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Abstract

Event-related potentials (ERP) are measurements of brain activity with wide applications in
basic and clinical neuroscience, that are typically estimated using the average of many trials
of electroencephalography signals (EEG) to sufficiently reduce noise and signal variability.
We introduce EEG2ERP, a novel uncertainty-aware autoencoder approach that maps an
arbitrary number of EEG trials to their associated ERP. To account for the ERP uncer-
tainty we use bootstrapped training targets and introduce a separate variance decoder to
model the uncertainty of the estimated ERP. We evaluate our approach in the challenging
zero-shot scenario of generalizing to new subjects considering three different publicly avail-
able data sources; i) the comprehensive ERP CORE dataset that includes over 50,000 EEG
trials across six ERP paradigms from 40 subjects, ii) the large P300 Speller BCI dataset,
and iii) a neuroimaging dataset on face perception consisting of both EEG and magnetoen-
cephalography (MEG) data. We consistently find that our method in the few trial regime
provides substantially better ERP estimates than commonly used conventional and robust
averaging procedures. EEG2ERP is the first deep learning approach to map EEG signals
to their associated ERP, moving toward reducing the number of trials necessary for ERP
research.

1 Introduction

Electroencephalography signals (EEG) represent a summation of the electrical activity of neural processes
in the brain. Isolating these processes in EEG data is challenging due to poor signal-to-noise and therefore
a common approach is to average many repeated stimulus-locked trials in order to extract the associated
event-related potential (ERP) (Luck, 2014), with modern techniques often employing complex averaging
and filtering methods to improve the extraction and clarity of ERPs (Leonowicz et al., 2005; Bailey et al.,
2023a;b). ERPs have been invaluable for investigating a wide range of topics in neuroscience (Luck, 2022)
and psychology (Hajcak et al., 2019), and are relevant for brain-computer interface technologies, such as
spelling systems for disabled patients (Farwell & Donchin, 1988), and control of humanoid robots, arms, and
wheelchairs (Abiri et al., 2019).

In recent years, deep learning has been widely applied in EEG research to discern signals from noise across
classification tasks such as emotion recognition (Jafari et al., 2023), sleep staging (Phan & Mikkelsen, 2022),
detection of epileptic seizures (Nafea & Ismail, 2022), and classification of ERPs (Craik et al., 2019; Li
et al., 2020). Representation learning for EEG has also recently been substantially advanced by exploring
transformer architectures and contrastive learning procedures (Kostas et al., 2021; Nørskov et al., 2023).
Our starting point will be the recently proposed transformer and contrastive learning based CSLP-AE
framework (Nørskov et al., 2023), an autoencoder model which uses a specialized reconstruction loss to
encode EEG signals into two latent spaces split respectively to optimally characterize subject and task
variability. This model has demonstrated strong performance in learning features useful for classifying both
subjects and tasks and has shown promising generalizability and zero-shot capabilities.

In this work, we turn the CSLP-AE architecture into a novel EEG denoising framework. Given a subject’s
few EEG trials, the aim is to estimate the corresponding subject-specific ERP with the ultimate aim of
reducing the number of trials necessary to produce reliable ERP estimates. We call this EEG2ERP. This
approach aims to make the process more efficient and less burdensome for both researchers and participants
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requiring fewer repeated trials. A key feature of the proposed framework is its uncertainty awareness: in
addition to predicting the ERP for a given EEG signal, it also provides variance estimates that are learned
during training using associated bootstrapped ERP training targets accounting for the ERP uncertainty.

The proposed framework is evaluated on the ERP CORE dataset (Kappenman et al., 2021) under a challeng-
ing zero-shot generalization setting, assessing the model’s ability to reconstruct ERPs from a few EEG trials
of unseen subjects. We further apply the EEG2ERP approach to a dataset on face perception (Wakeman &
Henson, 2015) considering both the modeling of EEG and magnetoencephalography (MEG) trials. Finally,
we evaluate it against strong baselines on the P300 Speller Brain-Computer Interfaces (BCI) dataset (Won
et al., 2022) to assess its applicability in a practical setting where few repeated trials are essential to reduce
the burden of using the system. We hypothesize that deep learning methodologies that explore the multivari-
ate structure of EEG signals accounting for subject and task variability can enhance ERP signal recovery
using substantially fewer trials than conventional averaging procedures. To systematically investigate the
proposed EEG2ERP in its capabilities of quantifying the ERP as a function of trials, we consider unseen
subjects not used during model training and split each subject’s trials into two equal sets: one set is used by
the model to estimate the ERP, while the other set is averaged conventionally; we then compare these two
ERPs to quantify reconstruction accuracy.
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Figure 1: The EEG2ERP model framework. In the top-right graph, the dashed line is the target ERP, and
the blue line and area is the model’s estimated ERP and confidence respectively. The model maps an input
averaged over Kb EEG trials from one set to an estimated ERP averaged over Nb trials from a separate set. It
is conditioned on Kb and includes a decoder branch that estimates uncertainty. This visualization simplifies
the prediction process to a single channel and demonstrates how bootstrapped ERPs replace the single-trial
autoencoder targets of CSLP-AE while accounting for ERP uncertainty including a variance decoder.

2 Methods

We denote the set of EEG trials belonging to a specific subject s and task τ by

Ds,τ =
{

X(i)
s,τ ∈ RC×T | i ∈ {1, . . . , N}

}
,

where C is the number of channels and T is the number of time points. We use Xc,t to denote the value of
a trial matrix X at the c’th channel and t’th time point.

The averaged ERP over K trials is denoted X̄K
s,τ ∈ RC×T , and our model’s denoised estimate of this ERP is

written X̂K
s,τ ∈ RC×T .

2.1 EEG2ERP

We develop an autoencoder framework based on CSLP-AE, that maps an ERP computed from a small
number of trials, X̄Kb

s,τ ∈ RC×T , to the full ERP obtained from a larger number of trials X̄Ns,τ
s,τ ∈ RC×T ,

where typically Kb ≪ Ns,τ .
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The model consists of an encoder, Eθ, and a decoder, Dϕ:

Eθ : RC×T → R2×Cz×Tz , Dϕ : R2×Cz×Tz → RC×T ,

where C and T are the number of input channels and time steps, and Cz, Tz are the compressed latent
dimensions. The bottleneck is split into two latent components: a subject-specific latent ZS ∈ RCz×Tz and
a task-specific latent ZT ∈ RCz×Tz . These are given as input to the decoder to estimate the ERP. This
split-latent structure enables the model to disentangle and retain subject- and task-specific information in
the latent space.

Importantly, the encoder acts as an implicit conditioner, as it extracts both subject and task representations
at inference time, without requiring explicit conditioning labels. This means that the subject and task
information is inferred and embedded within the latent representation during encoding, and is later utilized
by the decoder for reconstruction. As a result, the model can generalize to unseen subjects during testing.

This implicit encoding of subject and task properties makes the framework particularly suited for ERP
denoising, where the goal is to preserve meaningful inter-subject and inter-task differences while reducing
trial-level noise. We therefore adopt the CSLP-AE approach as the basis for EEG2ERP, with several
modifications outlined in the following sections and the appendix.

We reformulate the training objective from conventional autoencoding, as in CSLP-AE, to instead map the
average of an arbitrary number of input EEG trials to the associated subject ERP directly. We further
augment the training process to account for the uncertainty of the ERP using bootstrapped target ERPs.
In addition, we endow the modeling procedure with uncertainty quantification by incorporating a noise
variance decoder to quantify the reliability of the estimated ERP. See Figure 1 for an overview of the
EEG2ERP procedure.

Specifically, EEG trials are split into two halves: an input half and a target half, sampled randomly from
the dataset before training. Inputs to the model are derived solely from the input half, while target ERPs
are constructed from the target half, preventing information leakage between input and target.

