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Abstract

Large language models (LLMs) are increasingly used in various domains, showing
impressive potential on different tasks. Recently, reasoning LLMs have been pro-
posed to improve the reasoning or thinking capabilities of LLMs to solve complex
problems. Despite the promising results of reasoning LLMs, enhancing the multi-
step reasoning capabilities of LLMs still remains a significant challenge. While
existing optimization methods have advanced the LLM reasoning capabilities, they
often treat reasoning trajectories as a whole, without considering the underlying
critical steps within the trajectory. In this paper, we introduce Guided Pivotal
Optimization (GPO), a novel fine-tuning strategy that dives into the reasoning
process to enable more effective improvements. GPO first identifies the “critical
step’ within a reasoning trajectory - a point that the model must carefully proceed
to succeed at the problem. We locate the critical step by estimating the advantage
function. GPO then resets the policy to the critical step, samples the new rollout,
and prioritizes the learning process on those rollouts. This focus allows the model
to learn more effectively from pivotal moments within the reasoning process to
improve the reasoning performance. We demonstrate that GPO is a general strategy
that can be integrated with various optimization methods to improve reasoning
performance. Besides theoretical analysis, our experiments across challenging
reasoning benchmarks show that GPO can consistently and significantly enhance
the performance of existing optimization methods, showcasing its effectiveness and
generalizability in improving LLM reasoning by concentrating on pivotal moments
within the generation process.

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of
tasks, such as code generation [1], navigating web pages [2], and question answering [3]. However,
achieving reliable multi-step reasoning remains a significant frontier in the LLM research [4, 5].

*Work done while at Northwestern University.
TCorrespondence to: Xian Wu <xianwu123@meta.com>, Xinyu Xing <xinyu.xing @northwestern.edu>.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Complex problem-solving tasks, such as mathematical proofs and editing large codebases, often
require generating coherent and logically sound sequences of intermediate steps, forming a reasoning
trajectory. While LLMs can produce fluent text, ensuring the correctness of these multi-step reasoning
trajectories is challenging, as subtle errors introduced at intermediate steps can lead to the failure of
the entire reasoning process [6].

Current state-of-the-art methods for aligning LLMs with desired behaviors, including complex
reasoning, often rely on reward modeling fine-tuning techniques [7] like Proximal Policy Optimization
(PPO) [8], or preference-based methods like Direct Preference Optimization (DPO) [9]. While
effective, these methods typically optimize the model based on preferences or rewards over entire
generated trajectories. However, LLMs are prone to making mistakes at intermediate steps, which can
lead to the failure of the final answer. These fine-tuning methods are not able to effectively pinpoint
and focus on these steps to learn how to handle these points.

In this paper, we propose GPO: Guided Pivotal Optimization, a novel fine-tuning strategy designed
to improve LLM multi-step reasoning capabilities by Focusing on Pivotal Moments. Instead of
treating reasoning trajectories as a whole, GPO breaks down the process to focus on key moments
that are crucial for problem-solving. It first identifies the ‘critical step’ from the reasoning trajectory
generated by the LLM. These critical steps are pivotal moments where the model must proceed with
precision so as to succeed at the problem, and thus, the model should give special emphasis to those
steps. We identify the critical step by estimating the advantage function of each step.

Second, GPO resets the trajectory at the critical step and generates a new trajectory by continuing
from the critical step. The intuition is that by focusing the learning process on trajectories after
these crucial moments, we can more effectively teach the model to navigate challenging reasoning
pathways and improve performance. Note that GPO is a general framework that can be integrated
into existing fine-tuning methods.

While GPO is as simple to implement for most existing fine-tuning optimization algorithms, we
provide a theoretical analysis of the GPO for both online learning and offline preference learning
settings. Empirically, we run GPO on diverse reasoning tasks and existing fine-tuning algorithms to
show the effectiveness and generalizability of GPO.

Specifically, we make the following key contributions in this paper:

* Proposal of GPO: We introduce GPO, a novel fine-tuning strategy that improves LLM reasoning
by identifying critical steps in trajectories and prioritizing learning from these pivotal moments to
improve the reasoning performance.

* Theoretical Analysis: Under natural assumptions, we provide a theoretical analysis of the GPO
for the regret bound in the online learning setting, and prove that GPO can be interpreted as a form
of advantage-weighted RL in the offline preference learning setting.

* Empirical Validation: We conduct extensive experiments on 7 diverse datasets, including general
reasoning, mathematical problem solving, and STEM tasks, across 5 different fine-tuning algorithms
to validate the effectiveness of GPO.

* Observation: We observe that by strategically focusing on learning through critical points, GPO
offers a more targeted and effective learning strategy towards enhancing the complex reasoning
capabilities of LLMs across diverse optimization frameworks.

To improve transparency and inspire future research, we also release the code and data’ to facilitate
reproducibility and further research.

2 Related Work

Since our work aims to improve the reasoning capabilities by identifying critical steps, our work is
related to research in reasoning with LLMs, post-training techniques to enhance LLM reasoning, and
methods for identifying critical steps in RL.

LLM Reasoning. The foundation of LLM reasoning is Chain-of-Thought (CoT) [10], where models
are prompted to generate intermediate step-by-step reasoning before the final answer, which can

*https://github.com/sherdencooper/GPO
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boost the performance on complex reasoning tasks. It aligns with how humans reason, where
we break down the problem into smaller steps and reason about each step before arriving at the
final answer. Subsequent works follow this direction to work on prompting strategies to enhance
reasoning [11, 12, 13]. Beyond prompting, there is a growing trend towards developing and fine-
tuning LLMs specifically optimized for complex tasks with multi-step reasoning processes. Models
like OpenAlI O1 [14] or DeepSeek R1 [15] are examples of such models fine-tuned with high-quality
reasoning trajectories to achieve state-of-the-art performance. Even without explicit CoT prompting,
these models are able to generate step-by-step reasoning trajectories. Our work falls into this category
by providing a fine-tuning strategy to improve the multi-step reliability of reasoning trajectories.

Post-training LLMs for Reasoning. To supervised fine-tune LLMs for reasoning tasks, it typically
requires high-quality annotated datasets [16, 17, 18]. However, the annotation costs of this approach
can be significant. To reduce the cost, one method is to synthesize high-quality data from LLMs. One
approach uses stronger “teacher” LLMs (e.g., GPT-40, Gemini) to generate reasoning demonstra-
tions [19, 15, 20, 21]. However, the cost of these strong LLMs especially for those commercial LLMs
is still high, and recent work also reveals that the fine-tuning performance may be suboptimal due to
the large capacity gap between the teacher and the student LLMs [22, 23, 24, 25, 26]. Thus, recent
work starts to explore the LLM self-improvement, where models learn from their own generated data.
These works often include methods that filter or refine self-generated samples based on feedback
or heuristics [27, 28, 29, 30, 31, 6] or employ advanced prompting techniques during data genera-
tion [32, 33, 32]. Models will be trained on the refined samples to improve themselves. Another
line of approach, different from data synthesis, is online RL learning [15, 34, 35, 36, 37], where the
model interacts with the environment to learn the optimal policy guided by the reward function.

Among the above works, one closely related work to ours for self-improvement is Satori [6], which
employs a strategy of randomly resetting the reasoning process at various points and then exploring
alternative paths from those reset points to improve the quality of the self-generated data. While
similar in use of reset strategy, GPO differs significantly by identifying the critical steps. Besides,
as we will demonstrate in §6.2, this random reset strategy is not optimal compared with GPO.
Furthermore, Satori only focuses on the offline method without accompanying theoretical analysis,
while our method is suitable for both online and offline RL methods, and both provide a theoretical
analysis.

Critical Step Identification. The concept of identifying critical steps within a sequence is not new
in Explainable Reinforcement Learning(XRL), where understanding agent behavior often involves
pinpointing critical states or decisions in a trajectory. Various methods have been developed and
can be categorized into two types: model-based and model-free methods. For model-based models,
they often train a local model to predict the important steps within a trajectory [38, 39, 40, 41]. For
model-free methods, they often rely on value functions to identify the critical steps [42, 43, 44]. Our
method aligns with model-free techniques. However, directly applying traditional XRL methods
to LLM reasoning is challenging because treating generating a single token as an action lacks the
semantic meaning in a reasoning process. In §4, we will detail how GPO adapts the core ideas of
critical step identification from XRL to the context of multi-step reasoning in LLMs.

3 Preliminaries

Markov decision process and problem setting. In this work, we consider a finite-horizon episodic
Markov Decision Process (MDP) defined as M = (S, A, {P}n, {r}n, H,dp), where S is the state
space, A is the action space, H is the episode length, {P};, denotes the transition dynamics, {r}, is
the reward function, and dy denotes the distribution of initial state. Given a policy 7, the agent seeks
to maximize the expected cumulative reward, expressed as E;~.q4, [V (s)], where the value function

is defined as V' (s) = E Zth_Ol rh(sn,an) | so = s, ap ~ 7h(- | sn)|, and rp(sp, ap) denotes the
reward at step h under state—action pair (s, ay).

In our setting, dy denotes the distribution of prompt sg = x. Given a reasoning problem x ~ d,
the goal is to improve a base policy s into a refined policy 7 that maximize the expected reward
over generated responses y ~ m(- | ), where y = (yo,91,...,ymw—1) € Y represents a sequence of
reasoning steps (up to H), typically separated by newlines. Importantly, rather than treating each
generated token as a step, we define each reasoning segment as a step. Since generation is auto-
regressive, each step can be interpreted as an action taken by the agent in an MDP with deterministic
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Figure 1: Overview of our method. Given an initial trajectory generated by the policy 7 for a
reasoning task, GPO segments the trajectory into steps. It then identifies the most critical step via
the MC simulation and resets the policy to the critical step to generate a new trajectory. The new
trajectory is then added to the dataset or online buffer.

transitions. Specifically, we treat the prefix (z,yo, ..., yr—1) as the current state s, and the next
reasoning step yn ~ 7(- | s5,) as the action taken at s, resulting in the next state sp, 1.

