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ABSTRACT

Linear sequence modeling approaches, such as linear attention (Katharopoulos
et al., 2020), provide advantages like linear-time training and constant-memory
inference over sequence lengths. However, existing sequence parallelism (SP) meth-
ods are either not optimized for their right-product-first feature or use ring-style
communication as in LASP (Sun et al., 2024), which results in lower computation
parallelism, limits their scalability for longer sequences in distributed systems. In
this paper, we introduce LASP-2, a new SP approach designed to enhance both
communication and computation efficiency in linear (attention) transformer models
with very-long input sequences. Compared to LASP, LASP-2 rethinks the mini-
mal communication requirement for SP on linear attention, reorganizes the whole
communication-computation order of LASP. In this way, only one single all-gather
collective communication is needed on intermediate memory states, whose sizes
are independent of the sequence length, leading to significant improvements of
both communication and computation parallelism, as well as their overlap. Ad-
ditionally, we extend LASP-2 to LASP-2H by applying similar communication
redesign to standard attention modules, offering an efficient SP solution for hybrid
models that combine linear and standard attention layers. Our evaluation on a
Linear-Llama3 model, a variant of Llama3 with linear attention replacing standard
attention, demonstrates the effectiveness of LASP-2 and LASP-2H. Specifically,
LASP-2 achieves throughput improvements of 15.2% over LASP and 36.6% over
Ring Attention, with a sequence length of 2048K across 64 GPUs.

1 INTRODUCTION

Transformer, originally introduced by Vaswani et al. (Vaswani et al., 2017), has become the back-
bone of modern models across a wide range of domains, including language, vision, audio, video,
graphs, and even time-series data. Although the Transformer dates back to 2017, its adaptability and
robustness have made it indispensable for a variety of tasks. Central to its success is the self-attention
mechanism, which is highly effective for sequence modeling, but has quadratic complexity (w.r.t.
sequence length), leading to significant computational costs during training. However, the ability to
handle long-context sequences is crucial for large model applications, not only for language tasks but
also for multi-modal tasks, where sequences naturally tend to be long (Xue et al., 2024). FlashAtten-
tion series (Dao et al., 2022; Dao, 2023; Shah et al., 2024) have provided substantial advancements
in scaling attention to handle longer sequences by optimizing the CUDA-level computations for
better hardware utilization. However, the theoretical complexity of FlashAttention remains quadratic.
Moreover, the need to maintain the KV cache presents further difficulties in managing memory as the
sequence length extends (Yang et al., 2024). As a result, long-sequence processing in Transformer
models continues to be a complex and resource-intensive problem.

Recently, numerous variations of attention have been proposed, primarily aimed at addressing its
quadratic computational and memory complexity, as well as the growing size of the KV cache (Peng
et al., 2023; 2024). One promising approach line is linear attention (Katharopoulos et al., 2020),
which replaces the exponential kernel in softmax attention with a simpler dot product between key
and query vectors. This shift allows linear attention to be structured as a linear recurrent neural
network (RNN) with matrix-valued hidden states, thereby eliminating the need for a KV cache. In
consequence, it supports constant-memory inference and reduces training complexity from quadratic
to linear (Yang et al., 2023). A parallel line of research focuses on State Space Models (SSMs), such
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as Mamba (Gu & Dao, 2023) and Mamba 2 (Dao & Gu, 2024), which draw upon concepts from
control theory. Both linear attention and SSMs share a common recurrent formulation, expressed as
Ms = Ms−1+M̂s, where M̂s represents the incremental memory state of the s-th token (Yang et al.,
2024). However, despite these advantages, they tend to perform poorly on recall-intensive tasks, such
as in-context learning (e.g., five-shot MMLU (Hendrycks et al., 2020), Phone-book lookup (Jelassi
et al., 2024), Needle In A Haystack (Briakou et al., 2023)) and long-context reasoning. Empirical
research (Lieber et al., 2024; Ren et al., 2024; Waleffe et al., 2024) has shown that models relying
solely on linear sequence modeling struggle to excel in these domains. However, a hybrid architecture
combining linear sequence modeling layers with standard transformer layers has been demonstrated
to significantly enhance model performance on tasks that are recall-intensive.

Sequence Parallelism (SP) techniques (Korthikanti et al., 2022; Jacobs et al., 2023; Liu et al., 2023)
are commonly employed to partition long sequences into smaller sub-sequences, allowing them to
be processed across multiple GPUs in parallel. Despite the advantages offered by SP for handling
large sequences, current SP methods do not fully exploit the right-product-first feature of linear
attention, which can lead to inefficiencies in parallelism and communication. LASP (Sun et al.,
2024) (referred to as LASP-1) introduced a SP approach specifically tailored for linear attention,
that uses a point-to-point (P2P) communication strategy. In this method, intermediate states are
transferred across GPUs in a ring-style pattern within the distributed world. However, although such
P2P ring-style communication offers certain benefits, part of its computation has to be executed
sequentially, which leads low computation parallelism. In addition, too many small P2P operators
make the overlapping of communication and computation difficult.

In this paper, we introduce LASP-2 by rethinking the minimal communication requirement involved
in SP of linear attention. Specifically, we innovatively reorganize the whole computation and
communication procedure with an optimized execution order. In this way, only a single all-gather
collective communication is needed in the forward or backward of each iteration. These bring both
communication and computation efficiency improvements: 1) the size of the intermediate memory
state tensor the all-gather operator works on is independent of the sequence length, making the
communication burden insignificant in the context of long sequences. The communication parallelism
and accessibility to overlap with computation are notably improved. 2) the refactored computation
order improves computation parallelism over multiple devices. Additionally, we separately present
LASP-2 with and without masking for autoregressive and bidirectional tasks, respectively, as the
presence of a mask matrix significantly impacts the execution mechanism of LASP-2. To extend
LASP-2 to hybrid models with both linear and standard attention modules, we introduce LASP-2H.
This extension employs the same all-gather-based communication for standard attention layers, with
a similar designing philosophy on linear attention. We conduct experiments with up to sequence
length of 2048K to verify the efficiency advantages of LASP-2 and LASP-2H.

