both (Example in Appendix H). One candi-270

date is chosen as a sentence from one of the frames 271

merged with the primary event, while the other can- 272

didate is chosen from a similar unmerged frame, 273

which is a sibling event of the primary event discov- 274

ered from the event ontology. The annotators chose 275

the merged frame candidates on an average of 87%. 276

The validation was done by three annotators over 277

61 sampled triplets and with 0.7 inter-annotator 278

agreement measured in Fleiss’ kappa (Fleiss, 1971). 279

This human validation ensures high dataset quality 280

as well as underlines the significance of the various 281

operations performed for the creation of GENEVA. 282

3.3 Data Analysis 283

Here, we show how GENEVA is different from pre- 284

vious EAE datasets of ACE and ERE, and is more 285

suited to evaluate the generalizability of EAE mod- 286

els. The major statistics for GENEVA are shown 287

in Table 2 along with its comparison with ACE 288

and ERE. We observe that GENEVA has fewer sen- 289

tences compared to the other datasets. Neverthe- 290

less, it has thrice the number of event types and 291

8 times the number of argument roles relative to 292

ACE/ERE. Furthermore, the number of event and 293

argument role mentions are more compared to the 294

previous datasets. Naturally, the average number 295

of mentions per event and argument role (refer to 296

the last two columns in Table 2) is much lesser 297

for GENEVA. We categorize the event types for 298

GENEVA and ACE into abstract event types (as de- 299

fined in MAVEN (Wang et al., 2020)) and show 300

their distribution in Figure 1. The figure depicts 301

how ACE events are concentrated only in specific 302

abstractions of Action and Change, while GENEVA 303

has a more diverse distribution. Overall, these 304

statistics show how GENEVA is more diverse and 305

challenging than the previous datasets. 306

Due to the high number of event types and ar- 307

gument roles, GENEVA is a highly dense dataset. 308

We plot the distribution of argument roles per sen- 309

tence5 for ACE, ERE, and GENEVA in Figure 3. 310

5We remove no event mention sentences for ACE/ERE.
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Figure 3: Argument roles per sentence as percentage of
data for ACE, ERE and GENEVA datasets.

Both ACE and ERE have a high proportion of sen-311

tences (> 70%) with up to 2 argument roles. In312

contrast, GENEVA is denser with almost 50% of313

sentences having 3 or more arguments and more314

than 20% of sentences with 5+ arguments.315

3.4 Benchmarking Test Suites316

With a focus on the evaluation of the generalizabil-317

ity of the EAE models, we fabricate four bench-318

marking test suites clubbed into two higher-level319

settings, as described below:320

Limited Training Data: This setting mimics the321

realistic scenario when there are fewer annotations322

available for the target events and evaluates mod-323

els’ ability to learn from limited training data. We324

present two test suites for this setting:325

• Low resource (LR): Training data is created326

by randomly sampling n event mentions.6 We327

record the model performance across a spec-328

trum from extremely low resource (n = 1) to329

moderately resource (n = 1200) settings.330

• Few-shot (FS): Training data is curated by sam-331

pling n event mentions uniformly across all332

events. This sampling strategy avoids biases to-333

wards high data events and assesses the model’s334

ability to perform well uniformly across events.335

We study the model performance from one-shot336

(n = 1) to five-shot (n = 5) for this test suite.337

Unseen Event Data: The second setting focuses338

on the scenario when there is no annotation avail-339

able for the target events. This helps test models’340

ability to generalize to unseen events and argument341

roles. We propose two test suites:342

• Zero-shot (ZS): The top 10 events in terms of343

6Due to a high variation in the number of event mentions
per sentence, a fixed number of sampled sentences could have
a varied number of event mentions. To discount this variability,
we create the sampled training data such that each of them has
a fixed number of n event mentions.

data availability is used to create the training 344

data and the remaining 105 events are utilized 345

for testing. Intending to study the impact of 346

event diversity on the zero-shot model perfor- 347

mance, we create three training datasets by sam- 348

pling a fixed 450 sentences7 for m events from 349

the larger training corpus. We vary m from 1 350

most-frequent event to 10 events. 351

• Cross-type Transfer (CTT): Adhering to the hi- 352

erarchical event schema (refer to Appendix D), 353

we curate a training dataset comprising of events 354

of a single abstraction category (e.g. Scenario), 355

while the test dataset comprises of events of 356

all other abstraction types. This test suite also 357

assesses models’ transfer learning strength. 358

We report the data statistics for these benchmark- 359

ing setups in Appendix B. For each of the test suites 360

involving sampling, we sample 5 different datasets8 361

and report the average model performance to ac- 362

count for the sampling variation. 363

4 Proposed Model — AutoDEGREE 364

In our work, we introduce a new model 365

AutoDEGREE which aims to provide better gen- 366

eralizability for EAE. AutoDEGREE reforms a re- 367

cent approach DEGREE (Hsu et al., 2022) with 368

automated refinements. These refinements aid 369

AutoDEGREE to scale up robustly to a wide range 370

of event types while eliminating the human effort 371

requirements of DEGREE. In this section, we first 372

briefly introduce the base DEGREE model and then 373

describe our proposed model AutoDEGREE. 374

4.1 DEGREE 375

DEGREE9 is an encoder-decoder based generative 376

model which utilizes natural language templates as 377

part of input prompts. The input prompt comprises 378

of three components - (1) Event Type Description 379

which provides a definition of the given event type, 380

(2) Query Trigger which indicates the trigger word 381

for the event mention, and (3) EAE Template which 382

is a natural sentence combining the different argu- 383

ment roles of the event. Conditioned on the input 384

prompt, the model generates a natural language sen- 385

tence with the extracted arguments. Restructuring 386

argument roles into natural language input prompts 387

helps DEGREE better leverage label semantics, and 388

7Fixing the training data size removes the confounding
variable of data size for the study.

8All datasets will be released for reproducibility purpose.
9For our work, we consider the EAE version of DEGREE.
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Encoder Decoder

Passage Prompt[SEP]

Output Text

Event Type
Description The event is related to employment, jobs or paid work.

Query Trigger The event trigger word is job.

EAE Template Some person works at some organization as some position.

Louise works at Google as engineer.
Output Text

Prompt

Louise has a job of an engineer at Google.
Passage

Figure 4: Model architecture of DEGREE (top half) and
an illustration of a manually created prompt for the
event type Employment (bottom half).

Event Type
Description The event type is employment.

Query Trigger The event trigger word is job.

EAE Template The employer is some employer. The employee is some 
employee. The position is some position.

