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ABSTRACT

Humans often rely on visual aids, such as diagrams or sketches, when tackling
complex problems. Teaching multimodal models to adopt similar strategies, a
process known as Visual Chain of Thought (visual CoT), is much more difficult.
The main challenges are: (1) weak performance of off-the-shelf visual CoT, which
hinders reinforcement learning, and (2) the lack of high-quality visual CoT train-
ing data. We introduce ZEBRA-COT, a diverse large-scale interleaved text–image
reasoning dataset with 182,384 reasoning traces across 18 domains with over 50
distinct tasks. This dataset is specifically designed to train models to natively per-
form visual CoT. We emphasize four categories of tasks where sketching or visual
reasoning is especially natural, spanning (a) scientific questions such as geometry,
physics, and algorithms; (b) 2D visual reasoning tasks like visual search and jig-
saw puzzles; (c) 3D reasoning tasks including 3D multi-hop inference, embodied
and robot planning; and (d) visual logic problems and strategic games like chess.
Fine-tuning Anole-7B model on ZEBRA-COT yields a +12% improvement in our
test-set accuracy and up to +13% performance gains on standard VLM bench-
marks. Similarly, fine-tuning Bagel-7B produces models capable of generating
high-quality interleaved visual reasoning chains, underscoring ZEBRA-COT’s ef-
fectiveness in advancing multimodal reasoning.

1 INTRODUCTION

Human cognition naturally integrates multimodal thought processes when solving complex prob-
lems. For example, a high school student sketches diagrams to solve geometry or physics problems,
an engineer creates diagrams to design and debug workflows, and a data scientist generates plots
to better understand data. These visual aids are central to effective problem solving. While recent
vision-language models (VLMs) have shown strong performance on multimodal tasks like visual
question answering, their reasoning traces remain predominantly textual. Enabling models to explic-
itly reason in the visual space, Visual Chain of Thought (visual CoT), remains a fundamental open
challenge. Unlocking visual CoT may improve reasoning performance in domains where visual in-
tuition is relevant and may make the reasoning patterns expressed by models more interpretable to
humans.

Recent advances in frontier multimodal models (Team et al., 2023; Hurst et al., 2024; Bai et al., 2025;
OpenAI, 2025a; Team, 2024; Chern et al., 2024; Sun et al., 2024; Deng et al., 2025) have made
visual CoT feasible primarily through agentic pipelines that leverage external tools (e.g., Python
functions, or expert vision models) for visual programming (Surı́s et al., 2023), such as generating
sketches for geometry, algorithms, and spatial reasoning tasks (Hu et al., 2024; OpenAI, 2025b), or
bounding boxes for fine-grained visual tasks (Shao et al., 2024a; Wu and Xie, 2024; Zheng et al.,
2025). An emerging possibility is innate visual reasoning, where models directly generate explicit
visual tokens during their thinking process (Li et al., 2025; Chern et al., 2025; Xu et al., 2025b).
However, current VLMs with interleaved text and image generation capabilities (Team, 2024; Chern
et al., 2024) either fail to generate useful visual aids for reasoning or are not inherently trained for
such multimodal generation during the reasoning process (Deng et al., 2025), making reinforcement
learning approaches to reasoning infeasible. Li et al. (2025) demonstrate visual CoT in synthetic
mazes by training specialist models, but we remain far from foundation models capable of general
high-quality visual CoT, largely due to the lack of large-scale diverse interleaved text and image
reasoning training datasets.
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Visual Logic & 
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Arc-AGI 1.1%
Checkers 1.5 %
Chess 11.2 %
Ciphers 3.6 %
Connect Four 1.1 %
Maze 11.0 %
RPM 1.6 %
Tetris 5.5%

Visual Jigsaw 12.0 %
Visual Search - Chart 3.8 %
Visual Search - Text/Doc 2.7 %
Visual Search - Relation Reasoning 5.5 %
Visual Search - General VQA 4.4%

Chemistry 2.6 %
Competitive Programming 0.7 %
Geometry 0.6 %
Graph Algorithms 5.5 %
Physics 3.9%
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Robot Planning 3.8 %
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Figure 1: We curate a large-scale multimodal dataset by sourcing and cleaning raw traces from real-
world domains, and generating synthetic examples using templated reasoning filled in by VLMs.
ZEBRA-COT comprises 4 major categories and 18 subcategories, encompassing over 182K in-
stances in total. A detailed breakdown of the data statistics appears in Table 3.