The main contributions of this paper can be summarized as follows:

• We rethink the communication design for the current SP on linear attention, reorganize its
whole communication and computation process with an optimized execution order. This
involves using a single all-gather collective communication on intermediate memory states,
whose sizes are independent of sequence length. The resulted LASP-2 significantly improves
both communication and computation parallelism, as well as their overlap.

• We extend LASP-2 to LASP-2H, offering an efficient SP solution for hybrid models that
integrate both linear and standard attention layers, employing an unified all-gather-based
communication strategy.

• We construct a series of Linear-Llama3 models, including both purely linear and hybrid
versions. Extensive experimental results on these models with up to a sequence length of
2048K, validate the efficiency improvement and performance of LASP-2 and LASP-2H.

2 RELATED WORK

2.1 LINEAR SEQUENCE MODELING

Linear Attention. Vanilla linear attention (Katharopoulos et al., 2020) introduces the use of kernel
methods as a replacement for the Softmax attention (Vaswani et al., 2017), thereby reducing the
computational complexity to linear in sequence length. Following this, several variants of linear
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Table 1: Notations. Indices, operations, constants, vectors and matrices used in the paper.

Indices Operations
i Any indices · (or omitted) Matrix multiplication
s Index of current token ⊙ Hadamard multiplication
t Index of chunk Vectors and Matrices
Constants x, o ∈ R1×d Input and output vectors
d Hidden dimension q, k, v ∈ R1×d Query, key, value vectors
W World size X, O ∈ RN×d Input and output matrices
N Sequence length Q, K, V ∈ RN×d Query, key, value matrices
T Total number of chunks M ∈ Rd×d Memory state matrix
C Chunk length WQ, WK , WV ∈ Rd×d Weight matrices

attention have been proposed. RetNet (Sun et al., 2023) introduces a retention mechanism that
combines recurrence with attention, benefiting from both parallel training and linear inference. Gated
Linear Attention (GLA) (Yang et al., 2023) incorporates a data-independent gating mechanism into the
linear attention framework, and presents an efficient algorithm for training. TransNormerLLM (Qin
et al., 2024a) proposes Lightning Attention, a refined linear attention mechanism that accelerates
processing by optimizing IO interactions. Lightning Attention-2 (Qin et al., 2024b) further realizes the
theoretical advantages of linear attention by separately handling inter- and intra-block computations.
DeltaNet (Schlag et al., 2021) and its parallelized version (Yang et al., 2024) use a delta rule-
like update to enhance linear attention performance in long-context scenarios. Finally, Gated Slot
Attention (GSA) (Zhang et al., 2024), inspired by GLA, introduces a gated linear attention mechanism
with bounded-memory slot control to further improve efficiency.

State Space Modeling. The SSM serves as a powerful framework for representing the behavior of
sequences within dynamic systems, and it has shown considerable promise in the realm of linear
sequence modeling. Mamba (Gu & Dao, 2023) incorporates a mechanism for selecting states, thereby
facilitating the scaling of linear sequence lengths. This architecture has been further enhanced in
Mamba-2 (Dao & Gu, 2024), where the introduction of the state space duality (SSD) framework
optimizes its performance.

Linear RNN. Traditional RNNs face significant challenges in handling long-context sequence
modeling, primarily due to their inherent sequence dependency during training, which prevents them
from fully capitalizing on scaling laws (Sun et al., 2023). To address these limitations, RWKV (Peng
et al., 2023; 2024) was introduced as a linear RNN-based large language model that aims to efficiently
manage long-term dependencies. Additionally, HGRN (Qin et al., 2024e) highlights the critical
role of data-dependent decay mechanisms in enhancing linear RNN performance, demonstrating
how adjustments to decay parameters can improve learning in long-context tasks. An enhanced
version, HGRN2 (Qin et al., 2024d), expands on this approach by incorporating a state expansion
mechanism that utilizes outer product operations, which allows for greater scalability and improved
modeling capabilities over extended sequences. Both RWKV and HGRN models seek to overcome
the traditional weaknesses of RNNs for efficient long-sequence modeling.

2.2 SEQUENCE PARALLELISM

SP (Li et al., 2022) is a distributed technology designed for training language models more efficiently,
which is implemented by dividing a long sequence into multiple shorter subsequences and processing
these subsequences in parallel on multiple computing devices. Existing SP methods (Korthikanti et al.,
2022; Jacobs et al., 2023) whose parallelism degree cannot exceed the number of attention heads,
which limits their scalability. Ring Attention (Liu et al., 2023) is proposed to address high memory
cost in long sequence modeling by distributing subsequences across different devices and overlapping
the communication of KV blocks. LASP (Sun et al., 2024) proposes a new linear attention-tailored
SP strategy based on GPU friendly implementation by utilizing a P2P ring-style communication
strategy, but still lacks of optimizations for hybrid model architecture.

3 PRELIMINARY

Notation In this paper, we ensure the consistent use of notations to enhance clarity. Table 1
provides a list of all the symbols utilized throughout, including indices, constants, vectors, and
matrices. Vectors and matrices are represented in boldface. For simplicity, we have omitted the
dimensions related to batch size and the number of heads in tensor shapes.
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Linear Attention The term "attention" generally refers to a computation that assigns scores to
pairs of positions within a sequence, enabling each element to "attend" to others. The most widely
used and significant variant of this mechanism is softmax self-attention, which is central to standard
transformer models. During training, with an assumption of a single attention head for simplicity,
softmax self-attention computes as follows:

Q,K,V = XWQ,XWK ,XWV , O = Softmax(QK⊤)V. (1)

The mechanism of pairwise comparisons (induced by materializing QK⊤) leads to the characteristic
quadratic training cost of softmax self-attention. Recently, Linear Attention (Katharopoulos et al.,
2020) has gained attention as a potential alternative to softmax self-attention, with two key distinctions.
First, it removes the Softmax(·) operation, incorporating it into a kernel feature map. Second, it
leverages the associativity of matrix multiplication to reformulate (QK⊤)V = Q(K⊤V). These
adjustments reduce both the computation and memory complexity of attention calculation from
O(N2d) to O(Nd2). This technique is often referred to as the right-product kernel trick because it
prioritizes the multiplication on the right side first.

