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Abstract

We establish a rubric-based human evaluation001
protocol for image captioning models. Our002
scoring rubrics and their definitions are care-003
fully developed based on machine- and human-004
generated captions on the MSCOCO dataset.005
Each caption is evaluated along two main di-006
mensions in a tradeoff (precision and recall)007
as well as other aspects that measure the text008
quality (fluency, conciseness, and inclusive lan-009
guage). Our evaluations demonstrate several010
critical problems of the current evaluation prac-011
tice. Human-generated captions show substan-012
tially higher quality than machine-generated013
ones, especially in coverage of salient informa-014
tion (i.e., recall), while most automatic metrics015
say the opposite. Our rubric-based results re-016
veal that CLIPScore, a recent metric that uses017
image features, better correlates with human018
judgments than conventional text-only metrics019
because it is more sensitive to recall. We hope020
that this work will promote a more transparent021
evaluation protocol for image captioning and022
its automatic metrics.023

1 Introduction024

Recent progress in large-scale training has pushed025

the state of the art in vision-language tasks (Li et al.,026

2020; Zhang et al., 2021, inter alia). One of these027

tasks is image captioning, whose objective is to028

generate a caption that describes the given image.029

The performance in image captioning has been pri-030

marily measured in automatic metrics (e.g., CIDEr,031

Vedantam et al., 2015; SPICE, Anderson et al.,032

2016) on popular benchmarks, such as MSCOCO033

(Lin et al., 2014) and Flickr8k (Hodosh et al., 2013).034

Use of these metrics is justified based on their corre-035

lations with human judgments collected in previous036

work (Hodosh et al., 2013; Elliott and Keller, 2014;037

Kilickaya et al., 2017, inter alia).038

Continuous use of these previous human judg-039

ments, however, raises significant concerns for de-040

velopment of both captioning models and auto-041

Machines P R CIDEr
A red fire hydrant spewing water on a street. 5 3 139.2
A red fire hydrant spraying water on a street. 5 3 205.2
Human
A busted red fire hydrant spewing water all
over a street creating a rainbow.

5 5 120.5

Figure 1: These machine captions are precise (in the
scale of 1–5) but lose points in recall (i.e., coverage of
salient information); they both ignore the rainbow in
the picture. Automatic metrics, such as CIDEr, do not
capture this failure.

matic metrics because of their lack of transparency. 042

In previous work, annotators (crowdworkers, typi- 043

cally) rate image captions directly (Hodosh et al., 044

2013), pairwise (Vedantam et al., 2015), or along 045

multiple dimensions such as thoroughness (Aditya 046

et al., 2015) and truthfulness (Yatskar et al., 2014). 047

These scoring judgments depend highly on individ- 048

ual annotators’ discretion and understanding of the 049

annotation scheme (Freitag et al., 2021; Clark et al., 050

2021), making it difficult to decompose, interpret, 051

and validate annotations. This lack of transparency 052

also makes it difficult to interpret evaluation re- 053

sults for downstream applications where some as- 054

pects are particularly important (e.g., accessibil- 055

ity for people with visual impairments; Gleason 056

et al., 2019, 2020). Further, these annotations were 057

done only on relatively old models (e.g., MSCOCO 058

leaderboard submissions in 2015; Anderson et al., 059

2016). Correlations of automatic metrics with hu- 060

man judgments can break down especially when 061

model types change (Callison-Burch et al., 2006), 062
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or generation models become increasingly pow-063

erful (Ma et al., 2019; Edunov et al., 2020). We064

thus develop an up-to-date, transparent human eval-065

uation protocol to better understand how current066

models perform and how automatic metrics are067

correlated when applied to current models.068

At the core of our rubrics are two main scores069

in a tradeoff: precision and recall (Fig. 1). The070

former measures accuracy of the information in a071

caption, and the latter assesses how much of the072

salient information in the image is covered. We073

then penalize a caption if we find a problem in flu-074

ency, conciseness, or inclusive language. Two or075

more authors evaluate every instance and collabo-076

rate to resolve disagreements, ensuring high quality077

of the annotations. We assess outputs from four078

strong models as well as human-generated refer-079

ence captions from MSCOCO. We call our scores080

THUMB 1.0 (Transparent Human Benchmark),081

and release them publicly.1 Our key findings from082

the evaluations are:083

• Machine-generated captions from recent models084

have been claimed to achieve superhuman perfor-085

mance using popular automatic metrics (human086

performance is ranked at the 250th place in the087

MSCOCO leaderboard),2 but they still show sub-088

stantially lower quality than human-generated089

ones.090

• Machines fall short of humans, especially in re-091

call (Fig. 1), but most automatic metrics say the092

opposite.093

• Human performance is underestimated in the cur-094

rent leaderboard paradigm, and there is still much095

room for improvement on MSCOCO captioning.096

• CLIPScore and RefCLIPScore (Hessel et al.,097

2021), recently proposed metrics that use im-098

age features, improve correlations particularly in099

recall. While they fail to score human generation100

much higher than machine one, they capture an101

aspect that is less reflected in text-only metrics.102

• Currently available strong captioning models gen-103

erate highly fluent captions. Fluency evaluation104

is thus no longer crucial in ranking these models.105

2 Evaluation Protocol106

We establish a transparent evaluation protocol for107

image captioning models. Our rubrics and rules are108

developed through discussions among all annota-109

1Anonymized.
2https://competitions.codalab.org/

competitions/3221#results.