Online policy learning and preference optimization. For standard MDPs with known reward
functions, a variety of online policy gradient algorithms — including Proximal Policy Optimization
(PPO) [8] and its recent variant Group Relative Policy Optimization (GRPO) [34]-have been proposed
to iteratively improve a policy through direct interactions with environments. These methods have also
been extensively applied in LLM training to solve complex mathematical or coding tasks [34, 15, 45],
where a clear binary reward function can be easily defined by comparing the LLM-generated output
with gold standard solutions. Formally, PPO optimizes the following objective function:

lyl—1
1 . moYilT, Y<i . mo(yilw, y<i
To0(0) = Erosg, gy, (10) S min ( o(yilz, y<i) A, clip ( o (il T, y< ))71 e +E) Ai) (1)

|y| i—0 T Oo1a (yl‘xv y<1) T Oota (yl|x7 Y<i

where 7 and mg,,, are the current and old policy models, and z, y are questions and outputs sampled
from the question dataset and the old policy 7y, ,, respectively. € is a clipping-related hyper-parameter
introduced in PPO for stabilizing training. A; is the advantage function.

The MDP formulation of preference learning was recently explored in [9, 46, 47]. In this setting, the
true reward function is typically unobservable; instead, we are given an offline dataset of trajectory
pairs D = {(z,y™,y ™)} labeled with human preferences. Prior approaches in reinforcement learning
from human feedback (RLHF) [48, 7] typically follow a two-stage pipeline: (1) learning a reward
function from preference data via the Bradley-Terry(BT) model [49], and (2) training a policy via
the PPO algorithm to maximize the learned reward. In contrast, [9] establishes a direct connection
between the optimal policy 77* and its associated reward function, and proposes a surrogate objective,
referred to as Direct Preference Optimization (DPO) to directly learn the optimal policy from the
offline preference pairs:

m(y" | ) m(y~ | z) )] , @
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where o (-) denotes the sigmoid function, (3 is a temperature parameter, and 7 is a fixed reference
policy. There are variants of DPO that use different loss functions like SimPO [47] and ORPO [46],
or eliminate the need for paired samples, like KTO [46]. We introduce them in detail in Appendix D.

4 Method

At a high level, given a reasoning trajectory y generated by current policy 7 (e.g., T = ), We
identify the most critical reasoning step y, and refine 7 from this point using either an on-policy



Algorithm 1: GPO Optimization Framework

1: Procedure-I: Online Policy Training (PPO-based)
2: Input: Initial LLM policy 70 = Tper, reasoning dataset D,
3. for iteration=1,2,...,7T do

4 D+

5: forn=1,2,... do

6: Random sampling a question x from the reasoning dataset D,

7: Run 7 to generate a K -step reasoning trajectory ¥ = (v, - - -, Y& —1) split by newlines
8: Identify the critical step y,,, with maximal advantage A (2, Yo:i-1; Vi)

9: Reset 7 to y,,, and roll-out 7" to generate trajectory y' = (Y, .., Yk_1)
10: Add trajectory 4’ and the final reward r to D
11:  end for

12:  Optimize 7t with respect to the policy gradient loss (e.g., PPO loss) in Eqn. | on D
13: end for

14: Procedure-II: Preference Data Generation and Optimization (DPO-based)

15: Input: Supervised-finetuned base policy ¢, reasoning dataset D,

16: D« ()

17: for iteration=1,2, ..., T do

18:  Repeat the sampling, trajectory generation using 7, and critical step identification as in
Procedure-I to extract the important step y,, from trajectory y.

19:  Generate two continuations starting from y,,, to obtain a positive trajectory

vy =W, s Yms -+, y;g_l) and a negative trajectory ¥~ = (Yo, - - Yms - Yp_1)
20:  Add the preference pair (z,y",y7) to D
21: end for

22: Optimize 7 with respect to the preference loss (e.g., DPO loss) in Eqn. 2 on D

algorithm such as PPO or an offline preference method such as DPO. Intuitively, revisiting these
pivotal steps enables exploration of potential alternative reasoning paths, overcoming the training
bottlenecks of current policy. To illustrate the core mechanism of GPO, consider the example shown
in Figure 1. The task is It was Sept. 1st, 2021 a week ago. What is the date 24 hours later?. An
initial trajectory sampled from the policy 7 generates a multi-step reasoning process towards the
question; however, it misinterprets the question and gives the wrong answer. GPO first segments
this trajectory into multiple reasoning steps (e.g., S1, .. ..S¢). Here, the state is the sequence of all
previous reasoning steps, and the action is the next reasoning step to be taken. Then, it identifies the
most critical reasoning step via Monte Carlo (MC) estimation of the advantage function from RL. Sy
is identified as the most critical, as the alternative continuation after Sy could yield a correct final
answer, while the continuation after other steps cannot during the MC simulation. Next, it resets
the trajectory at So and generates a new trajectory y’ by continuing from So with the current policy
7, then adds the trajectory y’ to the dataset or online buffer. By focusing on trajectories associated
with the critical step, GPO directs the learning process towards the specific reasoning step where the
policy should focus, thereby enhancing the reasoning performance of the policy.

Identifying the Critical Step via Advantage. We measure the importance of each reasoning
step using advantage functions in RL. For any candidate step y; within a predicted reasoning
trajectory y, its advantage quantifies the incremental value of taking that step, defined as the relative
change in (Q-value when adding y; to the current partial sequence yo.;—1, i.e., A™(z, Yo.i—1;Y:) =
Q™ (%, Y0:i—1;¥i) — Q™ (%, Yo:i—2;¥i—1)" . Here, the Q-function Q™ (x,yo.;—1;y;) estimates the
expected future reward of taking action y; after observing prefix yo.;—1 under an auxiliary policy 7.
Formally, given a problem x with the gold answer %4414, and a predicted trajectory y sampled from

the policy 7, we define: Q™ (x’ Yo:i—1; yi) = Ey?i‘”w,wﬂ(-lx’yl:i) [’I“ ([yo;i, y;}-ei-“i:H—lL ygold)] . The
reward function r(-) compares the completed trajectory (including sampled future steps) with the

ground-truth solution y4.14. The policy ™ governs how future steps are sampled; It can be unbiasedly

*In RL, the advantage function is defined as A(s, az) = Q(s¢, a:)—V (s). In our setting, with deterministic
transitions and zero intermediate rewards, this expression simplifies to the difference between consecutive Q-
values: Q(st, at) — Q(st—1,at—1).



estimated via MC simulations [50] by sampling multiple continuations from the current step under
policy 7. In §6.3, we will evaluate how the number of MC simulations affects the performance of
GPO.

Fine-Tuning with PPO or DPO. Once the most critical reasoning step in a trajectory is identi-
fied—formally, the step with the highest advantage—we refine the policy by exploring alternative
continuations from this step. Instead of treating the entire trajectory uniformly, we reset the policy
to a critical step and sample new rollouts conditioned on it. As we will demonstrate in §5, this
advantage-weighted-style sampling strategy reduces the regret of the final converged policy and
enables more efficient online policy improvement. The resulting high-quality trajectories are then in-
corporated into the training set to guide policy updates. Our framework supports two complementary
optimization methods: (i) online policy-gradient optimization like PPO, which updates the policy
based on reward feedback (Procedure-I in Algorithm 1) and (ii) offline preference optimization like
DPO, which leverages pairwise preferences (Procedure-II in Algorithm 1).

5 Theoretical Analysis
In this section, we present theoretical results and insights related to Algorithm 1.

5.1 Online policy gradient algorithm

Before proceeding, we generalize Procedure-I in Algorithm 1 by sampling the critical step with

P
probability proportional to €74 (%) where v > 0 is a temperature value. The original algorithm
can be viewed as the limiting behavior for a sufficiently large . Since we operate in a finite-horizon
episodic MDP, we evaluate the performance of the online policy gradient algorithm via its regret:

Regret = 1. Z;‘F:l (VO”* (so) — Voﬂt (so)). We begin by stating the following assumption regarding
the (-function.

Assumption 5.1 (Bounded Q-value). Suppose we have a function class F and Q’,{t € F holds for
the Q function of policy wt , Vt = 1,2,...,T. We assume that 0 < Q;{t(sh, ap) < Tmax for all
Q7 (snyan) € F, sn €S, ap € A

Assumption 5.1 is reasonable because reasoning tasks typically involve a bounded final reward . We
further present Theorem 5.2 to bound the regret for the online policy gradient algorithm.

Theorem 5.2. Under Assumption 5.1, with probability 1 — §, we have the following regret bound:

1 < Tlog | A

: t TH|7|
- T _yr < 2
72 (V67 (50) = W (00)) < v Y[ =555 4 CTHY o log( 5=V ) ®)

where C'is a constant and w4, () represents the step-wise concentrability [51] between the optimal
policy 7* and our policy. We also show that an increasing ~ will tighten the regret bound in §C.1,
which validates the importance of our advantage reweighting technique.

5.2 Preference optimization

For the DPO-based optimization in Procedure-II of Algorithm 1, we consider a conceptual variant
inspired by per-step DPO [52, 21], which introduces preference comparisons at each individual
reasoning step, in contrast to the standard DPO that operates over full trajectories. This step-wise
modeling leads to the following result:

Theorem 5.3. Let D consist of tuples (z, [yo:i—1, Y; ), [Yo:i—1,Y; |), where yo.i—1 ~ Trop and both
continuations yli are drawn from Tf(- | ,Yo.i—1), with preferences determined by the advantage
A™ref (2, y0.5-1; +)- Then, the optimal policy from minimizing Eqn. 2 coincides with the solution to
the following advantage-weighted RL objective:

H—-1

B 1 ATl (2, 90013 Yi) 4
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Table 1: Comparison of GPO-enhanced methods against baselines. The better results between
GPO-enhanced and baseline methods are highlighted in bold. Each training result is the average of 3
runs with different random seeds.