During inference, both softmax self-attention and linear attention handle a single token at each
iteration. Given the s-th token xs ∈ R1×d, softmax self-attention computes requiring the storage of
an expanding set of keys {k1, · · · ,ks} and values {v1, · · · ,vs} i.e., the “KV cache”, which leads to
a significant memory burden when dealing with long input sequences. In linear attention, researchers
have experimented with using various nonlinear kernels to replace the exp(·) function in Eq. 2.

qs,ks,vs = xsWQ,xsWK ,xsWV , os =

∑s
i=1 exp(qski

⊤)vi∑s
i=1 exp(qsk⊤

i )
. (2)

However, recent studies (Sun et al., 2023; Yang et al., 2023; Qin et al., 2024c) have found that
employing a linear kernel (i.e., using the identity function) without a normalizing denominator works
effectively in practice. This results in an unnormalized linear attention form as below:

os =

s∑
i=1

qs(ki
⊤vi) = qs

s∑
i=1

(ki
⊤vi) = qsMs, (3)

where Ms =
∑s

i=1 ki
⊤vi is the prefix sum of ki

⊤vi from i = 1 to s, which is also known as the
memory state in linear attention. This reformulation leads to a recurrent structure for linear attention,
resembling the behavior of RNNs as

Ms = Ms−1 + k⊤
s vs, os = qsMs. (4)

4 METHOD

4.1 LASP-2 WITHOUT MASKING

Sequence parallelism methods work by dividing long input sequences into several smaller chunks,
which are then distributed across multiple computational devices. Each device independently pro-
cesses the queries, keys, and values for its assigned chunk in parallel. To complete the attention
computation for the entire sequence, necessary communication steps are performed to either gather
the results from all devices or exchange information between them. LASP (Sun et al., 2024) was
introduced as a sequence parallelism technique designed specifically for the linear attention module.

Let us consider a distributed computing setup where there are W devices, and the input sequence is
divided into T chunks, referred to as the sequence parallel size. In the usual case, T is evenly divisible
by W , and we often assume W = T . It means each chunk is assigned to a single device, ensuring
that every chunk is processed in parallel across the distributed system. This scenario exemplifies pure
sequence parallelism. Additionally, in Sec.A.4.1, we will explore cases where W ̸= T , representing
a hybrid approach that combines sequence parallelism with data parallelism.

In LASP-2, the input sequence X is divided into T smaller chunks, represented as [Xt]
T
1 , and each

chunk is distributed across the devices in the distributed system. For each chunk Xt, its corresponding
query, key, value, and the linear attention memory state can be computed in parallel across all chunks.
This parallel computation is carried out as follows:

Qt,Kt,Vt = XtWQ,XtWK ,XtWV , Mt = K⊤
t Vt. (5)

4
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Algorithm 1 LASP-2 w/o Masking
1: Input: input sequence X, distributed

world size W , sequence parallel size
T = W .

2: Distribute X = [Xt]
T
1 .

3: for chunk t ∈ {1, · · · , T} on ranks
{1, · · · ,W} in parallel do

4: Calculate Qt = XtWQ, Kt =
XtWK , Vt = XtWV .

5: Compute Mt = K⊤
t Vt.

6: Communicate

[Mt]
T
1 = AllGather([Mt]

T
1 ).

7: Compute M1:T = Sum([Mt]
T
1 ).

8: Compute Ot = QtM1:T .
9: end for

10: return O = [Ot]
T
1 .

Algorithm 2 LASP-2 w/ Masking
1: Input: input sequence X, distributed world size W , sequence

parallel size T = W .
2: Distribute X = [Xt]

T
1 .

3: Initialize mask matrix Ψ, where Ψij = 1 if i ≥ j and Ψij =
−∞ if i < j.

4: for chunk t ∈ {1, · · · , T} on ranks {1, · · · ,W} in parallel
do

5: Calculate Qt = XtWQ, Kt = XtWK , Vt = XtWV .
6: Compute Mt = (Kt)

⊤Vt.
7: Communicate [Mt]

T
1 = AllGather([Mt]

T
1 ).

8: Compute Ot,intra = [(QtK
⊤
t )⊙Ψ]Vt.

9: Compute prefix sum M1:t−1 = PrefixSum([Mt]
t−1
1 ).

10: Compute Ot,inter = QtM1:t−1.
11: Compute Ot = Ot,intra +Ot,inter.
12: end for
13: return O = [Ot]

T
1 .

By performing this concurrent computation for each chunk, LASP-2 efficiently handles long input
sequences in a distributed setting. The query Qt, key Kt, value Vt, and the memory state Mt are
calculated individually for every chunk of the sequence, ensuring that no single device is overburdened
with processing the entire sequence at once. This distributed approach facilitates better memory
management and computational efficiency, especially when dealing with extremely long sequences.
Thus, LASP-2 leverages the power of sequence partitioning to optimize the calculation of linear
attention in a distributed framework.

Notably, in LASP-2, only a single all-gather collective communication operation is required during
the forward pass. This all-gather operation acts on the memory states [Mt]

T
1 associated with each

sequence chunk, ensuring that every device in the system has access to the complete set of memory
states [Mt]

T
1 . Once the memory states from all chunks have been gathered, they are concurrently

accumulated on all devices to compute the memory state corresponding to the entire input sequence.
This process is expressed as follows:

[Mt]
T
1 = AllGather([Mt]

T
1 ), M1:T = Sum([Mt]

T
1 ). (6)

Finally, the linear attention output corresponding to the local query Qt can be computed as:

Ot = QtM1:T .

Importantly, the accumulation step Sum([Mt]
T
1 ) can be efficiently performed in a recursive manner,

by adding each memory state sequentially as M1:t−1+Mt. This eliminates the need to repeatedly cal-
culate the sum of the memory states from earlier chunks, improving the efficiency of the computation.
To further optimize performance, we cache the accumulated result M1:T in high-bandwidth memory
(HBM). This caching strategy speeds up the backward pass by avoiding redundant recalculations of
M1:T , which is necessary for computing gradients. This approach is akin to the concept of activation
checkpointing, where intermediate activations are saved to avoid recomputation.

