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Abstract

Extending the translation equivariance property of con-
volutional neural networks to larger symmetry groups has
been shown to reduce sample complexity and enable more
discriminative feature learning. Further, exploiting addi-
tional symmetries facilitates greater weight sharing than
standard convolutions, leading to an enhanced network ex-
pressivity without an increase in parameter count. How-
ever, extending the equivariant properties of a convolution
layer comes at a computational cost. In particular, for
3D data, expanding equivariance to the SE(3) group (rota-
tion and translation) results in a 6D convolution operation,
which is not tractable for larger data samples such as 3D
scene scans. While efforts have been made to develop effi-
cient SE(3) equivariant networks, existing approaches rely
on discretization or only introduce global rotation equiv-
ariance. This limits their applicability to point clouds rep-
resenting a scene composed of multiple objects. This work
presents an efficient, continuous, and local SE(3) equivari-
ant convolution layer for point cloud processing based on
general group convolution and local reference frames. Our
experiments show that our approach achieves competitive
or superior performance across a range of datasets and
tasks, including object classification and semantic segmen-
tation, with negligible computational overhead. The code
for our implementation is available at this repository.

1. Introduction
In 3D vision, point clouds are the most commonly used
representation to process 3D data given that they are rel-
atively cheap to capture and process. This representation
is composed of multiple point coordinates, with additional
attributes such as color or normal vector, from samples on
the surface of 3D objects. In the past years, several neu-
ral network architectures have been proposed to process
such data [2, 6, 17, 24, 26, 31]. Approaches learning di-
rectly from 3D data often take inspiration from the suc-
cess in 2D vision and address two of the main challenges
in such data representation, order invariance and transla-

Local equivariance

Global equivariance

Figure 1. While global equivariant designs ensure robustness to
whole-scene rotations, they fail with randomly rotated scene parts
or elements. In contrast, local equivariant operations maintain ro-
bustness by handling local geometry rotations around each point.

tion equivariance. Yet, 3D data entails more variations and
complex group transformations due to an increased number
of degrees of freedom (DoF); for the roto-translation group
SE(3), DoF = 6. Objects in 3D space do not have a pre-
defined canonical orientation and many rotational variances
are present.

Equivariance is the property of an operator that allows
the prediction of the transformation of the output given an
input transformation, while group-invariant operators pro-
duce identical features under various group transforms of
the input. The latter can be seen as an information loss;
they struggle to differentiate between unique instances with
internal symmetries, e.g., ”8” vs. ”∞”. Baking SE(3)-
equivariance into the network architecture can thus be bene-
ficial since equivariant features maintain information about
the input group transform across neural layers, making them
more expressive and generalizable by capturing the variance
that is present in the data.

Traditionally, to obtain such properties, data augmenta-
tion techniques are used, but this requires neural networks
to store latent orientations of the objects, limiting the net-
work capacity. Whilst this might be a viable solution for
network architectures for 2D images, neural networks for
3D point clouds usually require large amounts of mem-
ory, limiting the number of parameters of the models and
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making it impossible to achieve such equivariance from the
data. Recent advances have been made to address this prob-
lem [13, 23], where several neural network architectures can
match or even surpass the performance of the standard ar-
chitectures relying on data augmentations.

Unfortunately, many of those solutions only address the
problem of global rotation equivariance, i.e. rotations of a
single 3D object or scene as a whole. 3D objects or scenes
are composed of multiple parts or objects that can have ar-
bitrary orientations w.r.t. each other, see Fig. 1. The relative
orientations of different objects in the scene cannot be cap-
tured by global equivariance as obtained by existing archi-
tectures or by data augmentation techniques.

Group convolution is an operation that is, per definition,
equivariant to a specific group and, hence, capable of cop-
ing with such problems. These operations aggregate infor-
mation from neighboring samples, not only from the trans-
lation group T(3) as standard convolutions, but from the ro-
tation and translation group SE(3). By restricting the recep-
tive field of these operations, they become rotation equiv-
ariant w.r.t. the local geometry inside the receptive field, al-
lowing them to be equivariant to the relative rotations of dif-
ferent parts of the scene. To successfully compute such op-
erations in the continuous domain a complex integral over
the full group needs to be solved (6D convolution), which
makes such operations not practical for large networks since
it has large memory and computational burden. Further,
defining a grid on SE(3) is not trivial, where recent works
try to address these problems by using Monte Carlo (MC)
integration [14] or by discretizing the SO(3) group [8, 38].
However, as we will show, these approximations limit the
performance of the network.

