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Abstract

In this work, we leverage visual prompting (VP) to improve adversarial robustness
of a fixed, pre-trained model at testing time. Compared to conventional adversarial
defenses, VP allows us to design universal (i.e., data-agnostic) input prompting
templates, which have plug-and-play capabilities at testing time to achieve desired
model performance without introducing much computation overhead. Although VP
has been successfully applied to improving model generalization, it remains elusive
whether and how it can be used to defend against adversarial attacks. We investigate
this problem and show that the vanilla VP approach is not effective in adversarial
defense since a universal input prompt lacks the capacity for robust learning against
sample-specific adversarial perturbations. To circumvent it, we propose a new VP
method, termed Class-wise Adversarial Visual Prompting (C-AVP), to generate
class-wise visual prompts so as to not only leverage the strengths of ensemble
prompts but also optimize their interrelations to improve model robustness. Our
experiments show that C-AVP outperforms the conventional VP method, with
2.1× standard accuracy gain and 2× robust accuracy gain. Compared to classical
test-time defenses, C-AVP also yields a 42× inference time speedup. Code is
available at github.

1 Introduction

Current machine learning (ML) models, e.g., vision models in particular, can easily be manipulated
(by an adversary) to output drastically different classifications and can be done so in a controlled
and directed way. This process is known as adversarial attack and is considered as one of the
major hurdles in using ML models in high-stakes applications [Goodfellow et al., 2014, Carlini and
Wagner, 2017]. Thereby, model robustification against adversarial attacks is now a major focus of
research. Yet, a large volume of existing works focused on advancing training recipes and/or model
architectures to gain robustness. For example, adversarial training (AT) [Madry et al., 2017], one
of the most effective defense methods, adopted min-max optimization to minimize the worst-case
(maximum) training loss induced by adversarial attacks. Extended from AT, various empirical and
certified defense methods were proposed in various learning paradigms, ranging from supervised
learning to semi-supervised learning, and further to unsupervised learning [Zhang et al., 2019b,
Shafahi et al., 2019, Zhang et al., 2019a, Carmon et al., 2019, Wong and Kolter, 2017, Raghunathan
et al., 2018, Xie et al., 2019, Chen et al., 2020, Fan et al., 2021].

Although the design for robust training has made tremendous success in improving model robustness
[Athalye et al., 2018, Croce and Hein, 2020], it typically takes an intensive computation cost with
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poor defense scalability to a fixed, pre-trained ML model. Towards circumventing this difficulty, the
problem of test-time defense arises; see the seminal work in [Croce et al., 2022]. Test-time defense
alters either a test-time input example or a small portion of the pre-trained model for adversarial
defense. Examples include input (anti-adversarial) purification [Yoon et al., 2021, Mao et al., 2021,
Alfarra et al., 2022] and model refinement by augmenting the pre-trained model with auxiliary
components [Salman et al., 2020, Gong et al., 2022, Kang et al., 2021]. However, these defense
techniques inevitably raise the inference time and hamper the test-time efficiency [Croce et al., 2022].
Inspired by that, our work will advance the test-time defense technology by leveraging the idea
of visual prompting (VP) [Bahng et al., 2022], also known as model reprogramming [Chen, 2022,
Elsayed et al., 2018, Tsai et al., 2020, Zhang et al., 2022].

Generally speaking, VP [Bahng et al., 2022] creates a universal (i.e., data-agnostic) input prompting
template (in terms of input perturbations) in order to improve the generalization ability of a pre-trained
model when incorporating such a visual prompt into test-time examples. It enjoys the same idea as
model reprogramming [Chen, 2022, Elsayed et al., 2018, Tsai et al., 2020, Zhang et al., 2022] or
unadversarial example [Salman et al., 2021], which optimizes the universal perturbation pattern to
maneuver (i.e., reprogram) the functionality of a pre-trained model towards the desired criterion, e.g.,
cross-domain transfer learning [Tsai et al., 2020], out-of-distribution generalization [Salman et al.,
2021], and fairness [Zhang et al., 2022]. However, it remains elusive whether or not VP could be
designed as an effective solution to adversarial defense. We will investigate this problem, which we
call adversarial visual prompting (AVP), in this work. Compared to conventional test-time defense
methods, AVP will significantly reduce the inference time overhead since visual prompts can be
designed offline over training data and have the plug-and-play capability applied to any testing data.
We summarize our contributions below.