tors (first four authors of this paper). 110

2.1 Evaluation Setups and Quality Control 111

We used images from the test data in the stan- 112

dard Karpathy split (Karpathy and Fei-Fei, 2015) 113

of the MSCOCO dataset (Lin et al., 2014). The 114

dataset consists of 113K, 5K, and 5K train/dev./test 115

everyday-scene photos sampled from Flickr. We 116

randomly sampled 500 test images and prepared 117

one human- and four machine-generated captions 118

for every image (§2.3). We first performed de- 119

velopmental evaluations of 250 captions for 50 120

images and created rubrics. We then proceeded 121

with the rest of the captions. For every image, cap- 122

tions were shuffled, and thus annotators did not 123

know which caption corresponded to which model, 124

thereby avoiding a potential bias from knowledge 125

about the models. We conducted two-stage anno- 126

tations: the first annotator scores all captions for 127

given images, and the second annotator checks and 128

modifies the scores when necessary. After the de- 129

velopmental phase, the κ coefficient (Cohen, 1960) 130

was 0.86 in precision and 0.82 in recall for the 131

rest of the evaluated captions (§2.2.1).3 The first 132

four authors of this paper conducted all evaluations; 133

none of them are color blind or low vision, two are 134

native English speakers, and one is a graduate stu- 135

dent in linguistics. We finally ensured that at least 136

one native speaker evaluated the fluency of every 137

caption (§2.2.2), meaning that if a caption is anno- 138

tated by the two non-native speakers, one native 139

speaker checks the fluency in an additional round. 140

2.2 THUMB 1.0 141

We base our evaluations on two main scores 142

(precision and recall) and three types of penalty 143

(fluency, conciseness, and inclusive language) 144

The overall score is computed by averaging pre- 145

cision and recall and deducting penalty points. 146

2.2.1 Main Scores 147

The two main scores are assessed in the scale of 148

1–5. They balance information accuracy and cover- 149

age. See §A.4 for score distribution histograms. 150

Precision Precision (P) measures how precise the 151

caption is given the image. For instance, Caption 1- 152

B in Table 1 is perfectly precise, while 1-A (dog vs. 153

otter, one vs. two frisbees) and 1-C (three vs. two 154

3Furthermore, we found that a third annotator did not
change the scores for all 100 captions randomly sampled for
meta-evaluations, confirming the sufficiently high quality of
our two-stage annotations.
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Image Caption P R Flu. Total

1-A: Up-Down 3 4 0 3.5A dog playing with a frisbee on the ground.

1-B: VinVL-base 5 4 0.1 4.4A otter is laying on the sand next to two frisbees.

1-C: VinVL-large 4 3 0 3.5A small animal laying on a rock with three frisbees.

2-A: Up-Down 5 3 0 4A close up of a plate of broccoli.

2-B: Unified-VLP, VinVL-base, VinVL-large 4 4 0 4A plate of pasta and broccoli on a table.

2-C: Human 5 5 0.1 4.9A multi colored dish with broccoli and white twisted pasta in it.

3-A: Unified-VLP 3 4 0 3.5A little girl holding a video game controller.

3-B: VinVL-large 4 5 0 4.5A little girl is blow drying her hair on a couch.

3-C: Human 5 5 0 5A little girl holding a blow dryer next to her head.

4-A: Up-Down 3 5 0 4A black cat laying in a red suitcase.

4-B: Unified-VLP, VinVL-base, VinVL-large 5 5 0 5A black cat sitting on top of a red suitcase.

4-C: Human 4 5 0 4.5A large black cat laying on top of a pink piece of luggage.

5-A: Up-Down, Unified-VLP 3 2 0 2.5A man standing in front of a display of donuts.

5-B: VinVL-large 5 3 0 4A woman standing behind a counter at a donut shop.

5-C: Human 5 5 0.3 4.7Woman selling doughnuts with doughnut stock in the background.

Table 1: Example evaluations of machine- and human-generated captions. None of these captions get penalties in
conciseness and inclusive language. Evaluated captioning models are described in §2.3

frisbees) are not precise. Precision guards against155

hallucinations from the language model (table in 2-156

B) that are known to be common failures of image157

captioning models (Rohrbach et al., 2018). The158

score of 4 is reserved for relatively minor issues,159

such as attributes that are almost correct (e.g., pink160

vs. red in 4-C, Table 1) or cases where the caption161

does not contradict with the image but is not guar-162

anteed to be true (e.g., it is unclear whether the girl163

is sitting on a couch in 3-B). In addition to objects164

themselves, precision deals with information like165

properties, attributes, occasions, locations, and re-166

lations between objects (e.g., in a red suitcase vs.167

on a red suitcase in 4-A).168

Recall Recall (R) measures how much of the169

salient information (e.g., objects, attributes, and170

relations) from the image is covered by the cap-171

tion. This includes color (e.g., color of the frisbees172

in 1-A, 1-B, and 1-C) and guards against generic,173

uninformative captions. For instance, an otter is 174

a small animal, and thus small animal is precise 175

(1-C); however, it is much less informative than 176

saying an otter. Similarly, Caption 5-B only says 177

a woman is standing behind a counter at a donut 178

shop, but she is selling donuts, not buying or look- 179

ing at donuts, which is salient information from the 180

picture. We do not take a point off if missing infor- 181

mation is already expected from the caption (e.g., a 182

double-decker bus is typically red). We often find 183

it useful to take a generative approach when evalu- 184

ating recall: what image does the caption lead us to 185

imagine? When the caption entails many potential 186

images that substantially diverge from the given 187

image, the recall score should be low. 188

2.2.2 Penalties 189

Fluency Fluency (Flu.) measures the quality of 190

captions as English text regardless of the given im- 191
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age. Initially, we scored fluency in the scale of 1–5,192