In this paper, we propose using a finite subset F(x) ⊂
SE(3), referred to as a frame, to solve the group equivariant
integral, which allows for exact equivariance (as opposed
to approaches based on MC sampling or discretization),
while reducing the computational burden. The elements
g ∈ F(x) can be seen as Local Reference Frame (LRF),
that together with their corresponding point x build a grid
on SE(3), where the integral of the group convolution can be
computed efficiently. Further, our approach stochastically
samples g ∈ F(x) during training with only a few sam-
ples, two or even one, which reduces the additional compu-
tational and memory burden significantly and for the case
of one sample to almost zero. Our extensive experiments
show that such group convolution is able to achieve local
rotation equivariance, surpassing other local equivariant de-
signs by a large margin. Moreover, our experiments also
show that a network constructed using such convolutions as
building blocks is able to be robust to local transformations
not seen during training, where popular global equivariant
frameworks fail.

2. Related work
This section gives an overview of networks that can process
unstructured data, such as point clouds, with a focus on spe-
cific point architectures that are equivariant to rotations.

Point-based neural networks. The first neural network
architecture specifically designed to process point clouds
was PointNet [24]. The idea of directly processing point
clouds was followed by several works incorporating con-
cepts and designs from convolutional neural networks for
images into the continuous domain. Atzmon et al. [2],
Thomas et al. [26], and Boulch et al. [6] propose a con-
volution operation based on a set of points located inside
a receptive field and a correlation function as the kernel
function. Another line of research, including Hermosilla et
al. [17] and Wu et al. [31] uses a convolution operation with
a kernel function represented by an Multi-Layer Percep-
tron (MLP), that takes the relative position between points
as input. In this work, similarly, we use an MLP as our
kernel, but with the relative orientation in addition to the
relative position between points as input.

Rotation equivariant point networks. Equivariance
or invariance to SE(3) can be achieved by modifying the
model’s input through data augmentation or by adapting the
internal operations of the model to have such equivariance
by construction. Several works have designed equivariant
network architectures by aligning the input point cloud to a
reference frame before being processed by the model. Go-
jcic et al. [16] align local patches of a point cloud to their
LRF defined by the normal to solve the task of keypoint
matching. Xiao et al. [33] uses Principal Component Anal-
ysis (PCA) to build a frame to transform the input point
cloud and an attention network to aggregate features over
the different transformations. Other works, instead, adopt
a different approach, in which they compute invariant lo-
cal features and use these as input to a convolution oper-
ation. Zhang et al. [35] use angles and distances as input
to a local PointNet architecture to achieve rotation invari-
ance. Later, Zhang et al. [37] extended this work with ad-
ditional local features. Yu et al. [34] also used distances
and angles to achieve global equivariance. However, none
of these approaches achieved the goal of our work, local
SE(3) equivariance. Recently, Puny et al. [23] suggested
a general framework to achieve equivariance on any neu-
ral network by averaging the model’s output over a subset
of the group elements. Concurrently with our work, Atz-
mon et al. [3] introduced a piecewise E(3) equivariant ap-
proach applying [23] to multiple parts proposed by a par-
tition prediction model, where the locality is determined by
the partition of the objects. In this work we use the con-
cepts of [23] to achieve local SE(3) equivariance efficiently
without the need for a partition prediction.

Another line of work achieves local equivariance by
making the model’s internal features steerable [10], i.e.,



the feature values transform predictably as the input trans-
forms. In 3D, these works usually rely on the theory of
spherical harmonics to obtain steerable features [15, 27,
29]. Vector Neurons [13] also uses higher-order features,
representing each feature as a 3D vector, to achieve global
SO(3) equivariance. Unfortunately, this increases the mem-
ory consumption of the models and restricts the kernel rep-
resentation used.