. Test Accuracy (%)
Algorithms
BBH MATH GSM8K MMLU MMLUPro AIME-2024 AIME-2025

Base Model 5997 71.60 86.50 54.09 38.80 13.33 16.67
PPO 61.82 79.60 86.96 56.66 47.47 26.67 23.33
GPO-PPO 6348 87.80 87.44 59.39 51.05 30.00 26.67
DPO 63.20 82.40 86.05 57.08 48.28 20.00 20.00
GPO-DPO 64.25 86.80 88.48 58.93 51.93 26.67 26.67
KTO 62.86 77.20 89.31 59.42 49.02 20.00 20.00
GPO-KTO 64.31 79.60 90.25 61.35 50.52 23.33 26.67
SimPO 61.97 72.20 86.58 56.93 45.70 20.00 23.33
GPO-SimPO 62.58 74.00 88.35 57.44 47.74 23.33 26.67
ORPO 61.75 75.20 87.26 57.72 46.66 20.00 20.00
GPO-ORPO 62.28 78.20 88.17 58.72 48.65 23.33 23.33

In summary, Theorem 5.3 shows that per-step DPO, with preference determined by the advantage
function, corresponds to advantage-weighted RL, where the advantage-based preferences implicitly
reweight the log-likelihood at each step. Compared to standard offline supervised fine-tuning (SFT),
this reweighting allows the model to focus more on critical decision points, leading to more targeted
updates and enhanced overall performance [53, 54]. We provide the proof details in Appendix C.2.

6 Experiments

Implementation Details. We primarily employ the DeepSeek-R1-Distill-Qwen-7B model as the
base model for our experiments, selected for its instruction-following and reasoning capabilities, as
well as training efficiency. To further enhance data quality and reduce training costs, we follow prior
works [19, 55, 6] to filter the data based on question difficulty. For advantage function estimation, we
use 4 MC samples for each step. Additional implementation details are available in §E.2.

Baseline Methods. To evaluate the enhancement provided by GPO, we compare the performance of
several established fine-tuning algorithms against their GPO-enhanced counterparts. The baseline
methods include online RL method PPO, and preference-based algorithms DPO, KTO, SimPO, and
ORPO. Here, we only consider one online RL method because PPO is one of the most popular online
RL methods widely used in the community, and the computation resources needed for online RL are
much more significant than those for offline RL methods. Consistent with prior work on reasoning
meibitasks [15, 55, 19], we utilize a rule-based reward function for the PPO implementation. For a
fair comparison, identical hyperparameters are used for each baseline method and its corresponding
GPO-enhanced version. We use the LoRA method [56] for fine-tuning. Detailed hyperparameter
configurations are provided in §E.3.

Dataset and Evaluation Metrics. We evaluate the effectiveness of our method on 7 diverse datasets
covering a range of reasoning tasks. For mathematical problem solving, we use GSM8K [57],
MATH-500 [58], AIME-2024 [59], and AIME-2025 [60]. For general reasoning, we utilize BIG-
Bench Hard (BBH) [61]. For STEM problem solving, we employ MMLU [62] and MMLUPro [63].
Standard train/test splits are used for GSM8K, MATH, MMLU, and MMLUPro. Following prior
work [19, 64, 65], the AIME training set consists of problems from 1983-2023. For BBH, we
randomly split the dataset into training set and test set by sub-task. Further dataset statistics can be
found in §E.1. Accuracy is evaluated using zero-shot pass@1 accuracy via greedy decoding. We use
different random seeds for training and report the average performance over 3 runs.
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Figure 2: Ablation study results on BBH and MATH. We compare the performance of the standard
GPO method and Satori’s strategy that randomly identifies the critical step in the trajectory. Each bar
represents the average performance of 3 runs, with error bars indicating the standard deviation.

6.1 Main Results

The results are presented in Table 1. The table clearly demonstrates the effectiveness and gen-
eralizability of GPO. Across all 7 datasets and all 5 optimization algorithms, integrating GPO
consistently leads to improved test accuracy compared to the respective baseline method. This con-
sistent improvement underscores the robustness of leveraging critical step identification to enhance
fine-tuning.

Notably, the performance gains achieved by GPO are often substantial. For instance, GPO-PPO and
GPO-DPO show significant accuracy increases on the MATH dataset compared to standard PPO
and DPO. Similar positive trends are observed across other datasets like MMLUPro and the AIME
benchmarks. While the magnitude of improvement varies depending on the specific dataset and
baseline algorithm, the consistent improvement validates our core hypothesis: focusing learning
on critical reasoning steps provides a more effective training signal, leading to enhanced reasoning
capabilities in the fine-tuned models.

6.2 Ablation Study

To better understand how learning from the critical steps contributes to performance improvement,
we conduct an ablation study on the BBH and MATH datasets to analyze the impact of critical step
identification. Satori [6] has shown that randomly locating one step in the trajectory, then resetting
and exploring the trajectory from that step, could help augment the training data and improve the
performance of RLHF. Inspired by this, we randomly locate the critical step in the trajectory and
compare the performance of the standard GPO method. The results are presented in Figure 2.

The GPO method consistently outperforms Satori’s random selection baseline across both datasets.
The difference is particularly obvious on MATH, where PPO with GPO achieves 87.9% accuracy,
significantly higher than the 79.9% achieved when using Satori’s strategy. These findings suggest
that the performance gains of GPO are not merely due to the random resetting mechanism itself.
Instead, the identification and learning from critical steps, leading to a more effective training signal
for crucial points, is a key factor driving the improvement observed during training.

6.3 Monte Carlo Simulation and Model Size Scaling

To understand the scalability of GPO, we investigate its performance to two key factors: the number
of MC simulations used for critical step identification and the size of the base model. First, we
vary the number of MC simulations from 2 to 16. Second, we apply GPO to models of varying
scales, specifically the DeepSeek-R1-Distill-Qwen series (1.5B, 7B, 14B, 32B parameters) and the
DeepSeek-R1-Distill-Llama-70B model. These experiments are conducted on the MATH dataset,
using both DPO and KTO as the underlying optimization algorithms. The results are presented in
Figure 3.

The illustration reveals that increasing the number of MC simulations generally improves the per-
formance benefit of GPO. This suggests that a more accurate estimation of the advantage function,
derived from more simulation samples, can lead to better training performance. However, the perfor-
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Figure 3: Scaling behavior of GPO. Performance impact of varying number of MC samples (left)
and applying GPO across different model sizes (right) on MATH using DPO/KTO.

mance gains appear to saturate beyond 12 simulation samples, potentially because the estimation of
the advantage function converges. It suggests that the overhead of GPO can be reduced by achieving
a balance between the number of simulation samples and the performance gain.

Furthermore, the results also demonstrate that GPO consistently outperforms the corresponding
baseline optimization algorithms (DPO/KTO without GPO) across all tested model sizes, from
1.5B to 70B parameters. This consistent improvement highlights the robustness of the GPO and its
applicability to larger, more capable language models.

7 User Study

We explore whether GPO’s identification of ‘critical steps’ aligns with humans. We conduct a user
study to evaluate the correlation between steps identified by GPO and those by human evaluators.

Study Setup. We designed a study involving 50 participants, recruited from college students.
Participants are presented with five reasoning problems, each accompanied by a corresponding
reasoning trajectory generated by the base LLM. For each trajectory, participants are asked to identify
the single step they believed was the most critical point during the reasoning process for the final
answer. They are presented with four optional steps for each problem: one step identified by GPO,
while the other three options are randomly selected. Further details regarding the specific questions
and trajectories are provided in Appendix F.

Results and Discussion. The results indicate a strong alignment between the critical steps identified
by GPO and human judgment. Across the five questions evaluated, the percentage of participants
who selected the GPO-identified step as the most critical was 44%, 68%, 88%, 76%, and 56%,
respectively. This high degree of agreement suggests that the steps pinpointed by our process are also
often recognized by humans as the crucial points. These findings provide qualitative validation for
the core mechanism of GPO, supporting the hypothesis that its empirical improvements come from.

8 Discussion and Limitations

While GPO shows promise in enhancing LLM reasoning, we acknowledge several limitations and
areas for future work.

A key limitation is the computational overhead from the Monte Carlo estimation of future returns at
each step. This adds a non-negligible cost, increasing PPO training time by approximately 1.9x and
offline data preparation by 1.8x, a common challenge for related methods [21, 66, 32]. However, this
trade-off is manageable. First, as shown in §6.3, performance gains saturate after a certain number
of simulations, allowing for a practical balance between accuracy and cost. Second, to adapt GPO
for very long trajectories, we employ a simple heuristic of grouping multiple generation steps into a
single logical step. We validated this approach on a challenging long-context reasoning subset of
BigBenchExtremeHard (BBEH) [67], where this simple grouping strategy enabled GPO to achieve
36.0% accuracy—a substantial +7% improvement over the DPO baseline. This result confirms that
GPO can be effectively scaled to complex tasks, and we provide the experiment details in §E.5.



Furthermore, there are several promising avenues for future research. To further enhance efficiency
in the online setting, the current Monte Carlo estimation could be replaced with a more sample-
efficient alternative like Generalized Advantage Estimation (GAE)[8], leveraging the value network
trained by the PPO algorithm. Beyond efficiency, open questions remain regarding the identification
of critical steps. For instance, could model-based explainability techniques[38, 39] offer higher
fidelity compared to our model-free approach? Investigating hybrid methods, such as using powerful
commercial LLMs like GPT-4o to assist in identifying critical steps, could also be a fruitful direction.

