
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

SE(3)-Equivariant Diffusion Graph Nets:
Synthesizing Flow Fields by Denoising Invariant Latents on Graphs

Anonymous Authors1

Abstract
We introduce SE(3)-equivariant diffusion graph
nets (SE3-DGNs) for generating physical fields on
graphs. SE3-DGNs integrate a SE(3)-equivariant
variational graph autoencoder (VGAE) and a dif-
fusion graph net (DGN) to produce high-quality,
SE(3)-equivariant flow fields. The S-VGAE
learns an invariant latent space that abstracts direc-
tional information, and the DGN is trained on this
latent space. Equivariant inference requires mini-
mal additional computation, needing only a single
evaluation of the edge encoder and node decoder.
Demonstrated on laminar vortex-shedding under
out-of-distribution Reynolds numbers and fluid
domain parameters, SE3-DGNs showed superior
sample quality compared to baseline DGNs and
latent DGNs. SE3-DGNs can efficiently generate
fully-developed flow fields to use as initial con-
ditions for numerical solvers, bypassing the need
for simulating transition regimes.

1. Introduction
1.1. Background & Related Work

Fluid dynamics simulation, typically by numerically solving
partial differential equations (PDEs), is essential in many
scientific and engineering fields (Karniadakis & Sherwin,
2013). However, the high computational cost can limit
its practical application and exploration of large parameter
spaces. Recently, deep-learning approaches have shown
promise in creating surrogate models for fluid dynamics
simulations (Lino et al., 2023).

While convolutional neural networks (CNNs) constrain so-
lutions to regular Cartesian grids, graph neural networks
(GNNs) have been used to learn simulations of fluids em-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

ploying Lagrangian discretisations (Ummenhofer et al.,
2019; Sanchez-Gonzalez et al., 2020; Prantl et al., 2022)
and unstructured meshes (Pfaff et al., 2021). In this last case,
the fluid domain is discretised into fixed nodes forming a
graph, and the information is processed through learned
message passing (MP) (Battaglia et al., 2018) across the
graph, and possibly across multiple coarsenings of it (Lino
et al., 2022; Fortunato et al., 2022). Unsteady simulations
can be obtained by iteratively evaluating models with past
predictions.

Most PDEs possess several symmetries, with translation
invariance and rotation equivariance being among the most
common (Pope & Pope, 2000). The general approach for
achieving rotation equivariance is through training with data
augmented by rotations (Brandstetter et al., 2022). How-
ever, strictly enforcing rotation equivariance is gaining im-
portance for improving generalisation accuracy (Ling et al.,
2016; Wang et al., 2021; Siddani et al., 2021; Lino et al.,
2022; Gao et al., 2024). In GNNs, rotation equivariance is
achieved either through feature engineering (Klicpera et al.,
2020) or by using tensor-valued features and tensor products
(Thomas et al., 2018; Weiler et al., 2018). While the latter
approach is computationally intensive, it avoids adding extra
graph elements like angles (Lino et al., 2022) and cells (Gao
et al., 2024), and it works for 3D problems without modifi-
cations. To manage the high computational cost, low-order
tensor features are typically used (Brandstetter et al., 2021),
and models with equivariant layers only at the beginning
and at the end have been proposed (Shankar et al., 2023).
Inspired by this, we employ steerable features and steerable
MP (Brandstetter et al., 2021) in an autoencoder and train
the backbone model in the learnt invariant latent space.

Recently, denoising diffusion probabilistic models (DDPMs)
(Ho et al., 2020) have been applied to turbulent flow (Shu
et al., 2023), uncertainty estimation of ReynoldS-averaged
simulations (Liu & Thuerey, 2024), and improving the sta-
bility of long-term simulations (Kohl et al., 2023; Lippe
et al., 2024). More related to our work, Lienen et al. (2024)
proposed using a DDPM to learn the manifold of all possi-
ble turbulent flow states without relying on any initial flow
state. Nonetheless, all these studies considered CNN-based
and non-equivariant DDPMs. Hoogeboom et al. (2022)

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Under review at ICML 2024 AI for Science workshop

DGN

Denoise invariant latents (scalars)
Relative
nodes’

position
(vectors)

Steerable
edge

encoder

Steerable
node

decoder

Denoised
invariant latents

(scalars)

Denoised
flow field

(scalar + vector fields)
Initial invariant
latents (scalars)

R denoising steps

Figure 1. Sampling with a SE3-DGN from Gaussian noise in a SE(3)-invariant latent space. The relative position between adjacent
nodes, ẽij , is encoded into steerable latent edge-features, ξ̃ij . Scalar-valued node-features, ζR

i , are sampled from a isotropic Gaussian
distribution and iteratively denoised by a Diffusion Graph Net (DGN). The DGN is also fed with ξ̃ij , the diffusion step r, the Reynolds
number, Re, and one-hot vectors indicating the type of each node, ωi. The denoised node-features, ζ0

i , are decoded back to a physical
space of steerable features, ṽi.

used a GNN-based rotation-equivariant DDPM to synthe-
sise molecules by inferring atom types and coordinates, but
their model misses directional information by using node
distances instead of relative position vectors.

1.2. Contributions

In this work, we apply the DDPM framework to GNNs.
Given the domain geometry and the Reynolds number (Re),
these models generate flow fields by iteratively denoising
node features sampled from a Gaussian distribution. Utilis-
ing graphs allows adjusting the resolution to increase node
count near immersed bodies where gradients are larger. This
approach enables the direct generation of unsteady flow
snapshots without simulating the transition regime, prevent-
ing error accumulation and reducing runtimes.