For subject s at task τ , the EEG trials are partitioned into two halves each with Ns,τ trials available. From
the input half, a bootstrap sample of Kb trials is averaged and encoded into a latent representation. The
model then decodes this latent into a predicted ERP for the target half, formed by averaging all Ns,τ trials
from a separate bootstrap sample.

To model variability in ERPs, we use bootstrapping over trials during training (Mooney & Duval, 1993).
The bth bootstrap sample of K trials is denoted Db ⊆ Ds,τ , and the corresponding ERP is computed as:

X̄Kb
s,τ = 1

|Db|
∑

Xs,τ ∈Db

Xs,τ , (1)

where X̄Kb
s,τ ∈ RC×T is the input ERP, Kb = |Db|, and C and T are the number of channels and time points,

respectively. This bootstrap-based formulation acts as regularization by exposing the model to trial-level
variability, helping it learn a distributional mapping instead of overfitting to a fixed ERP.

We sample Kb out of the Ns,τ available trials as follows

Kb ∼ DiscreteWeighted
(

wk ∝ 1
k

, k = 1, . . . , Ns,τ

)
, (2)

which biases training toward using fewer trials on the input side.

In addition to the bootstrap-averaged signal X̄Kb
s,τ input, the model is conditioned on the number of trials

Kb using a sinusoidal positional embedding (Vaswani et al., 2017), which is projected and added to the
pre-latent embedding space.
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Given an input bootstrap average and trial count, the full encoder–decoder model computes the estimated
ERP and uncertainty as follows:

ZS, ZT = Eθ

(
X̄Kb

s,τ | Kb

)
, (3)

X̂s,τ , σ̂s,τ = Dϕ(ZS, ZT), (4)

where ZS and ZT are the latent representations for the subject and task latent space respectively, X̂s,τ is
the estimated ERP, and σ̂s,τ ∈ RC×T is the predicted ERP per-channel per-time step standard deviation.

The model is trained to maximize the likelihood of the bootstrap target ERP from the output half:

pϕ(X̄Nb
s,τ,c,t | ZS, ZT) = N (X̄Nb

s,τ,c,t | X̂s,τ,c,t, σ̂2
s,τ,c,t), ∀c, t (5)

where X̄Nb
s,τ is the bth bootstrap ERP using Ns,τ trials from the target half.

This probabilistic formulation enables the model to learn not only the ERP but also an estimate of its
variability over both channels and time for each trial. The noise scale is predicted using a dedicated convolu-
tional branch in the decoder, transformed via the softplus activation to ensure positivity, following standard
practice (Kingma & Welling, 2014; Tomczak, 2021).

2.2 Loss function

Following Nørskov et al. (2023), the total loss L is given by combining the reconstruction loss LR, the
contrastive learning loss LCL, and the latent permutation loss LLP:

LTOT = LR + LCL + LLP. (6)

These loss terms are substantially modified for the EEG2ERP framework as outlined below.

Reconstruction loss LR To account for the noise variance decoder, the CSLP-AE’s L2 reconstruction loss
is replaced with a negative log-likelihood loss as used in deep latent variable models. We use a multivariate
Gaussian distribution parameterized by the estimated mean X̂ and standard deviation σ̂:

LR =
C∑

c=1

T∑
t=1

[
∥X̄c,t − X̂c,t∥2

2
2 σ̂2

c,t

+ log σ̂c,t

]
, (7)

where X̄ ∈ RC×T is the target ERP, X̂ is the predicted ERP, and σ̂ is the predicted standard deviation per
channel and time point.

This loss enables learning both an estimate of the ERP and its associated uncertainty. In practice, we found
training to be more stable when linearly annealing the predicted scale from 1 to σ̂ during the first half
of training. This helps avoid unstable optimization due to unreliable uncertainty estimates from randomly
initialized weights.

Contrastive loss LCL This loss incorporates contrastive learning into each split-latent space (subject or
task). Pairs of subjects and tasks are sampled separately, and a contrastive loss is applied to each respective
latent space to encourage specialization.

Let sim(u, v) = u⊤v
∥u∥∥v∥ denote cosine similarity. Given M latent pairs ZA

m, ZB
m ∈ RH in latent space

L ∈ {S,T}, the full symmetric normalized temperature-scaled cross entropy loss (Sohn, 2016; Oord et al.,
2018; Radford et al., 2021) is:

L(L)
CL = 1

M

M∑
m=1

− log
exp

(
sim(ZA

m, ZB
m)/τ

)∑
i ̸=m

exp
(
sim(ZA

m, ZB
i )/τ

) − log
exp

(
sim(ZB

m, ZA
m)/τ

)∑
i ̸=m

exp
(
sim(ZB

m, ZA
i )/τ

)
 , (8)
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where τ is the temperature. To support efficient training, we construct a batch containing all combinations
of subject-task pairs. Let NS and NT denote the number of subjects and tasks, respectively. All NS × NT

combinations are encoded into tensors:

ZA,L, ZB,L ∈ RNS×NT ×H ,

where H is the latent size, and L denotes the latent space (subject S or task T). Similarities are computed
by aggregating across the non-corresponding axis to form the following similarity matrices:

SS
ij =

NT∑
τ=1

sim(ZA,S
i,τ , ZB,S

i,τ ), (9)

ST
ij =

NS∑
s=1

sim(ZA,T
s,j , ZB,T

s,j ). (10)

Each similarity score SL
ij quantifies the aggregate similarity between embeddings in latent space L using

the opposing axis as contrast. These similarity matrices are substituted into the contrastive loss in practice
using the cross-entropy loss on the similarity matrix and its transpose. The contrastive loss specializes the
latent space by encouraging matching subject- and task- representations to form clusters in their respective
latent spaces while pushing apart unrelated pairs.

Latent permutation loss LLP The latent permutation loss is adapted to support general permutations
over the latent dimensions instead of fixed pairwise swaps. This generalizes the loss used in standard
autoencoders, CSLP-AE, and its quadruplet permutation variant (Nørskov et al., 2023).

Let Z̄A,L ∈ RNS×NT ×H denote the encoded latent tensors for a given latent space L ∈ {S,T} where NS is
the number of subjects, NT the number of tasks, and H the latent size. Permutations are applied along the
axis not associated with the current latent space:

• For L = S (subject space), apply ϱ2(·), a random permutation over axis 2 (task dimension).

• For L = T (task space), apply ϱ1(·), a random permutation over axis 1 (subject dimension).

Define ϱi(·) as the random-permutation operator on axis i. Then the decoder Dϕ takes the permuted latents
and outputs an ERP prediction. The permutation loss is then computed as a reconstruction loss against the
original (non-permuted) ERP:

LLP = LR(X̄, Dϕ(ϱ2(Z̄A,S), ϱ1(Z̄A,T))) + LR(X̄, Dϕ(ϱ2(Z̄B,S), ϱ1(Z̄B,T))). (11)

This loss encourages disentanglement by forcing the model to produce consistent ERP estimates even when
the subject and task latents are randomly mismatched ensuring consistent extracted information across the
two latent spaces.

Additional modifications Finally, we replace the rectified linear units and convolution strides in CSLP-
AE with gated linear units and linear interpolation. These changes are further detailed in Appendix E and F,
respectively. Code availability and hyperparemeters for the model are detailed in Appendix H.