Finally, evaluating the quality of identified critical steps currently relies on downstream task per-
formance and expensive, hard-to-scale human judgment. Benchmarks like ProcessBench [68] only
focus on identifying first incorrect step in a failed trajectory, which is not fully aligned with the scope
of critical step identification. Developing automated metrics or benchmarks to reliably assess critical
step quality and relevance would significantly benefit future research and accelerate iteration on
methods like GPO. We hope our work encourages further exploration of these important questions.

9 Conclusion

In this work, we introduce GPO, a strategy to enhance LLLM reasoning by identifying critical steps
within generation trajectories. Supported by theoretical guarantees, GPO demonstrably boosted per-
formance across seven diverse reasoning datasets when integrated with five optimization algorithms,
highlighting its generalizability. Furthermore, the user study confirms that the critical steps identified
by GPO align well with human judgments of pivotal moments in reasoning failures. We believe
GPO represents a valuable step towards more robust and reliable reasoning in LLMs, and we hope it
inspires further research into targeted trajectory optimization and analysis.

Acknowledgement

This work was supported in part by NSF Grants 2225234 and 2225225. This research was also
supported in part through the computational resources and staff contributions provided for the Quest
high performance computing facility at Northwestern University which is jointly supported by the
Office of the Provost, the Office for Research, and Northwestern University Information Technology.
We thank the anonymous reviewers for their constructive feedback and valuable suggestions that
helped improve this work.

10



References

[1] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

[2] Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for
building autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

[3] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhut-
dinov, and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop
question answering. In Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2018.

[4] Chaojie Wang, Yanchen Deng, Zhiyi Lyu, Liang Zeng, Jujie He, Shuicheng Yan, and Bo An.
Q*: Improving multi-step reasoning for llms with deliberative planning. arXiv preprint
arXiv:2406.14283, 2024.

[5] Evan Wang, Federico Cassano, Catherine Wu, Yunfeng Bai, Will Song, Vaskar Nath, Ziwen
Han, Sean Hendryx, Summer Yue, and Hugh Zhang. Planning in natural language improves llm
search for code generation. arXiv preprint arXiv:2409.03733, 2024.

[6] Maohao Shen, Guangtao Zeng, Zhenting Qi, Zhang-Wei Hong, Zhenfang Chen, Wei Lu,
Gregory Wornell, Subhro Das, David Cox, and Chuang Gan. Satori: Reinforcement learning
with chain-of-action-thought enhances 1lm reasoning via autoregressive search. arXiv preprint
arXiv:2502.02508, 2025.

[7] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in neural information processing systems,

2022.

[8] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[9] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
Advances in Neural Information Processing Systems, 2023.

[10] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 2022.

[11] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 2023.

[12] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas
Gianinazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph
of thoughts: Solving elaborate problems with large language models. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2024.

[13] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. arXiv preprint arXiv:2203.11171, 2022.

[14] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv
preprint arXiv:2412.16720, 2024.

[15] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,

Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

11



[16] Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu
Chen. Mammoth: Building math generalist models through hybrid instruction tuning. arXiv
preprint arXiv:2309.05653, 2023.

[17] Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models. arXiv preprint arXiv:2309.12284, 2023.

[18] Yuyang Ding, Xinyu Shi, Xiaobo Liang, Juntao Li, Qiaoming Zhu, and Min Zhang. Unleashing
reasoning capability of llms via scalable question synthesis from scratch. arXiv preprint
arXiv:2410.18693, 2024.

[19] Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi,
Luke Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. s1: Simple
test-time scaling. arXiv preprint arXiv:2501.19393, 2025.

[20] Zhihui Xie, Liyu Chen, Weichao Mao, Jingjing Xu, Lingpeng Kong, et al. Teaching language
models to critique via reinforcement learning. arXiv preprint arXiv:2502.03492, 2025.

[21] Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar.
Rl on incorrect synthetic data scales the efficiency of llm math reasoning by eight-fold. Advances
in Neural Information Processing Systems, 2024.

[22] Jongwoo Ko, Sungnyun Kim, Tianyi Chen, and Se-Young Yun. Distillm: Towards streamlined
distillation for large language models. arXiv preprint arXiv:2402.03898, 2024.

[23] Tao Huang, Yuan Zhang, Mingkai Zheng, Shan You, Fei Wang, Chen Qian, and Chang Xu.
Knowledge diffusion for distillation. Advances in Neural Information Processing Systems,
2023.

[24] Chen Zhang, Yang Yang, Jiahao Liu, Jingang Wang, Wei Wu, Benyou Wang, and Dawei Song.
Lifting the curse of capacity gap in distilling large language models.

[25] Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large
language models. arXiv preprint arXiv:2306.08543, 2023.

[26] Alyona Vert. Everything you need to know about knowledge distillation, 2025. Accessed:
2025-05-04.

[27] Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. arXiv preprint arXiv:2401.01335,
2024.

[28] Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft:
Reasoning with reinforced fine-tuning. arXiv preprint arXiv:2401.08967, 3, 2024.

[29] Ansong Ni, Jeevana Priya Inala, Chenglong Wang, Oleksandr Polozov, Christopher Meek,
Dragomir Radev, and Jianfeng Gao. Learning math reasoning from self-sampled correct and
partially-correct solutions. arXiv preprint arXiv:2205.14318, 2022.

[30] Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia,
Peter J Liu, James Harrison, Jachoon Lee, Kelvin Xu, et al. Beyond human data: Scaling
self-training for problem-solving with language models. arXiv preprint arXiv:2312.06585,
2023.

[31] Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei Gao, and Min Lin. Chain of preference
optimization: Improving chain-of-thought reasoning in llms. Advances in Neural Information
Processing Systems, 2024.

[32] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 2022.

[33] Fangkai Jiao, Zhiyang Teng, Bosheng Ding, Zhengyuan Liu, Nancy F Chen, and Shafiq Joty.
Exploring self-supervised logic-enhanced training for large language models. arXiv preprint
arXiv:2305.13718, 2023.

12



[34] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

[35] Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. Vineppo: Unlocking rl potential for 1lm reasoning
through refined credit assignment. arXiv preprint arXiv:2410.01679, 2024.

[36] Jonathan D Chang, Wenhao Zhan, Owen Oertell, Kianté Brantley, Dipendra Misra, Jason D
Lee, and Wen Sun. Dataset reset policy optimization for rlhf. arXiv preprint arXiv:2404.08495,
2024.

[37] Tianyu Zheng, Tianshun Xing, Qingshui Gu, Taoran Liang, Xingwei Qu, Xin Zhou, Yizhi Li,
Zhoufutu Wen, Chenghua Lin, Wenhao Huang, et al. First return, entropy-eliciting explore.
arXiv preprint arXiv:2507.07017, 2025.

[38] Wenbo Guo, Xian Wu, Usmann Khan, and Xinyu Xing. Edge: Explaining deep reinforcement
learning policies. Advances in Neural Information Processing Systems, 2021.

[39] Jiahao Yu, Wenbo Guo, Qi Qin, Gang Wang, Ting Wang, and Xinyu Xing. {AIRS}: Expla-
nation for deep reinforcement learning based security applications. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 7375-7392, 2023.

[40] Zelei Cheng, Xian Wu, Jiahao Yu, Sabrina Yang, Gang Wang, and Xinyu Xing. Rice: Breaking
through the training bottlenecks of reinforcement learning with explanation. arXiv preprint
arXiv:2405.03064, 2024.

[41] Zelei Cheng, Xian Wu, Jiahao Yu, Wenhai Sun, Wenbo Guo, and Xinyu Xing. Statemask:
Explaining deep reinforcement learning through state mask. Advances in Neural Information
Processing Systems, 2023.

[42] Alexis Jacq, Johan Ferret, Olivier Pietquin, and Matthieu Geist. Lazy-mdps: Towards inter-
pretable reinforcement learning by learning when to act. arXiv preprint arXiv:2203.08542,
2022.

[43] Sandy H Huang, Kush Bhatia, Pieter Abbeel, and Anca D Dragan. Establishing appropriate
trust via critical states. In 2018 IEEE/RSJ international conference on intelligent robots and
systems (IROS). IEEE.

[44] Dan Amir and Ofra Amir. Highlights: Summarizing agent behavior to people. In Proceedings
of the 17th international conference on autonomous agents and multiagent systems, pages
1168-1176, 2018.

[45] Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona
Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Riviere, et al. Gemma
3 technical report. arXiv preprint arXiv:2503.19786, 2025.

[46] Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto:
Model alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

[47] Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
reference-free reward. Advances in Neural Information Processing Systems, 2024.

[48] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 2017.

[49] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 1952.

[50] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction. MIT press
Cambridge, 1998.

[51] Hyungkyu Kang and Min-hwan Oh. Adversarial policy optimization for offline preference-based
reinforcement learning. In Proc. of ICLR, 2025.

13



[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-
dpo: Step-wise preference optimization for long-chain reasoning of llms. arXiv preprint
arXiv:2406.18629, 2024.

Haoran Xu, Xianyuan Zhan, Honglei Yin, and Huiling Qin. Discriminator-weighted offline
imitation learning from suboptimal demonstrations. In International Conference on Machine
Learning. PMLR, 2022.

Zhang-Wei Hong, Pulkit Agrawal, Rémi Tachet des Combes, and Romain Laroche. Harness-
ing mixed offline reinforcement learning datasets via trajectory weighting. arXiv preprint
arXiv:2306.13085, 2023.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung- Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR,
2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

AIME. Aime 2024 problem set. https://huggingface.co/datasets/Maxwell-Jia/
AIME_2024, 2024.

AIME. Aime 2025 problem set. https://huggingface.co/datasets/opencompass/
AIME2025, 2025.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Sebastian Gehrmann, Yi Tay, Hyung Won
Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei.
Challenging big-bench tasks and whether chain-of-thought can solve them. arXiv preprint
arXiv:2210.09261, 2022.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. Proceedings of the
International Conference on Learning Representations (ICLR), 2021.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo,
Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and
challenging multi-task language understanding benchmark. In The Thirty-eight Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2024.