¶ We formulate and investigate the problem of AVP for the first time. We empirically show that the
conventional data-agnostic VP design is incapable of gaining adversarial robustness.

· We propose a new VP method, termed class-wise AVP (C-AVP), which produces multiple, class-
wise visual prompts with explicit optimization on their couplings to gain adversarial robustness.

¸ We provide insightful experiments to demonstrate the pros and cons of VP in adversarial defense.

1.1 Related work

Visual prompting. Originated from the idea of in-context learning or prompting in natural language
processing (NLP) [Brown et al., 2020, Li and Liang, 2021, Radford et al., 2021], VP was first
proposed in [Bahng et al., 2022] for vision models. Before formalizing VP in [Bahng et al., 2022],
the underlying prompting technique has also been devised in computer vision (CV) with different
naming. For example, VP is closely related to adversarial reprogramming or model reprogramming
[Elsayed et al., 2018, Chen, 2022, Tsai et al., 2020, Neekhara et al., 2022, Yang et al., 2021,
Zheng et al., 2021], which focused on altering the functionality of a fixed, pre-trained model across
domains by augmenting test-time examples with an additional (universal) input perturbation pattern.
Unadversarial learning also enjoys the similar idea to VP. In [Salman et al., 2021], unadversarial
examples that perturb original ones using ‘prompting’ templates were introduced to improve out-of-
distribution generalization. Yet, the problem of VP for adversarial defense is under-explored.

Adversarial defense. The lack of adversarial robustness is a weakness of ML models. Adversarial
defense, such as adversarial detection [Grosse et al., 2017, Yang et al., 2019, Metzen et al., 2017,
Meng and Chen, 2017, Wójcik et al., 2020, Gong et al., 2022] and robust training [Wong and Kolter,
2017, Zhang et al., 2019b, Salman et al., 2020, Chen et al., 2020, Boopathy et al., 2020, Fan et al.,
2021], is a current research focus. In particular, adversarial training (AT) [Madry et al., 2017] is the
most widely-used defense strategy and has inspired many recent advances in adversarial defense
[Athalye et al., 2018, Ye et al., 2019, Croce and Hein, 2020, Mohapatra et al., 2020, Kang et al.,
2021, Wang et al., 2021]. However, these AT-type defenses (with the goal of robustness-enhanced
model training) are computationally intensive due to min-max optimization over model parameters.
To reduce the computation overhead of robust training, the problem of test-time defense arises [Croce
et al., 2022], which aims to robustify a given model via lightweight unadversarial input perturbations
(a.k.a input purification) [Shi et al., 2021, Yoon et al., 2021] or minor modifications to the fixed
model [Chen et al., 2021]. In different kinds of test-time defenses, the most relevant work to ours is
anti-adversarial perturbation [Alfarra et al., 2022].
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2 Problem Statement

In this section, we will begin by providing a brief background on VP, and then introduce the problem
of our interest–adversarial visual prompting (AVP)–which aims at generating visual prompts to
improve adversarial robustness of a pre-trained, fixed model. Through a warm-up example, we will
empirically show that the conventional design of VP is difficult to apply to the paradigm of AVP.

Visual prompting. We describe the problem setup of VP following [Bahng et al., 2022, Elsayed
et al., 2018, Tsai et al., 2020, Zhang et al., 2022]. Specifically, let Dtr denote a training set for
supervised learning, where (x, y) ∈ Dtr signifies a training sample with feature x and label y. And
let δ be a visual prompt to be designed. The prompted input is then given by x + δ with respect to
(w.r.t.) x. Different from the problem of adversarial attack generation that optimizes δ for erroneous
prediction, VP drives δ to minimize the performance loss ` of a pre-trained model θ. This leads to

minimize
δ

E(x,y)∈Dtr[`(x + δ; y,θ)]
subject to δ ∈ C,

(1)