It is important to point out that each memory state Mt has dimensions of d× d, which means the
communication cost for the all-gather operation is independent of the sequence or chunk length.
Instead, the cost scales linearly with the number of devices involved in the SP communication group.
For clarity, we provide a summary of the LASP-2 method, without considering the attention mask,
in Algorithm 1. During the backward pass, a similar all-gather communication operation on the
gradients of memory states dMt is required. The details of this backward pass without masking, can
be found in Algorithm 3 in Appendix A.1 for further reference.

4.2 LASP-2 WITH MASKING

In autoregressive tasks, the mask matrix Ψ ∈ {−∞, 1}N×N is typically a lower triangular matrix,
where Ψij = 1 for i ≥ j and Ψij = −∞ when i < j. This structure enforces a causal constraint
during computation. Specifically, when calculating O = Softmax(QK⊤ ⊙ Ψ)V, it becomes
impossible to leverage the associative property of matrix multiplication to reduce the computational
complexity from quadratic to linear in a parallel form.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Intra
Chunks

Inter
Chunks

Figure 1: Computation Decomposi-
tion in LASP-2 with masking. Colored
chunks represent inter-chunks.

To address this challenge in linear attention with a causal
mask, we adopt the approach of computation decomposi-
tion, as proposed in earlier work (Yang et al., 2023; Sun
et al., 2024). Figure 1 provides an illustration that high-
lights the difference between intra-chunk and inter-chunk
computations in linear attention. Inter-chunk calculations,
which have no dependencies on other chunks across de-
vices, can be treated as if they have no causal mask. As a
result, these computations can be parallelized across all de-
vices in the distributed setup. In contrast, intra-chunk cal-
culations account for the influence of previous chunks (1
to (t−1)) on the t-th chunk. These intra-chunk operations
are affected by the mask matrix, and therefore, require
specialized handling to respect the causal constraints.

For linear attention computation on intra-chunks, given
the query, key, and value matrices Qt, Kt, and Vt corre-
sponding to the chunk Xt, the output is computed as

Ot,intra = [(QtK
⊤
t )⊙Ψ]Vt, (7)

This formulation adheres to the standard left-product matrix multiplication. Although the computation
can be executed in parallel across devices, it retains the quadratic complexity commonly associated
with traditional attention mechanisms during training. This limitation arises from the element-wise
masking operation (⊙Ψ), which enforces causal constraints within the chunk, preventing the use of
optimizations that would reduce the computational cost to linear.

For linear attention computation across inter-chunks, we follow a similar approach as the procedure
outlined for LASP-2 without masking. First, the memory states for each chunk are computed
concurrently across different devices as Mt = K⊤

t Vt. These memory states, corresponding to each
chunk, are initially distributed across separate devices. To synchronize the results, an AllGather
collective communication operation is performed. This step ensures that all devices hold the memory
states for all chunks, enabling further parallel processing. Once the memory states have been gathered,
we proceed with a concurrent PrefixSum operation across all devices. This operation accumulates
the memory states from the 1st chunk up to the (t− 1)-th chunk, effectively building the necessary
intermediate states. This can be expressed as:

[Mt]
T
1 = AllGather([Mt]

T
1 ), M1:t−1 = PrefixSum([Mt]

t−1
1 ). (8)

The PrefixSum operation can be optimized by implementing it recursively, utilizing cached
memory states stored on the HBM. Specifically, the accumulation of memory states is computed as:

M1:t−1 = M1:t−2 +Mt−1. (9)
By caching M1:t−1, the backward pass computation is facilitated since this cached value is a
necessary activation for gradient calculations. This approach not only speeds up the backward pass
but also reduces the computational load, as the cached memory state eliminates the need for repeated
re-computation.

Following the calculation of the memory states, the outputs corresponding to the inter-chunks and
the final output for the t-th token can be derived with ease. The overall output for the t-th token is
obtained by summing both the intra-chunk and inter-chunk outputs.

Ot,inter = QtM1:t−1, Ot = Ot,intra +Ot,inter. (10)

We provide the complete algorithm for LASP-2 with masking in Algorithm 2, and its backward pass
in Algorithm 4 in Appendix A.1. It is important to note that the communication operation in line 7,
along with the computation of Ot,intra in line 8, can be overlapped by executing them on separate
threads. This concurrent execution helps improve overall efficiency, as it allows for the overlap of
communication and computation, effectively reducing idle time during the process.

4.3 LASP-1 VS LASP-2

LASP-2, as well as its previous version LASP-1, both aim on efficient SP on linear attention. Although,
in theory, LASP-1 and LASP-2 share similarity on communicating the KV activation (d× d), whose

6
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size is independent of the sequence or chunk length. They have fundamental distinctions where the
key differences lie in their communication manners and the computational order reorganization, as
elaborated as below:

• LASP-1 utilizes a ring-style P2P communication, which needs to launch many send &
receive operators between devices, to sequentially transfer the KV activation one-by-one
among the devices. This makes the communication process relatively slow and hard to
adequately overlap with intra-chunk computations.

• While LASP-2 uses a single AllGather collective communication operator to exchange
KV activation concurrently among all decices. This offers practical advantages: (1) Only one
well-optimized collective communication operator needs to be launched, and the exchange
of KV activation on all devices can be finished concurrently all at once; (2) the collective
communication can be more easily overlapped with computations. Like in LASP-2 with
masking, the AllGather communication is able to overlap with the intra-chunk output
computations. And, in addition, LASP-2 reorganizes the whole computation order to make
the AllGather based communication strategy feasible and efficiency.

We also write down the Algorithms of LASP-1 (with and without masking) in identical mathematical
symbols in Appendix A.2 for convenience to compare with LASP-2 on their algorithmic differences.

4.4 THEORETICAL COST ANALYSIS

For better understanding the superiorities of LASP-2, we provide a theoretical cost analysis of both
LASP-1 and LASP-2. We consider the pure SP scenario, i.e., the distributed world size is W , and an
input sequence with a length of N is partitioned into T = W chunks, thus all devices in this world
need to involve into the communication. Below B denotes batch size, H represents number of heads.

Communication traffic in each communication step: LASP-1: BHd2, LASP-2: BHd2. This
is because both LASP-1 and LASP-2 transfer linear attention memory states (not keys and values)
among devices. The memory state corresponding to each chunk (located at each device) has a tensor
shape of [B, H, d, d]. Thus in each communication step, their communication traffic are both BHd2.