similar to P and R, but we found most captions193

from modern neural network models were highly194

fluent. Thus, we instead decided to take points off195

from the average of P and R if there’s a fluency196

problem to account for minor issues that are much197

less problematic than losing one P/R point. The198

four annotators had extensive discussions and de-199

veloped rubrics for fluency. Similar to recent work200

on professional evaluations for machine translation201

(Freitag et al., 2021), we evaluated under the fol-202

lowing principle: if a fluency problem is expected203

to be easily corrected by a text postprocessing algo-204

rithm (e.g., grammatical error correction: Yuan and205

Briscoe, 2016; Sakaguchi et al., 2017), the penalty206

should be 0.1. This includes obvious misspellings207

or grammatical errors (e.g., A otter in 1-B) and208

missing determiners/hyphens (multi colored in 2-209

C). 0.5+ points were subtracted for more severe210

problems, such as duplication (e.g., A display case211

of donuts and doughnuts), ambiguity (e.g., A cat is212

on a table with a cloth on it), and broken sentences213

(e.g., A large concrete sign small buildings behind214

it.). See Table 6 in §A.1 for more extensive fluency215

rubrics. Note that the average fluency penalty was216

0.01; this confirms that fluency is no longer crucial217

in ranking models for MSCOCO captioning and218

contrasts with human evaluations previously done219

for older captioning models.220

Conciseness The scores so far do not take into221

account conciseness of captions. Specifically, a222

model could simply increase all scores by describ-223

ing every detail in a picture. For instance, the224

following caption is overly repetitive: a woman225

lying on her back with knees bent on a beach towel226

under a multicolored, striped beach umbrella, sur-227

rounded by sand, and with clear blue sky above.228

We subtract 0.5 points for these captions. Note that229

most machine captions were short, and this penalty230

was only applied to two human-generated captions.231

It might become more crucial for future models232

with a more powerful object detection module that233

catches many objects in the picture.234

Inclusive Language We found that some in-235

stances substantially diverge from inclusive lan-236

guage, raising a concern for downstream applica-237

tions. In these cases, we added a penalty: 0.5 points238

were deducted for a subjective comment about ap-239

pearance (e.g., very pretty girl), and 2 points for240

more severe problems (e.g., beautiful breasts).241

2.2.3 Rules of THUMB 242

In our development phase, we established the fol- 243

lowing additional rules to clarify our annotation 244

scheme. 245

Avoiding Double Penalties When an error is ac- 246

counted for in precision, we correct the error be- 247

fore scoring the recall, thereby avoiding penalizing 248

the precision and recall for the same mistake. For 249

example, P=3 is given to Caption 1-A in Table 1 250

because of its wrong detection (dog vs. otter; one 251

vs. two frisbees), but we score the recall assuming 252

that the caption is now an otter playing with two 253

frisbees on the ground. This ensures that a generic, 254

useless caption, such as there is something on some- 255

thing (P=5, R=1), would be ranked considerably 256

lower than a dog on the beach with two pink and 257

yellow frisbees (P=3, R=5). Similarly, the wrong 258

detection in 5-A (man vs. woman) is handled only 259

in precision. Note that such error correction is 260

not applicable to hallucinations because there is no 261

alignment between a part of the image and a hallu- 262

cinated object (e.g., table in 2-B). This rule departs 263

from the definition of recall in SPICE (Anderson 264

et al., 2016), an automatic metric that measures the 265

F1 score in scene graphs predicted from reference 266

and generated captions; their alignment is limited 267

to WordNet synonyms (Miller, 1995). This means 268

that classifying an otter as a dog or even a small 269

animal would result in cascading errors both in 270

precision and recall, overrating captions that com- 271

pletely overlook the otter or ones that make a more 272

severe classification error (e.g., miscategorize the 273

otter as a car, compared to a dog). 274

Object Counts as Attributes All counts are con- 275

sidered as object attributes, and wrong counts are 276

handled in precision. This simplifies the distinction 277

between precision and recall. For instance, both a 278

frisbee (1-A) and three frisbees (1-C) are precision 279

problems, while saying some frisbees would be a 280

recall problem when it is clear that there are exactly 281

two frisbees. Note that this is in line with SPICE, 282

which treats object counts as attributes in a scene 283

graph, rather than duplicating a scene graph for 284

every instance of an object (Anderson et al., 2016). 285

Black and White Photo MSCOCO contains 286

black and white or gray-scale pictures. Some cap- 287

tions explicitly mention that they are black and 288

white, but we disregard this difference in our evalu- 289

ations. The crowdsource instructions for creating 290

reference captions do not specify such cases (Chen 291
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et al., 2015). Further, we can potentially run post-292