where ` denotes a certain performance loss (e.g., prediction error [Bahng et al., 2022]) given the prior
knowledge of training data (x, y) and base model θ, and C is a perturbation constraint. Following
[Elsayed et al., 2018, Tsai et al., 2020, Bahng et al., 2022], C restricts δ to be located in an image’s
boundary region and requests the perturbation magnitude within a normalized input space, i.e.,
x + δ ∈ [0,1] for any x. Projected gradient descent (PGD) [Madry et al., 2017, Salman et al., 2021]
can then be applied to solving problem (1). At inference time, the designed δ will be integrated into
test-time examples to improve the prediction ability of θ.

Adversarial visual prompting. Inspired by the usefulness of VP to improve model generalization
[Tsai et al., 2020, Bahng et al., 2022], we ask:

(AVP problem) Can VP (1) be extended to robustify θ against adversarial attacks?

At the first glance, the AVP problem seems trivial only if we specify the performance loss ` as the
adversarial training (AT) loss [Madry et al., 2017, Zhang et al., 2019b]:

`adv(x + δ; y,θ) = maximize
x′ ∶∥x′−x∥∞≤ε

`(x′ + δ; y,θ), (2)

where x′ denotes the adversarial input that lies in the `∞-norm ball centered at x with radius ε > 0.

Recall from (1) that the conventional VP design requests δ to be universal across training data. Thus,
we term universal AVP (U-AVP) the following problem by integrating (1) with (2):

minimize
δ∶δ∈C

λE(x,y)∈Dtr[`(x + δ; y,θ)] + E(x,y)∈Dtr[`adv(x + δ; y,θ)] (U-AVP)

where λ > 0 is a regularization parameter to strike a balance between generalization and adversarial
robustness [Zhang et al., 2019b].
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Fig. 1: Example of designing U-AVP
for adversarial defense on (CIFAR-10,
ResNet18), measured by robust accuracy
against PGD attacks [Madry et al., 2017]
of different steps. The robust accuracy
of 0 steps is the standard accuracy.

The problem (U-AVP) can be effectively solved using a stan-
dard min-max optimization method, which involves two alter-
nating optimization routines: inner maximization and outer
minimization. The former generates adversarial examples as
AT, and the latter produces the visual prompt δ like (1). At
testing time, the effectiveness of δ is measured from two as-
pects: (1) standard accuracy, i.e., the accuracy of δ-integrated
benign examples, and (2) robust accuracy, i.e., the accuracy of
δ-integrated adversarial examples (against the victim model
θ). Despite the succinctness of (U-AVP), Fig. 1 shows its inef-
fectiveness to defend against adversarial attacks. Compared to
the vanilla VP (1), it also suffers a significant standard accu-
racy drop (over 50% in Fig. 1 corresponding to 0 PGD attack
steps) and robust accuracy is only enhanced by a small margin
(around 18% against PGD attacks). The negative results in
Fig. 1 are not quite surprising since a data-agnostic input prompt δ has limited learning capacity to
enable adversarial defense. Thus, it is non-trivial to tackle the problem of AVP.

3



3 Class-wise Adversarial Visual Prompting

In this section, we will develop a new VP approach, termed Class-wise AVP (C-AVP), which improves
(U-AVP) in adversarial robustness. Different from U-AVP, C-AVP expands the designing space of
VP by associating each image class with an adversarial visual prompt and taking the couplings of
these class-wise visual prompts into account for robustness enhancement.

No free lunch for class-wise visual prompts. A direct extension of (U-AVP) is to introduce
multiple adversarial visual prompts, each of which corresponds to one class in the training set Dtr. If
we split Dtr into class-wise training sets {D

(i)
tr }

N
i=1 (for N classes) and introduce class-wise visual

prompts {δ(i)}, then the direct C-AVP extension from (U-AVP) becomes

minimize
{δ(i)∈C}i∈[N]