We introduce a variational graph autoencoder (VGAE) (Kipf
& Welling, 2016) that learns a latent space where node fea-
tures are SE(3)-invariant. We propose training a GNN-based
DDPM on this latent space. The trained model is SE(3)-
equivariant, achieving rotation equivariance with minimal
additional computational cost by evaluating an encoder and
decoder only once versus multiple denoising steps of the
DDPM. We demonstrate this by learning the distribution
of pressure and velocity fields for laminar vortex-shedding
behind 2D elliptical cylinders.

2. SE(3)-Equivariant Diffusion Graph Nets
We propose a SE(3)-equivariant DDPM for flow fields de-
fined on directed graphs G := (V, E). We refer to it as
SE(3)-Equivariant Diffusion Graph Net (SE3-DGN). The

set of nodes V discretises the fluid domain, and the set of
edges E connects each node to its k-nearest neighbours.
Each node i is assigned node features vi, and each edge
(i, j) is assigned edge features ei,j . SE3-DGNs denoise
V = {vi} given E = {ei,j} and conditioned on the geome-
try of the fluid domain and the Reynolds number.

2.1. Diffusion Graph Nets

Diffusion Models DDPMs can learn to synthesise a sam-
ple z0 from a data distribution q(z0) by progressive denois-
ing a sample zR drawn from an isotropic Gaussian distribu-
tion (Song & Ermon, 2020; Ho et al., 2020). This denois-
ing process mirrors the inverse of a fixed Markov chain of
length R, known as the forward process, and consists of R
denoising steps. The forward (or diffusion) process produces
variables z1 through zR by sequentially injecting them with
Gaussian noise, q(zr|zr−1) := N (zr;

√
1− βtz

r−1, βrI).
It is possible to shortcut in the forward process and directly
sample zr, at any diffusion step r, according to

zr =
√
ᾱrz

0 +
√
1− ᾱrϵ (1)

where αr := 1− βr, ᾱr :=
∏r

s=1 αs and ϵ ∼ N (0, I) (Ho
et al., 2020). If R is large enough and the β-schedule is
selected properly, the forward process leads to zR being
(nearly) a Gaussian distribution. Typical values for R are
around thousands, and linear and cosine β-schedules are the
most common (Nichol & Dhariwal, 2021).

Given the data distribution q(z0), the transitions of the re-
verse (or denoising) process q(zr−1|zr) can be approxi-
mated using a neural network parametrised by θ,

pθ(z
r−1|zr) := N (zr;µθ(z

r, r),Σθ(z
r, r)) . (2)

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Under review at ICML 2024 AI for Science workshop

Although the mean µθ(z
r, r) could be parametrised in sev-

eral ways, Ho et al. (2020) found best to first predict the
noise ϵ with the neural network and then compute µθ(z

r, r)
according to

µθ(z
r, r) =

1
√
αr

(
zr − βr√

1− ᾱr
ϵθ(z

r, r)

)
. (3)

Additionally, following Nichol & Dhariwal (2021), we pa-
rameterise Σθ(z

r, r) as an interpolation between the lower,
β̃r, and upper, βr, bounds on the reverse process entropy:

Σθ(z
r, r) = evθ(zr,r) log βr+(1−vθ(zr,r)) log β̃r , (4)

where vθ(zr, r) is predicted by the neural network.

To train a network to approximate ϵθ(z
r, r) and vθ(z

r, r),
we minimise the loss function L = Lsimple+λvlbLvlb, where
Lsimple and Lvlb are defined as

Lsimple = Er,z0,ϵ

[
||ϵ− ϵθ(z

r, r)||2
]
, (5)

Lvlb = − log pθ(z
0|z1)

+

T∑
2

DKL

(
q(zt−1|zt, z0) || pθ(zt−1|zt)

)
. (6)

The term Lvlb represents the variational lower bound. Its
first term is the negative log-likelihood of a Gaussian distri-
bution, while the remaining terms are the Kullback-Leibler
(KL) divergence between two Gaussians. The gradients of
ϵθ(z

r, r) are only backpropagated through Lsimple, whereas
the Lvlb term is used to optimise vθ(z

r, r). This training
strategy was proposed by Nichol & Dhariwal (2021) and has
also been proven successful in subsequent work (Dhariwal
& Nichol, 2021). To reduce gradient noise, we employ im-
portance sampling and dynamically weight each loss term
based on the loss history (Nichol & Dhariwal, 2021).

Denosing Graph Node Features The DDPM framework
primarily focuses on learning the data distribution q(z0) by
optimising the parameters θ of the neural network, without
addressing the network architecture itself. Although CNNs,
particularly modern U-Nets, have been the preferred archi-
tectures in these studies and subsequent research, GNNs
also offer a viable option for denoising node and/or edge
features defined on graphs (Hoogeboom et al., 2022; Vignac
et al., 2023).

In this work, we employ an MP-based GNN to learn synthe-
sising F flow fields encoded as node features, V 0 ∈ R|V|×F ,
on a directed graph, G := (V, E), by denoising its node fea-
tures from V R ∼ N (0, I) and through all the intermediate
features V r. We denote this network as the Diffusion Graph
Net (DGN). In our setting, the diffusion process adds noise
only to the node features, leaving the edge features and
graph structure unaltered. According to expression (1), at

diffusion step r, the noisy node features are

V r =
√
ᾱrV

0 + (1− ᾱr)ϵ. (7)

The DGN returns as output node features the noise ϵθ ∈
R|V| and the variance vθ ∈ R|V| as a function of the graph
G, the input edge-features E ∈ R|E|×D and the input node
features V r. To ensure translation invariance, we set the
input features of each directed edge from node i to node j
to its nodes’ relative position, i.e., eij = xj − xi.