The employer is Google. The employee is Louise. The position is engineer.
Output Text

Prompt

Figure 5: An illustration of an automatically generated
prompt by AutoDEGREE for the event type Employment.

this fundamentally assists it to generalize in the389

low-data setting. We illustrate DEGREE along with390

an example of its input prompt design in Figure 4.391

Despite the superior performance of DEGREE392

in the low-data setting, it can not be deployed on393

GENEVA. This is because DEGREE requires man-394

ual human effort for the creation of input prompts395

for each event type and argument role and can’t be396

scaled to 115 event types and 187 argument roles397

in GENEVA. Thus, there is a need to automate the398

manual human effort to scale up DEGREE.399

4.2 AutoDEGREE400

AutoDEGREE exploits the same working princi-401

ple of using natural language input prompts as402

DEGREE, while scaling up the prompt creation403

pipeline via automated refinements. DEGREE re-404

quires human effort for two input prompt compo-405

nents - (1) Event Type Description and (2) EAE406

Template. We describe the automated refinements407

in AutoDEGREE for these components below.408

4.2.1 Automating Event Type Description409

Event type description is a natural language sen-410

tence describing the event type. In order to auto-411

mate this component, we propose a simple heuris- 412

tic that creates a simple natural language sentence 413

mentioning the event type - “The event type is 414

{event-type}". , as illustrated in Figure 5. 415

4.2.2 Automating EAE Template 416

EAE template generation in DEGREE can be split 417

into two subtasks, which we discuss in detail below. 418

Argument Role Mapping: This subtask maps 419

each argument role to a natural language place- 420

holder phrase based on the characteristics of the 421

argument role. For example, the argument role 422

Employer is mapped to “some organization” in 423

Figure 4. While training, DEGREE learns to re- 424

place these placeholders in the prompt with the 425

arguments from the passage. Mapping each unique 426

argument role to a placeholder phrase requires com- 427

monsense knowledge, and thus rendering this sub- 428

task manual in nature. 429

For automating this mapping process, we pro- 430

pose a simple refinement of self mapping. Self map- 431

ping maps each argument role to a self-referencing 432

placeholder phrase “some {arg-name}”, where 433

{arg-name} is the argument role itself. For example, 434

the argument role Employer would be mapped to 435

“some employer”. We illustrate an example of this 436

heuristic in Figure 5. 437

Template Generation: The second subtask re- 438

quires generating a natural sentence(s) using the ar- 439

gument role mapped placeholder phrases (as shown 440

in Figure 4). Each event type comprises of a dis- 441

tinct set of argument roles. Thus, generating EAE 442

templates for each event type is tedious and created 443

by human in DEGREE. 444

In order to automate this subtask, AutoDEGREE 445

utilizes an event-agnostic template composed of 446

argument role-specific sentences. For each argu- 447

ment role in the event, we generate a sentence of 448

the form “The {arg-name} is {arg-map}.” where 449

{arg-name} and {arg-map} is the argument role and 450

its mapped placeholder phrase respectively. For 451

example, the sentence for argument role Employer 452

with self mapping would be "The employer is some 453

employer.". The final event-agnostic template is 454

a simple concatenation of all the argument role 455

sentences. We provide an illustration of the event- 456

agnostic template in Figure 5. 457

5 Experimental Setup 458

In this section, we describe the baseline models 459

and the evaluation metrics for our experiments. 460
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5.1 Baseline Models461

We aim to evaluate the generalizability of various462

representative EAE models on our GENEVA bench-463

marking test suites. These models include (1) Dy-464

GIE++ (Wadden et al., 2019), a traditional classifi-465

cation based model utilizing multi-sentence BERT466

encodings and span graph propagation. (2) OneIE467

(Lin et al., 2020), a multi-tasking objective based468

model exploiting global features for optimization.469

(3) BERT_QA (Du and Cardie, 2020), a BERT-470

based model leveraging label semantics by framing471

EAE as a machine reading comprehension task. In472

order to scale BERT_QA to a wide range of ar-473

gument roles, we generate question queries of the474

form “What is {arg-name}?” for each argument475

role {arg-name}. (4) TANL (Paolini et al., 2021),476

a language generation model which treats EAE as477

a translation task. We benchmark our proposed478

model AutoDEGREE with these baseline models.479

5.2 Evaluation Metrics480

Following the traditional evaluation for EAE tasks,481

we report the micro F1 scores for argument classi-482

fication. To encourage better generalization across483

wide range of events, we also use macro F1 score484

that reports the average of F1 scores for each event485

type. For the limited data test suites, we record a486

model performance curve, wherein we plot the F1487

scores against the number of training instances.488

6 Results and Analysis489

Following the benchmarking setups discussed in490

Section 3.4, we organize the main experimental491

results into limited training data and unseen event492

data settings. When trained on complete training493

data, we observe that OneIE achieves a poor mi-494

cro F1 score of just 38.84 while all other models495

achieve F1 scores above 55. This can be attributed496

to the model design of OneIE as it is unable to497

handle overlapping argument roles.10 Due to its498

inferior performance, we do not include OneIE in499

the benchmarking results.500

6.1 Limited Training Data501

Limited training data setting comprises of the low502

resource and the few-shot test suites. We present503

the model benchmarking results in terms of macro504

F1 and micro F1 scores for the low resource test505

suite in Figure 6. We observe that AutoDEGREE506

10One key attribute of GENEVA is that arguments overlap
with each other quite frequently in a sentence.

Figure 6: Model performance in macro F1 (top) and
micro F1 (bottom) scores against the number of training
event mentions (log-scale) for the low resource suite.

beats all other baselines significantly in terms of 507

macro F1 and performs well uniformly across 508

all event types. Although TANL and DyGIE++ 509

achieve high micro F1 when trained on high num- 510

ber of training instances, their macro scores are 511

still relatively poor. This indicates that these mod- 512

els are biased towards specific events and do not 513

generalize well. 514

In Figure 7, we show the benchmarking results 515

on the few-shot test suite. The results showcase the 516

clear hierarchy of the model performance, wherein 517

AutoDEGREE significantly outperforms all other 518

models. We also observe the poor performance 519

of traditional classification-based approaches like 520

DyGIE++ and this underlines the importance of 521

using label semantics for better generalizability. 522

6.2 Unseen Event Data 523

This data setting includes the zero-shot and the 524

cross-type transfer test suites. We collate the re- 525

sults in terms of micro F1 scores for both the test 526

suites in Table 3. Models like DyGIE++ and TANL 527

cannot support unseen events or argument roles 528

and thus, we do not include these models in the 529

experiments for these test suites. 530

From Table 3, we observe that AutoDEGREE 531

achieves the best score across all setups of the zero- 532

shot setting. Furthermore, for the cross-type trans- 533

fer, we observe that the AutoDEGREE outperforms 534

BERT_QA by a significant margin of almost 20 F1 535

points. This establishes the superior generalizabil- 536
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Figure 7: Model performance in macro F1 (top) and
micro F1 (bottom) scores against the number of training
event mentions per event for the few-shot suite.