1

N

N

∑
i=1

{λE(x,y)∈D(i)
tr

[`(x + δ(i); y,θ)] + E(x,y)∈D(i)
tr

[`adv(x + δ(i); y,θ)]} (C-AVP-v0)

where [N] denotes the set of class labels {1,2, . . . ,N}. It is worth noting that C-AVP-v0 is decom-
posed over class labels. That is, solving the above problem is equivalent to solving a sequence of
sub-problems: For each class i,

minimize
δ(i)∈C

λE(x,y)∈D(i)
tr

[`(x + δ(i); y,θ)] + E(x,y)∈D(i)
tr

[`adv(x + δ(i); y,θ)] (3)

Although the class-wise separability facilitates numerical optimization, it introduces two challenges
(C1)-(C2) when applying class-wise visual prompts to defend adversarial attacks.

● (C1) Test-time prompt selection: After acquiring the visual prompts {δ(i)} from (C-AVP-v0), it
remains unclear how a class-wise prompt should be selected for application to a test-time example
xtest. An intuitive way is to use the inference pipeline of θ by aligning its top-1 prediction with the
prompt selection. That is, the selected prompt δ and the predicted class i∗ are determined by

δ = δ∗, i∗ = argmax
i∈[N]

fi(xtest + δ(i);θ), (4)

where fi(x;θ) denotes the ith-class prediction confidence of using θ at x. However, the seemingly
correct rule (4) leads to a large prompt selection error (thus poor prediction accuracy) due to (C2).

● (C2) Backdoor effect of class mis-matched prompts: Given δ(i) from (3), if the test-time example
xtest is drawn from class i, the visual prompt δ(i) then helps prediction. However, if xtest is not
originated from class i, then δ(i) could serve as a backdoor attack trigger [Gu et al., 2017] with the
targeted backdoor label i for the ‘prompted input’ xtest + δ(i). Since the backdoor attack is also
input-agnostic, the class-discriminative ability of xtest + δ

(i) enabled by δ(i) could result in incorrect
prediction towards the target class i for xtest. Our empirical experiments justified the above: Nearly
all testing samples will be (mis)classified as the prompt’s class regardless of their true labels.

Inputs

Visual
Prompt

Pretrained
Classifier

Predictions

Method (c) C-AVP(b) U-AVP(a) No Prompt

Dog Cat Dog Cat Dog Cat

Fig. 2: Overview of C-AVP over two classes (red and
green) vs. U-AVP and the prompt-free learning pipeline.

Joint prompts optimization for C-AVP.
The failure of C-AVP-v0 inspires us to re-think
the value of class-wise separability in (3). As
illustrated in challenges (C1)-(C2), the compat-
ibility with the test-time prompt selection rule
and the interrelationship between class-wise
visual prompts should be taken into account.
To this end, we develop a series of new AVP
principles below. Fig. 2 provides a schematic
overview of C-AVP and its comparison with
U-AVP and the original predictor without VP.

First, to bake the prompt selection rule (4) into
C-AVP, we enforce the prompt design along the correct selection path, i.e., under the condition that
fy(x + δ(y);θ) >maxk∶k≠y fk(x + δ(k);θ) for (x, y) ∈ D(y). The above can be cast as a CW-type
loss [Carlini and Wagner, 2017]:

`C−AVP,1({δ(i)};Dtr,θ) = E(x,y)∈Dtr max{max
k≠y

fk(x + δ(k);θ) − fy(x + δ(y);θ),−τ}, (5)
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where τ > 0 is a confidence threshold. The rationale behind (5) is that given a data sample (x, y), the
minimum value of `C−AVP,1 is achieved at −τ , indicating the desired condition with the confidence
level τ . Compared with (C-AVP-v0), another key characteristic of `C−AVP,1 is its non-splitting over
class-wise prompts {δ(i)}, which benefits the joint optimization of these prompts.