Instead of sampling flow fields from q(V 0) unconditionally,
we condition these on the geometry of the fluid domain, Ω,
and the Reynolds number, Re. The geometry Ω is encoded
by assigning to each node i a one-hot vector, ωi, indicating
if the node is inside the fluid domain, on an inlet, or on a
solid boundary (Pfaff et al., 2021; Lino et al., 2022). In this
scenario, the conditional distribution q(V 0 | Ω, Re) is learnt
by a DGN such that

[ϵθ,vθ]← DGNθ(G, V r, E,Ω, Re, r). (8)

The architecture of the DGN adheres to the encoder-
propagator-decoder structure introduced by Sanchez-
Gonzalez et al. (2020). We employ the multi-scale prop-
agator from (Lino et al., 2022), which applies MP across
multiple scales in a U-Net fashion, albeit with certain modi-
fications. Specifically, we replace the higher-to-lower reso-
lution MP – as defined in equation (13) – with a weighted
interpolation technique proposed by (Qi et al., 2017). Sim-
ilarly, the lower-to-higher resolution MP – equation (14)
– is substituted with a nearest-neighbour interpolation fol-
lowed by a node-wise linear layer and the addition of a
weighted skip connection from the encoder branch. This
architectural choice was made based on the U-Net’s ability
to remove high- and low-frequency noise (Si et al., 2023).
The adjustments made ensure no directional dependency.

In the DGN, the node encoder applies a linear layer to
the concatenation of the noisy input features vr

i with the
conditional features [ωj , Re] of each node. Similarly, the
edge encoder applies a linear layer to the input edge features
eij . Both encoders yield an Fh-dimensional feature vector
for each node or edge. The diffusion step is encoded using
a sinusoidal position embedding (Vaswani et al., 2017; Ho
et al., 2020), followed by a linear layer producing an Femb-
dimensional embedding vector denoted as remb. Before
being fed into the propagator network, the encoded node
features are concatenated with remb and projected back to
an Fh-dimensional space.

The MP layers in the DGN’s propagator follow the general
framework described in Battaglia et al. (2016) and Battaglia
et al. (2018). The edge- and node-update functions are
modelled by MLPs with one hidden layer with Fh neurons
and Fh output features. These MLPs are preceded by layer

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Under review at ICML 2024 AI for Science workshop

normalisation (Ba et al., 2016). Besides, these MP layers
have been modified to also account for remb. Specifically,
before the edge and node updates (equations (10) and (12)
respectively), remb is projected to an Fh-dimensional space
and added to the node features (equation (9)):

vj ← vj +Wembremb + bemb, (9)
eij ←Weeij + MLPe (LN ([eij |vi|vj])) , (10)

ēj ←
1

|N−
j |

∑
i∈N−

j

eij , (11)

vj ←Wvvj + MLPv (LN ([ēj |vj])) . (12)

2.2. SE(3)-Equivariant Message Passing

A function f is considered equivariant with respect to a
group T , whose transformations are parametrised by g, if
Tg◦f = f ◦T ′

g for all g, where Tg and T ′
g denote transforma-

tions on the input and output domain of f , respectively. The
SE(3) group, also known as the special Euclidean group,
represents the set of rigid body transformations in three-
dimensional Euclidean space. SE(3) transformations com-
bine translation and rotation transformations. Rotations
alone form the special orthogonal group, commonly de-
noted as the SO(3) group. While SE3-DGNs guarantee
translation equivariance by taking relative nodes’ position
as input, ensuring SO(3) equivariance is not straightforward.
This is achieved by applying the diffusion and denoising
transitions in a rotation-invariant latent space leaned by
an autoencoder, which leverages steerable feature vectors
and steerable MLPs (Weiler et al., 2018; Brandstetter et al.,
2021).

A steerable feature vector consists of the concatenation
(equivalent to the direct sum) of irreducible representations.
We denote steerable feature vectors with a tilde, e.g., a vector
ṽ is steerable. Each irreducible representation, abbreviated
as irrep, has a given rotation order l ∈ W and dimension
2l + 1. The number of irreps in ṽ with the same rotation
order is known as the multiplicity of such rotation order.
SO(3) elements can be represented by Wigner D-matrices,
parametrised by g ∈ R3. An l-th degree Wigner D-matrix
has dimensions (2l+1)× (2l+1), and it can rotate order-l
irreps via matrix-vector multiplication (Gilmore, 2008). A
steerable feature vector consisting of irreps of order l0 to ln
can be rotated by multiplying it with a block diagonal matrix
containing the matrices D(l0) to D(ln) along its diagonal
– again this is equivalent to their direct sum (Weiler et al.,
2018; Brandstetter et al., 2021).

Steerable MLPs (S-MLP) (Brandstetter et al., 2021) are
SO(3) equivariant, i.e.,

S-MLPã (D(g) ṽ) = D′(g) S-MLPã (ṽ) , (13)

where D =
⊕ln

l=l0
D(l) and D′ =

⊕l′n
l=l′0

D′(l), and ã

is a conditioning steerable vector, which typically con-
tains geometrical information. Similar to conventional
MLPs, S-MLPs interleave linear mappings with non-
linearities. Specifically, the steerable linear mappings return
the weighted sum of the Clebsch-Gordan (CG) tensor prod-
uct between the irreps of the input steerable features, ṽ, and
the irreps of ã. The m-th component of the order-l irrep
resulting from the CG tensor product between an irrep of
order l1, u, and an irrep of order l2, a, is given by

(u⊗ a)
(l)
m =

l1∑
m1=−l1

l2∑
m2=−l2

Cl,m
l1,m1,l2,m2

um1am2 , (14)

where Cl,m
l1,m1,l2,m2

are known as the CG coefficients. These
are zero except for l between |l1−l2| and (l1+l2), inclusive.
For instance, for l1 = 1 and l2 = 1, the CG tensor product
yields an irrep of order l = 0 and another irrep of order l =
1. These correspond to the dot and cross product between
two vectors, respectively. In the steerable linear mappings,
order-l irreps resulting from the CG tensor product between
all the irreps of ṽ and all the irreps of ã are combined via a
learnable linear layer,