More related to our work is the concept of group con-
volutions [9]. These operations generalize the concept of
convolutions and extend the equivariance to the translation
group of standard convolution to any group. These ideas
have been applied to the SE(3) group for voxelized rep-
resentations, where the group has a finite number of ele-
ments [30], and to point clouds in the continuous domain by
discretizing the continuous SE(3) group using the icosahe-
dral group [8, 38]. Although the computation of such group
convolution can be implemented with permutation matri-
ces, a large number of group elements requires a significant
computational burden. To address this issue, Chen et al. [8]
proposed a separable convolution allowing for fast compu-
tation of the group convolution. Zhu et al. [38] instead pro-
poses to use the SO(2) group as the stabilizer subgroup to
form spherical quotient feature fields. Unfortunately, these
discretizations require lifting the feature representation to
the size of the discrete group used, increasing the memory
requirement of the model by a factor equal to the size of the
discrete group. Recent works have suggested solving the
group convolution integral by using MC sampling on the
continuous group [14, 18]. These works randomly sample
the group and use farthest point sampling to select a subset
from which the integral is approximated with MC integra-
tion. However, this approach might require large samples
to obtain a reasonable estimation of the integral and hence
suffer from substantial memory load.

In this work, we also suggest using group convolutions
on the continuous domain to achieve local rotation equiv-
ariance. However, our sampling strategy allows us to solve
this integral only with a few samples on the SO(3) group,
rendering group convolutions a viable solution to achieve
equivariance on standard deep point-based architectures
with negligible computational or memory requirements.

3. Methods
In this section, we describe our proposed approach. First,
the reader is introduced to the concept of group equivariant
convolutions. Then, our efficient continuous group convo-
lution is described in detail.

3.1. Group equvivariant convolution

An intuitive way of thinking about convolutions is the no-
tion of template matching, where a kernel k is shifted over
a feature map f to detect patterns. In the continuous case,

we consider a feature map f : X → Rc as a multi-channel
scalar field and X = (L2(X))c as the space of feature maps
over some space X . A more formal definition of a con-
volution layer is then given as a learnable kernel operator
Φ : X → Y that transforms feature maps f as follows

[Φf ](y) = (f ⋆ k)(y) =

∫
X

f(x)k(x− y)dx, (1)

with X = Y = Rd, where d = 3 for point clouds. (Note
that the definition given is cross-correlation instead of con-
volution since this aligns better with template-matching.) It
is well known that convolution layers are translation equiv-
ariant due to the shifted kernel, i.e., the kernel is only de-
pendent on relative distances: if the input feature map is
shifted, the output feature map follows the same transfor-
mation. Yet, since relative distances hold directional infor-
mation that changes under rotations, it is self-evident that a
convolution layer is not equivariant to rotations. One solu-
tion is to use ∥x − y∥ as input to the kernel at the cost of
losing the capacity to capture directional features.

We say that an operator Φ is equivariant to a specific
Group G if it commutes with group representations on
the input and output feature maps, meaning ∀g ∈ G :
ρY(g) ◦ Φ = Φ ◦ ρX (g), where ρX (g) is the regular group
representation of g that transforms a function f ∈ X by
shifting its domain via g−1. If the output feature map is
left unaltered, Φ is G-invariant. Various important works
in the field of equivariant deep learning [4, 11, 19] show or
conclude that a linear operator Φ that maps between fea-
ture maps on homogeneous spaces X , Y of a group G, is
G-equivariant iff it is a kernel operator (also often called in-
tegral operator) with a single-valued kernel (only dependent
on relative values). Further, considering Y = G/H as quo-
tient space with H = {g ∈ G|gy0 = y0} as the stabilizer
subgroup StabG(y0), which consists of group elements that
leave a chosen origin y0 ∈ Y unchanged, the kernel of a
G-equivariant Φ must be invariant towards elements of H
(invariance constraint).

When looking at the concrete example Y = Rd, G =
SE(d), we say Rd ≡ SE(d)/SO(d) is a quotient space with
stabilizer subgroup SO(d); an intuition is given in the fol-
lowing. Since Rd is a homogeneous space of SE(d), every
point x ∈ Rd can be reached from the origin 0 ∈ Rd by a
group element, a roto-translation, (t, R) ∈ SE(d). In fact
there exist several group elements such that x = (t, R)0 =
R0+ t, namely any group element with t = x regardless of
the rotation part as any rotation R ∈ SO(d) leaves the origin
unchanged. Hence if Y = Rd and G = SE(d), the kernel of
an SE(d)-equivariant Φ must be SO(d)-invariant, meaning
one could only use isotropic kernels, which severely limits
the expressivity of patterns that can be detected e.g. using
∥x− y∥ as discussed above. In order to not limit the repre-
sentation power of the kernel while achieving SE(d) equiv-