Model ZS-1 ZS-5 ZS-10 CTT

BERT_QA 5.21 23.15 23.23 7.83
AutoDEGREE 13.91 33.06 35.47 27.26

Table 3: Model performance in micro F1 scores for
the zero-shot (ZS) and cross-type transfer (CTT) test
suites. ZS-1, ZS-5, and ZS-10 indicate 1, 5, and 10
event types for training respectively. We exclude TANL
and DyGIE++ as they cannot transfer to unseen events.

ity and transferability of AutoDEGREE to unseen537

event types and argument roles. We also record per-538

formance gains for both models as we increase the539

number of events in the training data. On the other540

hand, these gains reduce as the number of training541

events increases. Thus, we conclude that event di-542

versity helps improve zero-shot performance but543

provides marginally reducing gains.544

6.3 Case Study: Is ACE diverse enough?545

In this section, we conduct a case study to analyze546

how the limited diversity of ACE can affect the547

generalizability of EAE models. We compare the548

performance of two models with different initial-549

izations - (1) AutoDEGREE pre-trained on the ACE550

dataset and (2) AutoDEGREE with no pre-training551

- on the zero-shot with 10 event types benchmark-552

ing setup. We dissect the F1 scores into different553

abstract event types and show the results in Table 4.554

We observe that pre-training yields major im-555

provements for the abstractions of Action, Posses-556

Abstract Scratch Pre-Trained ∆
Event Type Model Model

Action 28.11 32.32 4.21
Possession 40.19 44.41 4.21
Change 41.15 44.92 3.77
Sentiment 43.39 44.92 1.53
Scenario 40.77 32.24 -8.53

Table 4: Model Performance in micro F1 on zero-shot
with 10 event types split by abstract event types for
(1) AutoDEGREE with no pre-training (Scratch Model),
and (2) Pre-Trained AutoDEGREE on ACE (Pre-Trained
Model). ∆: model performance difference.

sion, and Change - which are well-represented in 557

ACE. On the other hand, we observe lower or nega- 558

tive performance improvement for the abstractions 559

of Sentiment and Scenario - which are not repre- 560

sented in ACE. This trend clearly shows that the 561

lack of diversity in ACE restricts the models’ abil- 562

ity to generalize to out-of-domain event types. We 563

also highlight the significance of GENEVA as its 564

diverse evaluation setup helps analyze these trends. 565

6.4 Discussion 566

Overall, our experiments on the various benchmark- 567

ing test suites reveal many insights. First, we ob- 568

serve the superior generalizability of AutoDEGREE. 569

Second, macro score evaluation reveals how mod- 570

els like TANL and DyGIE++ are biased towards 571

specific events and show poor generalization. Over- 572

all, we observe better performance of generation- 573

based models, like TANL and AutoDEGREE com- 574

pared to classification-based models, like OneIE 575

and DyGIE++ across all test suites. 576

7 Conclusion and Future Work 577

In this paper, we introduce a new diverse EAE 578

dataset GENEVA comprising of a wide range of 579

event types and argument roles. We develop four 580

benchmarking test suites for evaluating model gen- 581

eralizability on the dataset and benchmark vari- 582

ous representative EAE models. We also propose 583

AutoDEGREE which shows superior generalization 584

across the different test suites. Future work in- 585

cludes expansion of this dataset to cover more di- 586

verse event types and argument roles. Efforts can 587

also be taken to improve the automated heuristics 588

for AutoDEGREE and in turn, pushing the limit of 589

generalizability furthermore. 590
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Limitations591

We would like to highlight a few limitations of592

our work. First, we would like to point out that593

GENEVA is designed to evaluate the generalizabil-594

ity of EAE models. Although the dataset contains595

event type and event trigger annotations, it can596

only be viewed as a partially-annotated dataset if597

end-to-end event extraction is considered. Further-598

more, there is no guarantee that all possible events599

in the sentence are exhaustively annotated. Fi-600

nally, GENEVA is derived from an existing dataset601

FrameNet. Despite the exhaustive human efforts602

put into the argument selection and frame merging,603

the label quality in GENEVA is still influenced by604

the annotation quality of FrameNet.605

Ethical Consideration606

We would like to list a few ethical considerations607

for our work. First, GENEVA is derived from608

FrameNet which comprises of annotated sentences609

from various news articles. Many of these news610

articles cover various political issues which might611

be biased and sensitive to specific demographic612

groups. We encourage careful consideration for613

utilizing this data for applying trained models in614

this dataset for real-world production. Another con-615

sideration for our work would be concerning the616

applications of our proposed model AutoDEGREE,617

as it is a generative approach. Despite best efforts618

to exercise control over the output generation, it is619

not guaranteed to produce sentences that adhere to620

the template and are safe in nature. It can be suscep-621

tible to adversarial attacks and produce incoherent622

and unsafe sentences.623

References624

Jacqueline Aguilar, Charley Beller, Paul McNamee,625
Benjamin Van Durme, Stephanie Strassel, Zhiyi626
Song, and Joe Ellis. 2014. A comparison of the627
events and relations across ACE, ERE, TAC-KBP,628
and FrameNet annotation standards. In Proceedings629
of the Second Workshop on EVENTS: Definition, De-630
tection, Coreference, and Representation, pages 45–631
53, Baltimore, Maryland, USA. Association for Com-632
putational Linguistics.633

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.634
1998. The Berkeley FrameNet project. In 36th An-635
nual Meeting of the Association for Computational636
Linguistics and 17th International Conference on637
Computational Linguistics, Volume 1, pages 86–90,638
Montreal, Quebec, Canada. Association for Compu-639
tational Linguistics.640

Jonathan Berant, Vivek Srikumar, Pei-Chun Chen, Abby 641
Vander Linden, Brittany Harding, Brad Huang, Peter 642
Clark, and Christopher D. Manning. 2014. Modeling 643
biological processes for reading comprehension. In 644
Proceedings of the 2014 Conference on Empirical 645
Methods in Natural Language Processing (EMNLP), 646
pages 1499–1510, Doha, Qatar. Association for Com- 647
putational Linguistics. 648

George Doddington, Alexis Mitchell, Mark Przybocki, 649
Lance Ramshaw, Stephanie Strassel, and Ralph 650
Weischedel. 2004. The automatic content extrac- 651
tion (ACE) program – tasks, data, and evaluation. In 652
Proceedings of the Fourth International Conference 653
on Language Resources and Evaluation (LREC’04), 654
Lisbon, Portugal. European Language Resources As- 655
sociation (ELRA). 656

Xinya Du and Claire Cardie. 2020. Event extraction by 657
answering (almost) natural questions. In Proceedings 658
of the 2020 Conference on Empirical Methods in Nat- 659
ural Language Processing (EMNLP), pages 671–683, 660
Online. Association for Computational Linguistics. 661

Seth Ebner, Patrick Xia, Ryan Culkin, Kyle Rawlins, 662
and Benjamin Van Durme. 2020. Multi-sentence ar- 663
gument linking. In Proceedings of the 58th Annual 664
Meeting of the Association for Computational Lin- 665
guistics, pages 8057–8077, Online. Association for 666
Computational Linguistics. 667

Joe Ellis, Jeremy Getman, Dana Fore, Neil Kuster, Zhiyi 668
Song, Ann Bies, and Stephanie M Strassel. 2015. 669
Overview of linguistic resources for the tac kbp 2015 670
evaluations: Methodologies and results. In TAC. 671

Joe Ellis, Jeremy Getman, and Stephanie M Strassel. 672
2014. Overview of linguistic resources for the tac 673
kbp 2014 evaluations: Planning, execution, and re- 674
sults. In Proceedings of TAC KBP 2014 Work- 675
shop, National Institute of Standards and Technology, 676
pages 17–18. 677