3 Baseline ERP estimation procedure

We compare our estimates of the ERP to conventional ERP estimation based on conventional averaging
across trials. Whereas simple averaging improves the signal-to-noise ratio (SNR) by reducing random noise
as more trials are included, it assumes that all trials are equally reliable and aligned. In cases where the
noise is not constant across trials, the decrease in noise level proportional to 1/

√
K no longer holds or is

reduced. In such cases, including those trials with outliers, artifacts or other systematic noise that is not
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induced by the specific stimulus or event, these outliers can distort the ERP. Especially with a small number
of trials there may be a disproportionate impact. Additionally, trials can differ due to subject-specific factors
or slight variations in event timing. Simple averaging assumes perfect alignment, but if trials are misaligned
or show high variability, the resulting ERP may not represent the true event-related signal.

Robust averaging methods, by contrast, are designed to minimize the impact of these issues, either by down-
weighing outliers (extremity-reducing) or by aligning trials before averaging (dynamic time warping). These
algorithmic approaches are model-free and can be applied directly to trials in a bootstrap sample, i.e., before
or instead of traditional averaging. As baselines we consider the tanh weighting scheme, introduced as a
robust location estimator in Leonowicz et al. (2005) and the Dynamic Time Warping (DTW) procedure
for averaging in Molina et al. (2024). These procedures are further detailed in Appendix G. Finally, as an
additional naïve baseline we include comparison with global ERP templates obtained from the training data
for each task.

On the P300 Speller BCI dataset we further apply xDAWN (Rivet et al., 2009) which is a spatial filtering
method that acts on two or more components reducing the SNR. In our experiments, the xDAWN components
are obtained on the training data, although conventionally it is trained and applied on the same subjects.

3.1 Performance assessments

To compare the predicted ERPs with the target ERP obtained from the second half of the data (i.e. test
trials), we compute the root mean squared error (RMSE) across B = 200 bootstrapped input samples for a
given subject s and task τ :

RMSE
(

X̂K1:B , X̄N
)

=

√√√√ 1
B

B∑
b=1

1
T

∥∥∥X̂Kb − X̄N
∥∥∥2

2
, (12)

where X̂Kb denotes the predicted ERP from the bth input bootstrap of K trials, and X̄N is the full target
ERP computed from N = Ns,τ trials.

We compare this RMSE curve to that of conventional and robust averaging methods.

To enable comparisons across subjects and tasks with different ERP magnitudes, we also compute the
coefficient of determination (R2), which normalizes the reconstruction error:

R2
(

X̂K1:B , X̄N
)

= 1 −

∑B
b=1

∥∥∥X̂Kb − X̄N
∥∥∥2

2∑B
b=1

∥∥X̄N
∥∥2

2

. (13)

This R2 score is bounded above by 1 (perfect reconstruction), with R2 = 0 corresponding to constant zero
predictions. Negative values indicate reconstructions worse than zero-output baselines.

4 Experimental setup

4.1 Datasets

Initially, we developed and tested EEG2ERP on the ERP CORE dataset (Kappenman et al., 2021), which
consists of EEG signals recorded from C = 30 channels across 40 subjects, covering 7 different ERP compo-
nents derived from 6 distinct ERP paradigms: N170 from the Face Perception Paradigm, MMN from the
Passive Auditory Oddball Paradigm, N2pc from the Simple Visual Search Paradigm, N400 from the Word
Pair Judgment Paradigm, P3(b) from the Active Visual Oddball Paradigm, and both LRP and ERN from
the Flankers Paradigm. Each ERP component is measured under two contrasting conditions (e.g., related
vs. unrelated), resulting in a total of 14 distinct conditions (or tasks) across the dataset.
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Table 1: Test set results on the ERP CORE dataset. Standard deviations are computed across 10 runs of
the EEG2ERP procedure.

R2 (%)
Model K=1 K=5 10% 100%
EEG2ERP 5.0 ± 1.6 31.7 ± 0.6 36.1 ± 0.5 47.7 ± 0.4
Weighted (Leonowicz et al., 2005) -1696.6 -234.1 -109.6 47.1
DTW (Molina et al., 2024) -1150.5 -124.9 -56.7 50.6
Simple Averaging -1696.6 -382.1 -193.0 34.4
Global Template - - - - - - 1.71

We applied minimal preprocessing to the trials, following the ERP cleaning procedures from Script #1
of each component, as outlined by ERP CORE repository1. More information about the paradigms and
preprocessing steps can be found in Kappenman et al. (2021).

Additionally, we investigated EEG2ERP on an EEG and MEG dataset originating from face perception
experiments (Wakeman & Henson, 2015). These datasets contain, respectively, 70 and 102 channels for the
EEG and MEG data sampled at 200 Hz. Each trial belongs to one of three classes: Famous, Unfamiliar, or
Scrambled. A detailed description of the preprocessing steps is provided in Appendix J.

Finally, we evaluated EEG2ERP on a dataset within the brain-computer interface (BCI) domain considering
the P300 BCI Speller dataset (Won et al., 2022). This dataset contains EEG recordings from 55 subjects
performing a visual P300 spelling task based on a 6×6 character matrix. Each trial involves stimulus flashes
(rows and columns), and the resulting ERP is used to detect user intent based on the P300 component. EEG
was recorded from 64 channels at a sampling rate of 512Hz. The dataset provides a testbed for assessing
ERP estimation in a practical, real-world BCI context, particularly under trial-constrained conditions.

4.2 Zero-shot generalization

For the framework to be practically useful, it must support zero-shot generalization: mapping EEG data
from previously unseen subjects to their corresponding ERP signals. To this end, the ERP CORE dataset
was split such that trials from 28 subjects were used for training, 4 for validation, and the remaining 8 for
testing. The Wakeman-Henson EEG and MEG datasets were divided into 11 subjects for training, 2 for
validation, and 3 for testing. Finally, the P300 BCI Speller dataset was split into 38 subjects for training, 5
for validation and 12 for testing. The exact subject splits are provided in Appendix I.

During ERP comparisons, we focus exclusively on the task-relevant EEG channel identified by Kappenman
et al. (2021) for the ERP CORE data, and on EEG channel 065 and MEG channel 098 for the Wakeman-
Henson data, as these are reported to exhibit the strongest component-specific responses.

5 Results

5.1 Evaluation of the extracted ERPs from the ERP CORE data

In Table 1, we compare the performance of ERP estimation using conventional averaging, robust averaging
procedures, and the EEG2ERP approach. Our findings indicate that for K = 1 and K = 5 trials, as
well as for K corresponding to 10% of the total trials, the EEG2ERP method provides the best ERP
estimates, as quantified by reconstruction quality measured using R2. Notably, EEG2ERP demonstrates
strong performance even with as few as K = 5 trials. Additionally, we observe that EEG2ERP outperforms
simple averaging even when using 100% of the trials. However, the dynamic time-warping (DTW) averaging
procedure proposed by Molina et al. (2024) achieves the best performance when 100% trials are available.

1See the full ERP CORE procedure here: https://github.com/lucklab/ERP_CORE/blob/master/ERN/ERN%20Analysis%
20Procedures.pdf
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Figure 2: Left panel: Boxplots comparing R2 values of the obtained ERPs against the test ERP. Com-
parisons include the simple average of all trials (100%), simple average over K = 5 trials, and EEG2ERP
applied at K = 5 trials. The missing boxes of simple average at K = 5 for the MMN paradigm appear
outside the bounds (below R2 = −3). Right panel: Variance estimates given by standard deviation as
a function of root mean squared error (RMSE) to the ground truth test ERP. Points represent the RMSE
of denoised ERPs using K = 5 trials to the test ERP for specific subject-task pairs, alongside the noise
standard deviation estimates of the denoised trials.

Table 2: Test set results on Wakeman-Henson for EEG (top) and MEG (bottom) datasets. Standard
deviations are computed across 5 runs of EEG2ERP.