processing to determine whether it is black and293

white to modify the caption accordingly, depend-294

ing on the downstream usage.295

Text Processing Image captioning models often296

differ slightly in text preprocessing. As a result,297

we found that generated captions were sometimes298

slightly different in format (e.g., tokenized or detok-299

enized; lowercased or not). For better reproducibil-300

ity, we follow the spirit of SACREBLEU (Post,301

2018), which has become the standard package to302

compute BLEU scores for machine translation: all303

evaluations, including automatic metrics, should be304

done on clean, untokenized text, independently of305

preprocessing design choices. We apply the follow-306

ing minimal postprocessing to the model outputs307

and human captions.308

• Remove unnecessary spaces at the start or end of309

every caption.310

• Uppercase the first letter.311

• Add a period at the end if it doesn’t exist, and312

remove a space before a period if any.313

We keep the postprocessing minimal for this work314

and encourage future model developers to follow315

the standard practice in machine translation: every316

model has to output clean, truecased, untokenized317

text that is ready to be used in downstream modules.318

This also improves the transparency and repro-319

ducibility of automated evaluations (Post, 2018).320

2.3 Evaluated Captions321

We evaluated the following four strong models322

from the literature as well as human-generated cap-323

tions. They share similar pipeline structure: object324

detection followed by crossmodal caption genera-325

tion. They vary in model architecture, (pre)training326

data, model size, and (pre)training objective. Eval-327

uating captions from them will enable us to better328

understand what has been improved and what is329

still left to future captioning models.330

• Up-Down (Anderson et al., 2018) trains Faster331

R-CNN (Ren et al., 2015) on the Visual Genome332

datset (Krishna et al., 2016) for object detection.333

It then uses an LSTM-based crossmodal genera-334

tion model.335

• Unified-VLP (Zhou et al., 2020) uses the same336

object detection model as Up-Down. The337

transformer-based generation model is initialized338

with base-sized BERT (Devlin et al., 2019) and339

further pretrained with 3M images from Concep-340

tual Captions (Sharma et al., 2018).341

• VinVL-base and VinVL-large (Zhang et al., 342

2021) train a larger-scale object detection model 343

with the ResNeXt-152 C4 architecture (Xie et al., 344

2017) on ImageNet (Deng et al., 2009). The 345

transformer generation model is initialized with 346

BERT and pretrained with 5.7M images. 347

• Human randomly selects one from the 348

five human-generated reference captions in 349

MSCOCO. Those captions were created by 350

crowdworkers on Amazon Mechanical Turk 351

(Chen et al., 2015). 352

Further details are described in §A.3 of Appendix. 353

3 Results and Analysis 354

We present results and analysis from our evalu- 355

ations. Our transparent evaluations facilitate as- 356

sessments and analysis of both captioning models 357

(§3.1) and automatic metrics (§3.2). 358

3.1 Comparing Models 359

Seen in Table 2 (left section) is the model perfor- 360

mance that is averaged over the 500 test images and 361

broken down by the rubric categories. Overall, Hu- 362

man substantially outperforms all machines in the 363

P, R, and total scores. In particular, we see a large 364

gap between Human and the machines in recall 365

(e.g., Human 4.35 vs. VinVL-large 3.97). This con- 366

trasts with the automatic metric-based ranking of 367

the MSCOCO leaderboard, where Human is ranked 368

at the 250th place.4 This result questions claims 369

about human parity or superhuman performance 370

on MSCOCO image captioning. The four machine 371

captioning models are ranked in the expected order, 372

though the small difference between VinVL-large 373

and VinVL-base suggests that simply scaling up 374

models would not lead to a substantial improve- 375

ment. We see that the three models that are ini- 376

tialized with pretrained BERT (VinVL-large/base, 377

Unified-VLP) are particularly fluent, but the prob- 378

lem is small in the other models as well. 379

While we compute representative, total scores, 380

our transparent rubrics allow for adjusting weight- 381

ing of the categories depending on the applica- 382

tion of interest. For instance, in the social media 383

domain, recall can be more important than pre- 384

cision to make captions engaging to users (Shus- 385

ter et al., 2019). To assess the models indepen- 386

4The official leaderboard ranks submissions using CIDEr
(Vedantam et al., 2015) with 40 references on the hidden test
data. We use the public Karpathy test split instead, but we
suspect the same pattern would hold on the hidden data as
well, given the large gap between machines and Human.
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THUMB 1.0 Automatic Metrics
Model P↑ R↑ Flu.↓ Con.↓ Inc.↓ Total↑ BLEU ROUGE BERT-S SPICE CIDEr CLIP-S RefCLIP-S
Human 4.82 4.35 0.019 0.02 0.00 4.56+0.03−0.03 26.2 50.4 0.938 23.7 111.5 0.791 0.834

VinVL-large 4.54 3.97 0.005 0.00 0.00 4.25+0.04−0.04 33.3 56.5 0.946 26.4 141.8 0.784 0.834

VinVL-base 4.47 3.95 0.001 0.00 0.00 4.21+0.04−0.04 32.3 55.9 0.945 25.6 138.4 0.779 0.830

Unified-VLP 4.35 3.77 0.004 0.00 0.00 4.06+0.04−0.04 31.6 55.8 0.945 24.3 128.5 0.771 0.821

Up-Down 4.29 3.50 0.014 0.00 0.00 3.88+0.05−0.05 28.4 52.2 0.939 21.0 110.7 0.746 0.803