Second, to mitigate the backdoor effect of class mis-matched prompts, we propose additional two
losses, noted by `C−AVP,2 and `C−AVP,3, to penalize the data-prompt mismatches. Specifically,
`C−AVP,2 penalizes the backdoor-alike targeted prediction accuracy of a class-wise visual prompt
when applied to mis-matched training data. For the prompt δ(i), this leads to

`C−AVP,2({δ(i)};Dtr,θ) =
1

N

N

∑
i=1

E(x,y)∈D(−i)
tr

max{fi(x + δ(i);θ) − fy(x + δ(i);θ),−τ}, (6)

where D(−i)tr denotes the training data set by excluding D(i)tr . The rationale behind (6) is that the class
i-associated prompt δ(i) should not behave as a backdoor trigger to non-i classes’ data. Likewise, if
the prompt is applied to the correct data class, then the prediction confidence of this matched case
should surpass that of a mis-matched case. This leads to

`C−AVP,3({δ(i)};Dtr,θ) = E(x,y)∈Dtr max{max
k≠y

fy(x + δ(k);θ) − fy(x + δ(y);θ),−τ}. (7)

Let `C−AVP,0({δ
(i)

};Dtr,θ) denote the objective function of (C-AVP-v0). Integrated with
`C−AVP,q({δ

(i)
};Dtr,θ) for q ∈ {1,2,3}, the desired class-wise AVP design is cast as

minimize
{δ(i)∈C}i∈[N]

`C−AVP,0({δ(i)};Dtr,θ) + γ∑3
q=1 `C−AVP,q({δ(i)};Dtr,θ), (C-AVP)

where γ > 0 is a regularization parameter to control our emphasis on the class-wise prompting
penalties. It is worth mentioning that since `C−AVP,q (for q > 0) is a hinge loss with hard threshold τ ,
its optimization could automatically stop if a prompting regulation is satisfied. To solve (C-AVP), we
will use the min-max optimizer similar to the approach used for solving (C-AVP-v0).

4 Experiments

Experiment setup. We conduct experiments on CIFAR-10 with a pretrained ResNet18 of testing
accuracy of 94.92% on standard test dataset. We use PGD-10 (i.e., PGD attack with 10 steps [Madry
et al., 2017]) to generate adversarial examples with ε = 8/255 during visual prompts training, and
with a cosine learning rate scheduler starting at 0.1. Throughout experiments, we choose λ = 1 in
(U-AVP), and τ = 0.1 and γ = 3 in (C-AVP). The width of visual prompt is set to 8 (see Fig. 3). To
evaluate test-time adversarial robustness, we generate PGD attacks of different steps under ε = 8/255.

airplane automobile bird cat dear dog frog horse ship truck

Fig. 3: C-AVP visualization. One image is chosen from each CIFAR-10 class with the corresponding C-AVP.

Table 1: VP performance comparison in
terms of standard (std) accuracy (acc) and
robust accuracy against PGD attacks with ε =
8/255 and multiple PGD steps on (CIFAR-
10, ResNet18).

Evaluation Std Robust acc vs PGD w/ step #
metrics (%) acc 10 20 50 100

Pre-trained 94.92 0 0 0 0
Vanilla VP 94.48 0 0 0 0

U-AVP 27.75 16.9 16.81 16.81 16.7
C-AVP-v0 19.69 13.91 13.63 13.6 13.58

C-AVP (ours) 57.57 34.75 34.62 34.51 33.63

C-AVP outperforms conventional VP. Tab. 1 demon-
strates the effectiveness of proposed C-AVP approach vs.
U-AVP (the direction extension of VP to adversarial de-
fense) and the C-AVP-v0 method in the task of robustify
a normally-trained ResNet18 on CIFAR-10. For compari-
son, we also report the standard accuracy of the pre-trained
model and the vanilla VP solution given by (1). As we can
see, C-AVP outperforms U-AVP and C-AVP-v0 in both
standard accuracy and robust accuracy (evaluated using
PGD attacks with different step sizes). We also observe
that compared to the pre-trained model and the vanilla
VP, the robustness-induced VP variants bring in an evident standard accuracy drop as the cost of
robustness enhancement. This leaves a future research direction to optimize the accuracy-robustness
trade-off of visual prompts.
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Table 2: Sensitivity analysis of prompting regulariza-
tions in C-AVP on (CIFAR-10, ResNet18).