Wakeman Henson EEG Channel EEG065:
R2 (%)

Model K=1 K=5 10% 100%
EEG2ERP (Ours) 16.3 ± 1.6 26.7 ± 2.4 33.2 ± 2.4 38.5 ± 4.0
Weighted (Leonowicz et al., 2005) -807.6 -208.7 -42.3 64.4
DTW (Molina et al., 2024) -577.8 -36.8 42.3 68.8
Simple Averaging -807.6 -219.7 -48.0 62.8
Global Template - - - - - - 19.3

Wakeman Henson MEG Channel MEG098:
R2 (%)

Model K=1 K=5 10% 100%
EEG2ERP (Ours) 13.6 ± 2.3 19.7 ± 2.2 21.8 ± 2.5 27.8 ± 5.0
Weighted (Leonowicz et al., 2005) -878.6 -246.2 -67.2 56.7
DTW (Molina et al., 2024) -668.9 -95.1 5.7 44.2
Simple Averaging -878.6 -243.0 -65.8 55.5
Global Template - - - - - - 3.1

To account for the high degree of task variability in ERP reconstruction, the left panel of Figure 2 presents
boxplots comparing EEG2ERP (at K = 5) and simple averaging at K = 5 and at 100% against the
target ERP estimated from the other half of the test trials. These boxplots, which illustrate performance
across the eight test subjects, reveal substantial variability in ERP recovery quality. In many cases, the
ERPs poorly replicate those derived from the other half of the trials (as shown by the green boxplots for
simple averaging with 100% of trials). At K = 5, EEG2ERP generally yields more reliable ERP estimates,
whereas conventional averaging, even with all available trials, sometimes fails as seen, for instance, with the
MMN/Deviants and N2pc/Contralateral components.

In the right panel of Figure 2, we assess how well the ERP uncertainty estimates from equation 16 are
calibrated to the actual variances of the reconstructed ERPs. We generally observe that relatively low and
high estimated variances correspond to low and high true variances, indicating good calibration.

The left panel of Figure 3 systematically investigates the ERP estimation quality as a function of the number
of trials used. We compare EEG2ERP to both conventional ERP averaging and robust ERP estimation
procedures, across three randomly selected test subjects. We find that our denoised estimates (blue curves)
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Figure 3: Left panel: Root Mean Squared Error (RMSE) as a function of the number of trials included, com-
paring conventional averaging, Dynamic Time Warped averaging (Molina et al., 2024), and the EEG2ERP
procedure. Results are shown for three test subjects across one specific task from each of the six paradigms.
Right panel: Reconstructed ERP signals based on K = 5 trials, comparing conventional averaging, robust
averaging, and EEG2ERP. Confidence bands show bootstrapped estimates of the true ERP, with variance
estimates from EEG2ERP predictions displayed as ±2 times the standard deviation.

outperform both conventional averaging and the best-performing robust method by Molina et al. (2024),
particularly in the low-trial regime (vertical black lines mark K = 5). Furthermore, the robust estimation
methods generally outperform conventional averaging.

In the right panel of Figure 3, we also present examples of the corresponding estimated ERPs, including the
associated bootstrapped uncertainties and the estimates by the EEG2ERP model.

We examine how well key ERP signal measures reported for the ERP CORE dataset are recovered by
EEG2ERP and baseline averaging methods in Appendix A. We also visualize the extracted latent task and
subject representations and evaluate their utility for classification in Appendix B. The results indicate that
the structure of the latent space improves substantially when using K = 5 trials compared to K = 1.

5.2 Evaluation of extracted ERPs from the Wakeman-Henson EEG and MEG data

In Table 2, we report the reconstruction performance for the Wakeman-Henson EEG and MEG datasets. As
with the ERP CORE data, EEG2ERP shows favorable performance at K = 1, K = 5, and when using 10%
of the trials, outperforming both conventional and robust averaging methods. However, for the MEG data,
the DTW method by Molina et al. (2024) outperforms EEG2ERP when 10% of the trials are used, and all
conventional averaging methods outperform EEG2ERP when 100% of the trials are available.
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5.3 Evaluation on the P300 BCI Speller Dataset

To further assess the practical utility of EEG2ERP, particularly in the context of Brain-Computer Interfaces
(BCIs), we evaluated its performance on the P300 BCI Speller dataset (Won et al., 2022). We compared
EEG2ERP against several established ERP estimation and denoising techniques: simple averaging, Dynamic
Time Warped (DTW) averaging (Molina et al., 2024), a global ERP template (Template) derived from the
training set, and the xDAWN algorithm (Rivet et al., 2009). For xDAWN, spatial components were learned
from pooled epochs of all training subjects to enable zero-shot evaluation on the test subjects. The results,
measured in terms of R2 (%) against target ERPs constructed from all available trials in a held-out portion
of the data, are presented in Table 3.

Table 3: Test set R2 (%) results on the P300 BCI Speller dataset (Won et al., 2022). EEG2ERP is compared
against Dynamic Time Warped (DTW) averaging, Simple Averaging, a global ERP Template, and xDAWN.
K denotes the number of trials used for estimation. Higher R2 values are better.

Spelling Target Character
Model K = 5 10% 100%
EEG2ERP (Ours) 33.08 ± 6.80 34.99 ± 5.85 37.28 ± 5.64
DTW (Molina et al., 2024) −333.25 ± 112.61 −65.51 ± 36.43 21.30 ± 12.04
Simple Averaging −609.79 ± 181.70 −202.72 ± 76.71 12.61 ± 23.06
Global Template - - - - 32.77 ± 6.80
xDAWN (Rivet et al., 2009) −129.38 ± 38.02 −20.10 ± 17.20 36.46 ± 7.04

Spelling Non-Target Character
Model K = 5 10% 100%
EEG2ERP (Ours) −282.62 ± 74.91 −8.86 ± 15.75 −13.69 ± 20.86
DTW (Molina et al., 2024) −3111.61 ± 903.81 −128.78 ± 53.74 −6.48 ± 10.79
Simple Averaging −5275.53 ± 1271.46 −386.58 ± 111.59 −14.82 ± 25.78
Global Template - - - - −10.23 ± 16.65
xDAWN (Rivet et al., 2009) −856.37 ± 206.62 −49.37 ± 25.90 10.04 ± 14.19

The results in Table 3 demonstrate that EEG2ERP consistently outperforms other methods in low-trial
conditions (K = 5 and 10% of trials) for estimating target character ERPs. For instance, at K = 5 trials,
EEG2ERP achieves an R2 of 33.08 ± 6.80%, substantially outperforming DTW at −333.25 ± 112.61% and
simple averaging at −609.79 ± 181.70%. Even compared to xDAWN, a strong spatial filtering baseline,
EEG2ERP yields superior performance at low trial counts for target character ERPs.

While xDAWN performs best on non-target ERPs at 100% of trials, EEG2ERP achieves competitive or
better R2 scores in few-trial conditions. These results highlight EEG2ERP’s robustness in low-data regimes,
which are typical in many BCI applications.

We also evaluated the global ERP template method on the ERP CORE and Wakeman-Henson datasets.
Across these datasets, template-based ERP estimation consistently yields lower R2 values: 1.17% on ERP
CORE, 19.26% on Wakeman-Henson EEG, and 11.13% on the P300 BCI Speller dataset (averaged across
tasks). This shows the difficulty of ERP estimation and the advantage of more advanced methods like the
proposed EEG2ERP, particularly in low trial scenarios.