Table 2: Performance of image captioning models with respect to THUMB 1.0 (left) and automatic metrics (right).
All scores are averaged over 500 images randomly sampled from the Karpathy test split. P: precision; R: recall; Flu.:
fluency; Con.: conciseness; Inc.: inclusive language. 90% confidence intervals for total scores are calculated by
bootstrapping (Koehn, 2004). All reference-based metrics take as input the same four crowdsourced captions that
are not used in Human for fair comparisons.

dently of these aggregation decisions, we count387

the number of times when each model outper-388

forms/underperforms all the others both in P and389

R (strictly best/worst, Table 3). We see patterns390

consistent with Table 2. For example, Human is391

most likely to be strictly best and least likely to be392

strictly worst. This suggests that machine caption-393

ing models would still fall short of crowdworkers394

in a wide range of downstream scenarios.395

Model Human Vin-large Vin-base U-VLP Up-Down
# Best ↑ 327 180 161 112 74
# Worst ↓ 65 128 150 190 269

Table 3: # times when each captioning model is strictly
best/worst in the caption set (i.e., best/worst both in
precision and recall).

w/o Human w/ Human
Metric P R Total P R Total
RefCLIP-S 0.34 0.27 0.44 0.31 0.26 0.41+0.05−0.05

RefOnlyC 0.42 0.14 0.41 0.37 0.11 0.34+0.04−0.05

CLIP-S 0.18 0.27 0.32 0.17 0.28 0.32+0.05−0.05

CIDEr 0.27 0.18 0.33 0.21 0.11 0.23+0.04−0.04

BERT-S 0.27 0.18 0.33 0.20 0.10 0.21+0.04−0.04

SPICE 0.26 0.15 0.30 0.20 0.09 0.21+0.04−0.04

ROUGE-L 0.26 0.17 0.31 0.18 0.07 0.18+0.04−0.04

BLEU 0.21 0.13 0.25 0.15 0.04 0.13+0.04−0.04

Table 4: Instance-level correlations of automatic evalua-
tion scores. RefCLIP-S and CLIP-S use image features
unlike the others, and all but CLIP-S require references.
All of these reference-based metrics use the same subset
of four captions as in Table 2 that exclude Human. All
metrics had correlations lower than 0.1 for fluency.

3.2 Comparing Automatic Metrics396

While carefully-designed human judgments like397

ours should be considered more reliable, automatic398

metrics allow for faster development cycles. Our 399

transparent evaluations can also be used to analyze 400

how these automatic metrics correlate with differ- 401

ent aspects of image captioning. Table 2 (right 402

section) shows automatic scores of the captioning 403

models over 7 popular metrics for image caption- 404

ing. CLIP-S (Hessel et al., 2021) is a referenceless 405

metric that uses image features from CLIP (Rad- 406

ford et al., 2021), a crossmodal retrieval model 407

trained on 400M image-caption pairs from the web. 408

RefCLIP-S augments CLIP-S with similarities be- 409

tween the generated and reference captions. All 410

other metrics, such as SPICE (Anderson et al., 411

2016) and CIDEr (Vedantam et al., 2015), only 412

use reference captions without image features. 413

These automatic metrics generally agree with 414

our evaluations in ranking the four machines, 415

but completely disagree in the assessment of Hu- 416

man. Most metrics rank Human near the bot- 417

tom, showing that they are not reliable in evalu- 418

ating high-quality, human-generated captions. The 419

two metrics with powerful image and text fea- 420

tures (CLIP-S and RefCLIP-S) give high scores 421

to Human compared to the other metrics, but they 422

still fail to score Human substantially higher than 423

VinVL-large. This suggests that automatic metrics 424

should be regularly updated as our models become 425

stronger (and perhaps more similar to humans), 426

and raises a significant concern about the current 427

practice that fixes evaluation metrics over time. 428

Seen in Table 4 are instance-level Pearson cor- 429

relation scores between automatic scores and our 430

evaluations.5 We also add an ablation study: Re- 431

fOnlyC removes image features from RefCLIP-S to 432

5Instance-level Pearson correlations with human judg-
ments were often computed in prior work to compare auto-
matic metrics for image captioning (e.g., Hessel et al., 2021).
An alternative is system-level correlations, but they would be
uninformative with five systems only.
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quantify the effect of image features. We consider433