Thought 1: To analyze the given 
triangle  and determine its 
height, we will draw an altitude from 
vertex  to the base .

△ XYZ

Y XZ

Thought 2: The diagram shows the 
altitude  within . Since 

 is isosceles with 
 and base , the 

altitude  bisects . Therefore, 
.

YW △ XYZ
△ XYZ
XY = YZ = 17 XZ = 30

YW XZ
XW = WZ = XZ /2 = 30/2 = 15

Scientific Reasoning

Question: There are two different 
isosceles …  is shown. 
Determine the perimeter of the 
second triangle.

△ XYZ

Thought 1: To identify the animals, I 
need to examine them more closely. I 
will focus on one of the animals 
grazing. 

Thought 2: The zoomed-in view shows 
an animal with thick woolly fleece, a 
characteristic snout, and legs typical of 
sheep. 

Thought 3: We can conclude that the 
animals grazing are sheep. 

2D Visual Reasoning

Question: What type of animals are 
seen grazing in this landscape image? 

Thought 1: grab the bread. 

3D Visual Reasoning

Question: What is the sequence 
actions for the robot to go from initial 
state to the goal state?

Thought 2: lift the bread.

Thought 1: Let's evaluate option A, 
b5, by visualizing the resulting 

Thought 2: After b5, Black attacks 
White's c4 pawn and aims for 
queenside expansion. This seems like 
a reasonable move.

Thought 3: Let's consider option B, 
developing the Bishop to c5. 

Games & Puzzles

Question: What is the best move for 
Black to play? A: b5 B: h5 C: Qd8 D: f5

Figure 2: Visual CoT helps answer complex visual reasoning questions, as illustrated by examples
from ZEBRA-COT.

To support the development of next generation vision language models that can explicitly reason
with both text and visual modalities, we present ZEBRA-COT, a high quality dataset of interleaved
text and image reasoning traces. Our dataset covers four main categories: scientific questions, 2D
visual reasoning, 3D visual reasoning, and visual logic and strategic games, each containing multiple
subdomains and task types, as exemplified in Figure 2. To the best of our knowledge, ZEBRA-COT is
the first dataset to provide diverse and logically coherent multimodal reasoning traces across such a
wide range of domains. Unlike prior large-scale interleaved datasets that are primarily composed of
web-scraped image-text pairs with weak semantic alignment and no explicit reasoning structure (Li
et al., 2024b; Awadalla et al., 2024; Zhu et al., 2023), ZEBRA-COT is carefully curated as a training
resource in the spirit of high-quality text-based reasoning datasets. At the same time, compared to
the only existing open-source interleaved text visual reasoning dataset we are aware of, VISUAL-
COT (Shao et al., 2024a), which focuses on a single task of visual search, ZEBRA-COT introduces a
much broader and more diverse set of tasks with richer reasoning trajectories. We provide a detailed
comparison with other datasets below in Table 1.
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Dataset Primary Task CoT Modality Suitability for visual CoT Training

GQA Compositional visual QA Text No visual CoT
ScienceQA Multimodal science QA Text No visual CoT
CLEVR Synthetic compositional visual QA Text No visual CoT
VCR Visual commonsense QA with rationale Text No visual CoT
VideoCoT Video QA Text No visual CoT
EgoCOT Embodied planning Text No visual CoT
LLaVA-CoT Multimodal reasoning QA Text No visual CoT
MAmmoTH-VL Large scale multimodal instruction tuning Text No visual CoT
MM-Verify Multimodal reasoning with verification Text No visual CoT
R1-Onevision A SFT and RL multimodal reasoning dataset Text No visual CoT
Visual CoT Visual-search QA with bbox CoT Image, Text Limited to visual search tasks
MM-PhyQA Physics visual CoT Image, Text Physics data only, not open sourced
CoT VLA Robotics visual CoT Image, Action No text reasoning
OmniCorpus 10 B-level interleaved corpus None Noisy pretraining data without CoT
MINT-1T 1 T-token web-scale interleaved data None Noisy pretraining data without CoT

ZEBRA-COT Diverse and high quality visual CoT Image, Text Diverse interleaved vision–language CoT

Table 1: ZEBRA-COT introduces a broader set of high quality visual CoT traces compared with
prior datasets and pipelines.