For a practical Linear-Llama3-1B model with B = 16, H = 16 and d = 2048, each memory
state will has BHd2 ≈ 1.07 billion parameters, which takes around 2.14GB memory in FP16. For
a Linear-Llama3-8B model with B = 16, H = 32 and d = 4096, each memory state will has
BHd2 ≈ 8.59 billion parameters, which takes around 17.18GB memory in FP16.

Number of communication steps in each iteration: LASP-1: 2(W − 1), LASP-2: 2. This
depends on the different communication manners of these two algorithms. During the forward of
an iteration, LASP-2 launches a single all-gather operation to gather all memory states Mt to all
devices, i.e., [Mt]

T
1 = AllGather([Mt]

T
1 ). This collective operation is concurrently executed

on all devices. While in backward, another all-gather is performed on the gradients of Mt, i.e.,
[dMt]

T
1 = AllGather([dMt]

T
1 ). Thus in each iteration, LASP-2 has 2 communication steps.

While LASP-1 uses a pair of send & receive operation to sequentially exchange the memory
state from one device to another device. During forward, device i sends its memory state to device
i+ 1, and device i+ 1 receives the memory state from device i, and so on. Computations of Ot,inter,
Ot and updates of Mt are followed behind each receive operation on that device. Thus in the
process of forward, LASP-1 has W − 1 communication steps. In the backward, this process is
repeated reversely from the last device to device 0. Thus in each iteration, LASP-1 have totally
2(W − 1) communication steps.

Given that both LASP-1 and LASP-2 perform a total of I iterations, their communication traffic
models can be expressed as follows: LASP-1: 2(W − 1)IBHd2 and LASP-2: 2IBHd2. Ideally,
LASP-2’s communication traffic would be reduced by a factor of W − 1 compared to LASP-1.
However, the actual communication cost depends on factors like communication bandwidth, which
is typically faster within nodes and slower across nodes. As a result, LASP-2’s benefits become
more evident in clusters with slower interconnects, and vice versa. It is important to note that this
cost model only accounts for communication, excluding computation or data loading. In practice,
communication represents a smaller portion of the total cost, so the overall training speedup achieved
by LASP-2 is less than W − 1 times. LASP-2 performs best in scenarios involving long sequences,
large clusters, slow communication links, and efficient data loading and computation.
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Figure 2: Visualization of LASP-2H on Linear Attention and Standard Attention hybrid model.
We exemplify LASP-2H on the hybrid layers of linear attention and standard attention modules with
both TP and SP (both have a dimension of 2). The communication operations colored in yellow and
green are for TP and SP, respectively. AG/RS: all-gather in forward and reduce-scatter in backward,
RS/AG: reduce-scatter in forward and all-gather in backward, AG/No: all-gather in forward and no-op
in backward, No/AG: no-op in forward and all-gather in backward. Note that the SP communication
operations for linear attention operate on the memory state Mt ∈ Rd×d, while for standard attention,
they operate on states Kt,Vt ∈ RC×d.

4.5 HYBRID MODEL SEQUENCE PARALLELISM

The hybrid model, which combines linear transformer layers with standard transformer layers that
utilize softmax self-attention, has been demonstrated to effectively enhance long-context capabilities,
particularly in tasks such as recall and retrieval. To optimize SP in such hybrid models, we propose
an extended version of LASP-2, referred to as LASP-2H. This approach introduces a comprehensive
solution by incorporating SP into both the linear attention and standard attention modules. The
structure of LASP-2H is illustrated in Fig. 2.

On Linear Attention Module. As outlined in Algorithm 1 and Algorithm 2, LASP-2H handles linear
attention modules by performing a single all-gather communication operation on the memory state
Mt ∈ Rd×d. The communication complexity remains independent of both sequence or chunk length,
and only scales linearly with the SP size T , making this method efficient in distributed clusters.

On Standard Attention Module. Context Parallelism (CP) is a SP technique in Megatron-LM that
divides network inputs and all activations along the sequence dimension. This approach is specifically
tailored for standard softmax attention. While traditional CP implementations in Megatron-LM
rely on overlapping communication and computation in a ring-like structure (Liu et al., 2023), our
LASP-2H adopts a different method, following the best practice in Llama3 (Dubey et al., 2024).
Instead of the ring-style strategy, LASP-2H employs AllGather-based communication on standard
attention, where the Kt and Vt tensors are first gathered across devices, after which the attention
output is computed locally for the Qt tensor chunk. Although the all-gather communication has a
higher latency compared to ring-based methods, it provides greater ease and flexibility in handling
various types of attention masks, such as document-level masks. This flexibility is particularly
beneficial in scenarios where different attention patterns are needed. Additionally, the all-gather
latency is minimized because the Kt and Vt tensors are significantly smaller than the Qt tensor,
especially when using Grouped Query Attention (GQA) (Ainslie et al., 2023). As a result, the time
complexity of computing the attention output far exceeds the complexity of all-gather operation. We
present the description of AllGather-based Context Parallelism in Algorithm 7 in Appendix A.3.

5 EXPERIMENTS

We conducted an empirical evaluation of LASP-2 by applying it to a model based on Llama3 (Dubey
et al., 2024). We replaced the standard softmax attention with various linear attention modules,
including the original basic linear attention (Katharopoulos et al., 2020), Lightning Attention (Qin
et al., 2024b), Retention (Sun et al., 2023), Gated Linear Attention (GLA) (Yang et al., 2023),
Based (Arora et al., 2024), and Rebased (Aksenov et al., 2024). This modified model, termed Linear-
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Figure 3: Throughput Comparison (tokens/s). Experiments were carried out on a pure Linear-
Llama3-1B model, utilizing the basic linear attention module. A total of 64 A100 GPUs were
employed, and the SP size T was also set to 64. To accommodate very-long sequence lengths, such
as 2048K, the batch size was kept fixed at 1 throughout this experiment.