two types of scenarios: one with Human and one434

without. Correlations drop from the latter to the435

former for all metrics and aspects except CLIP-S,436

again showing that the metrics are not reliable in437

assessing human-generated captions. Interestingly,438

CLIP-S correlates best in recall (0.28 w/ Human)439

but suffers in precision (0.17 w/ Human). RefOn-440

lyC, in contrast, achieves the best correlations in P441

at the expense of R. RefCLIP-S balances the two442

and achieves the best correlation in total scores.443

This indicates that the CLIP image features par-444

ticularly help assess coverage of salient informa-445

tion that can be ignored in some reference captions446

from crowdworkers.6 Prior work (Hessel et al.,447

2021) found that SPICE can still improve correla-448

tions when combined with CLIP-S, even though449

CLIP-S better correlates with human judgments450

than SPICE. This implies that image-based and451

reference-only metrics capture different aspects of452

image captioning. Our analysis indeed agrees with453

their finding and, further, identifies that recall is454

one such aspect. For an extensive description of455

these metrics and their configurations, see §A.2 of456

Appendix.457

3.3 Machine vs. Human Examples458

Table 5 provides examples that contrast machine-459

and human-generated captions. We see that460

machine-generated captions ignore salient infor-461

mation or make critical errors for these images.462

These problems often occur in relatively rare cases:463

a tennis player is showing excitement rather than464

hitting a ball; a bride and groom are cutting a wed-465

ding cake; a boy is wearing a tie without a shirt;466

a man is putting clothing and a tie on a dummy467

instead of a person. But these situations are ex-468

actly the most important information because of469

their atypicality (Feinglass and Yang, 2021). This470

illustrates fundamental problems of current image471

captioning models that are left to future work.472

4 Related Work473

Human Evaluations for Image Captioning Sev-474

eral prior works conducted human evaluations for475

6The low recall correlations of reference-only metrics can
be partly because the maximum (as opposed to minimum or av-
erage) is typically taken over multiple reference captions (e.g.,
BERTScore, Zhang et al., 2020). Nevertheless, this alone does
not explain the recall gap from image-based metrics because
RefCLIP-S also takes the maximum score over all references.
Future work can explore the relation between precision/recall
and different treatments of multiple references.

image captioning with varying models, datasets, 476

and annotation schemes. Much work used crowd- 477

workers from Amazon Mechanical Turk on Flickr- 478

based datasets, including the PASCAL (Rashtchian 479

et al., 2010), Flickr8k/30k (Hodosh et al., 2013; 480

Young et al., 2014), and MSCOCO datasets. Anno- 481

tators scored the overall quality directly (Kulkarni 482

et al., 2011; Hodosh et al., 2013), pairwise (Vedan- 483

tam et al., 2015), or along multiple dimensions, 484

such as truthfulness/correctness (Yatskar et al., 485

2014; Anderson et al., 2016), thoroughness (Aditya 486

et al., 2015), relevance (Yang et al., 2011; Li et al., 487

2011), and grammaticality/readability (Mitchell 488

et al., 2012; Elliott and Keller, 2013). There are 489

similarities between our rubrics and previous an- 490

notations, but our framework defines every dimen- 491

sion in a decomposable way through discussions 492

among all annotators, while focusing on outputs 493

from strong models currently available. Apart from 494

these conventional Flickr-based datasets, some 495

other work evaluated image captions for social 496

media (engagingness, Shuster et al., 2019; acces- 497

sibility for Twitter users with vision impairments, 498

Gleason et al., 2019, 2020) and news articles (Biten 499

et al., 2019). Our transparent evaluations would 500

enable us to adjust the aggregation method based 501

on the nature of downstream applications. More 502

specializing categories can be added for these ap- 503

plications in later versions (e.g., THUMB 2.0). 504

Human Evaluations for Other Generation Tasks 505

Much previous work explored human evaluations 506

for other language generation tasks than image cap- 507

tioning. The WMT shared task (Barrault et al., 508

2020) conducts human evaluations of state-of-the- 509

art machine translation systems every year; partic- 510

ipants or crowdworkers directly rate a translation 511

in a 100-point scale, which is a method developed 512

by Graham et al. (2013, 2014, 2017). GENIE takes 513

a similar approach but hosts human evaluations in 514

leaderboards for machine translation, summariza- 515

tion, and commonsense reasoning (Khashabi et al., 516

2021). Kryscinski et al. (2019) and Fabbri et al. 517

(2021) assessed many summarization models in a 518

similar annotation scheme to the DUC 2006/2007 519

evaluations (Dang, 2006). Our transparent evalua- 520

tion framework is inspired by rubric-based machine 521

translation judgments by professional translators 522

(Freitag et al., 2021), which resulted in different 523

system rankings than the WMT evaluations. As 524

top-performing models and automatic metrics are 525

becoming increasingly similar across various natu- 526
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Image Caption P R Flu. Total

6-A: Up-Down 5 3 0 4A man holding a tennis racquet on a tennis court.

6-B: Unified-VLP, VinVL-base, VinVL-large 5 3 0 4A man holding a tennis racket on a tennis court.

6-C: Human 5 5 0 5A tennis player shows controlled excitement while a crowd watches.

7-A: Up-Down 3 3 0 3A person cutting a cake with a knife.

7-B: Unified-VLP 3 5 0 4A person cutting a wedding cake with a knife.

7-C: VinVL-base 5 3 0 4A couple of cakes on a table with a knife.

7-D: VinVL-large 3 3 0 3A woman cutting a cake with a knife.

7-E: Human 5 5 0.1 4.9Bride and grooms arms cutting the wedding cake with fruit on top.

8-A: Up-Down 3 3 0 3A young boy wearing a blue shirt and a blue tie.

8-B: Unified-VLP 3 3 0 3A young boy wearing a shirt and a tie.

8-C: VinVL-base 5 3 0 4A young boy wearing a tie standing in front of a lamp.

8-D: VinVL-large 3 3 0 3A young man wearing a tie and a shirt.

8-E: Human 4 5 0 4.5A man wearing only a tie standing next to a lamp.

9-A: Up-Down 2 2 0 2A couple of men standing next to each other.

9-B: Unified-VL 2 2 0 2Two men standing in a room.

9-C: VinVL-base 2 2 0 2A couple of men standing in a room.

9-D: VinVL-large 2 2 0 2Two men standing next to each other in a room.