ariance, the feature maps need to be lifted to the group itself
Y = G since then the stabilizer subgroup only consists of
the trivial element H = {e}, and the kernel is no longer
constrained. Note that Y and X do not necessarily have
to be the same space. Consequently, to extend the trans-
lation equivariance of convolution layers to arbitrary affine
Lie groups three types of layers can be used [4]:
• Lifting layer (X = Rd, Y = G, H = {e}):

(f ⋆ k)(g) =

∫
Rd

f(x)k(g−1x)dx (2)

For G =SE(d), this can be viewed as a template matching
various rotated versions of the kernel, creating a feature
map for different positions and rotations.

• Group convolution layer (X = G, Y = G,H = {e}):

(f ⋆ k)(g) =

∫
G

f(g′)k(g−1g′)dµ(g′) (3)

This layer constitutes the convolution on the full group,
e.g., it conducts template matching over all possible com-
binations of positions and rotations from the input and
output feature map.

• Projection layer (X = G, Y = Rd, H = StabG(0)):

(f ⋆ k)(x) =

∫
H

f(x, h′)dµ(h′) (4)

For tasks like point-wise classification, the final predic-
tion must be invariant, so feature maps or rotations are
projected to their corresponding point in Rd. This layer is
omitted for tasks like pose estimation.

3.2. Efficient group convolution

Since group convolution layers map between higher dimen-
sional feature maps and must compute the integral over the
entire group, they can introduce a computational bottle-
neck. In the case of 3D point clouds and the affine group
SE(3) = R3 ⋊ SO(3), Eq. (3) turns into a 6D convolution
(f ⋆ k)(g) with g = (x, R) ∈ SE(3), which can be written
as a double integral∫

R3

∫
SO(3)

f(t, R’)k(R−1(t − x),R−1R’)dtdµ(R’), (5)

with µ(·) being the Haar measure on SO(3).
In addition to the computational burden of a 6D convolu-

tion, another difficulty lies in how to define a grid on SE(3)
or, more specifically, on the SO(3) part to compute the inte-
gral of Eq. (5). Previous works such as [8, 38] have relied
on the discretization of SO(3) using platonic solids that as-
sign to each spatial component the same finite grid on SO(3)
to make it tractable, yet at the loss of continuity and exact
equivariance. To stay in the continuous domain, similarly

to the work of Finzi et al. [14], one can use MC approxi-
mation for both the spatial and rotational part to solve the
double integral∑

j

1

|H ′
j |

∑
(t, R’)∈H′

j

f(t, R’)k(R−1(t − x),R−1R’), (6)

where j are the indices of the points xj ∈ R3 of the point
cloud and H ′

j = {(t, R’)|t = xj ,R’ ∈ SO(3)} is the set
of SE(3) group elements that result form lifting points xj

to SE(3) by repeating the point coordinate with uniformly
sampled rotations. Note that the point cloud is treated as a
sparse feature map that defines the sampling of the spatial
component.

Using MC approximation can be thought of as defining
a random grid on SE(3). Hence, the approximation quality
of this integral depends on the number of sampled group
elements or, more precisely, on the number of rotations
|H ′

j | = O sampled per point xj ; the approximation error
converges towards zero for O → ∞. However, sampling
O rotations per point increases the model’s memory by a
factor of O. Moreover, the required computations for the
convolution also increase by a factor of O2. Hence, using
MC results in a trade-off between computational efficiency
and preciseness of equivariance property, showing that an
efficient grid on SE(3) that allows for exact equivariance
with finite rotation elements is crucial to make continuous
group convolutions practical for point-based networks.

Efficient grid on SE(3). To achieve exact equivariance
with tractable computational load, we propose a carefully
constructed grid F(xj) ⊂ SE(3) specific to each point
xj ∈ R3. Note that while Hj in Eq. (6) was also dependent
on xj , the grid was still the same for each point, namely
the entire group, where the dependency merely came from
approximation by sampling.