Charles J Fillmore et al. 1976. Frame semantics and 678
the nature of language. In Annals of the New York 679
Academy of Sciences: Conference on the origin and 680
development of language and speech, volume 280, 681
pages 20–32. New York. 682

Joseph L Fleiss. 1971. Measuring nominal scale agree- 683
ment among many raters. Psychological bulletin, 684
76(5):378. 685

Jeremy Getman, Joe Ellis, Zhiyi Song, Jennifer Tracey, 686
and Stephanie M Strassel. 2017. Overview of lin- 687
guistic resources for the tac kbp 2017 evaluations: 688
Methodologies and results. In TAC. 689

Ralph Grishman and Beth Sundheim. 1996. Message 690
Understanding Conference- 6: A brief history. In 691
COLING 1996 Volume 1: The 16th International 692
Conference on Computational Linguistics. 693

Frederik Hogenboom, Flavius Frasincar, Uzay Kaymak, 694
Franciska de Jong, and Emiel Caron. 2016. A survey 695
of event extraction methods from text for decision 696
support systems. Decis. Support Syst., 85:12–22. 697

9

https://doi.org/10.3115/v1/W14-2907
https://doi.org/10.3115/v1/W14-2907
https://doi.org/10.3115/v1/W14-2907
https://doi.org/10.3115/v1/W14-2907
https://doi.org/10.3115/v1/W14-2907
https://doi.org/10.3115/980845.980860
https://doi.org/10.3115/v1/D14-1159
https://doi.org/10.3115/v1/D14-1159
https://doi.org/10.3115/v1/D14-1159
http://www.lrec-conf.org/proceedings/lrec2004/pdf/5.pdf
http://www.lrec-conf.org/proceedings/lrec2004/pdf/5.pdf
http://www.lrec-conf.org/proceedings/lrec2004/pdf/5.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.49
https://doi.org/10.18653/v1/2020.emnlp-main.49
https://doi.org/10.18653/v1/2020.emnlp-main.49
https://doi.org/10.18653/v1/2020.acl-main.718
https://doi.org/10.18653/v1/2020.acl-main.718
https://doi.org/10.18653/v1/2020.acl-main.718
https://aclanthology.org/C96-1079
https://aclanthology.org/C96-1079
https://aclanthology.org/C96-1079


I-Hung Hsu, Kuan-Hao Huang, Elizabeth Boschee,698
Scott Miller, Prem Natarajan, Kai-Wei Chang, and699
Nanyun Peng. 2022. Degree: A data-efficient gen-700
erative event extraction model. In Proceedings of701
the 2022 Conference of the North American Chap-702
ter of the Association for Computational Linguistics:703
Human Language Technologies (NAACL-HLT).704

Lifu Huang, Heng Ji, Kyunghyun Cho, Ido Dagan, Se-705
bastian Riedel, and Clare Voss. 2018. Zero-shot706
transfer learning for event extraction. In Proceedings707
of the 56th Annual Meeting of the Association for708
Computational Linguistics (Volume 1: Long Papers),709
pages 2160–2170, Melbourne, Australia. Association710
for Computational Linguistics.711

Fayuan Li, Weihua Peng, Yuguang Chen, Quan Wang,712
Lu Pan, Yajuan Lyu, and Yong Zhu. 2020. Event713
extraction as multi-turn question answering. In Find-714
ings of the Association for Computational Linguistics:715
EMNLP 2020, pages 829–838, Online. Association716
for Computational Linguistics.717

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event718
extraction via structured prediction with global fea-719
tures. In Proceedings of the 51st Annual Meeting of720
the Association for Computational Linguistics (Vol-721
ume 1: Long Papers), pages 73–82, Sofia, Bulgaria.722
Association for Computational Linguistics.723

Sha Li, Heng Ji, and Jiawei Han. 2021. Document-level724
event argument extraction by conditional generation.725
In Proceedings of the 2021 Conference of the North726
American Chapter of the Association for Computa-727
tional Linguistics: Human Language Technologies,728
pages 894–908, Online. Association for Computa-729
tional Linguistics.730

Wei Li, Dezhi Cheng, Lei He, Yuanzhuo Wang, and731
Xiaolong Jin. 2019. Joint event extraction based on732
hierarchical event schemas from framenet. IEEE733
Access, 7:25001–25015.734

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.735
A joint neural model for information extraction with736
global features. In Proceedings of the 58th Annual737
Meeting of the Association for Computational Lin-738
guistics, pages 7999–8009, Online. Association for739
Computational Linguistics.740

Jian Liu, Yubo Chen, Kang Liu, Wei Bi, and Xiaojiang741
Liu. 2020. Event extraction as machine reading com-742
prehension. In Proceedings of the 2020 Conference743
on Empirical Methods in Natural Language Process-744
ing (EMNLP), pages 1641–1651, Online. Association745
for Computational Linguistics.746

Qing Lyu, Hongming Zhang, Elior Sulem, and Dan747
Roth. 2021. Zero-shot event extraction via transfer748
learning: Challenges and insights. In Proceedings749
of the 59th Annual Meeting of the Association for750
Computational Linguistics and the 11th International751
Joint Conference on Natural Language Processing752
(Volume 2: Short Papers), pages 322–332, Online.753
Association for Computational Linguistics.754

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Grish- 755
man. 2016. Joint event extraction via recurrent neural 756
networks. In Proceedings of the 2016 Conference 757
of the North American Chapter of the Association 758
for Computational Linguistics: Human Language 759
Technologies, pages 300–309, San Diego, California. 760
Association for Computational Linguistics. 761

Giovanni Paolini, Ben Athiwaratkun, Jason Krone, 762
Jie Ma, Alessandro Achille, Rishita Anubhai, 763
Cícero Nogueira dos Santos, Bing Xiang, and Ste- 764
fano Soatto. 2021. Structured prediction as transla- 765
tion between augmented natural languages. In 9th 766
International Conference on Learning Representa- 767
tions (ICLR). 768

Oscar Sainz, Itziar Gonzalez-Dios, Oier Lopez de La- 769
calle, Bonan Min, and Eneko Agirre. 2022. Tex- 770
tual entailment for event argument extraction: Zero- 771
and few-shot with multi-source learning. In Find- 772
ings of the Association for Computational Linguis- 773
tics: NAACL 2022, pages 2439–2455, Seattle, United 774
States. Association for Computational Linguistics. 775

Timo Schick and Hinrich Schütze. 2021a. Exploiting 776
cloze-questions for few-shot text classification and 777
natural language inference. In Proceedings of the 778
16th Conference of the European Chapter of the Asso- 779
ciation for Computational Linguistics: Main Volume, 780
pages 255–269, Online. Association for Computa- 781
tional Linguistics. 782

Timo Schick and Hinrich Schütze. 2021b. It’s not just 783
size that matters: Small language models are also few- 784
shot learners. In Proceedings of the 2021 Conference 785
of the North American Chapter of the Association 786
for Computational Linguistics: Human Language 787
Technologies, pages 2339–2352, Online. Association 788
for Computational Linguistics. 789

