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Abstract

Dataset distillation seeks to condense datasets into smaller but highly representative
synthetic samples. While diffusion models now lead all generative benchmarks,
current distillation methods avoid them and rely instead on GANs or autoencoders,
or, at best, sampling from a fixed diffusion prior. This trend arises because naive
backpropagation through the long denoising chain leads to vanishing gradients,
which prevents effective synthetic sample optimization. To address this limitation,
we introduce Latent Dataset Distillation with Diffusion Models (LD3M), the
first method to learn gradient-based distilled latents and class embeddings end-
to-end through a pre-trained latent diffusion model. A linearly decaying skip
connection, injected from the initial noisy state into every reverse step, preserves
the gradient signal across dozens of timesteps without requiring diffusion weight
fine-tuning. Across multiple ImageNet subsets at 128×128 and 256×256, LD3M
improves downstream accuracy by up to 4.8 percentage points (1 IPC) and 4.2
points (10 IPC) over the prior state-of-the-art. The code for LD3M is provided at
https://github.com/Brian-Moser/prune_and_distill.

1 Introduction

Large-scale datasets fuel the advancements in modern computer vision but demand substantial
computational resources and raise scalability concerns [27, 2, 25, 14]. Dataset distillation emerges
as a compelling solution, aiming to synthesize a small set of information-rich samples that preserve
the essence of the original dataset [35, 42, 4]. While early methods operated directly in pixel space,
a promising recent direction involves leveraging powerful generative models as priors [13, 1]. By
optimizing compact latent codes instead of raw pixels, these approaches, exemplified by GLaD using
StyleGAN-XL [5], can generate higher-resolution synthetic images (128 × 128 and beyond) that
generalize better across diverse network architectures.

However, GAN-based priors like in GLaD suffer from complex multi-space latent optimization and
require cumbersome inversion processes for initialization [5, 43, 3, 21]. Diffusion models [18, 28],
having surpassed GANs as the state-of-the-art image generators [9], represent a natural next step. Yet,
inherent vanishing gradients severely hinder their direct application to dataset distillation. Optimizing
latents through the long denoising chain leads to exponentially decaying gradients, which prevents
effective learning of the synthetic data [19, 17].
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Mathematically, if Z is the initial latent code to be optimized and z0 the final denoised state after T
steps, the gradient ∂L/∂Z is a product of Jacobians:

∂L
∂Z

=
∂L
∂z0

·

[
T∏

t=1

∂zt−1

∂zt

]
· ∂zT
∂Z

. (1)

If the norm of each Jacobian ∂zt−1/∂zt is bounded by λ < 1, the product term
∏T

t=1(∂zt−1/∂zt)
diminishes towards zero as T increases. This gradient decay is empirically observable and significant:
Our analysis confirms that in standard diffusion models, gradient norms for Z decrease nearly tenfold
as T increases from 10 to 90 (see Table 1).

Table 1: Gradient norms for the initial latent code Z across different maximum diffusion steps T for
fixed inputs. The decrease in norm as T increases empirically demonstrates the vanishing gradient
problem, which severely hinders the optimization of Z through the standard reverse diffusion process.

T 10 20 30 40 50 60 70 80 90
∥L/∂Z∥ × 104 58.1 33.5 19.8 15.4 13.9 12.1 10.4 8.7 6.5

This critical bottleneck has forced prior diffusion-based distillation attempts to circumvent end-to-end
optimization entirely, resorting instead to sampling or selecting fixed representations from pre-trained
models [12, 34, 16]. These approaches, while computationally faster, forfeit the fine-grained gradient-
matching optimization crucial for potential benefits like enhanced privacy of distilled data or their
robustness against adversarial attacks [7, 37, 44, 10].

To unlock diffusion models for true dataset distillation, we introduce Latent Dataset Distillation with
Diffusion Models (LD3M). Our core contribution is a tailored modification to the reverse diffusion
process (Equation 7) that introduces linearly decaying residual connections, specifically designed to
enhance gradient flow for optimizing latent representations Z and conditioning codes c in the context
of dataset distillation. This mechanism enables, for the first time, effective end-to-end optimization
of distilled latent codes Z and class embeddings c through a pre-trained latent diffusion model.
LD3M is readily compatible with existing distillation objectives and diffusion model architectures.
Experiments across numerous ImageNet subsets demonstrate that LD3M significantly outperforms
the state-of-the-art at 128 × 128 and 256 × 256 resolutions, achieving superior cross-architecture
generalization, i.e., 4.8 percentage points (1 IPC) and 4.2 points (10 IPC), and faster distillation times.

2 Preliminaries

Dataset Distillation: Let T = (Xr, Yr), where Xr ∈ RN×H×W×C , be a real image classification
dataset and N its cardinality. The goal is to compress T into a small synthetic set S = (Xs, Ys),
where Xs ∈ RM×H×W×C , where M is the total number of synthetic samples with M = C · IPC,
C the number of classes and IPC the Images Per Class (IPC). We aim to achieve M ≪ N with

S∗ = argmin
S

L(S, T ) (2)

where L is a distillation loss between the distilled set S and the real dataset T . Common choices for
L include matching gradients (Dataset Condensation, DC [42]), feature distributions (Distribution
Matching, DM [41]), or model parameter trajectories (Matching Training Trajectories, MTT [4]). We
refer to the supplementary material for detailed definitions.