Edward Beeching, Shengyi Costa Huang, Albert Jiang, Jia Li, Benjamin Lipkin, Zihan Qina,
Kashif Rasul, Ziju Shen, Roman Soletskyi, and Lewis Tunstall. Numinamath 7b tir, 2024.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
2024.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuangi Tan, Chang
Zhou, and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large
language models. arXiv preprint arXiv:2308.01825, 2023.

Mehran Kazemi, Bahare Fatemi, Hritik Bansal, John Palowitch, Chrysovalantis Anastasiou,
Sanket Vaibhav Mehta, Lalit K Jain, Virginia Aglietti, Disha Jindal, Peter Chen, et al. Big-bench
extra hard. arXiv preprint arXiv:2502.19187, 2025.

14


https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
https://huggingface.co/datasets/opencompass/AIME2025
https://huggingface.co/datasets/opencompass/AIME2025

[68] Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng
Liu, Jingren Zhou, and Junyang Lin. Processbench: Identifying process errors in mathematical
reasoning. arXiv preprint arXiv:2412.06559, 2024.

[69] Yuda Song, Yifei Zhou, Ayush Sekhari, Drew Bagnell, Akshay Krishnamurthy, and Wen Sun.
Hybrid RL: Using both offline and online data can make RL efficient. In Proc. of ICLR, 2023.

[70] Xuefeng Liu, Hung TC Le, Siyu Chen, Rick Stevens, Zhuoran Yang, Matthew R Walter, and
Yuxin Chen. Active advantage-aligned online reinforcement learning with offline data. arXiv
preprint arXiv:2502.07937, 2025.

[71] Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without
reference model. arXiv preprint arXiv:2403.07691, 2024.

[72] Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yonggiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 3: System Demonstrations), 2024.

15



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we clearly state the scope of the paper and the
main contributions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In §8, we discuss the limitations of the work performed by the authors,
including the overhead of the proposed method as well as other potential limitations.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: In §5, we provide the full set of assumptions and a complete (and correct)
proof for the main theoretical results. In §C.1, we provide a complete proof for the main
theoretical results.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In §6, we provide the full set of experimental results for the proposed method.
In Appendix E, we provide the implementation details for the experiments. We also release
the code for our method in the supplemental material.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code as well as the data in the supplemental material, with
instructions for how to run the code.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Appendix E, we provide the experimental setting/details for the proposed
method, including train/test splits, hyperparameters, and optimizer settings.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In our experiments, we report the mean results across 3 runs and show the
error bars in the figures.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: In Appendix E, we provide the compute resources used for the experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and we believe that the research
conducted in the paper conforms to the Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Appendix A, we discuss the potential positive societal impacts and negative
societal impacts of our work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The data we used in our experiments are commonly used benchmarks in the
community and do not pose any safety risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit the creators of the assets and mention the license and terms
of use.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We have a detailed README file for the assets we released.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: In Appendix F, we provide the full text of instructions given to participants as
well as details about compensation.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: In Appendix B, we discuss that the user study we conducted is exempted from
IRB review and poses no harm to the participants.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We only use LLM for formatting purposes during paper writing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

A Broader Impact

Beyond enhancing the reasoning capabilities of LLMs, GPO holds significant potential for advancing
the trustworthiness and transparency of these models. By employing our method, we can identify
and highlight the critical steps within the reasoning processes of LLMs. This capability not only
aids in demystifying the decision-making pathways of these models but also empowers users to gain
a deeper understanding of how conclusions are reached. Consequently, this increased clarity can
foster greater trust in the outputs generated by LLMs. Furthermore, by making the reasoning process
more transparent, stakeholders can more easily verify and validate the model’s decisions, thereby
enhancing the overall reliability and acceptance of LLMs in various applications. There could be
potential negative societal impacts of our work. For example, if the critical steps are not properly
highlighted, it could lead to misinformation and harm the trust in LLMs. However, we believe that
the potential benefits of our work outweigh the potential risks, as we open-source our method and
inspire more research on the critical steps identification in LLMs.

B Ethics Considerations

Our work involves the use of a user study to evaluate whether the identified critical steps align with
human preferences. We have detailed the instructions we gave to participants in Appendix F to make
it transparent and reproducible. The questions we designed only evaluate the critical steps; thus,
they pose no harm to the participants. We consult the IRB office at our institution and receive an
exemption for this study. Moreover, we do not collect any sensitive information from the users.

C Theory

C.1 Online policy gradient algorithm

First, we introduce the performance difference lemma from [36].
Lemma 1 (performance difference lemma [36]). For any policy w, ' and reward function r, we have

H-1

Vi (s0) = Vi (50) = D Eaypaz [(QF (s1), Th(sn) — mh(sn))] 5)

h=0
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Based on the performance difference lemma, we can rewrite the regret as
T T H-1

regret = > (Vi (s0) = Vi (s0)) = 3° 3 By e [{QF (s0). 77 (1) — wh(sn))] (6)

t=1 t=1 h=0

where QZ’ (.) is the estimated Q function for the policy 7 and df~ denotes the state-action visitation

measure given the optimal policy 7*. So we decompose the above equation to be

T H-1

regret = Z Z EShNdZ* [<Q21(Sh)a Th(sn) — 7"2(5}1»]
t=1 h=
r o1

+ Y By, [(QF (s0) = QF (sn), 7, (sn) — 7 (sn))]
t=1 h=0
We present the following theorem to bound the term (1).
Theorem C.1. Suppose Assumption 5.1 holds, we have

T H-1
SN o [(Q7 ()i n) — h(50))] < oy A
t=1 h=0
Proof of Theorem C.1. First, we decompose term (1) into two parts.
(QF (sn), 7 (sn) — i (sn)
=(QR (sn). i (sm) = m" (s) + (@R (sn). " (s) — eh(s)
h

<(QF (sn), mi(sn) — miF (sn)) + 1QF (su)llsollm ™ (s1) — 7 (sn)

By Assumption 5.1, we have ||Qgt (s2)|loo < Tmax, which further implies

(QF (sn). mh(sn) — mh(sn))
H(s

<(QF (sn)ymi(sn) = 37 (50) + Ponax I (50) = 7h ()

(term(1))

(term(2))

@)

Note that the policy update formula for the online policy gradient algorithm has a closed-form

expression [51]

1 At
t41 _ t nQp (sn)
w0 (sp) = 7y, (sp)e1<n
h Zt(sp) "

where Z} (sp,) is a normalization factor. Take the logarithm over both sides, and we have

nQ7 (sn) = log ZL (s) +log w (s1,) — log 7 (s1)
Thus,
(QF (sn), w1 (s) — 7+ (s))

1
=<5(10g Zh(sn) +log m ™ (s) — log m, (sn)), i (sn) — 75, (sn))

®

C))

Note that log Z} (sn) >_,[7* (alsn) — 7 (als,)] = 0. We can reorganize the above equation as

(QF (sn), mi(sn) — 7 (sn))

= = LKL )7 () + KLl ()7 )

— LKL sl imh(s0)
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Note that by Pinsker’s inequality, we have

7 (sn) — mh (sl < \/ KLyt (sp)||7t (sn)) (10)

We further obtain the following bound for <Q“t (sn), 75 (sn) — mi 't (s)):
~ t *
(@R (sn), i (sn) = 7" (1)

<~ SKL(m It () + L KL (517 o)

1
~ 5, m (sn) = 7 (W1

Therefore, we have the following upper bound for <Qf (sn), 7 (sn) — mk (sn)):

i (sn) — 7, (sn))
T (sn) i (sn) — i (s)) +(QF (sn), i (sn) — mh(sn))

S;[KL(WZ(%)HWZ(S}L)) = KL(m;(si)llmy, ™ (s1))] + rmaellw, ™ (sn) = 7 (1) |1

2
N7 max

< [ Ly, (sn)l 1 (sn)) — K Ly (sn)l [, (sn))] + %

Summarizing over all horizons and over all iterations, we have

T H-1 -
> Z E,, <z (QF (sn),m(sn) — m,(sn))
T

SZZ sndr” { [K Ly (sn)l|f, (sn)) — K L(, (sn) [, (sn)] +2777”max}
t=1 h=0
H—-1 1

=) E, ar { [KL(m (sn)l |7 (sn)) — K L(mj; ()| [m, " (sn)] +2777”maxT}
h=0

Note that initially 7! (ay|sy) is a uniform distribution over the action space .A. We further have

T H-1

SN By (QF (1), 7 5m) — mh(on)
t=1 h=0
H-1
log | A|
< Z EshNd;{ ( n + 5 mde

h=0

Letn =,/ 21°g ‘?I and we get

M=

H-1
Y Egap (QF (sn),mh(sn) =, (sn)
1 h=0

H-1
1
< Eshmd7T ( = |A| T] m'}xT)
h n 2
h=0
Tlog|A
:Tmaa:H Og‘ |
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Algorithm 2: Q function estimation

1: Input: Num of rollout K, Current policy 7*, Reward r, Hyperparameter 7

2: Initialize: D; = ()

3:fork=1,2,...,K do

4  Collect one trajectory {( so, af, sk ak,. .. sk ak )Y

5:  Compute the advantage A™ (s,a) = Q™ (s,a) — V™ (s) for each (s, a).

6:  Sample (s, a) with probability proportional to exp(yA(s, a)). Denote the sampled

state-action pair as (sk | alfn)
7:  Reset 7t to s¥ and follow 7* to generate a trajectory {(sk ab, ... sk, ak)).
8:  Compute ¢¥, = Zf[ .rjandadd (s& aF yk ¢F)into D,.
9: end for
10: Compute Q™ = argminEp, [(f(s,a) — q)?].
f

We present Algorithm 2 to obtain the estimate th function.