Zhiyi Song, Ann Bies, Stephanie M. Strassel, Tom 790
Riese, Justin Mott, Joe Ellis, Jonathan Wright, Seth 791
Kulick, Neville Ryant, and Xiaoyi Ma. 2015. From 792
light to rich ERE: annotation of entities, relations, 793
and events. In Proceedings of the The 3rd Workshop 794
on EVENTS: Definition, Detection, Coreference, and 795
Representation, (EVENTS@HLP-NAACL). 796

Beth M. Sundheim. 1992. Overview of the fourth Mes- 797
sage Understanding Evaluation and Conference. In 798
Fourth Message Uunderstanding Conference (MUC- 799
4): Proceedings of a Conference Held in McLean, 800
Virginia, June 16-18, 1992. 801

MeiHan Tong, Bin Xu, Shuai Wang, Meihuan Han, 802
Yixin Cao, Jiangqi Zhu, Siyu Chen, Lei Hou, and 803
Juanzi Li. 2022. DocEE: A large-scale and fine- 804
grained benchmark for document-level event extrac- 805
tion. In Proceedings of the 2022 Conference of the 806
North American Chapter of the Association for Com- 807
putational Linguistics: Human Language Technolo- 808
gies, pages 3970–3982, Seattle, United States. Asso- 809
ciation for Computational Linguistics. 810

David Wadden, Ulme Wennberg, Yi Luan, and Han- 811
naneh Hajishirzi. 2019. Entity, relation, and event 812

10

https://doi.org/10.18653/v1/P18-1201
https://doi.org/10.18653/v1/P18-1201
https://doi.org/10.18653/v1/P18-1201
https://doi.org/10.18653/v1/2020.findings-emnlp.73
https://doi.org/10.18653/v1/2020.findings-emnlp.73
https://doi.org/10.18653/v1/2020.findings-emnlp.73
https://aclanthology.org/P13-1008
https://aclanthology.org/P13-1008
https://aclanthology.org/P13-1008
https://aclanthology.org/P13-1008
https://aclanthology.org/P13-1008
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.1109/ACCESS.2019.2900124
https://doi.org/10.1109/ACCESS.2019.2900124
https://doi.org/10.1109/ACCESS.2019.2900124
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/v1/2020.emnlp-main.128
https://doi.org/10.18653/v1/2020.emnlp-main.128
https://doi.org/10.18653/v1/2020.emnlp-main.128
https://doi.org/10.18653/v1/2021.acl-short.42
https://doi.org/10.18653/v1/2021.acl-short.42
https://doi.org/10.18653/v1/2021.acl-short.42
https://doi.org/10.18653/v1/N16-1034
https://doi.org/10.18653/v1/N16-1034
https://doi.org/10.18653/v1/N16-1034
https://doi.org/10.18653/v1/2022.findings-naacl.187
https://doi.org/10.18653/v1/2022.findings-naacl.187
https://doi.org/10.18653/v1/2022.findings-naacl.187
https://doi.org/10.18653/v1/2022.findings-naacl.187
https://doi.org/10.18653/v1/2022.findings-naacl.187
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://aclanthology.org/M92-1001
https://aclanthology.org/M92-1001
https://aclanthology.org/M92-1001
https://doi.org/10.18653/v1/2022.naacl-main.291
https://doi.org/10.18653/v1/2022.naacl-main.291
https://doi.org/10.18653/v1/2022.naacl-main.291
https://doi.org/10.18653/v1/2022.naacl-main.291
https://doi.org/10.18653/v1/2022.naacl-main.291
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/D19-1585


extraction with contextualized span representations.813
In Proceedings of the 2019 Conference on Empirical814
Methods in Natural Language Processing and the815
9th International Joint Conference on Natural Lan-816
guage Processing (EMNLP-IJCNLP), pages 5784–817
5789, Hong Kong, China. Association for Computa-818
tional Linguistics.819

Xiaozhi Wang, Ziqi Wang, Xu Han, Wangyi Jiang, Rong820
Han, Zhiyuan Liu, Juanzi Li, Peng Li, Yankai Lin,821
and Jie Zhou. 2020. MAVEN: A Massive General822
Domain Event Detection Dataset. In Proceedings823
of the 2020 Conference on Empirical Methods in824
Natural Language Processing (EMNLP), pages 1652–825
1671, Online. Association for Computational Linguis-826
tics.827

Bishan Yang and Tom M. Mitchell. 2016. Joint extrac-828
tion of events and entities within a document context.829
In Proceedings of the 2016 Conference of the North830
American Chapter of the Association for Computa-831
tional Linguistics: Human Language Technologies,832
pages 289–299, San Diego, California. Association833
for Computational Linguistics.834

Sen Yang, Dawei Feng, Linbo Qiao, Zhigang Kan, and835
Dongsheng Li. 2019a. Exploring pre-trained lan-836
guage models for event extraction and generation. In837
Proceedings of the 57th Annual Meeting of the Asso-838
ciation for Computational Linguistics, pages 5284–839
5294, Florence, Italy. Association for Computational840
Linguistics.841

Yang Yang, Deyu Zhou, Yulan He, and Meng Zhang.842
2019b. Interpretable relevant emotion ranking843
with event-driven attention. In Proceedings of the844
2019 Conference on Empirical Methods in Natu-845
ral Language Processing and the 9th International846
Joint Conference on Natural Language Process-847
ing (EMNLP-IJCNLP), pages 177–187, Hong Kong,848
China. Association for Computational Linguistics.849

Hongming Zhang, Xin Liu, Haojie Pan, Yangqiu Song,850
and Cane Wing-Ki Leung. 2020. ASER: A Large-851
Scale Eventuality Knowledge Graph, page 201–211.852
Association for Computing Machinery, New York,853
NY, USA.854

Hongming Zhang, Haoyu Wang, and Dan Roth. 2021.855
Zero-shot Label-aware Event Trigger and Argu-856
ment Classification. In Findings of the Association857
for Computational Linguistics: ACL-IJCNLP 2021,858
pages 1331–1340, Online. Association for Computa-859
tional Linguistics.860

11

https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/2020.emnlp-main.129
https://doi.org/10.18653/v1/2020.emnlp-main.129
https://doi.org/10.18653/v1/2020.emnlp-main.129
https://doi.org/10.18653/v1/N16-1033
https://doi.org/10.18653/v1/N16-1033
https://doi.org/10.18653/v1/N16-1033
https://doi.org/10.18653/v1/P19-1522
https://doi.org/10.18653/v1/P19-1522
https://doi.org/10.18653/v1/P19-1522
https://doi.org/10.18653/v1/D19-1017
https://doi.org/10.18653/v1/D19-1017
https://doi.org/10.18653/v1/D19-1017
https://doi.org/10.1145/3366423.3380107
https://doi.org/10.1145/3366423.3380107
https://doi.org/10.1145/3366423.3380107
https://doi.org/10.18653/v1/2021.findings-acl.114
https://doi.org/10.18653/v1/2021.findings-acl.114
https://doi.org/10.18653/v1/2021.findings-acl.114