Dataset Distillation with Generative Priors: To improve the quality, resolution, and generalization
of distilled images, recent work incorporates deep generative models as priors [5]. Instead of
optimizing pixels directly, they optimize latent codes Z ∈ RM×h×w×d with h · w · d≪ H ·W · C,
fed into a pre-trained generator D. The optimization objective becomes

Z∗ = argmin
Z

L(D(Z), T ). (3)

3 Related Work

GAN Priors (GLaD): GLaD [5] pioneered distillation with generative priors using a pre-trained
StyleGAN-XL [30]. While successful, it inherits GAN-specific drawbacks: (1) Optimizing the
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Figure 1: The LD3M Framework. Learnable latent codes Z and conditioning codes c are optimized.
Z is noised to initialize the reverse diffusion at zT . A pre-trained LDM denoiser iteratively refines
the state (zt → zt−1). Key innovation: Residual connections (red arrows) inject zT with linearly
decaying weight into each step (Equation 7), enhancing gradient flow. The final latent z0 is decoded
(D) into images S , which are optimized using a standard distillation algorithm.

complex, multi-level latent space (W+) required for high quality is computationally demanding [43].
(2) Initializing latent codes Z from real images x requires solving a costly GAN inversion problem
(minZ L(x,D(Z))) [3, 36], hindering standard initialization practices [21].

Prior Diffusion-based Distillation Attempts: The inherent vanishing gradient problem (§1) signifi-
cantly challenges using diffusion models for end-to-end distillation. Faced with this gradient barrier,
existing diffusion methods for distillation have adopted non-optimization strategies:

• Sampling/Selection Methods: Minimax Diffusion [16] and D4M [34] use criteria to select
or sample representative latents from a diffusion model, avoiding backpropagation to latents
entirely. While faster, this bypasses gradient-based optimization that is needed for privacy
or robustness, also crucial motivations for dataset distillation [7, 37, 44, 10].

• Autoencoder-Only Methods: Duan et al. [12] leverage the pre-trained autoencoder from
LDM but do not utilize the diffusion process itself. They optimize latent codes Z that
are directly decoded by D, essentially using only the autoencoder, not its core denoising
mechanism. This simplifies optimization but fails to exploit the diffusion prior.

In contrast, LD3M is designed to directly optimize latent codes Z by enabling gradient flow through
the reverse process.

Residual Connections for Gradient Flow: Enhancing gradient flow in deep networks is commonly
addressed using residual connections, famously introduced in ResNets [17] or LSTMs [19]. Similar
ideas have appeared within diffusion models; for instance, SAGE [23] used residuals connecting
to the initial noise to enable adversarial latent search. While conceptually related, our contribution
differs significantly: we introduce structured, linearly decaying residuals injected at every step from
the initial noisy latent zT , explicitly designed for end-to-end optimization of distilled latent codes
through the diffusion chain for the unique characteristics of dataset distillation.

Decoupled Distillation Methods: Distinct from methods optimizing synthetic data via generative
priors, another line of work decouples distillation from end-to-end training. Methods like SRe2L
[40] and others [39, 32] leverage statistics (e.g., from BatchNorm) of pre-trained networks to recover
informative images, offering scalability benefits but following a fundamentally different optimization
strategy than gradient-matching approaches like LD3M.

4 Latent Dataset Distillation with Diffusion Models (LD3M)

Our approach enables end-to-end optimization of synthetic data directly through a pre-trained LDM.
As shown in Figure 1, LD3M optimizes both initial latent codes Z and conditioning codes c. These
are processed by a modified reverse diffusion process to generate expressive latent states z0, which
are then decoded into images, S = D(z0). This section details the core components: our modified
diffusion sampling process designed to boost gradient flow (§4.1), the efficient initialization strategy
(§4.2), and the gradient checkpointing used for memory efficiency (§4.3).
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4.1 Sampling Process

We leverage a pre-trained LDM [28] without fine-tuning its weights. Standard LDM operation
involves a reverse diffusion process pθ that iteratively denoises a state zt, starting from noise zT ,
conditioned on an embedding c (typically derived from class labels) [38, 26]. Each step t predicts a
less noisy state zt−1 based on the current state zt and condition c. The standard update rule [18, 29]
calculates the subsequent state zt−1 using the predicted mean µθ and variance σ2

t :

µθ(c, zt, γt) =
1
√
αt

(
zt −

1− αt√
1− γt

fθ (c, zt, γt)

)
(4)

zt−1 ← µθ(c, zt, γt) + σ2
t εt, (5)

where fθ is the LDM’s pre-trained noise prediction network (usually a U-Net), αt and γt relate to the
noise schedule, and εt ∼ N (0, I) is random noise added at step t.

Algorithm 1 Latent Dataset Distillation with Diffusion Models (LD3M)
Input: randomly selected collection Xs, pre-trained encoder E , pre-trained decoder D, pre-trained
denoiser µθ with frozen parameters θ, noise levels σt.
Z = E (Xs)
zT ∼ q(zT | Z)
for t = T, . . . , 1 do
εt ∼ N (0, I)
zt−1 ←

(
(1− t

T ) · µθ(c, zt, γt) +
t
T · zT

)
+ σ2

t εt
end for
Xsyn ← D (z0)
Return: Xsyn

For dataset distillation, our goal is to learn the optimal initial latent representationsZ and conditioning
codes c that minimize the distillation loss L between the synthetic images and the target dataset:

Z∗, c∗ = argmin
Z,c

L(D[pθ(z0|zT , c)], T ), where zT ∼ q(zT |Z). (6)

Here, pθ(z0|zT , c) denotes the final state z0 resulting from the T -step reverse process starting from
zT , which itself is a noised version of the learnable Z obtained via the forward process q. We want
to highlight that the sampling of ε introduces stochasticity during inference. We fix, however, for one
sampling phase, the residual variable zT to be constantly the same.