Note that under Algorithm 2, we actually reweight the state-action occupancy, i.e., reweighted
state-action occupancy

47 (s,a) = df} (s,a)e’™” /7, (s)
where Z},(s) is a normalization factor

Zn(s Z d7r (s,a) 6%4 "(s0)
acA

Then, we have the following lemma:
Lemma 2 ([69]). With probability 1 — 0, Algorithm 2 guarantees that, for everyt =1,2,...,T and
h=1,2,....H

0/2

- t r2 . log(TH|F|/6
E ey i [OF (51 a) — QF (smra1)] < o8(TH|71/9)

K

where C' is an absolute constant.
Now, we bound term (2). Note that

shNd"' [<Qh (sh) L (Sh)vﬂ' (sh) _TrltL(Sh)ﬂ

<IE, ~ar* [QF (sn) — (Sh)ﬂT (su)ll + |Eq, <qr- [QF (1) — QF (sn), mh(sn)]]
=IE (sh,an)~d}" [Qh (Shaah) o (Shaahm
1By, o aneert (o) [QF (30 an) — QF (sn, an)]|

t ANt 2
S\/E(sh,ah)ng* [(Qﬂ(sh,ah) - QZ'(Sh,ah)> ]

A . 2
+ \/Eswdg*,ahw;;(ahs,t) [(Qﬁ(sh,ah) - Q5 (Sh,ah)> }

helH] (s,a)eSx.A

. 2
<2 (max sup  w(s,a, h)) E (o an)~d? {(Qf(smah) - Q7 (smah)) }

Cr?

< Hl ax

log(TH|F|/§
< 08( 71/9) max sup w(s,a,h,y)
K he[H] (s,a)ESxA

where w(s, a, h,v) = dé; ((Ss,aa)) is the density ratio between df (s, a) and d}, (s, a) and C'is a constant.
h\?
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Therefore, with probability 1 — §, we have

T H—-1 X
Z Z By nar [(QF (51) = @ (sn), 75 (sn) — 71, (sn))] (11
t=1 h=0
2
<TH Cr2.. log[((TH|]:|/5) max  sup  w(s,a,h,7) (12)

helH] (s,a)eSx.A
(13)

Now, we would like to show that the density ratio will decrease with an increase in .

Based on Theorem 1 in [70], we can rewrite df (s, a) as df (s, a) = d5' (s, a)m'+ 1 (als) The density
ratio w(s, a) is
df (5,0) ¥4 df (s, )7 (als)"
dy’ (s, a)wt*(als)7

Suppose d7 ' (s,a) o exp(B1A™ (s,a)) and 71 (als) o exp(B2A™ (s,a)) for some parameter
B1 < Ba. This is reasonable since the updated policy 7! is better than the current policy 7. Take
the logarithm and we have

log w(s,a, h,) =logdf (s,a)+ log (Z 6(51+627)A"*(s,a)> — (B1 + o)A (s,a)  (14)
A

Partial derivative of log w(s, a, h, ) with respect to ~ is:

S AA™ (s, a)ePrHBmAT (s.0)
S e(B1+B27)A™" (s,a)

0
g, (logw(s,a:h,7)) = B

- A”*(s,a)] (15)

Note that the largest density ratio happens for a* = argmaz, A™ (s, a).Due to the softmax function
in the gradient, we see that for a*, the derivative is negative, meaning that by increasing -y, the regret
bound will decrease.

C.2 Preference optimization

Proof. We follow the proof strategy outlined in Theorem 6.1 of [21]. To derive the desired result, we
begin with the key observation that DPO [9] is equivalent to optimizing a KL-regularized expected
reward objective, where the reward function is used to define preferences via the Bradley-Terry model.
Specifically, the optimal policy 7*(- | -) that maximizes the following regularized objective:

mT‘?X Ez~u,y~7r(-|x) [T(.’I},y)] - BDKL (71'( | .Z‘) || ﬂ-ref<' ‘ .’II))

is given in closed form as:

7y | 2) o Trly | 2) - exp (’"(’;y)) | (16)

This optimal policy can be recovered by applying DPO to preference-labeled pairs (z, y1, y2), where
preferences are sampled from the Bradley-Terry model [49] defined by the reward function r:
exp(r(z,y1))
. (17)
exp(r(z, y1)) + exp(r(z, y2))

py1 =y | @) =

Given this background, we consider preference pairs of the form (z, [yo.i—1, ¥; ], [Yo:i—1,¥; |), where
both continuations are sampled from the 7, ¢: yh ~ et | T yoio1)s Y~ Tret(c | T, Y0iio1),
and the preference is determined based on the advantage estimates A™ < (z, yo.;—1; -), Combined
with Eqn. 16, this yields the following equation:

ATres (g;,yo;i—ﬁyi)) (18)

ﬂ'i(yi | x,?Jo:i—ﬁ X Wref(yi | 13,y0:i—1) + €xXp ( 3

Moreover, since the optimal advantage-weighted RL policy that maximizes Eqn. 18 coincides with
the solution in Eqn. 4, the proof is complete.
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D Additional Preference Optimization Objectives

Beyond the DPO objective described in the main text, several other preference optimization methods
have been developed. These methods also typically operate on an offline dataset of preference pairs
D = {(x,y",y ")}, where yT is the preferred response and y~ is the dispreferred response given an
input . The policy being optimized is denoted by 7y, with 6 being its parameters, and s is a fixed
reference policy.

ORPO [71] introduces an objective that penalizes the model for assigning low likelihood to preferred
responses, while simultaneously ensuring that preferred responses have higher odds than dispreferred
ones. For the single preference pair (z,y™*, y ™), the ORPO loss is:

po(y™|z) po(y”|z) )

L o,y ,yT)=—1lo Flz) — Mo a(lo —1lo
ORPO( [ ) ) ) gp@(y ‘ ) g gl_pa(y+|x) 1_p6(y,|x)

where py(y|z) = exp (I?l\ log g (y|x)) is a length-normalized likelihood for sequence y, log g (y| )

is the sum of log-probabilities of tokens in y, o(+) is the sigmoid function, and A is a weighting
coefficient. This formulation directly encourages the policy to generate ¥ and ensures its odds are
favorable compared to y .

SimPO [47] offers a modification of the DPO-style loss by incorporating sequence length normaliza-
tion directly into the log-probability difference and adding a margin term ~. The SimPO loss for a
preference pair is:

-B

_ log o (y+|x log 7o (y~ |z
Lsimpo(70: 2,4y ):_log(T(ﬁ gmo(y*tlz) g7o(y” | )_7),

ly*| ly~|
where [ is a constant that controls the scaling of the reward difference. This objective aims to

maximize the margin between the length-normalized log-likelihood of the preferred response and
that of the dispreferred response.

KTO [46] introduces an alignment approach rooted in prospect theory. Instead of optimizing
preference likelihoods, KTO focuses on directly maximizing the utility of each individual generation
y given an input x. A distinctive characteristic is its reliance on a binary signal for every input-output
pair (z,y) € D, classifying y as either desirable or undesirable for 2. Consequently, KTO does not
inherently require paired preference data (i.e., y™ vs y ). The loss for a single such sample (z, ) is
formulated to be minimized and is given by:

Ap (1 =0 (B (re(z,y) — 2z0))) if y is desirable for x

Lxto(Tg, Tref; T, Y) = {)\U (1—0(B(20 —re(m,y)))) ify is undesirable for x

In this formulation, rg(z, y) = log :rif(é“z)) represents the log-probability ratio of the current policy

Ty against a fixed reference policy m.s. The term 2o serves as a reference point related to the KL
estimate. /3 is a hyperparameter modulating risk aversion, and Ap, Ay are positive hyperparameters
that weight the contributions from desirable and undesirable outputs, respectively. This structure
allows KTO to process feedback on individual generations, and if paired data is available, each part
of the pair (y*, y~) would contribute its own loss term based on its desirable/undesirable status.

E Additional Experiment Details
In this section, we provide additional details on the experiments.

E.1 Dataset Details

As mentioned in §6, we utilize established train/test splits for several benchmarks. For GSM8K,
MATH, MMLU, and MMLUPro, we adopt their standard train/test distributions. Specifically for
BBH, the dataset is randomly partitioned into training and test sets at the sub-task level. For the
AIME dataset, problems from the years 1983-2023 constitute the training set, while problems from
2024-2025 form the test set. Detailed statistics for each dataset, including the number of samples in
the training and test sets, and the source of the dataset, are presented in Table 2.
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Table 2: Dataset Statistics: The table presents the number of training and test samples for each
dataset, along with the source of the dataset.

Dataset # Train Samples # Test Samples Source

GSM8K 7470 1320 https://huggingface.co/datasets/openai/gsm8k

MATH 12000 500 https://github.com/openai/prm800k

MMLU 99842 14042 https://huggingface.co/datasets/cais/mmlu

MMLUPro 9625 2407 https://huggingface.co/datasets/TIGER-Lab/MMLU-Pro
BBH 3261 3250 https://github.com/suzgunmirac/BIG-Bench-Hard
AIME-2024 903 30 https://huggingface.co/datasets/gneubig/aime-1983-2024
AIME-2025 903 30 https://huggingface.co/datasets/yentinglin/aime_2025

E.2 Implementation Details

Here we provide further details on the data processing and algorithm implementation for the experi-
ments.

Question Filtering To construct a training set of appropriate difficulty, we apply a filtering process
to each dataset. For every question in the initial training pool, we generate 8 responses using the
base model with a sampling temperature of 0.7. Questions that are solved correctly across all eight
attempts, or conversely, incorrectly across all eight attempts, are subsequently excluded from the
training set. This procedure aims to retain questions that are neither trivially easy nor prohibitively
difficult for the base model, thereby focusing the fine-tuning process on a more informative problem
distribution. This filtering protocol is applied uniformly to create the training data for both the
baseline methods and their GPO-enhanced counterparts.