Our contributions are summarized as follows:

1. We release ZEBRA-COT, a high quality and diverse dataset with interleaved text and visual CoT
that contains 182,384 samples for training models to natively perform visual CoT for problem
solving. Details regarding the dataset are shown in Section 3

2. We evaluate three frontier LLMs, including GPT-5, Claude Sonnet 4, and Gemini 2.5 Pro, on the
tasks in ZEBRA-COT in Section 4. Despite their advanced multimodal reasoning capabilities,
these models perform poorly on those challenging tasks, with an average of 31.51%. Moreover,
to demonstrate the effectiveness and value of visual CoT, we construct a scaffolding experiment
that provides the first one or two multimodal CoT steps in context. Accuracy rises to 47.99%
after one step (+16.48 pts) and 56.70% after two steps (+25.19 pts) overall, with gains of up to
+43.77 pts in specific domains. These findings highlight the challenging nature of our dataset,
the quality of our reasoning traces, and the value of visual CoT.

3. After fine-tuning ANOLE-7B (Chern et al., 2024) on our training set, we improved the accuracy
on our in-distribution test set from 4.2% to 16.9%. When evaluating the resulting model on
benchmarks requiring visual reasoning, our ANOLE-ZEBRA-COT-7B model achieves an aver-
age improvement of 4.9% across seven challenging datasets, with a maximum gain of 13.1%
on a visual logic benchmark, as shown in Table 2.

4. We fine-tune BAGEL-7B (Deng et al., 2025), a high-quality multimodal model that cannot na-
tively generate interleaved text and images on our dataset. After fine-tuning, the model is able to
inherently generate high-quality visual CoT during its own reasoning process, making it well-
suited for future RL training, as shown qualitatively in the examples in Figure 4 and Appendix B.

2 RELATED WORK

Visual chain of thought. The community has predominantly been tackling visual CoT by using
visual programming to generate images (Surı́s et al., 2023; Zhang et al., 2023; Mitra et al., 2024;
Yang* et al., 2023; Wu and Xie, 2024; Hu et al., 2024; Menon et al., 2024; OpenAI, 2025b; Zheng
et al., 2025). In particular, VISUAL SKETCHPAD (Hu et al., 2024) presents the most versatile open-
source visual reasoning agents among existing works, handling a wide range of tasks. Another line
of work explores model-generated images: for example, Rose et al. (2023) uses a diffusion model to
bridge gaps in storytelling, and Chern et al. (2025) generates intermediate images to improve image
generation tasks; Zhao et al. (2025) generates intermediate images as subgoal predictions and derives
actions based on them for robotic planning; Li et al. (2025) and Xu et al. (2025b) explore spatial
reasoning tasks like mazes by visualizing each temporal step. However, these model-generated
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image approaches are mostly specialists, and developments are still primitive compared to visual
programming methods that leverage external tools.

Visual reasoning datasets. Many multimodal visual reasoning datasets have been proposed, such
as GQA (Hudson and Manning, 2019), SCIENCEQA (Lu et al., 2022), VIDEOCOT (Wang et al.,
2024c), EGOCOT (Mu et al., 2023), LLAVA-COT (Xu et al., 2024), MAMMOTH-VL (Guo et al.,
2024), MM-VERIFY (Sun et al., 2025), R1-ONEVISION (Yang et al., 2025), CLEVR (Johnson
et al., 2017), VCR (Zellers et al., 2019), although most focus on multi-modality only in the in-
put question, leaving the reasoning traces purely textual. Among them, VISUAL-COT (Shao et al.,
2024a) stands out as the only open-source dataset featuring interleaved text and image reasoning.
MM-PHYQA (Anand et al., 2024) on the other hand, introduces a paradigm for incorporating im-
ages into the reasoning process for physics problems, though the dataset is not publicly available.
Several vision-centric benchmarks (Fu et al., 2024b; Hao et al., 2025a) present diverse and challeng-
ing tasks, but they lack annotated reasoning traces.

Interleaved text and image datasets. Large-scale corpora with interleaved text and images have
become essential for pretraining VLMs with reasoning capabilities (Alayrac et al., 2022; Chen and
Wang, 2022; Sun et al., 2024; Wang et al., 2024b; Hurst et al., 2024; Li et al., 2024a; Bai et al., 2025;
Team et al., 2025). However, in most existing interleaved text and image datasets MULTIMODAL
C4 (Zhu et al., 2023), OBELICS (Laurençon et al., 2023), OMNICORPUS (Li et al., 2024b), images
are primarily used for recognition, captioning, or as supplementary context in text-based reasoning,
rather than serving as explicit visual aids that contribute meaningfully to the reasoning process.
While MINT-1T (Awadalla et al., 2024) includes some scientific content from arXiv where images
may aid reasoning, both the text traces and visual content are often noisy and not well-suited for
post-training or fine-grained reasoning tasks. Instead, our ZEBRA-COT introduces a broader and
higher-quality set of visual CoT examples, enabling effective training for visual reasoning.