To effectively minimize distillation losses like gradient or trajectory matching (Equation 6), which
rely on fine-grained alignment between synthetic and real data processing, requires guiding the
generative process. While conditioning c provides class guidance, optimizing the initial latent Z
offers the necessary degrees of freedom to shape the generated sample D (z0) precisely. Relying
solely on fixed Z or only optimizing c proved insufficient empirically, yielding suboptimal results
resembling simple LAION-5B [31] data retrieval similar to D4M [34].

Vanishing gradients inherent in backpropagating through the T steps of Equation 5 present the
primary obstacle to optimizing Equation 6 [19]. To overcome this, we introduce a simple yet effective
modification to the reverse step, injecting a residual connection from the initial state zT :

zt−1 ←
(
(1− t

T ) · µθ(c, zt, γt) +
t
T · zT

)︸ ︷︷ ︸
Modified Mean

+σ2
t εt. (7)

Crucially, while this modification deviates from standard sampling aimed at matching the distribution
of real images, its purpose here is to enable gradient flow for distillation optimization, a task where
downstream utility, not photorealism [42, 4], is paramount (see supplementary material for detailed
discussion). In other words, our method breaks the sampler’s fidelity to the original data distribution
in order to better achieve the distillation objective of matching feature distributions.

In conclusion, the modification replaces the standard predicted mean µθ with a weighted average
of µθ and the initial state zT . The weight of zT decreases linearly from 1 (at t = T ) to nearly 0 (as
t→ 0). This creates a direct pathway for gradients from the loss L (computed using z0) back to zT ,
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and thus to the learnable Z , bypassing the long chain of Jacobian products that causes gradients to
vanish. The enhanced gradient flow to Z can be conceptually represented as:

∂L
∂Z

=

T∑
t=1

(
1− T − 1

T

)
·
[
∂L
∂zt
· ∂zt
∂zt−1

· ... · ∂z0
∂Z

]
︸ ︷︷ ︸

Original (Decaying) Path

+
(

t
T

)
·
[
∂L
∂zt−1

∂zt−1

∂zT

∂zT
∂Z

]
︸ ︷︷ ︸

Enhanced Path via Skip Connection

. (8)

A comprehensive description can be found in Algorithm 1.

Notes on Markovian Property: zt−1 depends on zt and zT , but not on any earlier states such
as zt+1, zt+2, and so on. Therefore, the probability distribution for zt−1 only depends on zt
and the fixed initial state zT , which is constant throughout the diffusion process. Thus, we have:
p(zt−1|zt, zt+1, . . . , zT ) = p(zt−1|zt, zT ). This confirms that LD3M remains Markovian.

Notes on Generalisability: Our gradient enhancement technique (Equation 7) applies to various
diffusion model architectures beyond LDMs, suggesting broader potential for future work. In this
study, we focused on LDMs primarily as a proof of concept, leveraging readily available pre-trained
models and LDM’s foundational role in latent-space diffusion.

4.2 Efficient Latent Code Initialization

Standard practice in dataset distillation initializes synthetic data using real images from the target
classes [21]. GAN-based methods like GLaD face a significant challenge here, requiring complex
and costly GAN inversion techniques to find latent codes Z that reconstruct target real images x [36].

LD3M benefits immensely from the autoencoder structure inherent in LDMs. We initialize the
learnable latent codes Zinit simply by encoding a small, randomly selected set of real images Xs

using the pre-trained image encoder. Similarly, the initial conditioning codes cinit are obtained using
the pre-trained class embedding network.

4.3 Memory Efficiency via Gradient Checkpointing

Optimizing through the T steps of the reverse diffusion process, even with our modification, can be
memory-intensive. Following GLaD [5], we employ gradient checkpointing [6] to manage VRAM
usage. The procedure involves:

1. Perform the forward pass S = D(pθ(z0|zT , c)) without storing intermediate activations.
2. Calculate the distillation loss L(S, T ) and the gradient with respect to the output, ∂L/∂S.
3. To compute the gradient ∂L/∂Z (and ∂L/∂c), recompute the necessary segments of the

forward pass through the diffusion process and decoder D, storing only the activations
needed for the immediate backward pass segment.

This avoids storing the full computation graph, which GLaD also exploits for a single generator pass.

5 Experiments

We evaluate LD3M against relevant baselines, primarily the state-of-the-art latent generative prior
method GLaD [5], following its experimental setup for fair comparison. We conduct extensive
experiments on 10 diverse 10-class subsets of ImageNet-1k [8] at 128× 128 (IPC=1, IPC=10) and
256× 256 (IPC=1) resolutions, as well as CIFAR-10. Key implementation details are in §5.1; full
hyperparameters and setup details are in the supplementary material.

5.1 Setup Details

Datasets & Evaluation: We use ImageNet subsets (ImNet-A to E, ImNette, ImWoof, Birds, Fruits,
Cats) from [5, 20, 4] and CIFAR-10. Following standard protocol, we distill datasets using DC [42],
DM [41], or MTT [4] and evaluate by training unseen architectures (AlexNet [22], VGG-11 [33],
ResNet-18 [17], ViT [11]) from scratch on the distilled set, reporting mean test accuracy (± std. dev.)
over 5 runs.
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Table 2: CIFAR-10 comparisons with GLaD on IPC=1 and SRe2L/D4M on IPC=50.