We call F(x) : R3 → 2SE(3) a frame, which is a set-
valued function and maps a point in space to a set of group
elements such that ∀(t, R) ∈ F(x) : x = t. A frame is
called G-equivariant if ∀g ∈ G : gF(x) = F(gx). Us-
ing F(x) as grid, we define a 3D sparse point cloud group
convolution layer ΦF as

∑
j

1

|F(xj)|
∑

(t, R’)∈F(xj)

f(t, R’)k(R−1(t − x),R−1R’).

(7)
ΦF thus transforms feature maps f : X → Rc, defined on
the domain X = {F(x)|x ∈ R3}. Using those definitions,
we can formulate the following.

Theorem 1. Let F be an SE(3)-equivariant frame. Then,
ΦF is SE(3)-equivariant.

Proof. See suppl. mat.
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Figure 2. Overview of our convolution operation. Given a central
point with an orientation, first, we sample neighboring points. For
each point, we use PCA to build a frame from it. Then, we sample
an orientation from the frame. Then, the input to the group convo-
lution kernel is the relative position plus the relative orientations
between points.

Since F(x) can be constructed with local PCA, as ex-
plained below, it only consists of a few elements and the
amount of computations is significantly reduced.

Frame Construction. We compute PCA over a region
around the point to construct F(x). Due to the ambigu-
ity of PCA w.r.t. the direction of the different axes, we fol-
low Xiao et al. [33] and Puny et al. [23] and construct 4
different LRF by inverting the sign of the different direc-
tions. Given the eigenvectors [v1, v2, v3] of the covariance
matrix C of the point coordinates, the frame can be defined
as F(x) = {([α1v1, α2v2, α3v3], t)|αi ∈ {1,−1}}. To be
equivariant to the SE(3) group, F(x) is restricted to orthog-
onal, positive rotation matrices. This results in a frame with
a finite number of elements, |F(X)| = 23−1 = 4.

Stochastic Approximation. Although F(x) only has 4
elements, this might still be restrictive for modern state-of-
the-art deep architectures used to process large 3D scenes.
Therefore, we propose to perform a stochastic approxima-
tion of Eq. (7) during training by only sampling a subset of
the elements of F(x) for input and output domains of the
feature maps. In particular, we propose randomly sampling
two or even only one element of F(x) for each point x in
the point cloud where the convolution will be computed.
Then, during the computation of Eq. (7), only the sampled
elements for points xj are used to approximate the SO(3)
integral. Our approach is illustrated in Fig. 2.

While using all elements of F(x) would increase the
memory consumption of a standard model by a factor of 4
and the number of computations by a factor of 16, sampling
2 elements would only increase the memory by a factor of
2 and the computations by a factor of 4. More importantly,
randomly sampling only 1 element will maintain the mem-
ory consumption and computations equal to the model with
standard convolutions. During testing, since large batches
are not necessary, we can use the full frame F(x) to com-
pute Eq. (7). The error introduced by stochastic approxi-
mation by subsampling 2 or 1 element instead of using all 4

is discussed in the supplementary materials.
Local vs Global Equivariance. In practice, the locality

of the kernel is enforced by calculating the convolution for
a local neighborhood Nx = {xj ∈ R3|∥xj − x∥ < r} of
x only. Equivariance of Eq. (6) and Eq. (7) is ensured on a
scale that depends on the receptive field used. Since we only
consider a small receptive field around each point, our op-
erations become equivariant w.r.t. rotations of the local ge-
ometry within this receptive field. By incorporating several
layers in our architectures with increasing receptive fields,
the model is able to capture patterns at different scales in an
equivariant manner. Ultimately, the whole model also cov-
ers the global equivariance scale since the last layers have
an effective receptive field covering the entire scene.

4. Experiments
We conduct experiments on object classification, and se-
mantic segmentation to validate our methods. Due to space
constraints, additional experiments, ablation studies, de-
tailed dataset description and implementation are provided
in the supplementary materials.

4.1. Baselines.

In our main experiments, we compare our convolution oper-
ation, Ours, to the same model where the integral is solved
using MC [14], MC, and a model using standard convolu-
tions, STD. Moreover, we also compare to additional rota-
tion equivariant networks, relying on global and local equiv-
ariant designs.