5.4 Model ablations

In Appendix C, we compare the EEG2ERP procedure to two ablated variants: single-trial denoising using
CSLP-AE (no uncertainty, no averaged input, direct mapping to ERP), and the EEG2ERP model operating
with single-trial inputs (Kb = 1). Notably, the single-trial EEG2ERP approach can leverage ERP variance
estimates to weight individual predictions, akin to robust estimation techniques (see Appendix D).
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Our results show that CSLP-AE fails to accurately estimate the ERP from denoised trials, while the single-
trial EEG2ERP variant performs comparably to the full EEG2ERP procedure at K = 5, but performs worse
at 10% and 100% trial settings. Arguably the single-trial EEG2ERP variant should have on-par or even
better performance since it involves a factor of K more compute; one forward pass for each trial in the
weighted average as opposed to the full EEG2ERP which takes averaged EEG trials as input and applies a
single forward pass.

6 Discussion

In this work, we introduced EEG2ERP, a deep learning framework for estimating event-related potentials
from a small number of EEG trials. This approach enables zero-shot generalization to unseen subjects and
incorporates uncertainty estimation by design.

6.1 Key Findings

Our experiments consistently showed that EEG2ERP outperforms both conventional and robust averaging
methods in the low-trial regime. Remarkably, even with just K = 5 trials, EEG2ERP reconstructed ERPs
with higher R2 than conventional averaging using all available trials. This highlights the model’s ability to
extract meaningful signal representations from noisy input data.

The success of EEG2ERP appears to be driven by two key innovations: (1) introducing a bootstrap-based
training strategy that enables robust ERP estimation from varying numbers of trials, with an emphasis on
low-trial scenarios, and (2) incorporating uncertainty quantification in the decoder to estimate predictive
variability. These components improve robustness and reliability in trial-scarce settings. Combined with
the underlying CSLP-AE framework, which enables zero-shot generalization by disentangling subject- and
task-specific variability in a split-latent representation, these innovations make it possible to perform low-
trial, uncertainty-aware ERP estimation even for subjects unseen during training. Thus, EEG2ERP not only
reduces the number of trials needed to obtain reliable ERPs but also extends this capability to generalize
across individuals, offering a powerful and flexible tool for data-efficient neural signal analysis.

6.2 Comparison with Prior Work

While previous efforts in ERP estimation have largely focused on signal averaging or spatial filtering (e.g.
xDAWN, Template-based Methods), EEG2ERP uses a fundamentally different approach: it learns a encoder-
decoder mapping from noisy EEG to clean ERPs in an end-to-end fashion. Unlike robust averaging, which
remains model-free and task-agnostic, EEG2ERP benefits from task-aware representation learning and ex-
plicit uncertainty modeling. Our results show that this leads to stronger generalization in both EEG and
MEG settings, particularly when data is scarce.

Notably, EEG2ERP outperformed established methods like xDAWN and DTW in low-data scenarios but
was surpassed by DTW on the MEG data when all trials were used. This suggests that data-rich scenarios
may still favor flexible alignment-based methods and traditional denoising, while in contrast, deep models
like EEG2ERP remain effective and robust even when trial counts are low and with minimal preprocessing.

6.3 Implications

The ability to estimate ERPs from very few trials opens the door to faster, more efficient EEG-based studies.
This could reduce experimental duration, lower participant burden, and enable ERP analysis in populations
where many repeated measurements are impractical, such as children, elderly patients, or individuals with
neurological conditions.

Moreover, EEG2ERP provides per-sample uncertainty estimates, which can guide downstream decisions,
such as selecting trials for further analysis or identifying unreliable ERPs. This uncertainty-aware feature is
especially relevant in clinical and BCI contexts where interpretability and reliability are crucial.
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6.4 Limitations

A key limitation of this work is the variability in model performance across tasks and subjects. Although
EEG2ERP performed well on average, specific components (e.g. MMN and N2pc) remain challenging to
reconstruct, especially when trial numbers are low or inter-subject variability is high.

Another limitation lies in dataset scope. The datasets presently considered, while comprehensive, represents
controlled laboratory settings with well-defined paradigms. Real-world EEG is often more variable and noisy.
Future work should test EEG2ERP on more diverse datasets and under naturalistic conditions.

6.5 Future Directions

In this work, we built EEG2ERP on top of the CSLP-AE architecture due to its strong zero-shot perfor-
mance (Nørskov et al., 2023). Future research should explore alternative model architectures, particularly
those leveraging self-supervised pre-training or recent EEG foundation models such as BENDR, Neuro-GPT,
or LaBraM (Kostas et al., 2021; Cui et al., 2023; Jiang et al., 2024). These approaches could further enhance
generalization and robustness, especially in low-data regimes. Importantly, our work introduces ERP recon-
struction as a novel downstream task for such foundation models emphasizing efficient recovery of evoked
responses from very few trials.

7 Conclusion

We presented EEG2ERP, a novel deep learning framework for estimating event-related potentials (ERPs)
from a small number of EEG trials, with strong generalization to unseen subjects. The method leverages
bootstrapped training targets and a learned noise variance decoder to estimate both the ERP and its as-
sociated uncertainty. EEG2ERP achieved state-of-the-art performance in few-shot ERP estimation across
multiple datasets and modalities, consistently outperforming conventional and robust averaging approaches
in low-trial scenarios.

EEG2ERP is the first method to map EEG signals directly to their associated ERPs in a zero-shot setting.
Its integration of predictive uncertainty enables more reliable ERP recovery and supports trial selection
based on model confidence. As such, EEG2ERP provides not only a powerful new tool for data-efficient
ERP estimation but also a valuable benchmark for future EEG representation learning approaches.

We view this work as a foundational step toward more advanced deep learning methodologies in neural signal
processing. In particular, the uncertainty-aware design of EEG2ERP is likely to become a key feature in
future efforts to reduce the number of trials required for ERP research, enabling broader applicability in
both experimental and clinical contexts.

Broader Impact Statement

While this work is primarily intended to advance the field of computational neuroscience, it also raises ethical
considerations. By reducing the number of EEG trials required to estimate ERPs, EEG2ERP could enable
more widespread deployment of EEG-based assessments, including in settings such as clinics, schools, or at-
home monitoring. However, this increased accessibility also brings challenges related to participant consent,
data privacy, and responsible use of neural data.

In particular, deep learning models trained on limited datasets may underrepresent certain populations,
including individuals with rare neurological conditions, at different developmental stages, or with age-related
cognitive changes. These groups may exhibit brain processes or ERP patterns that diverge from the majority
of the training data, potentially leading to biased or less reliable predictions. Addressing such gaps through
more inclusive datasets or fairness-aware modeling will be essential to ensure that the benefits of EEG2ERP
extend equitably across diverse populations.

Overall, this research contributes to the efficient and responsible use of machine learning in neuroscience,
laying the groundwork for accessible and individualized applications in clinical, scientific, and technological
domains.
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A ERP CORE metrics

In Table 4 we investigate how well respectively peak latency and amplitude is recovered by the EEG2ERP
and traditional averaging procedures, and in Table 5 the recovery of mean amplitude, area latency and onset
latency when compared to the reported values of Kappenman et al. (2021).