(a) IPC=1
Dist. Method AlexNet ResNet18 VGG11 ViT Average

DC

pixel space 25.9±0.2 27.3±0.5 28.0±0.5 22.9±0.3 26.0±0.4

GLaD (rand G) 30.1±0.5 27.3±0.2 28.0±0.9 21.2±0.6 26.6±0.5

GLaD (trained G) 26.0±0.7 27.6±0.6 28.2±0.6 23.4±0.2 26.3±0.5

LD3M (trained G) 27.2±0.8 26.6±0.9 31.5±0.3 29.0±0.2 28.6±0.6

DM

pixel space 22.9±0.2 22.2±0.7 23.8±0.5 21.3±0.5 22.6±0.5

GLaD (rand G) 23.7±0.3 21.7±1.0 24.3±0.8 21.4±0.2 22.8±0.6

GLaD (trained G) 25.1±0.5 22.5±0.7 24.8±0.8 23.0±0.1 23.8±0.5

LD3M (trained G) 27.2±0.4 23.0±0.7 25.4±0.4 23.8±0.3 24.9±0.5

(b) IPC=50
Method ConvNet

SRe2L [40] 60.2†

D4M [34] 72.8*

LD3M (Ours) 73.2
† Reported [40] at IPC=1K;
Decoupled method.
* Reported [34]; Sampling-
based Diffusion.

Table 3: Cross-architecture performance (%) with 1 IPC on ImageNet subsets (128× 128). LD3M
(bold) generally achieves the best results within each algorithm and overall best (blue) compared to
Pixel Space and GLaD. For instance, LD3M improves DC, MTT, and DM by +3.76%, +5.68%, and
+16.34%, respectively.

Distil. Space Alg. All ImNet-A ImNet-B ImNet-C ImNet-D ImNet-E ImNette ImWoof ImNet-Birds ImNet-Fruits ImNet-Cats

MTT 25.4±2.3 33.4±1.5 34.0±3.4 31.4±3.4 27.7±2.7 24.9±1.8 24.1±1.8 16.0±1.2 25.5±3.0 18.3±2.3 18.7±1.5
pixel space DC 27.9±1.6 38.7±4.2 38.7±1.0 33.3±1.9 26.4±1.1 27.4±0.9 28.2±1.4 17.4±1.2 28.5±1.4 20.4±1.5 19.8±0.9

DM 19.2±1.0 27.2±1.2 24.4±1.1 23.0±1.4 18.4±0.7 17.7±0.9 20.6±0.7 14.5±0.9 17.8±0.8 14.5±1.1 14.0±1.1

MTT 29.0±1.2 39.9±1.2 39.4±1.3 34.9±1.1 30.4±1.5 29.0±1.1 30.4±1.5 17.1±1.1 28.2±1.1 21.1±1.2 19.6±1.2
GLaD DC 29.8±1.3 41.8±1.7 42.1±1.2 35.8±1.4 28.0±0.8 29.3±1.3 31.0±1.6 17.8±1.1 29.1±1.0 22.3±1.6 21.2±1.4

DM 22.4±1.4 31.6±1.4 31.3±3.9 26.9±1.2 21.5±1.0 20.4±0.8 21.9±1.1 15.2±0.9 18.2±1.0 20.4±1.6 16.1±0.7

MTT 30.4±1.3 40.9±1.1 41.6±1.7 34.1±1.7 31.5±1.2 30.1±1.3 32.0±1.3 19.9±1.2 30.4±1.5 21.4±1.1 22.1±1.0
LD3M DC 30.9±1.2 42.3±1.3 42.0±1.1 37.1±1.8 29.7±1.3 31.4±1.1 32.9±1.2 18.9±0.6 30.2±1.4 22.6±1.3 21.7±0.8

DM 25.9±1.2 35.8±1.1 34.1±1.0 30.3±1.2 24.7±1.0 24.5±0.9 26.8±1.7 18.1±0.7 23.0±1.8 24.5±1.9 17.0±1.1

Table 4: Cross-architecture performance (%) with 10 IPC on ImageNet A-E (128 × 128). LD3M
(bold, blue) consistently outperforms Pixel Space and GLaD with, for instance, an improvement of
+2.52% and +3.46% with DC and DM, respectively.

Distil. Space Alg. All ImNet-A ImNet-B ImNet-C ImNet-D ImNet-E

DC 42.3±3.5 52.3±0.7 45.1±8.3 40.1±7.6 36.1±0.4 38.1±0.4pixel space DM 44.4±0.5 52.6±0.4 50.6±0.5 47.5±0.7 35.4±0.4 36.0±0.5

DC 45.9±1.0 53.1±1.4 50.1±0.6 48.9±1.1 38.9±1.0 38.4±0.7GLaD DM 45.8±0.6 52.8±1.0 51.3±0.6 49.7±0.4 36.4±0.4 38.6±0.7

DC 47.1±1.2 55.2±1.0 51.8±1.4 49.9±1.3 39.5±1.0 39.0±1.3LD3M DM 47.3±2.1 57.0±1.3 52.3±1.1 48.2±4.9 39.5±1.5 39.4±1.8

Models: We use ConvNet-5/ConvNet-6 [15] for distillation. As in GLaD [5], we use AlexNet [22],
VGG-11 [33], ResNet-18 [17], and a Vision Transformer [11] for evaluating the distilled dataset
quality for unseen architectures. For LD3M, we use the public ImageNet pre-trained LDM [28]
with its 2× compression autoencoder, without fine-tuning. Default diffusion steps T = 10 (1282)
or T = 20 (2562) are used unless specified. For GLaD comparison, the ImageNet pre-trained
StyleGAN-XL [30] is used.