ṽ(l)
m ←

∑
(l1),(l2)

W (l)
m

(
ṽ(l1) ⊗ ã(l2)

)(l)

m
, (15)

for all l and −l ≤ m ≤ l (Thomas et al., 2018). Here,
v(l1) and ã(l2) denote an order-l1 irrep of v and an order-l2
irrep of ã, respectively; and W

(l)
m is the matrix of learnable

weights for the m-th component of the order-l irreps. Its
number of rows equals the desired output multiplicity for
rotation order l, and the number of columns equals its input
multiplicity. Although the maximum order of the irreps
in the steerable output vector is equal to the sum of the
maximum irreps of ṽ and ã, in practice, the output irreps
with an order larger than a given threshold are omitted to
limit the computational cost (Thomas et al., 2018; Weiler
et al., 2018). Following Brandstetter et al. (2021), we also
add a learnable bias to the order-0 output irreps, and employ
the gate activation function from Weiler et al. (2018) as the
non-linearities.

Since layer normalisation is a common operation in MP
layers (Sanchez-Gonzalez et al., 2020; Pfaff et al., 2021),
we found it necessary to define a SE(3)-equivariant layer
normalisation operation for steerable features and refer to
it as steerable layer normalisation (S-LN). This scales the
norm of each irrep according to

S-LN(ṽ) :=
ln⊕

l=l0

cl
ṽ(l)

||ṽ(l)||2
, (16)

where cl is the normalised norm of the l-th irrep, i.e., the
l-th element of LN([||ṽl0 ||2, . . . , ||ṽln ||2]).

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Under review at ICML 2024 AI for Science workshop

We construct steerable message-passing (S-MP) layers util-
ising S-MLPs, preceded by S-LN, for the edge- and node-
update functions. Specifically, the edge update, edge aggre-
gation and node update steps are, in this order:

ẽij ← ẽij + S-MLPe
ãij

(S-LN ([ẽij , ṽi, ṽj])) , (17)

ẽj ←
1

|N−
j |

∑
i∈N−

j

ẽij , (18)

ṽj ← S-MLPv
ãj

(S-LN ([ẽj , ṽj])) . (19)

The edge-update S-ML, denoted by S-MLPe
ãij

, is condi-
tioned on the spherical harmonic embedding of the relative
position between nodes:

ãij =

ln⊕
l=0

Y (l) (xj − xi) , (20)

where Y (l) represents the l-th-degree spherical harmonic.
Similarly, the node-update S-MLP, represented by S-MLPv

ãj
,

is conditioned on the neighbourhood-wise mean of such em-
bedding, ãj =

∑
N−

j
ãij/|N−

j |. It is noteworthy that since
all operations in equations (17) to (19) are SE(3) equivari-
ant, the S-MP layer as a whole is also equivariant. For the
same reason, a GNN consisting of stacked S-MP layers is
SE(3)-equivariant too.

This form of MP is akin to the one presented in Brandstetter
et al. (2021) concerning the utilisation of S-MLPs. However,
it diverges in its utilisation of the computed messages to also
update the edge features (equation (17)) and the inclusion
of layer normalisation, trends prevalent in recent literature
(Pfaff et al., 2021; Lino et al., 2022). Preliminary tests have
demonstrated improvements with these additions.

2.3. Departure to a SE(3)-Invariant Latent Space

Latent diffusion models (LDMs) (Rombach et al., 2022)
consist of a variational autoencoder (VAE) and a DDPM.
The VAE is first trained to learn a latent space that is per-
ceptually equivalent to the data space but has a lower di-
mensionality. The DDPM is then trained in this latent space
following standard techniques (Ho et al., 2020; Nichol &
Dhariwal, 2021). In this setting, the VAE’s task is captur-
ing high-frequency information from real images, while the
DDPM is responsible for understanding the images’ seman-
tic information. This approach reduces the cost of training
and evaluating diffusion models. Although with a different
objective, we draw inspiration from LDMs for designing
SE3-DGNs. A SE3-DGN consists of a steerable VGAE (S-
VGAE) and an invariant DGN (I-DGN): the S-VGAE learns
a latent space that represents the geometrical and physical
information of the graph data in a rotation-invariant manner,
and the DGN learns to denoise physical fields expressed in
that latent space. Combining both components results in

a time-efficient rotation-equivariant diffusion model, with
which rotated versions of the physical domain result in the
synthesis of equally rotated vector fields and invariant scalar
fields (Figure 1).

S-VGAEs Although we refer to S-VGAEs as autoen-
coders, their latent space does not have reduced dimen-
sionality in terms of the node or edge features nor a reduced
graph size. In this case, the data compression refers to en-
coding the directional information, given as input steerable
features, into latent scalar-valued features. As illustrated in
Figure 2, the S-VGAE consists of an edge encoder, a node
encoder, and a node decoder. All their input, hidden, and
output features are steerable vectors.

The edge encoder takes as input edge features the relative
position between adjacent nodes, ẽij , and as input node
features its neighbourhood-wise mean,

∑
N−

j
ẽij/|N−

j |. A
steerable linear mapping is first applied to the edge inputs
to reach the desired multiplicity for each rotation order of
the hidden features. Analogously, another steerable linear
mapping is applied to the node inputs. Then, several S-
MP layers are applied sequentially to those hidden node and
edge features. Finally, a steerable linear mapping transforms
the resulting edge features to meet the target multiplicity for
each rotation order, and SE(3)-equivariant batch normalisa-
tion (Weiler et al., 2018) (i.e., feature-wise normalisation)
is applied to the outputs. We will denote the latent edge
features of each edge (i, j) by ξ̃ij .