Table 4: Recovery of peak latency and amplitude
EEG2ERP at K=5 and ERP Core statistics, mean and s.d. over subjects

Paradigm Peak Latency (ms) Peak Amplitude (µV)
EEG2ERP ERP Core EEG2ERP ERP Core

ERN 62.18 (12.14) 54.47 (12.63) -12.31 (4.91) -13.86 (7.01)
LRP -64.88 (13.77) -49.94 (15.66) -1.62 (1.93) -3.41 (1.15)
MMN 174.36 (12.01) 187.60 (19.13) -1.63 (0.24) -3.46 (1.71)
N170 128.99 (9.81) 131.44 (12.56) -2.20 (0.72) -5.52 (3.32)
N2pc 231.13 (13.85) 253.24 (18.51) -0.96 (0.81) -1.86 (1.60)
N400 372.89 (27.03) 370.09 (49.43) -9.29 (1.81) -11.04 (4.65)
P3 461.72 (37.06) 408.89 (70.48) 6.90 (3.43) 10.15 (4.53)

Traditional averaging and Molina et al. averaging for K=5, mean and s.d. over subjects
Paradigm Peak Latency (ms) Peak Amplitude (µV)

Simple Avg. Molina et al. Simple Avg. Molina et al.
ERN 55.22 (13.27) 55.70 (16.16) -26.15 (9.48) -20.46 (9.07)
LRP -59.93 (12.37) -63.34 (11.42) -8.71 (3.60) -4.99 (3.75)
MMN 177.94 (7.18) 176.73 (8.89) -9.55 (2.67) -5.05 (1.59)
N170 132.47 (7.89) 132.75 (7.82) -8.33 (2.52) -5.64 (2.39)
N2pc 234.43 (7.51) 230.30 (6.13) -4.79 (1.71) -2.02 (1.55)
N400 375.99 (34.16) 375.85 (36.71) -17.50 (5.71) -11.56 (4.83)
P3 448.23 (30.72) 441.20 (33.83) 15.21 (5.21) 10.89 (4.90)

B Model latent space

Figure 4 contains confusion matrices from encoding every trial as a single-trial in the test dataset using the
encoder and using the XGBoost Classifier (Chen & Guestrin, 2016) just as in Nørskov et al. (2023). The
corresponding subject and latent spaces are shown using t-SNE plots in Figure 5.

Figure 4: Confusion matrix on subject, task and paradigm labels using XGBoost Classifier with 5-fold Cross-
Validation splits as in CSLP-AE. Latents are encoded using single-trial samples only.
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Table 5: Recovery of mean aplitude, latency, area latency and onset latency
EEG2ERP at K=5 and ERP Core, mean and s.d. over subjects

Paradigm Mean Amplitude (µV) 50% Area Latency (ms) Onset Latency (ms)
EEG2ERP ERP Core EEG2ERP ERP Core EEG2ERP ERP Core

ERN -9.31 (3.94) -9.26 (5.90) 50.60 (4.42) 54.36 (9.99) 10.08 (6.91) 2.50 (27.53)
LRP 0.58 (2.61) -2.40 (0.94) -53.43 (3.35) -49.09 (9.72) -88.68 (7.65) -96.50 (19.85)
MMN -0.58 (0.17) -1.86 (1.22) 172.22 (1.67) 185.20 (14.44) 148.35 (9.32) 146.94 (30.33)
N170 -1.09 (0.83) -3.37 (2.71) 126.58 (1.74) 131.84 (8.58) 117.89 (4.45) 95.76 (29.05)
N2pc 0.08 (0.87) -1.14 (1.15) 237.66 (1.99) 246.43 (8.81) 210.21 (4.66) 213.63 (30.85)
N400 -6.02 (1.77) -7.61 (3.27) 390.52 (10.70) 387.72 (17.85) 316.02 (13.77) 284.86 (44.92)
P3 3.64 (3.48) 6.29 (3.39) 453.18 (11.04) 436.47 (32.77) 357.00 (25.67) 327.44 (61.98)

Traditional averaging and Molina et al. averaging for K=5, mean and s.d. over subjects
Paradigm Mean Amplitude (µV) 50% Area Latency (ms) Onset Latency (ms)

Simple Avg. Molina et al. Simple Avg. Molina et al. Simple Avg. Molina et al.
ERN -14.60 (9.29) -12.44 (8.30) 48.99 (4.18) 48.37 (4.05) 16.48 (8.51) 13.93 (7.99)
LRP 0.13 (4.12) -0.15 (3.97) -54.69 (3.44) -54.00 (3.45) -82.93 (7.90) -89.11 (6.73)
MMN -1.23 (2.43) -1.21 (0.83) 173.84 (0.75) 173.99 (1.51) 149.68 (6.71) 145.01 (9.17)
N170 -3.72 (1.81) -2.83 (1.89) 128.41 (2.08) 128.75 (2.26) 121.41 (6.46) 120.62 (6.40)
N2pc 0.62 (1.73) 0.70 (1.61) 236.11 (1.47) 236.21 (1.89) 215.56 (5.07) 210.11 (3.55)
N400 -6.86 (5.20) -5.46 (4.45) 395.46 (8.06) 397.57 (5.81) 323.48 (11.69) 320.11 (11.92)
P3 4.34 (4.02) 4.32 (3.69) 456.30 (9.87) 454.79 (9.40) 355.33 (20.58) 353.90 (24.78)

Figure 5: t-SNE plot on the subject latents (left) and task latents (right) from single-trial samples.

Figure 6 contains confusion matrices from encoding bootstrap samples of five trials each, without replacement
for all available trials to keep samples independent, on the test dataset and using XGBoost to classify. The
corresponding subject and latent spaces are shown in Figure 7.

Figure 8 contains confusion matrices from the EEG2ERP model trained with single trial input. Here encoding
single trials on the test dataset and using XGBoost to classify. The corresponding subject and latent spaces
are shown in Figure 9.
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Figure 6: Confusion matrix on subject, task and paradigm labels using XGBoost Classifier with 5-fold Cross-
Validation splits as in CSLP-AE. Latents are encoded using five independent trials that are also independent
of other samples.

Figure 7: t-SNE plot on the subject latents (left) and task latents (right) from latents with five independent
trials that are also independent of other samples.

C Results of CSLP-AE and ablation on EEG2ERP on denoising

A standard CSLP-AE model was trained on ERP CORE and evaluated by averaging over reconstructions
on the test set. Another model using EEG2ERP based on single trial inputs K input = 1 thus without
bootstrapped averaged inputs but using single trials was also trained. This model is denoted EEG2ERP
with single-trial. Notably this approach admits to use the estimated ERP uncertainty to perform weighted
averaging over the ERP estimates of each trial. This averaging procedure is described in section D. The
results are shown in Table 6 where we observe that CSLP-AE fails in estimating the ERP whereas the
EEG2ERP based on single trial denoising performs unpar with the bootstrapped input trained procedure
EEG2ERP when K = 5 but produces inferier ERP estimates when 10% or 100% of trials are used to estimate
the ERP response.

A boxplot showing R2 at K = 5 for each of the models above and in Table 6 is shown in Figure 10.
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Figure 8: Confusion matrix on subject, task and paradigm labels using XGBoost Classifier with 5-fold Cross-
Validation splits as in CSLP-AE. Latents are encoded using single trials using the EEG2ERP trained with
single trial input instead of bootstrap.

Figure 9: t-SNE plot on the subject latents (left) and task latents (right) from latents with single trials using
the EEG2ERP trained with single trial input instead of bootstrap.

D Estimation of average ERP from denoised single-trial EEG estimates using
EEG2ERP Single

To obtain a final ERP prediction from a set of N estimated ERPs obtained from single trial EEG signals
by the EEG2ERP, we employ an estimator that maximizes the likelihood of all of the produced single trial
ERP estimates (below denoted x̂

(i)
s,τ (c, t) for the ith trial for subject s at task τ for channel c at time t with

associated estimated uncertainty σ̂
(i)
s,τ (c, t)). For the ERP estimate of channel c at timepoint t we obtain

µ̂s,τ (c, t) = arg max
µ̂s,τ (c,t)

N∏
i=1

N
(

x̂(i)
s,τ (c, t) | µ̂s,τ (c, t),

(
σ̂(i)

s,τ (c, t)
)2

)
. (14)
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Table 6: Test set results for CSLP-AE with averaging, EEG2ERP with single-trial input, and EEG2ERP.
Model R2 (%)

n K=5 10% 100%
CSLP-AE -37.3 -25.0 -8.6
EEG2ERP w/ Single Trial 6 32.6 ± 0.9 33.5 ± 0.7 37.6 ± 0.7
EEG2ERP 10 31.7 ± 0.6 36.1 ± 0.5 47.7 ± 0.4

Figure 10: Box-plot of the ablations on the EEG2ERP model, showing the standard CSLP-AE as used for
denoising, EEG2ERP trained with single trial input, and the EEG2ERP model.