5.2 Results

Main Results: LD3M Outperforms State-of-the-Art. We first establish LD3M’s effectiveness
against the primary baseline GLaD and other state-of-the-art methods on CIFAR-10 (Table 2). At
IPC=1, LD3M matches or exceeds GLaD using DC/DM distillation. The sampling-based D4M [34]
delivered ≈10% accuracy for all tested models. At IPC=50, LD3M surpasses reported results from
D4M and decoupled SRe2L [40] with MTT (though optimization and IPC differ, see caption). We
subsequently focus our main analysis on GLaD [5] as the leading state-of-the-art baseline for latent
generative prior gradient-matching distillation.

Moving to the more challenging ImageNet subsets, LD3M consistently outperforms GLaD across
resolutions and IPC values. For IPC=1 at 128 × 128 (Table 3), LD3M achieves the best overall
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Table 5: Cross-architecture performance (%) for 256 × 256 images (DC, IPC=1) using different
generator initializations (ImageNet, FFHQ, Random). LD3M outperforms GLaD across initializations.
Best results marked bold, top 3 blue. For example, LD3M improves by roughly +2 p.p. on average,
whereas it improves the performance by roughly +7 p.p. compared to pixel space.

Distil. Space All ImNet-A ImNet-B ImNet-C ImNet-D ImNet-E

pixel space 29.5±3.1 38.3±4.7 32.8±4.1 27.6±3.3 25.5±1.2 23.5±2.4

GLaD (ImageNet) 34.4±2.6 37.4±5.5 41.5±1.2 35.7±4.0 27.9±1.0 29.3±1.2
GLaD (Random) 34.5±1.6 39.3±2.0 40.3±1.7 35.0±1.7 27.9±1.4 29.8±1.4
GLaD (FFHQ) 34.0±2.1 38.3±5.2 40.2±1.1 34.9±1.1 27.2±0.9 29.4±2.1

LD3M (ImageNet) 36.3±1.6 42.1±2.2 42.1±1.5 35.7±1.7 30.5±1.4 30.9±1.2
LD3M (Random) 36.5±1.6 42.0±2.0 41.9±1.7 37.1±1.4 30.5±1.5 31.1±1.4
LD3M (FFHQ) 36.3±1.5 42.0±1.6 41.9±1.6 36.5±2.2 30.5±0.9 30.6±1.1

Table 6: Ablation: Impact of Diffusion (DC, IPC=1). Comparing LD3M (w/ diffusion) against GLaD
and LD3M using only the autoencoder (w/o diffusion). Full LD3M consistently outperforms both.

Method All ImNet-A ImNet-B ImNet-C ImNet-D ImNet-E

GLaD 35.4±1.3 41.8±1.7 42.1±1.2 35.8±1.4 28.0±0.8 29.3±1.3

LD3M (w/o diffusion) 35.3±1.3 40.6±1.9 41.9±1.1 35.3±1.0 29.4±1.4 29.5±1.3
LD3M (w/ diffusion) 36.5±1.3 42.3±1.3 42.0±1.1 37.1±1.8 29.7±1.3 31.4±1.1

+1.2+0.0 +1.7-0.6 +0.1+0.0 +1.8+0.8 +0.3-0.1 +1.9-0.2

average accuracy in 9/10 subsets, significantly boosting performance particularly for DM (+16.3%
avg.). This advantage persists at IPC=10 (Table 4), where LD3M improves average accuracy over
GLaD by +2.5% (DC) and +3.5% (DM), reaching over 47% overall. The performance gains extend
to 256 × 256 resolution (Table 5), where LD3M surpasses GLaD by +6% on average, even when
comparing differently pre-trained generators (ImageNet, FFHQ, random), highlighting the robustness
of leveraging the LDM prior via LD3M.

Ablation Studies: Why LD3M Works. The diffusion process itself is crucial for LD3M’s improved
performance over autoencoder-only approaches. Table 6 provides empirical evidence: removing the
diffusion steps ("w/o diffusion", akin to Duan et al. [12]) results in performance comparable to GLaD
(35.3% avg.), which is significantly lower than full LD3M utilizing the diffusion process (36.5%
avg.). This +1.2 percentage points highlight that simply using the LDM’s autoencoder is insufficient;
successfully optimizing through the reverse process is necessary to unlock the performance benefits
observed, validating our core approach over simpler AE-only methods. Naturally, we can expect
similar limitations with few- or one-step diffusion models in the context of dataset distillation.

Furthermore, both learnable latents and our proposed gradient enhancement drive LD3M’s effective-
ness. Table 7 dissects these contributions: optimizing only conditioning c yields poor results (15.8%
avg.), but making the latent Z learnable provides a substantial boost (22.3% avg.), confirming the
necessity of latent optimization motivated in §4.1. Critically, however, this alone does not surpass
GLaD; only by subsequently adding our enhanced gradient flow (Equation 7) does LD3M achieve its
SOTA performance (28.1% avg., vs. 26.6% for GLaD). This clearly demonstrates that while learnable
latents offer vital degrees of freedom, they cannot be effectively optimized through standard diffusion
backpropagation; the enhanced gradient flow enabled by our residual connection (Equation 7) is the
key component that makes end-to-end optimization through diffusion truly effective for this task.

Robustness and Practical Considerations. LD3M exhibits robustness in various aspects. For
instance, standard initialization using real images encoded via the LDM’s encoder significantly
benefits DC and DM performance compared to Gaussian noise initialization (Table 8), while being
vastly simpler than GLaD’s GAN inversion (§4.2). Visually (Figure 2 and Figure 3), LD3M generates
abstract but class-informative images that appear more consistent across different LDM pre-training
datasets (ImageNet, FFHQ, Random) compared to GLaD. Our analysis of diffusion steps T (Figure 4)
reveals an optimal performance/runtime trade-off around T = 10− 40.
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Table 7: Ablation: Different LDM variations (MTT on ImageNette and IPC=1). Tested was the
distillation by making only the conditioning learnable (c), one with also learnable latent representation
(Z), and lastly, one which incorporates our modified reverse process (Equation 7).