The node encoder follows the same architecture as the edge
encoder. It takes the latents ξ̃ij as input edge features and
the steerable features, ṽi, as input node features. The fea-
ture ṽi corresponds to the direct sum of the physical fields,
expressed as irreps, at node i. After all the S-MP layers
are applied, a steerable linear mapping maps the result-
ing node features to a 4L-dimensional steerable vector of
only scalars (l = 0 irreps). Then, after activation, a (stan-
dard) linear layer transforms these scalar-valued features
into vectors µi ∈ RL and σi ∈ RL, which define a nor-
mal distribution N (µi,σi) for the L latent features of each
node i. These latents are normalised via momentum batch
normalisation. We will denote the latent node features of
node i by ζ0

i . Importantly, since they are order-0 irreps, they
are invariant under rotations of ẽij and ṽi (they rotate with
D =

⊕lL
l0
1 = IL).

The node decoder also takes the latents ξ̃ij as input edge
features, and it is conditioned on the Reynolds number and
the geometry encoding ωi of each node i. It decodes the
invariant latents ζ0

i back to the physical space. Its architec-
ture is asymmetric to that of the node encoder, but first, the
condition [Re,ωi] is embedded according to

ṽi ← SELU
(
Wζ ζ

0
i +Wc [Re,ωi]

⊤ + bc
)
, (21)

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Under review at ICML 2024 AI for Science workshop

Discretisation Encoding o
(steerable features)

Norm

Steerable
edge

encoder

Steerable
node

decoder

Steerable
node

encoder

Relative nodes’ position
(vectors)

Encodes flow fields
into invariant features

Latent edge and node
features fed to latent DGN

Flow fields
(scalar + vector)

Reconstructed
flow fields

(scalar + vector)

Figure 2. Steerable VGAEs (S-VGAEs). The relative position between adjacent nodes, ẽij , is encoded into steerable latent edge-features,
ξ̃ij , via a SE(3)-equivariant graph encoder. The flow fields, ṽi, are encoded, together with ξ̃ij , into scalar-valued latent node-features, ζ0

i ,
via a SE(3)-invariant variational graph encoder. The flow fields are recovered via a SE(3)-equivariant graph decoder conditioned on the
Reynolds number and each node’s type. The latent features ξ̃ij are used as edge inputs to a DGN, which is trained to denoise ζ0

i after this
has been diffused.

where SELU is the scaled exponential linear unit (Klambauer
et al., 2017).

We train S-VGAEs following a common procedure for train-
ing VAEs. Specifically, we consider a loss function which
minimises the reconstruction loss of ṽi and regularises the
latents ζ0

i to a standard normal (Kingma & Welling, 2014).

I-DGN With our trained S-VGAE, we can now access
an invariant latent space where directional information is
abstracted. An I-DGN takes as input the edge features
Ξ̃ := {ξ̃ij | (i, j) ∈ E} and the noisy node features Zr :=
{ζr

i | i ∈ V}, which are diffused in the latent space to
diffusion step r according to equation (1), i.e.,

Zr =
√
ᾱrZ

0 + (1− ᾱr)Iϵ. (22)

An I-DGN, such that

[ϵθ, vθ]← I-DGNθ(G, Zr, Ξ̃,Ω, Re, r), (23)

can be trained as described in Section 2.1 to learn the ϵθ and
vθ parametrising the transitions of the reverse process. The I-
DGN’s architecture is the same as for the DGN described in
Section 2.1, but the edge encoder, which takes the steerable
latents ξ̃ij as input, is replaced by a steerable linear mapping
which returns Fh scalar-valued features for each edge.

As depicted in Figure 1, at inference time, the edge encoder
is evaluated only once to obtain ξ̃ij . Then, ζR

i is sam-
pled from an isotropic Gaussian distribution and iteratively
denoised by the I-DGN. Although the diffusion model is
trained with R diffusion steps, in practice, it is also possible
to employ only a subset of those diffusion steps (Song &
Ermon, 2020). Finally, the denoised node-features, ζ0

i , are

decoded back to the physical space of steerable features,
obtaining a sample ṽi from the learnt data distribution. The
added cost we pay for SE(3)-equivariant flow synthesis is
the evaluation of the edge encoder and node decoder, once
each. This is significantly smaller than the denoising cost.

Instead of decomposing the generative model into a S-
VGAE and an I-DGN, it is also possible to achieve SE(3)-
equivariance by employing a single DGN that follows the
same architecture as the I-DGN but replaces the (non-
steerable) MP layers with S-MP layers. Nevertheless, the
high cost of S-MP makes the training and inference pro-
hibitively expensive unless very small graphs are consid-
ered.

3. Flow Field Synthesis from Invariant Latents
While SE3-DGNs can address 3D domains, we demonstrate
them on 2D flows in this work, as they offer lower com-
putational demands and suitable datasets are scarce for 3D
flows. For training and testing the flow synthesis, we em-
ployed a low-resolution version of the datasets from Lino
et al. (2022), which contain simulations of the incompress-
ible Navier-Stokes equations for the flow around an ellipse
parallel to the free-stream flow, with varying Re, minor-axis
size (b), and domain height (H). Each simulation consists
of 101 time-steps of fully developed flow under a laminar
vortex-shedding regime. The test datasets allowed us to
check the extrapolation to unseen values of Re, b, and H .
Additionally, one of the test datasets introduces rotations
of 1 to 10 degrees to the ellipses. The parameters of each
dataset are listed in Table 1. We focus on generating the
pressure (p) and velocity fields (u) jointly, i.e., ṽi = pi⊕ui.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Under review at ICML 2024 AI for Science workshop

Figure 3. Coefficient of determination (R2) of the pressure field (p) and the magnitude of the velocity field (U) for each of the tested
models across the test datasets. Twenty simulation conditions were considered from each dataset (with evenly distributed Re) and 100
inferences were run for each simulation, with 50 denoising steps each.