The solution to this maximization reduces to calculating a weighted average of the estimated ERPs, where
the weights are the inverse variances (precisions) of the signals as given by

µ̂s,τ (c, t) =

∑N
i=1

(
σ̂

(i)
s,τ (c, t)

)−2
x̂

(i)
s,τ (c, t)∑N

i=1

(
σ̂

(i)
s,τ (c, t)

)−2 (15)

This inverse-variance weighted average can be shown to have the least variance among all weighted aver-
ages (Hartung et al., 2008), and the variance of this weighted average estimator is given by:

σ̂2
s,τ (c, t) = Var(x̂s,τ (c, t)) = 1∑N

i=1

(
σ̂

(i)
s,τ (c, t)

)−2 . (16)

As the variance of the mean is reduced by a factor of 1/N we can multiply this variance of the mean by N to
obtain an estimate of the average variance of this weighted average ERP estimate. Notably, this averaging
procedure thereby accounts for the precision of each individual ERP estimate and gives more weight to single
trial estimates with low as opposed to high variance.

E Gated Linear Units as opposed to ReLU

The CSLP-AE model architecture utilizes ReLU activations within the convolutional blocks. While ReLU
activations are widely used for their simplicity, effectiveness, and fast implementation, recent advancements
suggest that Gated Linear Units (GLUs) can provide improved performance in sequence modeling tasks by
introducing element-wise gating mechanisms that allow more expressive control over the flow of informa-
tion (Dauphin et al., 2017; Shazeer, 2020). Consequently, the ReLUs in the ConvBlocks of the CSLP-AE
architecture have been replaced with GLUs instead.

The ReLU activation function is defined as:

ReLU(zi,j) = max(zi,j , 0) ∀i ∈ {1, . . . , Cz}, ∀j ∈ {1, . . . , Tz} (17)

where zi,j represents the output of the convolution operation, Cz is size of the latent dimension and Tz is
the time-resolution of the latent space.
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In contrast, the GLU activation function utilizes a gating mechanism. The convolution output is split into
two parts: one-half represents the feature signal, and the other half functions as the modulating gate. For
an input X ∈ RC×T the convolution is expressed as:

z
(f)
i,j = Conv1D(X)i,j , and z

(g)
i,j = Conv1D(X)i,j (18)

However, in practice, this is computed with a single convolution operating with double the filters and with
the output channels split evenly. The modulation gate, z(g), is normalized using affine instance normal-
ization (Ulyanov et al., 2016) before applying the activation: z̄(g) = InstanceNorm1D(z(g)). The GLU
activation function is then applied as:

GLU(z(f)
i,j , z̄

(g)
i,j ) = z

(f)
i,j · σ(z̄(g)

i,j ) (19)

where σ(·) is the standard logistic sigmoid function.

In the CSLP-AE architecture, instance normalization is applied directly to the feature signal after each
convolution. While this improves training stability by normalizing the input distribution, it also removes
scale information from the feature signal. This can adversely affect signal representation. The normalization
is applied on an instance basis. This means that normalization is performed at each timestep in the resolution
of the latent space. Relative strength between points in time is thus being removed from the signal by
normalizing each such instance.

Applying the normalization function in the gating function is a contribution of this work. By moving instance
normalization to the gating mechanism, the derived GLUs maintain scale information in the feature signal
through the feature signal path. Here scale information refers to the relative magnitude of features, which
can be critical for encoding the strength or importance of specific EEG signal components. For example,
the amplitude of an ERP signal reflects physiological characteristics and contributes to its interpretability.
Normalization eliminates this magnitude by standardizing feature values for each instance. This loss of scale
can hinder the model’s ability to leverage amplitude-based patterns in the data.

Instance normalization in the derived GLUs includes learnable affine parameters that can control the behavior
of the sigmoid gating function. This enables the model to dynamically modulate the location, sharpness and
width of the sigmoid gating function, allowing finer control over information flow and being able to adapt to
varying data distributions during training.

With non-linearity confined to the gating operation, the derived GLUs ensure a linear pathway for the
residual feature signal between network layers which enhances signal propagation and gradient flow. The
feature signal z(f) remains unaltered by non-linear transformations, allowing it to retain structure and scale.
This preserves the integrity of the input signal while enabling selective attenuation or amplification in the
network by the modulating gate.

F Interpolated Residual Connections

The CSLP-AE architecture (Nørskov et al., 2023) is based loosely on the ResNet architecture from He et al.
(2016) with residual connections between blocks of convolutions. Residual connections are a core component
of deep learning architectures which enables better gradient flow and improved training of deep networks.

In the original ResNet design, when the feature maps of the input and output have different sizes (e.g.,
during down-sampling or up-sampling), the shortcut connection is adapted using a convolution with a stride
of 2 (He et al., 2016). This ensures that the dimensions of the input and output match. These are marked
as dashed lines in Figure 3 of the original paper by He et al. (2016).

However, this breaks up the direct connection backbone that flows through the model and introduces addi-
tional complexity, as the convolution modifies the residual path and introduces non-linear transformations,
disrupting the direct signal flow. The residual connections can be viewed from a different perspective entirely,
as in Veit et al. (2016), where they act as the main pipeline. From this perspective, the convolutional blocks
are ensemble shallow networks extracting and adding information to this main pipeline. Breaking up this
pipeline with a convolution and activation makes this signal pipeline no longer linear.
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The original ResNet design also applies a convolution between blocks with differing number of channels (He
et al., 2016). However, this is not necessary for the CSLP-AE architecture where all blocks have the same
number of filters.

Rather than using a convolution with stride 2 for the residual connection, interpolation can be used to resize
the residual connection to match the target feature map dimensions. This approach retains the simplicity of
identity mappings and the direct linear connection while also minimizing additional computational overhead.

Given the one-dimensional nature of the data, the choice of interpolation method is simply the piecewise
linear interpolation of the signal to match the size of the down- or up-sampled signal in the time dimension.
During down-sampling, the main convolutional layer reduces the feature map resolution, while the residual
path is resized using linear interpolation to match the new resolution. Similarly, during up-sampling, the
residual is resized to match the expanded dimensions of the feature map, ensuring compatibility for the
element-wise addition.

Let the input feature map be defined as Z ∈ RC×TZ where C is the number of channels and TZ is the size
of the time dimension, and let the output feature map after the convolution and activation be U ∈ RC×TU

where TU is different from TZ . The residual connection is interpolated to match the time resolution TU of
the output as follows:

V = interp(Z, TU ) + act(conv(Z)) = interp(Z, TU ) + U (20)
where conv(Z) is the convolution operation applied to the input Z, act(·) is the non-linear activation
function, interp(Z, TU ) is an interpolation function that resizes Z along the time dimension to match TU ,
and + functions as element-wise addition of the interpolated residual and the output of the convolutional
block.

G Robust averaging procedures

tanh weighting scheme by Leonowicz et al. (2005) The tanh weighting scheme, introduced as a robust location
estimator in Leonowicz et al. (2005), is applied across trials to improve ERP measurement by adaptively
reducing the influence of outliers and non-stationary noise in the data. Unlike simple averaging, which treats
all trials equally, the tanh method assigns weights based on the extremity of trial values (the amplitude),
using a hyperbolic tangent function to down-weigh extreme deviations. In cases with a small number of trials,
this scheme provides a significant advantage by dynamically optimizing weights in a data-dependent manner.
This enhances the signal-to-noise ratio (SNR) and yields a more accurate and representative ERP (Leonowicz
et al., 2005).