Llama3, comprises 16 (linear transformer) layers, with a total of 1B parameters. Additionally, we
created a hybrid model by retaining transformer layers with standard softmax attention at every fourth
layer of Linear-Llama3, forming a 1/4 hybrid architecture. All experiments were conducted on the
SlimPajama dataset (Soboleva et al., 2023), utilizing the Llama3 tokenizer (Dubey et al., 2024). The
full dataset contains 627B tokens, but for our experiments, we used a 50B tokens subset derived from
the first chunk of the training split. The experiments were performed using GPT-style autoregressive
language modeling tasks with attention masks, as this setup mirrors many practical scenarios where
such tasks are commonly applied. It is important to note that the primary focus of these experiments
is to assess the training efficiency of LASP-2 when handling very-long input sequences. Training a
large language model with optimal long-context capabilities falls outside the scope of this study.

5.1 EXPERIMENTAL SETUP

Hardware and Software. Our experiments were conducted on a configuration of up to 16 DGX-
A100 servers, each equipped with 8 A100 GPUs. The GPUs are connected through NVSwitch,
offering an inter-GPU bandwidth of 600 GBps. The experiments were implemented using PyTorch
2.3.1, with support from CUDA 12.1, cuDNN 8.9.2, and NCCL 2.20.5. The algorithm was developed
on top of NVIDIA’s Megatron-Core 0.9.0 (Shoeybi et al., 2019). We use Triton 2.3.1 (Tillet et al.,
2019) to accelerate the linear attention computation on GPU, and take FlashAttention-2 (Dao, 2023)
as the standard attention implementation. When implement other SP methods (e.g., Ring Attentoin,
Megatron-SP) on linear attention instances for the purpose of comparison, we do not incorporate the
right-product kernel trick. We maintain the use of each method’s original communication primitives
and computational manners as they originally proposed for standard attention.

Hyperparameters. For training the Linear-Llama3 model, we employed a cosine learning rate
schedule with a linear warm-up phase. The minimum learning rate was set to 1e−6. We applied
gradient clipping with a value of 1.0 and weight decay at a rate of 0.1. The Adam optimizer (Kingma
& Ba, 2014) was used, configured with β1 = 0.9 and β2 = 0.95. Additionally, the dropout rate in
both attention and hidden layers was set to 0.

5.2 SPEED

To assess the speed performance of our proposed LASP-2, we conducted a comparison against existing
SP methods, including Megatron-SP (Korthikanti et al., 2022), Ring Attention (Liu et al., 2023),
and LASP-1 (Sun et al., 2024). As depicted in Fig. 3, LASP-2 demonstrated superior throughput,
particularly when sequence lengths exceeded 64K. This performance advantage became increasingly
prominent as sequence lengths grew longer. Specifically, at a sequence length of 512K, LASP-2
outperformed Ring Attention by 17.8% and surpassed LASP-1 by 7.3%. This advantage became
even more pronounced at a sequence length of 2048K, where LASP-2 achieved throughput gains of
36.6% over Ring Attention and 15.2% over LASP-1.

5.3 SCALABILITY

We assessed the scalability of LASP-2 in terms of both GPU memory usage and throughput by
adjusting the sequence length and the number of GPUs. The results were displayed in Figure 4.
LASP-2 demonstrated the ability to scale linearly with the input sequence length by increasing the
number of GPUs. For instance, while maintaining the same memory cost per GPU, using 8 GPUs
allowed training on sequences up to 128K in length, whereas 128 GPUs (16 × 8 GPUs) enabled
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Figure 4: Scalability Results. Experiments were conducted on a pure Linear-Llama3-1B model
using the basic linear attention module. SP size T was always set equally to the total number of
GPUs. Batch size was fixed as 1 to accommodate very-long sequence lengths, e.g., 2048K. The sign
"×" with a dotted line represents occurring an Out of Memory (OOM).
Table 2: Convergence Performance Results. All experiments used 8 A100 GPUs, sequence length
of 16K, and batch size of 8, trained on 50B tokens from the SlimPajama corpus.

Model SP Method Attention Module Pure Model 1/4 Hybrid Model

Thpt Loss Thpt Loss

Llama3 Ring Attention Standard Attention 16549.5 2.759 \ \

Linear-Llama3 LASP-2(H)

Basic Linear Attention 17834.3 2.892 17394.7 2.824
Lightning Attention 17926.1 2.862 17384.2 2.758
Retention 17859.6 2.867 17352.5 2.759
GLA 17785.3 2.845 17273.2 2.754
Based 17946.1 2.754 17462.5 2.751
Rebased 17896.2 2.845 17284.5 2.787

training on sequences as long as 2048K (16 × 128K). Additionally, we observed that increasing
both the sequence length and the number of GPUs results in higher throughput, indicating improved
communication efficiency and linear scalability in LASP-2. More detailed quantitative scalability
outcomes were provided in Table 6 in Appendix A.5.

5.4 PERFORMANCE

We conducted additional experiments to assess the pretraining convergence performance of LASP-
2 on Llama-3 with various attention modules, including standard softmax attention, basic linear
attention, Lightning Attention, Retention, GLA, Based, Rebased, and their 1/4 hybrid models. All
experiments were performed on the SlimPajama corpus (Soboleva et al., 2023), using 50B tokens, a
sequence length of 16K, and a global batch size of 8, using 8 A100 GPUs. The results, as shown in
Table 2, indicated that for pure Linear-Llama3 models with different linear attention modules, LASP-2
achieved comparable, though slightly higher, loss values while maintaining superior throughput. On
the 1/4 hybrid Linear-Llama3 model, the loss results were generally better than those of the pure
linear models, with Lightning Attention, Retention, and GLA even attaining equivalent or lower
loss values compared to the baseline. The Based attention module shows strong throughput and loss
performance, since its original design uses a mix of (Taylor) linear attention and sliding window
attention. The 1/4 hybrid model striked a balance between throughput and convergence performance,
performing competitively when compared to both the baseline Llama3 and its pure linear version.