4.2. Shape classification

We use the task of shape classification to measure the equiv-
ariant capabilities of the models w.r.t. global rotations. For
this task, predictions must be invariant of the rotation ap-
plied to the model. We use a global pooling operation as
the projection layer ( Eq. (4)) at the end of our encoder to
transform the equivariant features into invariant ones.

Dataset. We use the ModelNet40 dataset [32] since
this is a standard benchmark for rotation equivariant net-
works [13]. Our model only takes as input point coordi-
nates, and performance is measured with overall accuracy.

Experimental setup. We provide different configuration
setups in our experiments. All models are evaluated when
trained and tested without any rotation, I / I. Further, we
evaluate all models trained without any rotation but random
rotations during testing, I / SO(3). Lastly, we evaluate our
models with random rotations during training and testing.
Additionally, to compare to other state-of-the-art methods,
we take the commonly used setup where random rotations
are applied along the up vector during training and random
rotations on SO(3) during testing, z / SO(3). Although this
setup is less challenging than I / SO(3), it allows us to com-
pare to additional rotation equivariant models.



Main results. In our main results, we compare our
method, Ours, to MC and STD for different samples taken
during training and testing.

Table 1 presents the results of this experiment. As ex-
pected, we can see that the standard method STD achieves
good accuracy for I / I. Ours and MC, as it is typical for
rotation equivariant networks in this setup, achieve compet-
itive performance but are below STD. However, when we
look at the more challenging setup, I / SO(3), we can see
that Ours is able to maintain similar accuracy as in the I / I
setup, 86.9%, a drop by only one point in accuracy, while
STD achieves 12.3%. MC, although it can also achieve
competitive performance, for most of the cases, the drop
in performance is significant compared to the I / I results.
When we look at the SO(3) / SO(3) setup, all three meth-
ods achieve good performance; MC and Ours are able to
outperform STD, while Ours achieves the best accuracy.

Analyzing the effect of different samples used to com-
pute the integral over SO(3) for training and testing, we
can see that Ours, even with 1 sample, can achieve simi-
lar results than when using 4 samples. With only 2 samples,
our method is able to match or even surpass the accuracy
of using the full frame, 4 samples. Moreover, using only
1 or 2 samples appears to be more robust than using the
full frame, 4 samples, when tested with different numbers
of samples. We hypothesize that training with random 1
or 2 samples, rather than using the full frame, introduces
stochasticity that acts as a regularizer, enhancing robustness
to errors in SO(3) integral estimation. In contrast, MC is
more sensitive to the number of samples, exhibiting signifi-
cant performance degradation with 1 or 2 samples.

Comparison to other methods. First, we compare our
model to existing non-equivariant point-based network ar-
chitectures, architectures that rely on global equivariance,
and models like ours that use group convolutions to achieve
local equivariance. In Tab. 2, we can see that our model
achieves the best performance among the group convolution
tested by a large margin in the I/SO(3) setting. This is due
to the discretization of the group SO(3) used by the EPN [8]
and E2PN methods [38]. Also, in the z / SO(3) and SO(3) /
SO(3) settings, we outperform all local rotation equivariant
networks. When compared to global equivariant networks,
our method falls behind in the I / SO(3) setup and achieves
similar performance on the z / SO(3) and SO(3) / SO(3)
setup. However, as we will show later in the segmentation
task, while some global equivariant networks only slightly
outperform ours on this task, they fail to solve tasks requir-
ing local rotation equivariance.

4.3. Semantic segmentation

In semantic segmentation, incorporating symmetries like
SE(3) equivariance is key for generalization, especially due
to the varying orientations and part compositions in point

clouds. We evaluate our method on body part segmentation
and scene understanding.

4.3.1 Human body parts

For semantic segmentation of human body parts, the lo-
cal equivariance property is essential to distinguish cor-
rectly between parts undergoing diverse SE(3) transforma-
tions within the kinematic tree. Due to the additional sym-
metry information, we show that our models can generalize
to unseen, out-of-distribution poses.

Dataset. For training and testing, we use two sub-
sets of the AMASS meta-dataset [21], DFAUST [5] and
PosePrior [1], respectively. The PosePrior dataset consists
of challenging poses significantly divergent from those exe-
cuted in DFAUST, which we use to test our model for gen-
eralization to unseen, out-of-distribution poses.