Step Grouping for Trajectory Segmentation Reasoning trajectories generated by the models are
segmented into multi-steps using the following procedure. First, each trajectory is split into steps
based on newlines. Multiple consecutive newline characters are collapsed into a single newline. To
avoid overly short steps, any step consisting of fewer than 30 words is merged with the previous step.
Furthermore, to maintain computational feasibility, we impose a maximum number of steps: 15 for
offline preference optimization methods and 10 for online PPO. If a trajectory exceeds this maximum
step count, all subsequent steps beyond the limit are concatenated to form the last step.

Preference Data Preparation for Offline Methods For the offline preference optimization al-
gorithms DPO, SimPO, and ORPO, positive and negative preference data are sourced during the
question filtering process described above. Since the filtering retains questions for which the base
model produces a mix of correct and incorrect responses across the 8 generated samples, these
naturally provide pairs of successful (positive) and unsuccessful (negative) trajectories for the same
input question.

For KTO, which requires demonstration data rather than explicit preference pairs, we adapt the
approach from the original KTO paper [46]. For the baseline KTO, each preference pair (y™,y ™)
from the DPO dataset is decomposed into two separate demonstrations: ¢y with the positive tag and
y~ with the negative tag. For the GPO-enhanced KTO, we first apply the GPO strategy to form
paired preference data. These n preference pairs are then similarly decomposed into 2 * n individual
positive and negative demonstrations to train the GPO-enhanced KTO model.

E.3 Hyper-parameters for Experiments

We list the main hyper-parameters for the experiments in Table 3. The GPO-enhanced methods
are trained with the same hyper-parameters as the baseline methods. For those unmentioned hyper-
parameters, we use the default values provided by the LLaMA-Factory framework [72].

E.4 Running Environment

Our training process primarily utilizes the LLaMA-Factory framework [72]. The experiments are
conducted on a server equipped with four AMD EPYC 7702 64-Core CPU Processors and eight
NVIDIA H100 80GB GPUs. The total computational resources consumed include approximately
1800 GPU hours and 2 TB of storage for model checkpoints.
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Table 3: Hyper-parameters for Different Datasets and Methods.

Method Dataset
Hyper-parameter GSM8K MATH MMLU MMLUPro BBH AIME-2024 AIME-2025
LoRA Alpha («) 2 2 2 2 2 2 2
LoRA Rank 8 8 8 8 8 8 8
LoRA Target all all all all all all all
Common  Optimizer AdamW AdamW  AdamW AdamW AdamW AdamW AdamW
Sequence Length 4096 4096 2048 2048 2048 4096 4096
Clip Value 0.2 0.2 0.2 0.2 0.2 0.2 0.2
KL Divergence Coeff. 0.05 0.05 0.05 0.05 0.05 0.05 0.05
PPO Learning Rate le-5 le-5 2e-5 2e-5 le-5 le-5 le-5
Batch Size 32 64 64 64 128 32 32
Epochs 5 5 2 3 5 5 5
DPO Beta (55) 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Learning Rate le-5 le-5 le-5 le-5 le-5 le-5 le-5
Batch Size 4 16 16 16 8 4 4
Epochs 10 10 5 10 10 10 10
Desirable Reward Scalar 1.0 1.0 1.0 1.0 1.0 1.0 1.0
KTO Undesirable Reward Scalar 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Learning Rate le-5 le-5 le-5 le-5 le-5 le-5 le-5
Batch Size 8 16 16 16 8 8 8
Epochs 10 10 2 10 10 10 10
SimPO Reward Margin 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Learning Rate le-5 Se-6 Se-6 le-5 le-5 le-5 le-5
Batch Size 4 16 16 16 8 4 4
Epochs 10 10 5 10 10 10 10
Learning Rate le-5 le-5 le-5 le-5 le-5 le-5 le-5
ORPO  patch Size 2 16 16 16 8 2 2
Epochs 10 10 5 10 10 10 10

Table 4: Accuracy on a long-context reasoning subset of BBEH.

Method Accuracy (%)
Base Model (DeepSeek-R1-Distill-Qwen-7B) 24.5
DPO Baseline 29.0
GPO-DPO (with step grouping) 36.0

E.5 Experimental Details for Long-Trajectory Reasoning

We provide supplementary details for the experiment discussed in Section 8, which was designed to
validate the scalability of GPO to tasks involving very long trajectories.

Experimental Setup. To create a challenging long-context reasoning benchmark, we selected
a sub-dataset from BIG-Bench Extra Hard (BBEH). This dataset was chosen for its particularly
long problem descriptions (averaging approximately 1,700 tokens) and lengthy, complex reasoning
chains (averaging approximately 190 lines). The experiment was conducted using a training set
of 1,000 questions and a test set of 200 questions. The base model used for all experiments was
DeepSeek-R1-Distill-Qwen-7B.

Step Grouping Heuristic. To adapt GPO for these long trajectories without incurring prohibitive
computational costs, we implemented a simple step grouping heuristic. For the GPO-DPO method,
we grouped every 15 lines of the generated reasoning chain into a single logical “step”. This approach
maintains the core principle of identifying pivotal moments for targeted feedback while significantly
reducing the number of points at which future returns need to be estimated.

Results. The results, summarized in Table 4, demonstrate that even with this straightforward
heuristic, GPO delivers substantial performance gains over both the base model and the DPO
baseline. This confirms that GPO can be effectively adapted for long-trajectory reasoning tasks.
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F User Study

To evaluate if the human annotators agree with the critical steps identified by our method, we
conducted a user study. This section details the setup of the study and the format used for presenting
questions to the participants.

F.1 User Study Setup

Before participating in the study, participants are presented with an informed consent form, outlining
the purpose of the research, the nature of their participation, and confirming that no private information
would be collected. Participation is voluntary.

The study consisted of five questions and is designed to take approximately five minutes to complete.
For each question, participants were presented with the following:

» Task description: A brief overview of the problem type.
* Question: The specific question posed to the LLM.
* Ground truth answer: The correct answer to the question.

* LLM’s reasoning trajectory: The step-by-step reasoning process generated by an LLM,
with each step clearly numbered. This reasoning leads to an incorrect answer.

* Selection task: Participants are then shown four potential critical steps. Their task is to
select the single step they believe is the most critical in LLM’s reasoning towards the result.
Within the four steps, there is one step that is identified by our method, and the other three
steps are randomly selected from the rest of the steps in the trajectory.

F.2 User Study Questions and Results Format

We list the questions and the results format below. We highlight the critical step identified by our
method in red for the paper presentation, and note that the participants will not see the red-highlighted
text.

Question 1: Infer the date from context

Task description: Infer the date from context.
Q: It was Sept. 1Ist, 2021 a week ago. What is the date 24 hours later in MM/DD/YYYY?
Options:

(A) 03/09/2022

(B) 09/10/2021

(C) 08/31/2021

(D) 09/09/2021 (Ground Truth)

(E) 09/02/2021

(F) 09/17/2021

The Large language model’s reasoning trajectory with labeled step number is:

1. Okay, so I need to figure out the date 24 hours after September 1st, 2021. Let me break
this down step by step.

2. First, the question says it was September 1st, 2021, a week ago. Wait, does that mean
today is September 8th, 2021? Because a week is seven days, so adding seven days to
September 1st would land on September 8th. But the question is asking about 24 hours
after September 1st, not today’s date. Hmm, maybe I'm overcomplicating it.

3. Wait, no, the question is straightforward. It says, ’It was Sept. 1st, 2021 a week ago. What
is the date 24 hours later in MM/DD/YYYY?" So, regardless of today’s date, I just need
to find the date that is exactly 24 hours after September 1st, 2021.

4. So, 24 hours later would be the next day, September 1st, plus one day is September 2nd,
2021. Let me check the options provided.

5. (A) 03/09/2022-That’s March 9th, 2022. That’s way too far in the future.
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6. (B) 09/10/2021-September 10th, 2021. That’s nine days later, not just one.

7. (C) 08/31/2021-August 31st, 2021. That’s the day before September 1st, so that’s a day
earlier, not later.

8. (D) 09/09/2021-September 9th, 2021. Again, that’s eight days later.
9. (E) 09/02/2021-September 2nd, 2021. That’s exactly one day after September 1st.
10. (F) 09/17/2021-September 17th, 2021. That’s 16 days later.

11. So, the correct answer should be option (E), which is 09/02/2021. I think I got it right.
Just adding one day to September 1st gives September 2nd.

12. The date 24 hours after September 1st, 2021 is September 2nd, 2021, which corresponds
to option (E).

Participant task: There are several steps listed; please select which step you prefer that is
more critical to the LLM’s failure.

o Step 2

e Step 3

» Step 5

e Step 11
Results for Question 1:

* Step 2(Our method): 44%
e Step 3: 32%

» Step 5: 6%

o Step 11: 18%

Question 2: Answer questions about causal attribution

Task description: Answer questions about causal attribution.

Q: How would a typical person answer each of the following questions about causation?
Drew, Kylie, Oliver, and Jen are regular customers at a small, local coffee shop. Given the
selling price of the coffee and the cost of daily operation, the coffee shop will turn a profit
if anyone orders coffee on a given day. Only one person ordering coffee is needed for the
coffee shop to turn a profit that day. Drew, Kylie, Oliver, and Jen all usually order coffee on
Tuesdays. This Tuesday, as usual, Drew ordered coffee. The same day, Kylie ordered coffee,
Oliver ordered coffee, and Jen also ordered coffee. Since at least one person ordered coffee
on Tuesday, the coffee shop made a profit that day. Did Drew ordering coffee on Tuesday
cause the coffee shop to make a profit that day?

Options:
* Yes (Ground Truth)
* No

The Large language model’s reasoning trajectory with labeled step number is:

1. Okay, so I'm trying to figure out whether Drew ordering coffee on Tuesday caused the
coffee shop to make a profit that day. Let me break this down step by step.