A Task Definition861

An event is a specific occurrence involving multi-862

ple participants and is labeled with a specific event863

type. An event mention is a sentence in which864

the event is described. An event trigger is a word865

phrase which best expresses the event occurrence866

in an event mention. An event argument is a word867

phrase that mentions an event-specific attribute or868

participant and is labeled with a specific argument869

role. EAE aims at identifying event arguments in870

event mentions and classifying them into argument871

roles. EAE models can utilize event type and the872

associated event trigger as additional information873

for the task. For example, in the illustration in874

Figure 8, EAE requires the extraction of the argu-875

ment roles of Helper, Benefiter, and Goal using the876

event type Assistance and the event trigger helping877

(highlighted in blue).878

Sentence: King Hammurabi led Babylon to victory

Leader Governed

Event: LeadershipED

EAE

King Hammurabi led Babylon to victory

Leader Governed King Hammurabi led Babylon to victory

Leader Governed

Event Type: Leadership

Russia is helping Iran to construct a dam.

Helper Benefiter

Event Type: Assistance

Goal

Figure 8: An illustration of Event Argument Extraction
for the Assistance event type, which comprises of argu-
ment roles like Helper, Benefiter, and Goal.

B Data Statistics for different879

benchmarking test suites880

We show the data statistics for the various bench-881

marking scenarios in Table 5. For the training set882

of the low resource and few-shot scenarios (indi-883

cated by ∗ in Table 5), we sample a smaller training884

set (as discussed in Section 3.4). For the zero-shot885

setup, the top 10 event types contribute to a large886

pool of 1, 889 sentences. For the test suites, a fixed887

number of 450 and 115 sentences are sampled for888

the training and the development set (indicated by889

+ in Table 5) from this larger pool of data.890

C Event Type Distribution for GENEVA891

We show the distribution of event mentions per892

event type for GENEVA in Figure 9. We observe893

a highly skewed distribution with 44 event types894

having less than 25 event mentions. Furthermore,895

93 event types have less than 100 event mentions.896

We believe that this resembles a more practical897

scenario where there is a wide range of events with898

limited event mentions while a few events have a899

large number of mentions.900

LR/FS ZS CTT

# Train Sentences 1, 967∗ 450+ 268
# Dev Sentences 778 115+ 66
# Test Sentences 928 1, 784 3, 339

Table 5: Data statistics of the number of test sentences
for the different benchmarking test suites. Here, LR:
Low Resource, FS: Few-shot, ZS: Zero-shot, CTT:
Cross-Type Transfer. ∗ and + indicate that certain sam-
pling is done for creating these datasets. More details
are provided in the text.

Figure 9: Distribution of event types by the number of
event mentions in GENEVA.

D Event Schema Organization for 901

GENEVA 902

The broad set of event types in GENEVA can be or- 903

ganized into a hierarchical structure based on event 904

type abstractions. Adhering to the hierarchical tree 905

structure introduced in MAVEN, we show the corre- 906

sponding organization for event types in GENEVA 907

in Figure 12. The organization mainly assumes 908

five abstract event categories - Action, Change, 909

Scenario, Sentiment, and Possession. The most 910

populous abstract type is Action with a total of 53 911

events, while Scenario abstraction has the lowest 912

number of 9 events. 913

We also study the distribution of event mentions 914

per event type in Figure 12 where the bar heights 915

are indicative of the number of event mentions for 916

the corresponding event type (heights in log-scale). 917

We observe that the most populous event is State- 918

ment which falls under the Action abstraction. On 919

the other hand, the least populous event is Recover- 920

ing which belongs to the Change abstraction. 921

GENEVA comprises of a diverse set of 115 event 922

types and it naturally shares some of these with 923

the ACE dataset. In Figure 12, we show the ex- 924

tent of the overlap of the mapped ACE events in 925

the GENEVA event schema (text labels colored in 926

red).11 We can observe that although there is some 927

11We only show the events that could be directly mapped
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DEGREE AutoDEGREE

ACE Dataset 73.5 72.7

Table 6: Model Performance in terms of F1 score for
DEGREE and AutoDEGREE on the ACE dataset.

Model ZS-1 ZS-5 ZS-10 CTT

BERT_QA 3.12 23.15 19.99 19.93
AutoDEGREE 12.61 32.29 34.8 27.27

Table 7: Model performance in macro F1 scores for the
zero-shot (ZS) and cross-type transfer (CTT) test suites.
ZS-1, ZS-5, and ZS-10 indicate the test suites with 1,
5, and 10 event types for training. We exclude TANL
and DyGIE++ from the results as they cannot transfer
to unseen events.

overlap between the datasets, GENEVA brings in a928

vast pool of new event types. Furthermore, most929

of the overlap is for the Possession and Action ab-930

straction types, while very few or none of the over-931

laps fall in the Sentiment and Scenario abstraction932

types.933

E Comparison of AutoDEGREE with934

DEGREE935

In our work, we introduce a new model936

AutoDEGREE which provides automated and scal-937

ing refinements over the DEGREE model. Here, we938

provide a comparison of these two models and a939

correpsonding ablation study for the various com-940

ponenets of the AutoDEGREE model. We train941

the AutoDEGREE on the standard ACE dataset and942

show the results in Table 6.943

F Macro F1 Results for Unseen Event944

Data945

The unseen event data setting comprises of the zero-946

shot and the cross-type transfer test suites. We947

present the results for model performance for these948

test suites in terms of macro F1 scores in Table 7.949

We observe similar trends like observed for mi-950

cro F1 scores wherein AutoDEGREE outperforms951

BERT_QA significantly across all test suites.952

from ACE to GENEVA. Note that this overlap is not exhaus-
tively complete. Furthermore, the mapping can be many-to-
one and one-to-many in nature.

Figure 10: Model performance in macro F1 (top) and
micro F1 (bottom) scores against the number of training
event mentions (log-scale) for the low resource suite.
Here we majorly compare the impact of pre-training on
the model performance.

G Impact of Pre-training 953

In this section, we explore the impact of pre- 954

training our models on previous datasets like 955

ACE/ERE and evaluating them on the GENEVA 956

benchmarking setups. Currently, we only report 957

the model performance for our proposed model 958

AutoDEGREE and a classification baseline model 959

of BERT_QA.12 Figures 10 and 11 show the im- 960

pact of pre-training on the low-resource and few- 961

shot test suites respectively. 962

We observe that pre-training helps model per- 963

formance by 5-10 F1 points, and naturally in the 964

low-data regime. But the gains diminish and are al- 965

most negligible when the number of training event 966

mentions increases. Also, the zero-shot perfor- 967

mance for the pretrained models isn’t as impres- 968

sive with AutoDEGREE achieving a micro F1 of 969

12.83 and BERT_QA achieving a score of 6.82 re- 970

spectively, despite being fully trained on the ACE 971

dataset. Poor zero-shot performance and dimin- 972

ishing performance gains indicate that GENEVA 973

is distributionally distinct from the ACE dataset, 974

which makes it challenging to achieve good model 975

performance on GENEVA merely via transfer learn- 976

ing. 977

12We use BERT-Base as the PLM for these experiments.
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Figure 11: Model performance in macro F1 (top) and
micro F1 (bottom) scores against the number of training
event mentions per event for the few-shot test suite.
Here we majorly compare the impact of pre-training on
the model performance.