Experimental setup. To assess the ability of our method
to generalize to local transformations, we adopt a setup in
which we do not use any rotation during training or test-
ing. Since the testing data is composed of rare poses not
seen during training, the models must become invariant to
transformations of the different local parts.

Main results. Table 3 presents the results of the main
experiment. We can see that STD struggles to generalize to
these out-of-distribution poses, achieving a mAcc of 85.3
and mIoU of 74.5. Ours, on the other hand, achieves better
performance with 95.0 mAcc and 90.8 mIoU. MC can also
achieve competitive performance, but, as in the classifica-
tion task, this is lower than our proposed approach.

When evaluating the model robustness to the number of
samples in the SO(3) integral, Ours outperforms MC in all
cases except when trained on 4 samples but tested on one,
as seen in the classification task.

Comparison to other methods. In Tbl. 4, we present
the results of comparing our method to other global and
local equivariant point-based networks. We can see that
Ours achieves an impressive performance of 95.0 mAcc
and 90.8 mIoU. Contrary to the task of shape classification,
global equivariant models struggle to generalize to out-of-
distribution local transformations not seen during training.
Fig. 3 depicts predictions for different models tested on the
dataset. The results show that global equivariant methods
such as VN or FA struggle with out-of-distribution mod-
els, confusing legs and arms and right and left. The same is
true for our non-equivariant version, STD. The training data
contain mostly upright positions, i.e., feet are, on average,
further down on the z-axis. In contrast, the hands and the
head are further up, leading to generalization errors in those
models, e.g., the handstand pose as shown in Fig. 3. Ours,
on the other hand, achieves predictions comparable to the
ground truth annotations despite never seen those extreme
poses during training. MC also achieves remarkable per-



Table 1. Results for different configurations for the classification task on the ModelNet40 dataset. The results show that using our sampling
approach increases the performance significantly, leading to better results with fewer samples.

Method # samp. I / I I / SO(3) SO(3) / SO(3)

train ↓/ test → 1 2 4 1 2 4 1 2 4

MC
1 85.4 84.6 83.1 78.8 74.1 70.1 86.5 85.6 84.4
2 86.2 87.0 87.1 80.3 82.3 82.3 87.1 87.0 87.0
4 84.2 87.4 87.5 78.4 85.6 86.2 85.4 88.3 88.2

Ours
1 86.9 86.8 86.7 85.5 85.3 85.3 88.7 88.5 88.5
2 87.9 87.9 87.7 86.6 86.9 86.8 88.9 88.7 88.7
4 73.2 87.6 87.8 61.4 85.7 86.5 59.7 89.0 88.7

STD 90.7 12.3 87.5

Vector Neurons (VN) Frame Averaging (FA) Standard (STD) Monte Carlo (MC) Ours Ground truth

Figure 3. Qualitative results. Global equivariant methods such as VN, or FA struggle with out-of-distribution models. Our method, on
the other hand, achieves almost perfect predictions. Lastly, MC also achieves good performance but falls behind our method, which better
approximates the group convolution integral.

formance but performs several prediction mistakes due to
inefficient sampling of Frame elements as Tbl. 3 indicates.

When comparing to current state-of-the-art local equiv-
ariant methods, we can see that while they also outperform
global equivariant methods by a large margin, our method
gives superior results, with E2PN [38] reaching a slightly
lower performance.

Tbl. 5 compares a forward pass of a single convolution
layer using 1024 points and 256 input and output features.
We can see that using only one sample to approximate the
integral over SO(3) has approximately similar memory con-
sumption and frames per second (FPS) as the non-SO(3)
equivariant version of our model. This shows that with our
method, we can introduce the equivariant property without
extra costs, demonstrating the efficiency of our proposed
model. When we analyze the two-sample version of our
group convolution, we can see that memory and computa-
tion increase by a factor of 2, still making it suitable for its
applicability. When using 4 samples, the memory and com-

putations increase significantly. Compared to other state-of-
the-art local rotation equivariant methods, E2PN [38] and
EPN [8], the computational resources needed for our ap-
proach are significantly lower even when using 4 samples.

4.3.2 Scene understanding

Scenes consist of multiple parts or objects with arbitrary
orientations, making local equivariance essential for gener-
alizing to unseen configurations.

Dataset. We test our method on ScanNet [12], a dataset
composed of several indoor 3D scene scans, to show its ap-
plicability to real-world scenarios.