6 CONCLUSION

This paper presents LASP-2, a new SP method that addresses the inefficiencies of existing SP
approaches for linear sequence modeling. By reorganizing the whole algorithm execution order
and leveraging an all-gather communication strategy, LASP-2 enhances both communication and
computation parallelism, and enables easier communication-computation overlapping, comparing
with LASP-1. Our results demonstrate that LASP-2 offers significant improvements in throughput
and scalability, especially in the context of very-long sequence length. Furthermore, the extension
to LASP-2H enables efficient SP in hybrid models that integrate both linear and standard attention
modules, both utilize an unified all-gather-based communication primitive. Experimental evaluations
on the Linear-Llama3 models validate these advancements, with LASP-2 outperforming previous
methods like LASP-1 and Ring Attention by substantial margins, particularly at extreme sequence
lengths. These findings confirm the practical utility of LASP-2 for large-scale distributed systems,
making it a promising approach for future applications in long-sequence linear transformer models.
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A APPENDIX

A.1 LASP-2 ALGORITHMS (BACKWARD PASS)

See Algorithm 3 and Algorithm 4.

Algorithm 3 LASP-2 w/o Masking (Backward Pass)

1: Input: distributed world size W , sequence parallel size T = W , Qt,Kt,Vt,Ot,dOt ∈ RC×d for chunk
t ∈ {1, · · · , T}.

2: for chunk t ∈ {1, · · · , T} on ranks {1, · · · ,W} in parallel do
3: Compute dMt = (Qt)

⊤dOt.
4: Communicate [dM]T1 = AllGather([dM]T1 ).
5: Compute dM1:T = Sum([dM]Tt+1).
6: Compute dQt = dOtM

⊤
1:T .

7: Compute dKt = VtdM
⊤
1:T .

8: Compute dVt = KtdM1:T .
9: end for

10: return dQ = [dQt]
T
1 , dK = [dKt]

T
1 , dV = [dVt]

T
1 .

Algorithm 4 LASP-2 w/ Masking (Backward Pass)

1: Input: distributed world size W , sequence parallel size T = W , Qt,Kt,Vt,Ot,dOt ∈ RC×d for chunk
t ∈ {1, · · · , T}.

2: for chunk t ∈ {1, · · · , T} on ranks {1, · · · ,W} in parallel do
3: Compute dMt = (Qt)

⊤dOt.
4: Communicate [dM]T1 = AllGather([dM]T1 ).
5: Compute dQt,intra = [(dOtV

⊤
t )⊙Ψ]Kt.

6: Compute dKt,intra = [(dOtV
⊤
t )⊙Ψ]⊤Qt.

7: Compute dVt,intra = [(QtK
⊤
t )⊙Ψ]⊤dOt.

8: Compute dQt,inter = dOtM
⊤
1:t−1.

9: Compute suffix sum dMt+1:T = SuffixSum([dM]Tt+1).
10: Compute dKt,inter = VtdM

⊤
t+1:T .

11: Compute dVt,inter = KtdMt+1:T .
12: Combine intra- and inter-chunk parts of dQt,dKt,dVt

dQt = dQt,intra + dQt,inter, dKt = dKt,intra + dKt,inter, dVt = dVt,intra + dVt,inter.

13: end for
14: return dQ = [dQt]

T
1 , dK = [dKt]

T
1 , dV = [dVt]

T
1 .

A.2 LASP-1 ALGORITHMS

See Algorithm 5 and Algorithm 6.

A.3 ALLGATHER-BASED CONTEXT PARALLELISM

See Algorithm 7.

A.4 COMPATIBILITY

A.4.1 HYBRID PARALLELISM

LASP-2 enables the selection of a sequence parallel size that is smaller and divisible by the dis-
tributed world size. This setup splits the input data along both the batch and sequence dimensions, a
parallelization strategy known as data-sequence hybrid parallelism. The ZeRO-series optimizers (Ra-
jbhandari et al., 2020) and FSDP (Zhao et al., 2023) offer methods for distributing model states such
as optimizer states, gradients, and model parameters across all GPUs in the distributed system. As
these techniques are variants of data parallelism, they integrate seamlessly with LASP. Their primary
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Algorithm 5 LASP-1 w/o Masking Algorithm

1: Input: input sequence X, distributed world size W , sequence parallel size T = W .
2: Distribute input X = [Xt]

T
1 .

3: for chunk t ∈ {1, · · · , T} at rank i ∈ {1, · · · ,W} in parallel do
4: Compute Qt = XtWQ, Kt = XtWK , Vt = XtWV .
5: Compute Mt = K⊤

t Vt.
6: end for
7: for chunk t ∈ {1, · · · , T} at rank i ∈ {1, · · · ,W} sequentially do
8: Recv activation Mt−1 from rank (i− 1). Save Mt−1 in memory for backward computation.
9: Compute Ot = QtMt−1.

10: Update Mt = Mt−1 +K⊤
t Vt.

11: Send activation Mt to rank (i+ 1).
12: end for
13: return O = [Ot] with t ∈ {1, · · · , T}.

Algorithm 6 LASP-1 w/ Masking Algorithm

1: Input: input sequence X, distributed world size W , sequence parallel size T = W .
2: Distribute input X = [Xt]

T
1 .

3: Initialize mask matrix Ψ, where Ψij = 1 if i ≥ j, and Ψij = −∞ if i < j.
4: for chunk t ∈ {1, · · · , T} at rank i ∈ {1, · · · ,W} in parallel do
5: Compute Qt = XtWQ, Kt = XtWK , Vt = XtWV .
6: Compute Mt = (Kt)

⊤Vt.
7: Compute Ot,intra = [(QtK

⊤
t )⊙Ψ]Vt.

8: end for
9: for chunk t ∈ {1, · · · , T} at rank i ∈ {1, · · · ,W} sequentially do

10: Recv activation Mt−1 from rank (i− 1). Save Mt−1 in memory for backward computation.
11: Compute Ot,inter = QtMt−1.
12: Compute Ot = Ot,intra +Ot,inter.
13: Update Mt = Mt−1 +K⊤

t Vt.
14: Send activation Mt to rank (i+ 1).
15: end for
16: return O = [Ot] with t ∈ {1, · · · , T}.

objective of minimizing the memory footprint of model states complements LASP-2’s specific focus
on reducing activation memory on each GPU, making the training of large-scale models that handle
long sequence lengths significantly more manageable.