We trained a S-VGAE with four S-MP layers in the edge
encoder, node encoder, and node decoder. Each S-MLP in
the S-VGAE has one hidden layer with steerable features
consisting of 32 order-0 irreps and 32 order-1 irreps. The
edge latents ξ̃ij also consist of 32 order-0 irreps and 32
order-1 irreps, while the node latents ζ0

i consist of four
scalars. In total, the S-VGAE has 792k learnable parameters.
The KL term was weighted by 10−6.

Next, we trained an I-DGN on the latent space of the S-
VGAE. The diffusion process consists of R = 1000 steps,
and the β-schedule is linear (Ho et al., 2020). The loss
weight for the variational lower bound was set to λvlb =
0.001. The I-DGN has five resolution levels and two MP
layers before and after each pooling/unpooling layer. Each
MLP has one hidden layer with Fh = 128 neurons. The
total number of learnable parameters is 4.176M.

During the training of the S-VGAE and the I-DGN, the
learning rate was initially set to 10−4 and decreased by a
factor of 10 after 5 and 50 epochs, respectively, without
improvement. The training was stopped when the learning
rate reached 10−8. Together, these S-VGAE and I-DGN
form a s3-DGN.

We conducted comparative analyses with non-equivariant
models, including DGNs trained with and without rotation-
augmented data, and latent DGNs (LDGNs) whose VGAEs
were first trained with and without rotation-augmented data.
The data was augmented by applying a rotation at an angle
randomly sampled from 0 to 360 degrees to each data sam-
ple from the dataset during training. These non-equivariant

models maintain the same architecture as their equivariant
counterparts but utilise non-equivariant versions of the steer-
able layers. Like the SE3-DGN, the tested LDGNs comprise
a VGAE and a DGN. While the VGAEs do not perform any
data compression, these LDGNs serve as a relevant baseline
for evaluating the SE3-DGN’s performance. All models
have approximately 4.9 million parameters in total. Consid-
ering this, adjustments were made to the width of both the
VGAEs’ and the DGNs’ MLPs.

Applying rotations to the data during training can help mod-
els approximately learn the rotation equivariance between
inputs and outputs. However, this does not impose any con-
straints on the hidden features of the trained models (Cohen
& Welling, 2016). As a result, the latent space of the VGAE
is not SE(3)-equivariant, even if trained with rotated data,
and consequently, an LDGN trained on that latent space
is also not equivariant. In contrast, a (non-latent) DGN
trained with rotated data can learn to approximate rotation
equivariance, as the data distribution is directly learned in
the physical space where rotations are applied. Figure 6
illustrates the SE(3)-equivariance error of each model for
velocity fields synthesised in a fluid domain used for training
and rotated by γ ∈ [0, 360) degrees. These results indicate
that while the DGN trained with rotated data does learn
some degree of rotation equivariance, it still falls short of
guaranteeing this property even on the training data.

Diffusion models sample a flow field at a time point t = t∗,
which cannot be directly controlled. Since we are dealing
with periodic laminar flow, the time point t = t∗ + kT ,

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Under review at ICML 2024 AI for Science workshop

u(t*, x, y) v(t*, x, y)p(t*, x, y)

G.
T.

SE
3-
DG

N

R2 = 0.9508 R2 = 0.9464 R2 = 0.9258

Figure 4. Pressure field (p), and horizontal (u) and vertical (v)
components of the velocity fields synthesised by the SE3-DGN
(bottom row) and their corresponding ground truth in the dataset
NsEllipseAoA (top row). The ellipse has an angle of attack of
10 degrees and Re = 800.

where T is the period and k ∈ N, falls within the range of
the time points included in the ground truth simulations in
the datasets. To evaluate the accuracy of the samples, we
compute the coefficient of determination (R2) between a
sampled flow field and all the flow fields available in the
dataset for the same domain and Re. We then select the
highest R2 value, which occurs close to t = t∗ + T . As
an example, Figure 1 shows the fields generated by the
SE3-DGN (bottom row) and their corresponding ground
truth in the dataset NsEllipseAoA (top row). In this
example, the ellipse has an angle of attack of 10 degrees
and Re = 800, illustrating the good generalisation of the
SE3-DGN to non-zero angles of attack.

We compared the performance of each model across the
testing datasets. Figure 3 presents the distribution of the R2

values for the pressure field and the magnitude of the veloc-
ity field (U) for each model and dataset. For each domain
and Re, inferences were run 100 times with 50 denoising
steps each. The SE3-DGN outperforms the non-rotation-
equivariant models. However, it is closely followed by the
LDGN whose VGAE was trained with rotation-augmented
data. This close performance can be attributed to two factors:
(i) the VGAE assists the DGN in focusing on perceptually
relevant flow features while managing the high-frequency
content, and (ii) the rotation-augmented data makes the
VGAE more robust to variations in the latent space, lead-
ing to higher quality decoded flows. Conversely, the DGN
trained with rotation-augmented data exhibits the worst per-
formance by a significant margin. This poor performance is
likely due to insufficient learnable parameters to handle the
increased training data, as the input depends on the diffu-
sion step r (Dhariwal & Nichol, 2021) and also the rotation
angle.

Figure 5 displays samples of the horizontal component of
the velocity field synthesised by each of the tested models
for various domains and Re from the NsEllipseAoA
dataset. Overall, the SE3-GNN demonstrates higher sample

Sample #1 (Re = 500) Sample #2 (Re = 600) Sample #3 (Re = 900) Sample #4 (Re = 1000)

G.
T.

SE
3-

-D
GN

DG
N

(N
O

Au
g.

)
DG

N
(A

ug
.)

LD
GN

 (N
O

Au
g.

)
LD

GN
 (A

ug
.)