H Human Validation Experiment Setup978

We present the human annotators with three sen-979

tences - one primary and two candidates - and ask980

them if the event type described in the primary sen-981

tence is similar to the event types in either of the982

candidates or distinct from both (Example in Ap-983

pendix H). One candidate is chosen as a sentence984

from one of the frames merged with the primary985

event, while the other candidate is chosen from a986

similar unmerged frame, which is a sibling event of987

the primary event discovered from the event ontol-988

ogy. The annotator chooses between three options989

- Candidate 1, Candidate 2, or None. We provide990

an example of the annotation setup used for the991

human validation experiment conducted as part of992

GENEVA creation process in Table 8.993

I Hyperparameters and Experimental994

Setup995

In this section, we provide details about the experi-996

mental setups and training details for various EAE997

models we mentioned in our work.998

I.1 AutoDEGREE999

We closely follow the training setup by DEGREE1000

for training the AutoDEGREE models. We run ex-1001

periments for AutoDEGREE on a NVIDIA GeForce1002

RTX 2080 Ti machine with support for 8 GPUs. 1003

We present the complete range of hyperparameter 1004

details in Table 9. We deploy early stopping criteria 1005

for stopping the model training. 1006

I.2 BERT_QA 1007

We mostly follow the original experimental setup 1008

and hyperparameters as described in Du and Cardie 1009

(2020). We use BERT-LARGE instead of the orig- 1010

inal BERT-BASE to ensure that the PLMs are of 1011

comparable sizes for AutoDEGREE and BERT_QA. 1012

We run experiments for this model on a NVIDIA 1013

A100-SXM4-40GB machine with support for 4 1014

GPUs. A more comprensive list of hyperparame- 1015

ters is provided in Table 10. 1016

I.3 TANL 1017

We report the hyperparameter settings for the 1018

TANL experiments in Table 11. We make optimiza- 1019

tion changes in the provided source code of TANL 1020

to include multiple triggers in a single sentence. 1021

Experiments for TANL were run on a NVIDIA 1022

GeForce RTX 2080 Ti machine with support for 8 1023

GPUs. 1024

I.4 DyGIE++ 1025

We report the hyperparameter settings for the Dy- 1026

GIE++ experiments in Table 12. Experiments for 1027

DyGIE++ were run on a NVIDIA GeForce RTX 1028

2080 Ti machine with support for 4 GPUs. 1029

I.5 OneIE 1030

We report the hyperparameter settings for the 1031

OneIE experiments in Table 13. Experiments for 1032

OneIE were run on a NVIDIA GeForce RTX 2080 1033

Ti machine with support for 4 GPUs. 1034

J Complete Results 1035

In this section, we present the exhaustive set of 1036

results for each of the runs for the different bench- 1037

marking suites. We show the results for the low re- 1038

source and few-shot setting are shown in Tables 14 1039

and 15 respectively. Tables 16 and 17 display 1040

the results for the zero-shot and cross-type transfer 1041

settings respectively. 1042
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Sentence Event Trigger

Primary Both villages offer good waterfront restaurants with homestyle
Chinese food, principally seafood fresh from the tank.

offer

Candidate 1 It gives an overview of Macau’s history and its daily life and
traditions.

gives

Candidate 2 He should do more to reduce tax rates on wealth and income,
in recognition of the fact that those cuts yield higher, not lower,
revenues.

revenues

Table 8: Illustration of the human validation setup for one annotation. This setup is used for evaluating the merging
operation done in the creation of GENEVA.

PLM BART-Large
Training Batch Size 6
Eval Batch Size 12
Learning Rate 1× 10−5

Weight Decay 1× 10−5

# Warmup Epochs 5
Gradient Clipping 5
Max Training Epochs 50
# Accumulation Steps 1
Beam Size 1
Max Sequence Length 400
Max Output Length 50

Table 9: Hyperparameter details for AutoDEGREE
model.

PLM BERT-Large
Training Batch Size 24
Eval Batch Size 16
Learning Rate 1× 10−5

# Training Epochs 8∗

# Evaluations per Epoch 5
Max Sequence Length 300
Max Answer Length 30
N-Best Size 20

Table 10: Hyperparameter details for BERT_QA model.
∗ indicates that we increase the training epochs upto
25 as we reduce the training data for low-resource and
few-shot settings.

PLM T5-Base
Training Batch Size 8
Eval Batch Size 12
Learning Rate 5× 10−4

# Training Epochs 4∗

Evaluation per # Steps 100
Max Sequence Length 256
# Beams 8

Table 11: Hyperparameter details for TANL model. ∗
indicates that we increase the training epochs upto 100
as we reduce the training data for low-resource and few-
shot settings.

PLM BERT-Large
Training Batch Size 6
Eval Batch Size 12
Learning Rate 2× 10−5

# Training Epochs 200∗

Evaluation per # Epoch 1
Max Sequence Length 175
# Beams 8

Table 12: Hyperparameter details for DyGIE++ model.
∗ indicates that we increase the training epochs upto
200 as we reduce the training data for low-resource and
few-shot settings.
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PLM BERT-Large
Training Batch Size 6
Eval Batch Size 12
Learning Rate 1× 10−5

# Training Epochs 150∗

Evaluation per # Epoch 1
Max Sequence Length 175
# Beams 8

Table 13: Hyperparameter details for OneIE model. ∗
indicates that we increase the training epochs upto 150
as we reduce the training data for low-resource and few-
shot settings.

16



Figure 12: Circular bar plot for the various event types present in the GENEVAdataset organized into abstract event
types. The height of each bar is proportional to the number of event mentions for that event (height is in log-scale).
Bar labels colored in red are the set of overlapping event types mapped from the ACE dataset.
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# Training
Event Mentions AutoDEGREE BERT_QA

1
Micro 0.07 0.00 0.15 5.09 0.00 0.75 0.63 0.51 0.00 3.40
Macro 0.29 0.00 0.22 3.81 0.00 1.00 0.70 0.81 0.00 2.57

10
Micro 1.33 3.99 6.56 1.75 6.45 0.37 2.34 1.30 1.95 1.27
Macro 1.03 2.78 4.77 0.74 5.14 0.16 1.60 0.79 0.98 0.61

25
Micro 8.69 11.32 12.44 16.51 5.64 2.26 4.39 4.79 4.79 1.07
Macro 6.67 8.84 10.59 14.87 5.56 1.34 2.69 3.00 3.36 0.97

50
Micro 18.28 21.75 15.78 19.48 15.97 6.85 6.72 7.61 6.55 6.59
Macro 15.49 17.16 14.14 17.28 13.26 5.51 4.90 6.42 5.51 5.05