9-E: Human 5 3 0 4A man standing next to a dummy wearing clothes.

Table 5: Examples that contrast machine- and human-generated captions. All machine-generated captions overlook
or misinterpret salient information: the excitement the tennis player expresses, the bride and groom cutting a
wedding cake, the boy not wearing a shirt, and the man putting a tie on a dummy. None of these captions are
penalized for conciseness or inclusive language. See §A.5 in Appendix for more examples.

ral language generation tasks, our findings on im-527

age captioning may be useful for other generation528

tasks as well.529

5 Conclusion530

We developed THUMB 1.0, transparent evalua-531

tions for the MSCOCO image captioning task. We532

refined our rubrics through extensive discussions533

among all annotators, and ensured the high quality534

by two-stage annotations. Our evaluations demon-535

strated critical limitations of current image cap- 536

tioning models and automatic metrics. While re- 537

cent image-based metrics show promising improve- 538

ments, they are still unreliable in assessing high- 539

quality captions from crowdworkers. We hope that 540

our annotation data will help future development 541

of better captioning models and automatic metrics, 542

and this work will become a basis for transparent 543

human evaluations for the image captioning task 544

and beyond. 545
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A Appendix 790

A.1 Fluency Rubrics 791

Table 6 presents our fluency rubrics. They were 792

developed by the first four authors (two of whom 793

were native English speakers, and one was a grad- 794

uate student in linguistics). Generally, if a fluency 795

problem is expected to be easily corrected by a text 796

postprocessing algorithm, the penalty is 0.1. More 797

severe errors (e.g., broken sentence and ambiguity) 798

are penalized more. 799

A.2 Automatic Metrics 800

Here we discuss details and configurations of the 801

automatic metrics used in §3.2. CLIPScore and Re- 802

fCLPScore use image features from CLIP (Radford 803

et al., 2021), a crossmodal retrieval model trained 804

on 400M image-caption pairs from the web. All 805

the other five metrics only use reference captions. 806

BLEU BLEU (Papineni et al., 2002) is a 807

precision-oriented metric and measures n-gram 808

overlap between the generated and reference cap- 809

tions. We use the SACREBLEU implementation 810

of BLEU-4 and get sentence-level scores (Post, 811

2018).7 812

ROUGE ROUGE (Lin, 2004) measures the num- 813

ber of overlapping n-grams between the generated 814

and reference captions. We use the HuggingFace 815

implementation of ROUGE-L (Wolf et al., 2020). 816

CIDEr CIDEr (Vedantam et al., 2015) measures 817

the cosine similarity between the n-gram counts of 818

the generated and reference captions with TF-IDF 819

weighting. We use the implementation from the 820

pycocoevalcap package.8 821

SPICE SPICE (Anderson et al., 2016) predicts 822

scene graphs from the generated and reference cap- 823

tions using the Stanford scene graph parser (Schus- 824

ter et al., 2015). It then measures the F1 score 825

between scene graphs from the generated and refer- 826

ence captions. WordNet Synsets are used to cluster 827

synonyms (Miller, 1995). We again use the imple- 828

mentation from the pycocoevalcap package. 829

BERTScore BERTScore (Zhang et al., 2020) 830

aligns tokens between the generated and refer- 831

ence captions using contextual word representa- 832

tions from BERT (Devlin et al., 2019). We use 833

7https://github.com/mjpost/sacreBLEU/
blob/v1.2.12/sacrebleu.py#L999.

8https://github.com/salaniz/
pycocoevalcap.
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Fluency Error Type Penalty Example
Obvious spelling error, one vs. two words 0.1 cel phone, surf board
Grammatical error that can be easily fixed 0.1 a otter
Casing issue 0.1 tv, christmas
Hyphenation 0.1 horse drawn carriage
Interpretable but unnatural wording 0.1 double decked bus
Non-trivial punctuation 0.2 A bird standing in the wooded area with leaves all around.
Misleading spelling error 0.5 A good stands in the grass next to the water. (good→goose)
Duplication 0.5 A display case of donuts and doughnuts.
Ambiguity 0.5 A cat is on a table with a cloth on it.
Awkward construction 0.1–0.5 There is a freshly made pizza out of the oven.
Broken sentence 0.5+ A large concrete sign small buildings behind it.

Table 6: Fluency penalty rubrics.

the HuggingFace implementation and compute the834

F1 score. As in Zhang et al. (2020), we take the835

maximum score over all reference captions.836

CLIPScore CLIPScore (Hessel et al., 2021) is837

the only referenceless metric out of the 7 metrics.838

It measures the cosine similarity between the gen-839

erated caption and given image using the represen-840

tations from CLIP. It is shown to correlate better841

with human judgments from prior work, compared842

to previous reference-based metrics (Hessel et al.,843

2021). We use the official implementation by the844

authors.9845

RefCLIPScore RefCLIPScore augments CLIP-846

Score with the maximum similarity between the847

generated and reference captions. We again use the848

official implementation.849

A.3 Evaluated Captions850

We evaluated the following four strong models851

from the literature as well as human-generated cap-852

tions. They share similar pipeline structure but vary853

in model architecture, (pre)training data, model854

size, and (pre)training objective. Evaluating cap-855

tions from them will enable us to better understand856

what has been improved and what is still left to857

future captioning models.858

Up-Down The bottom-up and top-down atten-859

tion model (Up-Down, Anderson et al., 2018) per-860

forms pipelined image captioning: object detection861

that finds objects and their corresponding image862

regions and crossmodal generation that predicts a863

caption based on the features from object detec-864

tion. The bottom-up attention finds salient image865

regions during object detection, and the top-down866

9https://github.com/jmhessel/
pycocoevalcap.