3 DATA CURATION DETAILS AND COMPOSITIONS

3.1 CURATING A DIVERSE AND HIGH QUALITY INTERLEAVED VISION AND LANGUAGE
REASONING DATASET

A key challenge in training multimodal generation models to output visual CoT natively is the lack
of datasets with strong logical coherence between text and visual modalities, and diverse categories
of such visual CoT. Existing interleaved datasets often fail to provide clear, meaningful connections
that demonstrate when and why visual reasoning is necessary for problem-solving, while current
visual CoT datasets are confined to a few domains, limiting the model’s ability to learn generalizable
visual CoT capabilities when faced with out-of-distribution problems.

To address these gaps, we developed a comprehensive data curation pipeline that bridges logical
connections across modalities, as shown in Figure 5. For logical coherence across modalities, we
leverage frontier vision-language models (Gemini-2.5 Pro) to enrich reasoning traces and ensure a
clear logical flow between textual reasoning and visual aids. For diversity, we combine real-world
problems from multiple domains (mathematics, physics, chemistry, coding, chess, visual question
answering, robotics) with synthetic examples generated through computer programming, simula-
tion, and graphic rendering. This pipeline enabled us to curate over 182 K high-quality interleaved
text and visual reasoning traces spanning four major categories: scientific reasoning, 2D visual rea-
soning, 3D visual reasoning, and visual logic and strategic games. Unlike existing limited datasets
that focus primarily on visual search or spatial reasoning, our curated dataset provides the breadth
and diversity necessary for training models that can generalize across domains. For details regard-
ing our data curation pipeline, please refer to Appendix A.2. In the following sections, we provide
a brief introduction to the tasks of each broad category. And for the details regarding the subcat-
egory and domains, please refer to Appendices A.3 to A.6. For prompt templates, please refer to
Appendix F.

3.2 SCIENTIFIC QUESTIONS

Visual reasoning is particularly valuable in STEM domains, as it enables the visualization of abstract
concepts such as auxiliary lines, free-body diagrams, and sketches, which clarify ideas that are hard
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Question: In square , 
 is 4 centimeters, and  

is the midpoint of . Let  
be the intersection of   
and . What is the ratio of 

 to ?

ABCD
AD M

CD O
AC

BM
OC OA

<think>Thought 1: To better visualize the 
geometric relationships, especially within 
triangle , let's add the diagonal  to 
our diagram. Let  be the intersection of 

 and . This will help us identify if any 
segment related to  can be considered 
a median of triangle . </think>

BCD BD
T

AC BD
AC
BCD

<think>Thought 2: The updated 
diagram shows the square  
with both diagonals  and  
intersecting at point . The 
segment BM intersects  at . 
Now, let's focus on triangle  
… </think>

ABCD
AC BD
T

AC O
BCD

Geometry

Problem Image 1 Reasoning Image 1

to describe in language and support step-by-step problem solving in ways that mirror human cog-
nition. In ZEBRA-COT, this category spans subdomains including geometry, physics, chemistry,
algorithmic problem solving, and graph problems. For geometry, physics, and chemistry, we lever-
age openly licensed datasets and textbooks, using Gemini-2.5 (Comanici et al., 2025) to denoise
and parse them into clean, logically structured visual CoT. For graph problems, we employ com-
puter programs to generate images and text templates, which are then diversified using Gemini-2.5.
For algorithmic problems, we use a GPT-4.1 agent built upon Hu et al. (2024) to produce detailed
traces for solving competitive programming tasks. For details regarding all tasks in this domain, see
Appendix A.3.

3.3 2D VISUAL REASONING

Visual Jigsaw

Question: A jigsaw 
puzzle shows a picture 
of pandas but has 
several missing pieces, 
indicated by gray areas. 
Identify which set of 
pieces from the options 
provided will correctly 
complete the puzzle.