LASP-2 also offers support for both tensor parallelism (TP) and pipeline parallelism (PP). In the case
of TP, its integration with LASP-2 is straightforward and efficient. Linear attention layers apply TP
to break down matrix operations across both intra-chunk and inter-chunk computations. At the same
time, the MLP layers are processed as usual under TP, without any modification. When LASP-2 is
paired with PP, instead of using traditional micro-batches, it substitutes them with sub-sequences
extracted from the mini-batch. One key difference from standard PP is that each device locally and
specifically stores the intermediate states, Mt during the forward pass and dMt during the backward
pass without communicating these states to other devices.

A.4.2 VARIABLE LENGTH

During pretraining, the batch typically contains sequences of uniform length. However, when
finetuning or during inference, the model might encounter input sequences of varying lengths. A
straightforward solution to address this is to right-pad all sequences in a batch to match the length
of the longest sequence. Unfortunately, this method can be inefficient, especially when the lengths
differ significantly across sequences. For standard transformers, more sophisticated approaches
have been developed to handle this challenge. These include techniques like load-balancing across
GPUs without padding (Zeng et al., 2022; Zhai et al., 2023) or packing multiple sequences into a
single batch and adjusting the attention mask accordingly (Ding et al., 2024; Pouransari et al., 2024).
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Algorithm 7 AllGather-based Context Parallelism

1: Input: input sequence X, distributed world size W , sequence parallel size T = W .
2: Distribute X = [Xt]

T
1 .

3: for chunk t ∈ {1, · · · , T} on ranks {1, · · · ,W} in parallel do
4: Calculate Qt = XtWQ, Kt = XtWK , Vt = XtWV .
5: Communicate [Kt]

T
1 = AllGather([Kt]

T
1 ) and [Vt]

T
1 = AllGather([Vt]

T
1 ).

6: Concatenate K = Concat([Kt]
T
1 ) and V = Concat([Vt]

T
1 ).

7: Compute Ot = Softmax(QtK
⊤/

√
d)V.

8: end for
9: return O = [Ot]

T
1 .

LASP-2 can manage variable sequence lengths efficiently by treating the entire batch as a single long
sequence, streamlining the process without requiring padding.

A.5 ADDITIONAL EXPERIMENT RESULTS

A.5.1 BIDIRECTIONAL LANGUAGE MODELING TASK

To evaluate on the bidirectional language modeling task, we take RoBERTa as the base model
and train on 4 A100 GPUs for 50K iterations with a total input sequence length of 2048. As the
results shown in Table 3, LASP-2 with Linear Attention is able to reach an approximate convergence
performance with Ring Attention on the standard attention based model.

Table 3: Convergence Performance on Bidirectional Language Modeling Task.

Method Training Loss Validation Loss
Standard Attention (Ring Attention) 1.815 1.957

Basic Linear Attention (LASP-2) 1.812 1.961

A.5.2 ABLATION STUDY ON HYBRID RATIO

We provide ablation results on the hybrid ratio of hybrid models. Let "L" denotes Linear Transformer
layers and "N" denotes normal Transformer layers. The hybrid models evaluated here have archi-
tectures of: 0 Hybrid: "LLLL LLLL LLLL LLLL"; 1/8 Hybrid: "LLLL LLLN LLLL LLLN"; 1/4
Hybrid: "LLLN LLLN LLLN LLLN"; 1/2 Hybrid: "LNLN LNLN LNLN LNLN". Comparing with
the Llama3-1B baseline using standard attention, which has a loss value of 2.759, it is clear that
higher hybrid ratios tend to lead better convergence performance, but sometimes, a moderate hybrid
ratio may reach a better result.

Table 4: Ablation Study on Hybrid Ratio in Hybrid Models. Loss values are reported in the Table.

Attention Module 0 Hybrid (Pure Model) 1/8 Hybrid 1/4 Hybrid 1/2 Hybrid
Basic Linear Attention 2.892 2.826 2.824 2.775

GLA 2.845 2.751 2.754 2.753

A.5.3 ABLATION STUDY ON VARYING SIZES OF GATHERING

We have conducted ablation study on varying sizes of gathering memory states. Considering a
batch size of 1, in the Linear-Llama3-1B model, the tensor shape of memory state is [1, 16, 2048,
2048]. We use 64 GPUs and a sequence lenghth of 1024K, repeat each test 10 times and report
their mean values. We change the split size of gathering memory states and present the LASP-2
throughput results in Table 5. It can be seen that smaller split size (i.e., more splits) tends to lead
lightly slower throughput. The results show that the utilization of all-gather operation is not the only
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reason of efficiency enhancement. The communication manner as well as the computational order
reorganization also play an important role.

Table 5: Throughput Results (tokens/sec) on Varying Split Sizes of Gathering.

Split Size 2048 512 128 32

Number of Splits 1 4 16 64

Throughput 486183 486166 486169 486158

A.5.4 QUANTITATIVE SCALABILITY RESULTS

See Table 6 in next page.
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Table 6: Quantitative Scalability Results of LASP-2 on Throughput (tokens/sec) and Memory
Usage Per GPU (GB). Experiments are performed on Linear-Llama3-1B, scaling sequence length
from 2K to 4096K with a batch size of 1.

Sequence Length Number of GPUs Throughput Memory Usage Per GPU

2K

16 1254 25.6
32 1209 25.6
64 1285 25.6

128 1205 25.6

4K

16 2478 25.6
32 2446 25.6
64 2327 25.6

128 2344 25.6

8K

16 4835 25.6
32 4784 25.6
64 4693 25.6

128 4678 25.6

16K

16 9530 25.6
32 9494 25.6
64 9305 25.6

128 9313 25.6

32K

16 18105 28.7
32 17755 25.6
64 17835 25.6

128 17807 25.6

64K

16 35507 33.8
32 34240 28.7
64 34118 25.6

128 33344 25.6

128K

16 68406 40.2
32 68545 33.8
64 67344 28.7

128 66811 25.6

256K

16 135635 57.8
32 132605 40.2
64 130215 33.8

128 131550 28.7

512K

16 OOM OOM
32 250586 57.8
64 245353 40.2

128 233442 33.8

1024K

16 OOM OOM
32 OOM OOM
64 442221 57.8

128 416465 40.2

2048K

16 OOM OOM
32 OOM OOM
64 OOM OOM

128 769030 57.8

4096K

16 OOM OOM
32 OOM OOM
64 OOM OOM

128 OOM OOM
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