one attends to these regions during crossmodal gen- 867

eration. Up-Down uses Faster R-CNN (Ren et al., 868

2015) and LSTMs (Hochreiter and Schmidhuber, 869

1997) for object detection and crossmodal gener- 870

ation respectively. Faster R-CNN is trained with 871

the Visual Genome dataset (Krishna et al., 2016), 872

and the crossmodal generation model is trained on 873

the MSCOCO dataset. We generate captions for 874

the test data with a model optimized with crossen- 875

tropy.10 876

Unified-VLP Unified-VLP (Zhou et al., 2020) 877

also runs a pipeline of object detection and cross- 878

modal generation. Faster R-CNN and the trans- 879

former architecture (Vaswani et al., 2017) are used 880

for object detection and crossmodal generation 881

respectively. Similar to Up-Down, the Faster R- 882

CNN object detection model is trained with the Vi- 883

sual Genome dataset. The transformer generation 884

model, on the other hand, is initialized with base- 885

sized BERT (Devlin et al., 2019) and pretrained 886

on the Conceptual Captions dataset (3M images, 887

Sharma et al., 2018) with the masked and left-to- 888

right language modeling objectives for the captions. 889

The crossmodal generation model is then finetuned 890

on the MSCOCO dataset. We apply beam search 891

of size 5 to the model with CIDEr optimization. 892

VinVL-base, VinVL-large VinVL with Oscar 893

(Li et al., 2020; Zhang et al., 2021) performs a 894

similar pipeline of object detection, followed by 895

crossmodal generation. The crossmodal model is 896

initialized with BERT (Devlin et al., 2019) as in 897

Unified-VLP but uses detected object tags to en- 898

courage alignments between image features and 899

word representations. The object detection model 900

10https://vision-explorer.allenai.org/
image_captioning.
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with the ResNeXt-152 C4 architecture (Xie et al.,901

2017) is pretrained with ImageNet (Deng et al.,902

2009) and trained on 2.5M images from various903

datasets. The transformer-based crossmodal gener-904

ator is initialized with BERT, pretrained with 5.7M905

images, and finetuned for MSCOCO captioning.906

We use VinVL-base and VinVL-large that are both907

finetuned with CIDEr optimization11 and generate908

captions with beam search of size 5.909

Human In addition to machine-generated cap-910

tions from the four models, we assessed the qual-911

ity of human-generated reference captions from912

MSCOCO. This will allow us to understand the913

performance gap between machines and humans,914

as well as the quality of crowdsourced captions.915

Human-generated captions were created using916

Amazon Mechanical Turk (Chen et al., 2015).917

Crowdworkers were only given the following in-918

structions (Chen et al., 2015):919

• Describe all the important parts of the scene.920

• Do not start the sentences with “There is.”921

• Do not describe unimportant details.922

• Do not describe things that might have happened923

in the future or past.924

• Do not describe what a person might say.925

• Do not give people proper names.926

• The sentences should contain at least 8 words.927

Every image has five human-generated captions,928

and we randomly selected one for each to evalu-929

ate. We found, however, a non-negligible number930

of noisy captions in the MSCCOCO dataset from931

annotation spammers. We often find subjective ad-932

jectives (e.g., very nice/clean/cute) or words that933

diverge from inclusive language in reference cap-934

tions, probably because crowdworkers increased935

the number of words in captions effortlessly (see936

the last instruction item that says captions have to937

have 8+ words). To better estimate the performance938

of a human that invests reasonable effort into the939

captioning task, we resampled a caption for 13%940

of the test images, which would have been given a941

total score lower than 4.0.942

A.4 Score Distributions943

Seen in Fig. 2 are distributions of precision and944

recall scores for human and machine-generated945

captions. We see that the precision distribution946

looks similar between Human and machines, but947

11https://github.com/microsoft/
Oscar/blob/master/VinVL_MODEL_ZOO.md#
Image-Captioning-on-COCO.

not recall. This provides further support for our 948

claim that current machines fall short of humans 949

particularly in recall. 950
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Figure 2: Precision/recall histograms for human- and
machine-generated captions.

A.5 Additional Machine vs. Human Examples 951

Table 7 provides an additional example that con- 952

trasts machine- and human-generated captions. All 953

machines generate generic captions and ignore 954

the most important information that a traditional 955

Thanksgiving dinner is being served on the table. 956
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Image Caption P R Total

10-A: Up-Down 5 2 3.5A table that has some food on it.

10-B: Unified-VLP 5 2 3.5A table with plates of food on a table.

10-C: VinVL-base 4 2 3A red table topped with plates of food and bowls of food.

10-D: VinVL-large 5 3 4A table with a turkey and other food on it.

10-E: Human 5 5 5A table set for a traditional Thanksgiving dinner.

Table 7: Additional example that contrasts machine- and human-generated captions. Similar to Table 5, machine-
generated captions ignore the most salient information: Thanksgiving dinner. None of these captions are penalized
for fluency, conciseness, or inclusive language.
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