Setting `C−AVP,1 `C−AVP,2 `C−AVP,3 Std Acc (%) PGD-10 Acc (%)

S1 8 8 8 19.69 13.91
S2 4 8 8 22.72 13.01
S3 8 4 8 40.01 25.40
S4 8 8 4 17.44 11.78
S5 4 4 8 57.03 32.39
S6 4 8 4 26.02 15.80
S7 4 4 4 57.57 34.75

Prompting regularization effect in (C-AVP).
Tab. 2 shows different settings of prompting reg-
ularizations used in C-AVP, where ‘Si’ repre-
sents a certain loss configuration. As we can see,
the use of `C−AVP,2 contributes most to improv-
ing the performance of learned visual prompts
(see S3). This is not surprising, since we design
`C−AVP,2 for mitigating the backdoor effect of
class-wise prompts, which is the main source of
prompting selection error. We also note that `C−AVP,1 is the second most important regularization,
as evidenced by the comparable performance of S3 vs. S5. This is because such a regularization is
accompanied with the prompt selection rule (4). If training cost is taken into consideration, Tab. 2
also indicates that the combination of `C−AVP,1 and `C−AVP,2 is a possible computationally lighter
alternative to (C-AVP).

(a) C-AVP-v0 (b) C-AVP

Fig. 4: The prediction error analysis of C-AVP vs. C-AVP-v0 on (CIFAR10,
ResNet18). Each row corresponds to testing samples from one class, and each
column corresponds to the prompt (‘P’) selection across 10 image classes.

Class-wise prediction
error analysis. Fig. 4
shows a comparison of the
classification confusion
matrix over benign test
dataset. Here the row
index signifies the test data
per class, and the column
index refers to the selected
prompt for prediction when
using C-AVP-v0 or C-AVP.
As we can see, our proposal
outperforms C-AVP-v0
since the former’s higher
main diagonal entries indicate better prompt selection accuracy (and thus prediction accuracy) than
the latter. In Fig. 4(b), we also observe that the incorrect class-wise predictions (i.e., the off-diagonal
entries) often appear for similar classes such as (class 1-airplane, P1) and (class 9-ship, P9).

Table 3: Comparison of C-AVP with other SOTA test-
time defenses. Per the benchmark in [Croce et al., 2022],
the involved test-time operations in these defenses in-
clude: IP (input purification), MA (model adaption),
IA (iterative algorithm), AN (auxiliary network), and R
(randomness). And inference time (IT), standard accu-
racy (SA), and robust accuracy (RA) against PGD-10
are used as performance metrics.

Method IP MA IA AN R IT SA (%) RA (%)

Shi et al. [2021] 4 8 4 8 8 518 × 85.9% 0.4%
Yoon et al. [2021] 4 8 4 4 4 176 × 91.1% 40.3%
Chen et al. [2021] 8 4 4 4 8 59 × 56.1% 50.6%

C-AVP 4 8 8 8 8 1.4 × 57.6% 34.3%

Comparisons with other test-time defenses.
In Tab. 3, we compare our proposed C-AVP
with three test-time defense methods, selected
from [Croce et al., 2022]. Note that all meth-
ods are applied to robustifying a fixed, normally
pre-trained ResNet18. Following [Croce et al.,
2022], we divide the considered defenses into
different categories, relying on their defense
principles (i.e., IP or MA) as well as their needed
test-time operations (i.e., IA, AN, and R). As
we can see, our method C-AVP falls into the
IP category but requires no involved test-time
operations. This leads to the least inference overhead. Although there exists a performance gap with
the test-time defense baselines, we hope that our work could pave a way to study the pros and cons of
visual prompting in adversarial robustness.

5 Conclusion

In this work, we develop a novel VP method, i.e., C-AVP, to improve adversarial robustness of a
fixed model at testing time. Compared to existing VP methods, this is the first work to peer into
how VP could be in adversarial defense. We show that the direct integration of VP into robust
learning does not offer an effective adversarial defense at testing time for the fixed model. To
address this problem, we propose C-AVP to create ensemble visual prompts and jointly optimize
their interrelations for robustness enhancement. We empirically show that our proposal significantly
reduces the inference overhead compared to classical adversarial defenses which typically call for
computationally-intensive test-time defense operations.
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