<think>Thought 0: Analyze 
the original puzzle image to 
understand the missing 
sections and the surrounding 
details. Thought 1: To 
determine the correct missing 
pieces, visualize the complete 
image or find the original 
source image. </think>

<think>Thought 2: Compare the 
full image with the options provided 
to see which set of pieces matches 
the content and position of the gray 
areas in the original puzzle. 
Thought 3: Option D contains the 
correct parts of the image needed 
to fill the missing sections based on 
the full image.</think>Problem Image 1 Reasoning Image 1

In 2D visual reasoning, visual aids support the manipulation and interpretation of 2D visual in-
formation, enabling tasks that involve spatial arrangement, pattern recognition, and fine-grained
inspection. For this category, we include tasks such as visual search and visual jigsaw. For visual
search, we adapt datasets from Shao et al. (2024a) and incorporate two types of visual aids: draw-
ing bounding boxes and zooming into focal regions. We apply those visual CoT broadly across
data categories, such as charts, documents, relations, and general VQA. For visual jigsaw tasks, we
crop images from ImageNet (Deng et al., 2009) to create puzzles with a random number of missing
pieces in diverse shapes. The visual CoT is either iteratively filling in the pieces or reconstructing
the original image directly. Further details are provided in Appendix A.4.

3.4 3D VISUAL REASONING

For 3D visual reasoning tasks, we focus on two domains: (1) embodied reasoning and robotic
planning in the physical world, and (2) understanding 3D transformations from different view-
points. For the first domain, prior work has shown that generating visual predictions of the physical
world and extracting inverse dynamics can improve performance in long-horizon decision-making
in robotics (Zhao et al., 2025; Yang et al., 2024). To capture this, we reformulate the ALFRED
benchmark (Shridhar et al., 2020) into an image goal-conditioned planning task in which models
generate detailed step-by-step plans to transition from an initial state to a goal state. We also adapt
RoboMIND (Wu et al., 2024) for real-world robot planning, where models receive initial and goal
images, along with descriptions of robot embodiment, and must produce precise high-level action
plans. For reasoning about 3D transformations, we design multi-hop object counting tasks inspired
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Question:  

Please describe 
the sequence of 
robot actions from 
the initial state (the 
first image) to the 
goal state (the 
second image).

<think> Thought 1: 
move the robot’s arm 
towards the bread. 
</think>

Robot Planning

Problem Image 1 & 2 Reasoning Image 1

<think> Thought 2:  
use the robot’s arm to 
grab the bread. 
</think>

Reasoning Image 2

<think> Thought 3: 
move the bread towards 
the table. 
</think>

Reasoning Image 3

by CLEVR (Johnson et al., 2017), where scenes undergo sequential modifications, such as adding or
removing objects, requiring models to visually reason through each transformation step. For details,
see Appendix A.5

Question: Remove zero 
CAPSULE objects. Eliminate 
all PYRAMID objects. 
Remove zero PURPLE 
objects. Discard all CUBE 
objects. Count how many 
blue-colored objects 
remaining.

<think>Thought 2: Proceeding to Step 2, 
the instruction is to "Remove all PYRAMID 
objects." Upon reviewing the current 
scene, there is one orange pyramid 
present. This object must be removed from 
the arrangement. The updated scene after 
this removal is depicted in the following 
image.</think>

<think>Thought 3: For Step 3, 
the directive states to "Remove 0 
PURPLE object." Similar to Step 
1, this operation specifies that no 
purple objects are to be 
removed. The objects remaining 
in the scene after Step 2 are 
preserved… </think>

3D Multi Hop Object Counting

Problem Image 1 Reasoning Image 1

3.5 VISUAL LOGIC AND STRATEGIC GAMES

Maze

Question: Determine the 
smallest number of movements 
required to cover all letters 
without repetition, starting at the 
green marker (1-step transitions 
in four directions around 
obstacles) Options: (A) 88, (B) 99, 
(C) 90, (D) 86 

<think>Thought 3: The first 
segment of the optimal path takes 
us from the initial green marker to 
the letter B. This journey covers a 
distance of 10 moves. The image 
below illustrates this initial part of 
the route. </think>

Reasoning Image 1

<think>Thought 4: Following the 
visit to B, the next leg of the 
journey leads to letter A. This 
particular segment is quite 
lengthy, requiring 41 moves due to 
the winding nature of the maze. 
The next visual highlights this 
path. </think>