Figure 5. Samples of the horizontal component of the velocity field
synthesised by each of the tested models from geometries and Re
in the dataset NsEllipseAoA. Overall, SE3-GNN shows higher
sample quality. The LDGN whose VGAE was trained with rotated-
augmented data shows only slightly worse performance.

quality. This figure also highlights the importance of the
VGAE decoder, whether steerable or not, in removing high-
frequency noise left after diffusion denoising, since the
baseline DGNs’ samples exhibit noticeable high-frequency
noise, whereas the samples from the latent models do not.

4. Conclusion
This work introduced SE3-DGNs, efficient SE(3)-
equivariant diffusion models for field generation on graphs.
SE3-DGNs combine a S-VGAE, which abstracts directional
information and learns an invariant latent space, with a
DGN, which generates physical fields in that latent space.
We demonstrated this method by learning the distribution
of pressure and velocity fields for laminar vortex-shedding
behind 2D elliptical cylinders. We found that, under new
Reynolds numbers and domain geometries, a s3-DGN can
generate high-quality fields with lower residual noise than
conventional DGNs while ensuring SE(3)-equivariance. Its
non-equivariant counterpart, using a VGAE trained with ro-
tated data, also achieved similar generalisation performance
due to a robust decoder that filters high-frequency noise.
Overall, SE3-DGNs and LDGNs present a promising ap-
proach for generating fully-developed initial conditions for
transient numerical solvers.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Under review at ICML 2024 AI for Science workshop

References
Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.

arXiv preprint arXiv:1607.06450, 2016.

Battaglia, P. W., Pascanu, R., Lai, M., Rezende, D., and
Kavukcuoglu, K. Interaction networks for learning about
objects, relations and physics. Advances in Neural Infor-
mation Processing Systems, 37, 2016.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., et al. Rela-
tional inductive biases, deep learning, and graph networks.
arXiv:1806.01261, 2018.

Brandstetter, J., Hesselink, R., van der Pol, E., Bekkers, E. J.,
and Welling, M. Geometric and physical quantities im-
prove e(3) equivariant message passing. In International
Conference on Learning Representations, 2021.

Brandstetter, J., Welling, M., and Worrall, D. E. Lie point
symmetry data augmentation for neural pde solvers. In
International Conference on Machine Learning, pp. 2241–
2256. PMLR, 2022.

Cohen, T. and Welling, M. Group equivariant convolutional
networks. In International conference on machine learn-
ing, pp. 2990–2999. PMLR, 2016.

Dhariwal, P. and Nichol, A. Diffusion models beat gans
on image synthesis. Advances in neural information
processing systems, 34:8780–8794, 2021.

Fortunato, M., Pfaff, T., Wirnsberger, P., Pritzel, A., and
Battaglia, P. Multiscale MeshGraphNets. In ICML 2022
Workshop on AI for Science, 2022.

Gao, R., Deo, I. K., and Jaiman, R. K. A finite element-
inspired hypergraph neural network: Application to fluid
dynamics simulations. Journal of Computational Physics,
pp. 112866, 2024.

Gilmore, R. Lie groups, physics, and geometry: an introduc-
tion for physicists, engineers and chemists. Cambridge
University Press, 2008.

Guillard, H. Node-nested multi-grid method with Delaunay
coarsening. Technical report, INRIA, 1993.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in neural information process-
ing systems, 33:6840–6851, 2020.

Hoogeboom, E., Satorras, V. G., Vignac, C., and Welling, M.
Equivariant diffusion for molecule generation in 3d. In
International conference on machine learning, pp. 8867–
8887. PMLR, 2022.

Karniadakis, G. and Sherwin, S. Spectral/hp element meth-
ods for computational fluid dynamics. Oxford University
Press, 2013.

Kingma, D. P. and Welling, M. Auto-Encoding Variational
Bayes. In 2nd International Conference on Learning
Representations, ICLR 2014, Banff, AB, Canada, April
14-16, 2014, Conference Track Proceedings, 2014.

Kipf, T. N. and Welling, M. Variational graph auto-encoders.
arXiv preprint arXiv:1611.07308, 2016.

Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter, S.
Self-normalizing neural networks. Advances in Neural
Information Processing Systems, 30, 2017.

Klicpera, J., Groß, J., and Günnemann, S. Directional mes-
sage passing for molecular graphs. In Proceedings of the
8th International Conference on Learning Representa-
tions, 2020.

Kohl, G., Chen, L.-W., and Thuerey, N. Turbulent flow sim-
ulation using autoregressive conditional diffusion models.
arXiv preprint arXiv:2309.01745, 2023.

Lienen, M., Lüdke, D., Hansen-Palmus, J., and Günnemann,
S. From zero to turbulence: Generative modeling for 3d
flow simulation. In The Twelfth International Conference
on Learning Representations, 2024.

Ling, J., Jones, R., and Templeton, J. Machine learning
strategies for systems with invariance properties. Journal
of Computational Physics, 318:22–35, 2016.

Lino, M. Nsellipse datasets from ”multi-scale rotation-
equivariant graph neural networks for unsteady eulerian
fluid dynamics” (1.0.0) [data set], 2023. URL https:
//doi.org/10.5281/zenodo.7892171.

Lino, M., Fotiadis, S., Bharath, A. A., and Cantwell, C. D.
Multi-scale rotation-equivariant graph neural networks
for unsteady eulerian fluid dynamics. Physics of Fluids,
34(8), 2022.

Lino, M., Fotiadis, S., Bharath, A. A., and Cantwell, C. D.
Current and emerging deep-learning methods for the sim-
ulation of fluid dynamics. Proceedings of the Royal Soci-
ety A, 479(2275):20230058, 2023.

Lippe, P., Veeling, B., Perdikaris, P., Turner, R., and Brand-
stetter, J. Pde-refiner: Achieving accurate long rollouts
with neural pde solvers. Advances in Neural Information
Processing Systems, 36, 2024.