Method All AlexNet VGG-11 ResNet-18 ViT

GLaD 26.6±1.6 28.7±0.3 29.2±1.2 30.8±2.9 17.8±1.5

LDM learnable conditioning (c) 15.8±1.5 14.2±2.6 15.1 ±1.6 16.5±4.9 16.8±4.0
+ learnable latent code (Z) 22.3±2.0 22.8±2.0 26.3±0.9 23.4±3.2 17.5±2.0
+ enhanced gradient flow (Eq. 7) 28.1±3.3 29.2±1.9 29.2±1.2 30.6±1.3 25.1±1.7

Table 8: Ablation: Impact of Initialization (ImageNette, IPC=1, 5K iter.). Compares initializing Z
and c from Gaussian noise vs. encoded real images across different distillation algorithms.

Dist. Method Dist. Space All AlexNet ResNet18 VGG11 ViT

MTT Gauss. noise 31.0±1.4 28.7±1.6 34.1±1.5 32.2±0.6 29.1±1.8
random image 32.0±1.3 30.1±1.4 35.6±1.4 32.2±0.3 30.0±1.2

DC Gauss. noise 13.1±2.1 13.1±1.5 11.6±1.8 13.8±2.2 13.7±2.7
random image 32.9±2.1 31.6±1.3 30.4±0.6 31.8±1.2 37.7±1.5

DM Gauss. noise 13.4±1.8 13.4±2.0 12.4±1.8 13.4±1.4 14.4±2.1
random image 26.8±1.7 31.9±1.3 23.2±2.2 25.9±2.0 26.1±1.4
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Garbage
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Figure 2: Visual comparison of LD3M versus GLaD (MTT, ImageNette, 1K iter.). GLaD outputs tend
toward smooth, photo-realistic textures but can blur class-defining details, whereas LD3M produces
bolder, higher-contrast shapes that highlight key discriminative features (e.g., wing contours, beak
outline). This abstraction trade-off suggests LD3M prioritizes core class signals over pixel-perfect
fidelity, which empirically enhances downstream model generalization, contrasting claims made by
sampling-based methods like D4M [34].

LD3M also offers computational flexibility. Our analysis indicates an optimal balance between
performance and distillation time occurs with around T = 10− 40 diffusion steps (Figure 4). Using
T = 20, LD3M requires slightly less peak GPU memory on an A100-40GB compared to GLaD
(29.4GB vs 31.2GB) and completes the distillation process faster (574 min vs 693 min). This
computational efficiency, coupled with the inherent flexibility to adjust the number of diffusion steps
(T ) based on available resources, enhances LD3M’s practical appeal.

6 Conclusion

We addressed the critical challenge preventing end-to-end dataset distillation through powerful
diffusion models: vanishing gradients across the long denoising chain. We introduced LD3M, which
unlocks optimization through diffusion priors via a simple yet effective modification: injecting linearly
decaying residual connections from the initial noisy state into each reverse step. This novel approach
enhances gradient flow sufficiently to effectively learn both latent codes (Z) and conditioning (c)
without altering pre-trained model weights. This direct optimization contrasts sharply with previous
diffusion distillation methods that circumvented the gradient challenge by relying solely on sampling
fixed representations [34, 16].
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Figure 3: Example 256 × 256 images of a distilled class (ImageNet-B: Lorikeet) with differently
initialized generators GLaD and LD3M. The various initializations, i.e., which dataset was used for
training the generators, are denoted at the bottom. We used DC as distillation algorithm.
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Figure 4: Accuracy vs. Distillation Time Trade-off with Diffusion Steps T (ImageNet A-E avg.,
MTT, IPC=1). LD3M performance (blue line, mean ± std) peaks around T = 35. GLaD baseline
(dashed lines) and optimal trade-off (X) shown for reference.

Our experiments (§5) demonstrate LD3M’s clear advantages. It significantly outperforms the state-
of-the-art GAN-prior method, GLaD, on diverse ImageNet subsets at 128 × 128 and 256 × 256
resolutions, improving cross-architecture generalization by up to 4.8 percentage points (IPC=1) and
4.2 points (IPC=10). Ablation studies confirmed that both leveraging the diffusion process and our
specific gradient enhancement are crucial for this success. Furthermore, LD3M offers practical
benefits: vastly simpler initialization than GAN inversion (§4.2) and faster overall distillation times
compared to GLaD (§5).

7 Future Work

By successfully enabling gradient-based optimization through diffusion models, LD3M paves the way
for leveraging state-of-the-art generative diffusion models for creating highly effective and compact
distilled datasets. Future work should explore alternative residual formulations and integration with
fast samplers like DPM-Solver [24]. Scaling and evaluation on larger benchmarks like ImageNet-1K
also remain important next steps, contingent on computational resources.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and the Introduction section described the task of distilled dataset
and our presented solution based on pre-trained Diffusion Models. Our model is evaluated
on several standard datasets for Image Classification.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include a discussion on the limitations of our method in the appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide derive theoretical motivation for the sampling process in section 4.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All hyperparameters are described in our paper. The presented model is clearly
described for reproducibility and the algorithm is summarized in Algorithm 1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The datasets are standard and well-known benchmarks for Image Classification.
The code will be also released after the publication of our paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not