Denote a bootstrap sample of EEG signals in the most prominent channel as X ∈ RK×T consisting of K
trials and T timepoints. The weighting scheme is applied time-wise to estimate the best mean (location
estimate) at each timepoint. First, the data for each time point t is sorted in ascending order, producing a
permutation ρt(i) that maps indices from the original order to the sorted order as follows

xρt(1),t ≤ xρt(2),t ≤ · · · ≤ xρt(K),t ∀t ∈ {1, . . . , T} (21)
ρt(i) is the index in the original order that corresponds to the i-th smallest value in the sorted order.
Specifically, ρi : {1, . . . , K} → {1, . . . , K} such that xρt(i),t is the i’th smallest value of Xt. The columns of
the data matrix X are thus sorted in ascending order at each timepoint. After sorting, the rows no longer
represent original trial indices but instead correspond to low-to-high voltage measurements. The weighting
scheme is applied as follows

x̂t =
K∑

i=1
wi,txρt(i),t ∀t ∈ {1, . . . , T} (22)

where wt are weights per trial at time t. Applying a piecewise tanh-function to the new indices enables
assigning lower weights to extreme voltages and higher weights to central values, improving the robustness
of the location estimate. Such a function can be defined as follows

κi,t =
{

tanh (c(i + 1)) − v, if i < K
2 ,

− tanh (c(i − K)) − v, if i ≥ K
2 .

∀i ∈ {1, . . . , K}, ∀t ∈ {1, . . . , T} (23)
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v > 0 is a constant offset and c > 0 is a scaling parameter. The constant offset value is used to remove
extreme values entirely from the equation by setting any negative weights to zero. The scaling parameter
controls the curvature of the weighting function. For high values of c the weighting approaches the uniform
simple average and for lower values it approaches a linear scaling as a distance from the middle point. Finally,
the weights are obtained by normalizing the matrix such that each column vector sums to one:

wi,t = max(κi,t, 0)∑K
j=1 max(κj,t, 0)

(24)

G.1 Dynamic Time Warped Averaging

Dynamic Time Warping (DTW) for ERP estimation, as introduced in Molina et al. (2024), is a technique
adapted from speech and sound processing (Berndt & Clifford, 1994; Müller, 2007) to address latency and
jitter variability in EEG signals. Variations in trial timing and amplitude can distort averaged ERP wave-
forms, leading to blurred peaks and high ERP waveform variability (Ouyang et al., 2016; Murray et al.,
2019). DTW aligns individual trials to a reference signal by minimizing temporal differences, improving
ERP quality by reducing latency variability. This method is particularly useful for cases where latency jitter
and amplitude variability across trials make simple averaging suboptimal.

Let X ∈ RK×T denote a bootstrap sample of EEG signals for a specific channel, where K is the number of
trials and T is the number of timepoints. Let v ∈ RT represent the reference signal, which is obtained using
traditional simple averaging:

v = 1
K

K∑
k=1

xk (25)

The DTW process dynamically adjusts each trial xk ∈ RT , (k = 1, . . . , K) by finding an alignment path
p = (p1, p2, . . . , pM ) where pm = (pim

, pjm
) maps the indices of v and xk.

The alignment path minimizes a total cost function defined by the sum of distances between the aligned
elements:

ck(i, j) = d(vi, xk,j) ∀i, j ∈ {1, . . . , T} (26)
where d(·, ·) can be any distance function. In the present work the Euclidean distance d(a, b) = (a − b)2

is used while in Molina et al. (2024) the Manhattan distance was used d(a, b) = |a − b|. The path p must
satisfy the following two conditions:

1. The boundary condition p1 = (1, 1) and pM = (T, T ).

2. Steps must be limited to (1, 1), (1, 0), or (0, 1).

The first condition guarantees that the total length of both signals is considered avoiding partial matching.
The second condition ensures that the path only moves in the down-right direction and prevents backtracking.
These conditions ensure that the path starts in the upper-left corner and flows to the lower-left corner of
the cost matrix.

The alignment path is found using dynamic programming (Senin, 2008). Using the alignment path p a
warped version of each trial, xw

k ∈ RM , can be constructed. However, the signal has length M which does
not correspond with the length of each trial which is T . To ensure the warped trial has the same length
as v, steps in the alignment path p that do not advance the index of the reference signal (i.e. (0, 1) steps)
are discarded. The warped signal with these path elements discarded is denoted as xw∗

k ∈ RT . Essentially,
this looks at each index in the reference signal and takes the corresponding value of the trial of the path. In
cases where there are multiple steps for the same reference index, Molina et al. (2024) opts to discard these.
Another solution would be to take the average. In the present work these steps are discarded as well.

The estimated ERP is found by taking the average of the warped trials:

v∗ = 1
K

K∑
k=1

xw∗
k (27)
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By first matching and warping the signals to a common reference signal the temporal precision and amplitude
consistency of the ERP is greatly improved and the influence of latency and jitter variability is reduced.

H Experimental setup

We train EEGERP for Emax = 200 epochs, annealing the predicted standard deviation over the first Etarget =
100 epochs, and employ a learning rate of 4 × 10−4 with a OneCycle learning-rate scheduler. Additional
parameter values and experimental settings are available in the associated source code which is provided as
supplementary material. Code will be provided as supplementary and as a GitHub repository.

I Data partitioning

We developed and tested EEG2ERP using two distinct M/EEG datasets, and each dataset was divided into
training, validation (development), and test sets.

The ERP CORE dataset (EEG only) comprises 40 subjects, labeled from 1 to 40, which was split as follows:

• Training set (28 subjects): 1, 2, 3, 6, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 21, 24, 25, 28, 30, 31,
32, 34, 35, 36, 37, 38, 39, 40

• Validation set (4 subjects): 4, 7, 27, 33

• Test set (8 subjects): 5, 14, 15, 20, 22, 23, 26, 29

The Wakeman-Henson dataset (EEG and MEG) consists of 16 unique subjects labeled from 0 to 15 and was
split as follows:

• Training set (11 subjects): 1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 14

• Validation set (2 subjects): 12, 15

• Test set (3 subjects): 0, 4, 6

The P300 BCI Speller dataset consists of 55 subjects, labeled from 0 to 54 and was split as follows:

• Training set (38 subjects): 0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 20, 21, 23, 27, 28,
34, 35, 36, 37, 38, 39, 41, 42, 44, 45, 46, 47, 49, 50, 51, 52, 53

• Validation set (5 subjects): 12, 29, 33, 40, 43

• Test set (12 subjects): 2, 16, 19, 22, 24, 25, 26, 30, 31, 32, 48, 54

J M/EEG data preprocessing pipeline

Data was preprocessed in FieldTrip (Oostenveld et al., 2011) separately for both EEG and MEG using the
following steps.

1. Identification of bad channels: If the relative bandpower between 49.75 Hz and 50.25 Hz is
above 15%, the channel is interpolated using spatially neighboring channels.

2. High-pass filtering: Baseline drifting was eliminated using a FIR filter with a 1 Hz cut-off.

3. Notch filter: Power line interference was elimnated using a notch filter at 50 Hz.

4. Segmentation: Continuous M/EEG data was epoched into trials surrounding task stimuli.
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5. Removal of bad trials: This was performed in two steps: i) Jump artifacts were identified as trials
with a z-score larger than 20, ii) EOG artifacts were identified on EOG channels bandpass-filtered
between 2 Hz and 15 Hz, and with a z-score above 6.

6. Baseline normalization: The baseline signal value between -100 ms and 0 ms was subtracted.

7. EEG re-referencing: This was performed using the average across EEG channels.

8. Resampling: 200 Hz

9. Trial cropping: -100 ms to 800 ms.
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