Liu, Q. and Thuerey, N. Uncertainty-aware surrogate mod-
els for airfoil flow simulations with denoising diffusion
probabilistic models. AIAA Journal, pp. 1–22, 2024.

9

https://doi.org/10.5281/zenodo.7892171
https://doi.org/10.5281/zenodo.7892171

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Under review at ICML 2024 AI for Science workshop

Nichol, A. Q. and Dhariwal, P. Improved denoising diffu-
sion probabilistic models. In International conference on
machine learning, pp. 8162–8171. PMLR, 2021.

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and
Battaglia, P. W. Learning mesh-based simulation with
graph networks. In Proceedings of the 38th International
Conference on Machine Learning, 2021.

Pope, S. B. and Pope, S. B. Turbulent flows. Cambridge
University Press, 2000.

Prantl, L., Ummenhofer, B., Koltun, V., and Thuerey,
N. Guaranteed conservation of momentum for learn-
ing particle-based fluid dynamics. Advances in Neural
Information Processing Systems, 35, 2022.

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. Pointnet++:
Deep hierarchical feature learning on point sets in a met-
ric space. Advances in Neural Information Processing
Systems, 30, 2017.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10684–10695, 2022.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R.,
Leskovec, J., and Battaglia, P. Learning to simulate com-
plex physics with graph networks. In Proceedings of
the 37th International Conference on Machine Learning,
2020.

Shankar, V., Barwey, S., Kolter, Z., Maulik, R., and
Viswanathan, V. Importance of equivariant and invari-
ant symmetries for fluid flow modeling. arXiv preprint
arXiv:2307.05486, 2023.

Shu, D., Li, Z., and Farimani, A. B. A physics-informed
diffusion model for high-fidelity flow field reconstruction.
Journal of Computational Physics, 478:111972, 2023.

Si, C., Huang, Z., Jiang, Y., and Liu, Z. Freeu: Free lunch in
diffusion u-net. arXiv preprint arXiv:2309.11497, 2023.

Siddani, B., Balachandar, S., and Fang, R. Rotational and
reflectional equivariant convolutional neural network for
data-limited applications: Multiphase flow demonstration.
Physics of Fluids, 33(10):103323, 2021.

Song, Y. and Ermon, S. Improved techniques for train-
ing score-based generative models. Advances in neural
information processing systems, 33:12438–12448, 2020.

Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L.,
Kohlhoff, K., and Riley, P. Tensor field networks:
Rotation-and translation-equivariant neural networks for
3d point clouds. arXiv preprint arXiv:1802.08219, 2018.

Ummenhofer, B., Prantl, L., Thuerey, N., and Koltun, V.
Lagrangian fluid simulation with continuous convolutions.
In In Proceedings of the 7th International Conference on
Learning Representations, 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Vignac, C., Krawczuk, I., Siraudin, A., Wang, B., Cevher,
V., and Frossard, P. Digress: Discrete denoising diffu-
sion for graph generation. In Proceedings of the 11th
International Conference on Learning Representations,
2023.

Wang, R., Walters, R., and Yu, R. Incorporating symmetry
into deep dynamics models for improved generalization.
In Proceedings of the 9th International Conference on
Learning Representations, 2021.

Weiler, M., Geiger, M., Welling, M., Boomsma, W., and
Cohen, T. S. 3D steerable CNNs: Learning rotation-
ally equivariant features in volumetric data. Advances in
Neural Information Processing Systems, 31, 2018.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Under review at ICML 2024 AI for Science workshop

A. Incompressible flow data
For training and testing the flow synthesis, we employed a low-resolution version of the datasets from Lino et al. (2022) and
Lino (2023), which contain simulations of the incompressible Navier-Stokes equations for the flow around an elliptical
cylinder with varying Reynolds number (Re), minor-axis size (b), and domain height (H). Each simulation consists of
101 time-steps of fully developed flow under a laminar vortex-shedding regime. The resolution was reduced by a factor of
approximately two via Guillard’s coarsening (Guillard, 1993).

These datasets are listed in Table 1. The first dataset was used to train the models, while the remaining datasets were used to
test generalization to out-of-distribution flow parameters.

Table 1. Training and testing datasets (Lino et al., 2022; Lino, 2023). AoA stands for angle of attack, and Aelement refers to the element-size
parameter in Gmsh meshes.

Dataset Re b H AoA (deg) Aelement #Simulations Purpose

NSEllipse 500-1000 0.5-0.8 5-6 0 0.10-0.16 5000 Training
NSEllipseLowRe 300-500 0.5-0.8 5-6 0 0.10-0.16 500 Testing
NSEllipseHighRe 1000-1200 0.5-0.8 5-6 0 0.10-0.16 500 Testing
NSEllipseThin 500-1000 0.4-0.5 5-6 0 0.10-0.16 500 Testing
NSEllipseThick 500-1000 0.8-1.0 5-6 0 0.10-0.16 500 Testing
NSEllipseNarrow 500-1000 0.5-0.8 4-5 0 0.10-0.16 500 Testing
NSEllipseWide 500-1000 0.5-0.8 6-7 0 0.10-0.16 500 Testing
NsEllipseAoA 500-1000 0.5-0.8 5.5 0-10 0.12 240 Testing

B. SE(3)-Equivariance error
Figure 6 illustrates the SE(3)-equivariance error of each tested model for velocity fields synthesised in a fluid domain used
for training and rotated by γ ∈ [0, 360) degrees. This error was calculated as the node-wise mean error of |f(D(1)(γ) ẽij)−
D(1)(γ) f (ẽij) |, where f represents the entire denoising process from Gaussian noise. These results indicate that while
the DGN trained with rotated data does learn some degree of rotation equivariance, it still falls short of guaranteeing this
property even on the training data.

Figure 6. For each tested model, SE(3)-equivariance error of velocity fields generated from a training domain rotated an angle γ ∈ [0, 360)
degrees.

11