14

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Our experimental section described all required information such as models
and datasets. We follow the same experimental setting as previous work in Distilled Dataset
(GLaD). Also, the code repository will contain the training scripts for reproducing the
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: our experiments were run five times, and it is clearly mentioned that we are
reporting mean test accuracy and standard deviation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In the supplementary materials, we include information on the required
compute resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We comply with the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We provide societal impact in the sections 1 and 3.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
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Justification: Our method does not produce new risks of misuse, because we re-use existing
models and datasets in a compressed manner.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We credit all owners of the assets that we use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are released.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper did not require any input for crowdsourcing experiments. We
evaluated our presented model using standard benchmarks for Image Classification.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We conduct no user studies.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLMs as part of our method.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Supplementary Material

A Definitions of DC, DM, and MTT

Dataset Condensation (DC) ensures alignment by deriving the gradients via a classification error
[42]. It calculates the loss on real (ℓT ) and the respective synthetic data (ℓS ). Next, it minimizes the
distance between the gradients of both network instances. More concretely,

LDC = 1− ∇θℓ
S(θ) · ∇θℓ

T (θ)

∥∇θℓS(θ)∥ ∥∇θℓT (θ)∥
. (9)

Distribution Matching (DM) obtains gradients by minimizing the logits on the real and synthetic
datasets. It enforces the feature extractor (ConvNet) to produce similar features for real and synthetic
images [41]. The distribution matching loss is

LDM =
∑
c

∥∥∥∥∥ 1

|Tc|
∑
x∈Tc

ψ(x)− 1

|Sc|
∑
s∈Sc

ψ(s)

∥∥∥∥∥
2

, (10)

where Tc,Sc are the real and synthetic images for a class c.

Matching Training Trajectories (MTT) concentrates on the trajectory of network parameters [4]. In
more detail, MTT exploits several trained instances of a model, called experts, and stores the training
trajectory of parameters {θ∗t }T0 at predetermined intervals, called expert trajectories. For dataset
distillation, MTT samples a random set of parameters θ∗t from the trajectory at a given timestamp.
Next, it trains a new network, θ̂t+N , initialized with the parameters on the respective synthetic images
(for N iterations). Finally, the distance between the trajectory on the real dataset, θ∗t+M with M steps,
and the trajectory on the synthetic one, θ̂t+N , is minimized. As a result, MTT tries to mimic the
original dataset’s training path (trajectory of parameters) with the synthetic images:

LMTT =
∥θ̂t+N − θ∗t+M∥2

∥θ∗t − θ∗t+M∥2
. (11)

B Justification for Modified Reverse Process in Distillation

Our core modification to the reverse diffusion step is crucial for improving the gradient flow back to
the initial latent Z , allowing end-to-end optimization. A natural question arises regarding the validity
of this modified process, as it intentionally deviates from standard diffusion sampling procedures
designed for high-fidelity image generation that perfectly match the learned data distribution.

Different Objectives: Distillation vs. Faithful Sampling. The key insight is that the objective
of dataset distillation differs fundamentally from standard image generation. Distillation aims to
synthesize a small set of maximally informative samples that enable efficient training of downstream
models, prioritizing the encoding of essential class-discriminative features over photorealism [35,
4, 42]. Pixel-perfect adherence to the original data distribution is not necessarily required or even
optimal; abstract or stylized images often yield excellent distillation performance if they capture core
class characteristics effectively [5].

Impact of Modification. Our modification introduces a direct dependency on the initial noisy state
zT throughout the reverse process. While preserving the Markov property (as shown in the main
paper) and the representational power of the pre-trained denoiser fθ, this change means the resulting
process pθ(z0|zT , c) no longer guarantees sampling exactly from the original distribution µ learned
by the LDM. If applied without the corrective feedback loop of distillation optimization (e.g., for
unconditional generation), this modification can lead to more abstract outputs that deviate from the
expected style, as illustrated with an FFHQ-trained model in Figure 5. This deviation is expected, as
the process is no longer constrained solely by the standard denoising objective. We also observe a
slight reduction in sample diversity (measured by average LPIPS between generated samples: 0.386
with modification vs. 0.420 without, on ImageNette samples), likely due to the persistent influence of
the fixed zT .
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Figure 5: Influence of our modified reverse process in a classical image generation setting (uncondi-
tional FFHQ). It shows that the residual connections alter the generation process significantly, leading
to abstract artifacts and the loss of coherence expected in a facial dataset: (top) with modification and
(bottom) without modification.
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Figure 6: Gradient flow analysis comparing the Signal-to-Noise Ratio (SNR) of gradient norms
for LD3M with and without our modification. Diffusion demonstrates a more stable gradient flow,
indicating enhanced optimization dynamics. Dashed lines show a polyfit plot to highlight the trends.

Suitability for Distillation. Crucially, within the dataset distillation framework, the latent codes
Z (and conditioning c) are continuously optimized to minimize the distillation loss L. This opti-
mization process actively counteracts potential adverse effects of the modified sampling path by
guiding the generation towards producing images (even if abstract) that are highly effective for the
downstream task defined by L. The essential properties needed are: (1) sufficient generative capacity
to create diverse, class-relevant features, which the LDM provides; and (2) strong gradient flow for
optimization, which our modification enables (as also shown in Figure 6). The empirical success of
LD3M - significantly outperforming GLaD and AE-only baselines, and performing robustly even
with randomly initialized LDMs - demonstrates that this trade-off (sacrificing perfect distribution
matching for tractable optimization) is highly beneficial for the specific goal of dataset distillation.
The resulting "abstract" representations effectively encode class information for robust generalization.
Therefore, while distinct from standard sampling, our modified reverse process is a well-justified and
necessary component for unlocking diffusion models for effective, end-to-end dataset distillation.