Experimental Setup. Since our surroundings have a no-
tion of an up orientation, we fix the z-axis and conduct our
experiments for SO(2). We sample only one orientation
from the frame for all experiments, which does not pose
additional memory or computational burden on the model.
This is a crucial property for processing such large point
clouds, making it intractable for the other methods to run



Table 2. Comparison to equivariant models on the classification
task of ModelNet40 for different setups.

Equiv. Method I / SO(3) z / SO(3) SO(3) / SO(3)

N
on

e

PointNet [24] – 19.6 84.9
PointNet++ [25] 13.8 28.4 84.9
DGCNN [28] 17.3 33.8 84.8
PointCNN [20] – 41.2 84.8
KPConv [26] 12.7 – 81.2

G
lo

ba
l

GC-Conv [36] – 89.1 89.2
FA-PointNet [23] 85.9 85.5 85.8
FA-DGCNN [23] 88.4 88.9 88.5
VN-PointNet [13] 77.2 77.5 77.2
VN-DGCNN [13] 90.0 89.5 90.2

L
oc

al

TFN [27] – 85.3 87.6
ClusterNet [7] – 86.4 86.4
RI-Conv [35] – 86.4 86.4
SPHNet [22] – 86.6 87.6
EPN [8] 32.3 – 87.8
E2PN [38] 44.4 – 88.6

Ours 86.9 87.0 89.0

Table 3. Semantic segmentation results for different models
trained on DFAUST and tested on PosePrior. By using our sam-
pling approach, mAcc, and mIoU increase significantly with only
a few samples of the frame.

Method # samp. mAcc mIoU

train ↓/ test → 1 2 4 1 2 4

MC
1 93.1 93.0 92.7 87.7 87.6 87.2
2 93.8 93.9 93.8 88.8 89.0 88.7
4 93.4 94.2 94.4 87.9 89.3 89.7

Ours
1 93.8 93.9 93.9 88.9 88.9 89.0
2 94.3 94.4 94.5 89.7 89.9 89.9
4 32.6 92.4 95.0 21.6 86.8 90.8

STD 85.3 74.5

Table 4. Comparison of our method to other rotation equivariant
models on the segmentation task for out-of-distribution poses.

Equiv. Method mAcc mIoU

G
lo

ba
l FA-PointNet [23] 77.4 64.7

FA-DGCNN [23] 81.7 71.0
VN-PointNet [13] 63.1 47.5
VN-DGCNN [13] 61.1 46.6

L
oc

al EPN [8] 89.9 82.3
E2PN [38] 94.8 90.7
Ours 95.0 90.8

reasonable-sized networks for this task.
Main Results. Tbl. 6 shows that our method outper-

Table 5. Computational and memory resources of a single convo-
lution layer for our approach and state-of-the-art methods.

Method # samp. Mem. (Mb) ↓ FPS ↑

STD 37.1 704.2

Ours
1 37.1 581.4
2 76.9 432.9
4 165.2 255.8

E2PN [38] 1211.6 45.0
EPN [8] 1636.4 10.2

Table 6. Results for the semantic segmentation task on ScanNet20
show that using our sampling approach increases the performance.

Method I / I I / SO(2) SO(2) / SO(2)

mAcc mIoU mAcc mIoU mAcc mIoU

MC 73.4 64.5 74.1 65.2 74.2 65.7

Ours 73.6 65.6 72.7 65.4 75.6 67.5

STD 73.0 64.4 70.9 63.5 74.5 66.4

forms STD in all three configurations, underlining the ben-
efits of baking SE(3) equivariance in the model architecture.
Compared to MC, we can see that our approach obtains bet-
ter predictions in all but one configuration.

5. Conclusions
This paper presents an instance of group convolutions on the
continuous domain, which is equivariant to SE(3). Using a
carefully constructed subset of group elements makes our
operation computationally and memory efficient, obtaining
competitive performance when only one sample is taken to
solve the integral over the SO(3) group and, therefore, not
requiring additional resources over a standard convolution.
Moreover, by restricting the receptive field of our convolu-
tion, our operation becomes local equivariant, allowing us
to be robust to local transformations. Our extensive eval-
uation presents our approach as a viable solution to incor-
porate local equivariance in deep network architectures for
point clouds without significant additional cost.
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