100
Micro 32.51 33.16 30.37 27.84 25.25 18.00 15.52 14.15 15.10 16.40
Macro 29.31 29.95 23.90 23.41 22.47 16.02 13.05 10.24 11.82 12.96

200
Micro 45.21 40.31 41.38 45.21 40.31 26.36 27.01 22.03 26.07 26.66
Macro 38.72 35.31 35.96 38.72 35.31 20.94 23.43 19.07 20.55 22.46

400
Micro 50.00 52.25 51.39 51.42 52.06 37.28 37.61 36.91 35.65 32.40
Macro 45.15 47.83 47.03 46.79 48.52 31.04 30.99 30.79 29.67 26.68

1200
Micro 61.16 59.35 60.25 60.64 60.60 47.68 52.93 49.01 48.90 51.24
Macro 58.71 56.45 58.10 58.89 59.21 42.19 47.17 44.65 42.25 47.10

4132
Micro 61.35 61.20 61.20 60.92 61.16 55.43 56.94 55.66 54.40 56.15
Macro 58.76 59.18 59.18 58.28 59.60 50.20 52.02 50.54 49.69 50.86

DyGIE++ TANL

1
Micro 0.01 0.15 0.00 0.73 0.57 0.07 0.22 0.20 0.97 1.52
Macro 0.01 0.08 0.00 0.19 0.51 0.29 0.08 0.07 0.70 1.16

10
Micro 0.00 0.00 0.00 0.00 0.00 0.47 1.03 7.06 1.38 4.55
Macro 0.00 0.00 0.00 0.00 0.00 0.52 0.72 2.54 1.42 2.52

25
Micro 0.52 0.15 0.37 1.98 0.01 6.77 8.98 8.34 13.26 4.65
Macro 0.36 0.07 0.33 1.99 0.02 3.92 4.36 4.82 8.38 4.15

50
Micro 1.62 1.83 1.18 0.52 0.96 12.36 16.81 14.30 18.49 13.14
Macro 1.56 1.77 1.40 0.49 0.73 6.76 9.35 9.78 10.00 8.11

100
Micro 6.24 6.28 7.46 4.94 4.38 27.44 24.09 28.50 26.05 25.44
Macro 4.12 4.52 4.12 3.78 4.29 17.08 14.31 15.68 16.37 16.28

200
Micro 16.17 13.99 12.81 15.17 12.06 40.86 41.19 36.94 41.77 39.10
Macro 9.62 10.18 8.50 9.01 6.62 27.01 28.99 25.61 26.08 25.25

400
Micro 28.44 29.42 32.75 29.42 29.61 49.84 50.48 50.77 50.44 51.01
Macro 17.95 21.20 21.40 19.75 19.30 35.76 35.36 36.86 35.85 36.01

1200
Micro 57.00 56.49 55.29 58.24 57.40 63.97 61.69 59.98 60.04 61.79
Macro 46.52 44.80 45.02 46.13 46.85 51.46 47.92 45.85 45.30 47.44

4132
Micro 66.07 67.27 66.42 66.58 66.77 68.78 68.94 68.18 69.07 68.17
Macro 54.88 57.00 55.35 55.51 55.23 58.67 57.90 58.20 58.31 58.93

Table 14: Complete set of results of the 5 different runs for all models for the low resource test suite. Here Micro is
the micro F1 score and Macro is the macro F1 score.
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# Training
Event Mentions
per Event Type

AutoDEGREE BERT_QA

1
Micro 30.75 31.31 28.49 31.46 21.42 15.98 15.09 11.97 14.16 15.75
Macro 28.62 29.64 27.95 29.73 18.67 16.38 13.48 11.00 13.21 14.97

2
Micro 40.51 39.16 40.49 40.89 43.75 26.42 22.79 27.15 21.42 19.97
Macro 39.39 39.17 38.62 38.37 41.20 23.38 20.98 24.72 20.06 18.84

3
Micro 48.75 47.19 47.25 49.61 47.16 31.28 31.69 28.62 31.06 31.88
Macro 46.19 44.92 44.88 46.98 45.06 28.31 27.66 26.28 27.06 28.00

4
Micro 51.93 50.48 50.57 50.56 50.37 36.70 36.47 33.53 36.31 36.27
Macro 49.68 48.00 48.80 47.75 49.64 32.22 32.97 30.45 31.64 33.20

5
Micro 51.56 49.67 51.98 51.91 51.97 34.39 37.09 39.12 37.36 39.93
Macro 50.98 48.16 49.96 49.69 49.42 30.88 33.88 35.84 32.75 35.60

DyGIE++ TANL

1
Micro 2.03 1.54 1.98 1.97 3.58 20.50 22.53 17.88 21.10 19.11
Macro 2.79 2.13 2.48 2.33 3.82 15.87 19.14 14.80 17.75 15.19

2
Micro 5.71 4.15 5.75 4.44 6.32 33.12 33.59 36.28 33.18 36.27
Macro 6.24 5.42 6.22 5.18 8.36 29.00 28.01 31.47 29.19 31.74

3
Micro 10.33 11.27 10.20 13.90 9.13 40.36 42.91 39.30 45.95 43.08
Macro 11.56 12.80 11.75 14.59 10.23 36.52 38.18 34.55 40.93 37.27

4
Micro 14.50 17.21 11.93 13.51 11.25 43.55 45.95 45.27 47.56 47.35
Macro 15.63 16.83 13.44 14.30 13.59 40.62 40.80 42.54 43.30 44.01

5
Micro 14.69 16.33 18.90 17.56 21.77 48.97 50.43 49.04 50.51 51.44
Macro 16.82 17.48 19.46 19.75 22.27 44.09 46.20 44.87 45.18 47.65

Table 15: Complete set of results of the 5 different runs for all models for the few shot test suite. Here Micro is the
micro F1 score and Macro is the macro F1 score.

# Training
Events AutoDEGREE BERT_QA

1
Micro 14.87 13.99 14.10 14.12 12.46 5.44 4.37 5.63 4.83 5.76
Macro 14.48 13.38 12.77 12.01 10.43 3.55 2.82 2.99 3.16 3.06

5
Micro 33.68 31.56 33.32 32.62 34.11 24.92 23.69 22.11 23.52 21.51
Macro 33.23 30.72 33.41 30.92 33.18 23.88 20.90 18.18 19.86 17.15

10
Micro 36.79 34.72 36.90 33.64 35.31 23.30 23.48 22.68 23.45 23.25
Macro 36.43 33.00 36.19 34.10 34.30 20.20 20.05 19.33 20.61 19.47

Table 16: Complete set of results of the 5 different runs for all models for the zero-shot test suite. Here Micro is the
micro F1 score and Macro is the macro F1 score.

AutoDEGREE BERT_QA

Micro 28.28 25.58 27.05 28.73 26.67 8.19 4.44 10.69 7.24 8.58
Macro 28.51 26.23 25.58 28.98 27.03 8.97 3.35 10.76 7.24 9.88

Table 17: Complete set of results of the 5 different runs for all models for the cross-type transfer test suite. Here
Micro is the micro F1 score and Macro is the macro F1 score.
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