20



Table 9: Common hyperparameters for training the distillation algorithms used in this work.
Parameter Value

DSA Augmentations Color / Crop / Cutout / Flip / Scale / Rotate
Iteration (Distillation) 5,000 (128× 128) / 10,000 (256× 256)
Momentum 0.5
Batch Real 256
Batch Train 256
Batch Test 128

C Hyper-Parameters for Distillation Algorithms

LDM. For all our LDM experiments, we set the unconditional guidance scale to the default value of
3. For 128× 128 images, we used max. time steps of 10, and for 256× 256 images, we used 20.

DC. We utilize a learning rate of 10−3 throughout our DC experiments to update the latent code
representation and the conditioning information.

DM. In every DM experiment, we adopt a learning rate of 10−2, applying it to updates of the latent
code representation alongside the conditioning information.

MTT. For MTT experiments, a uniform learning rate of 10 is applied to update the latent code
representation and the conditioning information. We buffered 100 trajectories for expert training,
each with 15 training epochs. We used ConvNet-5 and InstanceNorm. During dataset distillation, we
used three expert epochs, max. start epoch of 5 and 20 synthetic steps.

D Large Scale Datasets

Although LD3M is compatible with various distillation algorithms -including DC, DM, and MTT
-our current experiments focus on baseline variants that do not leverage inter-class relationships
during optimization. This is an essential avenue for further improvement: incorporating inter-
class information (e.g., through contrastive losses or hierarchical label structures) may enhance the
discriminative quality of the synthetic data. Future work will explore how LD3M’s expressive latent
trajectories can be used to facilitate such structured, cross-class-aware distillation.

E Limitations

While LD3M improves dataset distillation compared to GLaD, it is essential to acknowledge certain
limitations. A primary concern arises from the linear addition in the diffusion process, which may
not sufficiently combat the vanishing gradient problem for larger time steps, as observed in our
experiments [19]. Further alternative strategies for integrating the initial state zT in the diffusion
process should be evaluated to address this issue, e.g., non-linear progress towards 0 as t approaches 0.
These alternative approaches could offer more nuanced and dynamic ways to manage the influence of
zT across different stages of the diffusion, potentially mitigating the problem of vanishing gradients
and enhancing the overall efficacy of the distillation process.

F Hardware and Software

All experiments were run on a workstation equipped with an NVIDIA RTX A6000 GPU (48 GB
VRAM). Our implementation uses PyTorch 1.10.1 with torchvision 0.11.2, and we build upon the
GLaD library for dataset distillation with a generative prior.
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Table 10: Class listings for our ImageNet subsets.
Dataset 0 1 2 3 4 5 6 7 8 9

ImageNet-A Leonberg Probiscis
Monkey Rapeseed Three-Toed

Sloth Cliff Dwelling Yellow
Lady’s Slipper Hamster Gondola Orca Limpkin

ImageNet-B Spoonbill Website Lorikeet Hyena Earthstar Trollybus Echidna Pomeranian Odometer Ruddy
Turnstone

ImageNet-C Freight Car Hummingbird Fireboat Disk Brake Bee Eater Rock Beauty Lion European
Gallinule Cabbage Butterfly Goldfinch

ImageNet-D Ostrich Samoyed Snowbird Brabancon
Griffon Chickadee Sorrel Admiral Great

Gray Owl Hornbill Ringlet

ImageNet-E Spindle Toucan Black Swan King
Penguin Potter’s Wheel Photocopier Screw Tarantula Sscilloscope Lycaenid

ImageNette Tench English
Springer

Cassette
Player Chainsaw Church French Horn Garbage

Truck Gas Pump Golf Ball Parachute

ImageWoof Australian
Terrier Border Terrier Samoyed Beagle Shih-Tzu English

Foxhound
Rhodesian
Ridgeback Dingo Golden Retriever English

Sheepdog

ImageNet-Birds Peacock Flamingo Macaw Pelican King
Penguin Bald Eagle Toucan Ostrich Black Swan Cockatoo

ImageNet-Fruits Pineapple Banana Strawberry Orange Lemon Pomegranate Fig Bell Pepper Cucumber Granny Smith
Apple

ImageNet-Cats Tabby
Cat

Bengal
Cat

Persian
Cat Siamese Cat Egyptian

Cat Lion Tiger Jaguar Snow
Leopard Lynx
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Figure 7: Images distilled by MTT in LD3M for IPC=1.
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Figure 8: Images distilled by DC in LD3M for IPC=1.
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Figure 9: Images distilled by DM in LD3M for IPC=1.
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Figure 10: Images distilled by DC in LD3M for IPC=10 and ImageNet-A.
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Figure 11: Images distilled by DC in LD3M for IPC=10 and ImageNet-B.

27



Figure 12: Images distilled by DC in LD3M for IPC=10 and ImageNet-C.
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Figure 13: Images distilled by DC in LD3M for IPC=10 and ImageNet-D.

29



Figure 14: Images distilled by DC in LD3M for IPC=10 and ImageNet-E.
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Figure 15: Images distilled by DM in LD3M for IPC=10 and ImageNet-A.
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Figure 16: Images distilled by DM in LD3M for IPC=10 and ImageNet-B.
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Figure 17: Images distilled by DM in LD3M for IPC=10 and ImageNet-C.
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Figure 18: Images distilled by DM in LD3M for IPC=10 and ImageNet-D.
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