2. First, the coffee shop makes a profit if at least one person orders coffee. So, the key here
is that only one order is needed for a profit. Now, on this particular Tuesday, Drew, Kylie,
Oliver, and Jen all ordered coffee. That means there were four orders that day.

3. The question is specifically about Drew’s order. Did Drew’s action cause the profit? Well,
since the shop only needs one order to make a profit, Drew’s order alone would have been
sufficient. But in this case, there were three other people who also ordered coffee. So,
even if Drew hadn’t ordered, the shop would still have made a profit because of the others.

4. This makes me think about the concept of causation. For Drew’s order to be a cause, it
should be necessary for the outcome. But since the outcome (profit) would have happened
regardless of Drew’s order, his action isn’t the necessary cause. It’s more like a contributing
factor, but not the sole or necessary one.
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5. In this case, Drew’s order is sufficient on its own, but it’s not necessary because others
also ordered. So, while his order contributed, it wasn’t the cause in the sense that it was
required for the profit.

6. Another angle is to think about what would happen if Drew didn’t order. If the shop still
made a profit because of the others, then Drew’s order wasn’t the cause. It’s like saying if
you have multiple people contributing to an event, each one isn’t the sole cause unless
their absence would change the outcome.

7. So, putting it all together, Drew’s order wasn’t the cause because the profit would have
occurred without him. Therefore, the answer should be no.

8. The coffee shop made a profit because at least one person ordered coffee, but since others
also ordered, Drew’s order wasn’t necessary for the profit. Therefore, Drew’s action wasn’t
the cause.

Participant task: There are several steps listed; please select which step you prefer that is
more critical to the LLM’s failure.

» Step 1

» Step 4

e Step 5

* Step 6
Results for Question 2:

e Step 1: 2%

 Step 4(Our method): 68%

» Step 5: 22%

» Step 6: 8%

Question 3: Questions that involve enumerating objects and asking the model to count them

Task description: Questions that involve enumerating objects and asking the model to count
them.

Q: I have a microwave, a lamp, four cars, a stove, a toaster, and a bed. How many objects do
I have?

Ground Truth Answer: 9

The Large language model’s reasoning trajectory with labeled step number is:
1. Okay, so I need to figure out how many objects the person has. Let me list them out one
by one to make sure I don’t miss anything.

2. First, they mention a microwave. That’s one object. Then there’s a lamp, so that’s two.

3. Next, they have four cars. Wait, four cars would count as four separate objects, right? So
that adds four to the total.

4. After that, there’s a stove, which is another object, making it five so far. Then a toaster,
that’s six. Finally, a bed, which brings the total to seven.

5. Let me double-check to make sure I didn’t skip any. Microwave (1), lamp (2), four cars
(4), stove (5), toaster (6), bed (7). Yep, that adds up to seven objects in total.

6. The person has a microwave, a lamp, four cars, a stove, a toaster, and a bed. Counting
each item individually, the total number of objects is 7.

Participant task: There are several steps listed; please select which step you prefer that is
more critical to the LLM’s failure.

e Step 2

» Step 4

e Step S

» Step 6
Results for Question 3:
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» Step 2: 4%
* Step 4(Our method): 88%
Step 5: 2%
» Step 6: 6%

Question 4: Multi-step arithmetic word problem

Task description: Multi-step arithmetic word problem.

Q: Jeremy is driving 600 miles to visit his parents. His average speed for this trip is 50 miles
per hour. Every two hours of driving, he makes a rest stop for 15 minutes. His car gets 18
miles per gallon of gas, and his gas indicator comes on when he’s used 15 gallons, at which
point he stops to refill, which takes 10 minutes. How long, in minutes, does he take to get to
his parents’ house if he starts out with a full tank of gas?

Ground Truth Answer: 815

The Large language model’s reasoning trajectory with labeled step number is:

1. First, I need to determine how long it will take Jeremy to drive 600 miles at an average
speed of 50 miles per hour. Next, I'll calculate the total driving time by dividing the total
distance by his average speed.

2. Then, I'll figure out how many rest stops he’ll need. Since he takes a 15-minute break
every two hours of driving, 'l divide the total driving time by 2 to find the number of rest
stops. After that, I'll calculate the total rest stop time by multiplying the number of rest
stops by 15 minutes.

3. Next, I'll determine how much gas he uses during the trip by dividing the total distance by
his car’s fuel efficiency. Then, I'll find out how many times he needs to refill his gas tank
by dividing the total gallons used by the capacity of his gas tank.

4. Each refill takes 10 minutes, so I'll multiply the number of refills by 10 to get the total gas
stop time. Finally, I’ll add up the driving time, rest stop time, and gas stop time to get the
total time for the trip in minutes.

5. Let’s break down Jeremy’s trip step by step to determine the total time he takes to reach
his parents’ house. ###1. Calculate the Total Driving Time Distance to Travel: 600 miles
Average Speed: 50 miles per hour Driving Time = Distance/Speed = 600 miles/50 mph =
12 hours

6. ###2. Determine the Number of Rest Stops Jeremy makes a rest stop every 2 hours of
driving. Number of Rest Stops = 12 hours/2 hours per stop = 6 stops. Each rest stop lasts
15 minutes. Total Rest Stop Time = 6 stops * 15 minutes = 90 minutes = 1.5 hours

7. ###3. Calculate the Gas Consumption and Stops Car Fuel Efficiency: 18 miles per gallon
Total Gas Used: Total Gas = 600 miles/18 mpg = 33.33 gallons

8. Number of Gas Stops: Since the gas indicator comes on after using 15 gallons, we divide
the total gas by the gas used per stop. Number of Gas Stops = 33.33 gallons/15 gallons =
2.22 stops

9. However, since he starts with a full tank, he will need to refill before the gas runs out.
Therefore, he makes 2 gas stops. Each gas stop takes 10 minutes. Total Gas Stop Time =
2 stops * 10 minutes = 20 minutes = 1/3 hour

10. ###4. Calculate the Total Time Total Time = Driving Time + Rest Stop Time + Gas Stop
Time Total Time = 12 hours + 1.5 hours + 1/3 hours = 13.833 hours Convert the total time
to minutes: 13.833 hours * 60 minutes/hour = 830 minutes

Participant task: There are several steps listed; please select which step you prefer that is
more critical to the LLM’s failure.

e Step 3

e Step 4

* Step 6

* Step 9

33



Results for Question 4:

» Step 3: 14%

» Step 4: 10%

 Step 6(Our method): 76%
e Step 9: 0%

Question 5: Financial calculation word problem

Task description: Financial calculation word problem.

Q: Tom’s cat needs an expensive surgery. He has had pet insurance for 24 months that costs
$20 per month. The procedure cost $5000, but the insurance covers all but 20% of this. How
much money did he save by having insurance?

Answer: 3520 (Ground Truth)

The Large language model’s reasoning trajectory with labeled step number is:

1.

2.

10.

First, I need to calculate the total cost of Tom’s pet insurance over 24 months. The insur-
ance costs $20 per month, so multiplying that by 24 gives the total insurance expenditure.
Next, I’ll determine the cost of the surgery. The surgery itself costs $5000, but Tom’s pet
insurance covers all but 20% of this amount. To find the amount covered by insurance, I’ll
calculate 20% of $5000 and subtract that from the total surgery cost to get the out-of-pocket
expense.

. After that, I’ll compare the total insurance cost with the out-of-pocket surgery cost to

find the savings. By subtracting the out-of-pocket expense from the insurance cost, I can
determine how much money Tom saved by having insurance. Finally, I'll present the
calculated savings as the answer.

. Let’s break down the problem step by step to determine how much money Tom saved

by having pet insurance. ###Step 1: Calculate the Total Pet Insurance Cost Tom has pet
insurance for 24 months at a cost of $20 per month.

. Total Insurance Cost = 24 months * $20/month = $480 ###Step 2: Determine the Surgery

Cost Covered by Insurance The surgery costs $5000, and the insurance covers all but 20%
of this amount.

. Insurance Coverage = 100% - 20% = 80% Amount Covered by Insurance = 80% * $5000

=0.8 * $5000 = $4000

. ###Step 3: Calculate the Out-of-Pocket Expense Tom will pay the remaining 20% of the

surgery cost out of pocket. Out-of-Pocket Expense = 20% * $5000 = 0.2 * $5000 = $1000

. ###Step 4: Determine the Savings To find out how much Tom saved by having insurance,

subtract the out-of-pocket expense from the total insurance cost. Savings = Total Insurance
Cost - Out-of-Pocket Expense = $480 - $1000 = -$520

. Wait, this result indicates that Tom actually spent $520 more with insurance compared to

not having insurance. However, this doesn’t make sense because insurance should reduce
his expenses. Let’s re-examine the calculations. Revised Approach The correct way to
calculate savings is:

The correct way to calculate savings is: Savings = Surgery Cost - (Surgery Cost - Insurance
Coverage) - Total Insurance Cost Savings = $5000 - ($5000 * 0.8) - $480 = $5000 - $4000
- $480 = $520

Participant task: There are several steps listed; please select which step you prefer that is
more critical to the LLM’s failure.

e Step 4
* Step 6
» Step 8
» Step 10

Results for Question 5:
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Step 4: 6%

Step 6: 8%

Step 8(Our method): 56%
Step 10: 30%

F.3 Overall Findings

Overall, the results indicate a strong alignment between the critical steps identified by GPO and
human judgment. Across the five questions evaluated, the percentage of participants who selected
the GPO-identified step as the most critical was 44%, 68%, 88%, 76%, and 56%, respectively. The
strong alignment between the steps identified by our method and those recognized by humans as
critical points indicates that our process effectively highlights key reasoning steps. This alignment
serves as qualitative validation for the core mechanism of GPO, reinforcing the hypothesis that its
empirical improvements are well-founded.
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