Reasoning Image 2

For visual logic puzzles (IQ matrices, Tetris, ciphers, ARC-AGI (Chollet et al., 2024)), previous
VLMs tended to solve problems primarily using text reasoning. They first verbalize visual inputs
into text, which causes information loss and makes visually salient patterns, such as spatial re-
lationships, difficult to capture. In contrast, humans solve these directly and efficiently via visual
imagination and manipulation, even for babies who have not yet acquired language capabilities (Zhu
et al., 2020). To bridge the gap, we construct visual CoT traces that include explicit intermediate
visual transformations to encourage models to solve these problems visually. Similarly, for strategic
games (chess, checkers, Connect Four), decision making typically involves searching and generat-
ing counterfactual rollouts. While LLMs can simulate this by symbolizing board states into text,
much of the spatial structure is lost, and rollouts in text space are difficult for problems with large
visual information. Thus, we render those search and simulation steps into images so that models
trained on this data can perform long-horizon planning in the visual space inherently. Finally, we
generate a diverse suite of maze tasks and visual CoT traces that require a combination of capabil-
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Question: What is the best 
move for Black to play? 
A: Ne7 
B: Kf8 
C: Qe7 
D: Qe6

<think>Thought 1: The initial position shows 
Black's king on e8, potentially vulnerable, 
and the knight on f5 is pinned to the queen 
on d7 by White's bishop on g5. Black needs 
to find a move that improves the position or 
defends against potential threats. Let's 
evaluate the candidate move Ne7. This 
move breaks the pin on the knight.</think>

<think>Thought 2: After Ne7, the 
knight is no longer pinned, but it 
is still attacked by the queen on 
e4 and also blocks the queen's 
defense of the d6 pawn. This 
move doesn't seem to improve 
Black's position significantly…  
</think>

Chess

Problem Image 1 Reasoning Image 1

ities, including high-level symbolic search and low-level perception. For details of those tasks, see
Appendix A.6.

4 ANALYSIS OF ZEBRA-COT AND THE VALUE OF VISUAL COT

Proprietary frontier models (GPT-5 (OpenAI, 2025c), Gemini-2.5 Pro (Comanici et al., 2025),
Claude-4 Sonnet (Anthropic, 2025)) have achieved state-of-the-art performance on multimodal rea-
soning benchmarks. Despite their advanced multimodal capabilities, we show that they struggle
significantly with the tasks in ZEBRA-COT. To explore these limitations and demonstrate the chal-
lenging nature of our dataset alongside the effectiveness of visual reasoning traces, we design a scaf-
folding experiment. Specifically, our dataset consists of structured reasoning chains: <question>
→ <text-reasoning-1> → <visual-reasoning-1> → <text-reasoning-2> →
<visual-reasoning-2> → ... → <answer>.

In the zero-shot setting, we provide models only with the <question> (containing both image
and text). For scaffolding experiments, we incrementally provide the first k multimodal reasoning
steps as context:

• 1MT (k = 1): <question> + <text-reasoning-1> + <visual-reasoning-1>
• 2MT (k = 2): <question> + <text-reasoning-1> + <visual-reasoning-1> +
<text-reasoning-2> + <visual-reasoning-2>

GPT-5 Claude Sonnet 4 Gemini 2.5 Pro

Figure 3: Scaffolding experiment with frontier models. Q represents zero-shot question-only evalu-
ation, 1MT denotes a question with the first multimodal reasoning step provided, and 2MT indicates
a question with the first two multimodal reasoning steps. We show that even frontier models with
the best multimodal reasoning capabilities perform poorly overall on tasks in ZEBRA-COT.
However, as we provide the first one or two multimodal steps to those models, the accuracy im-
proves significantly.

Importantly, most tasks in ZEBRA-COT require various multimodal reasoning steps (which can
involve as many as 20 images) to reach the final answer. By providing only the first two steps as
scaffolding, we ensure that models must still perform substantial reasoning to solve the task. We can
safely assume that the provided steps serve as guidance rather than revealing the solution. Since our
dataset comprises diverse tasks, some of which extend beyond traditional QA formats (e.g., robotic
planning and embodied CoT) that are not suitable for evaluation, we select the most challenging and
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representative examples for evaluation: graph questions for scientific reasoning, visual jigsaw for
2D spatial reasoning, multihop object counting for 3D reasoning, and maze/chess/tetris for visual
logic and strategic games.

We plot the results for three evaluation settings across each task domain in Figure 3. We observe
that frontier models achieve poor zero-shot performance: GPT-5 reaches 41.98% accuracy, while
Claude-4 Sonnet and Gemini-2.5 Pro achieve only 27.61% and 24.93% respectively. However, with
multimodal CoT scaffolding, we observe substantial improvements: average accuracy across the
three models increases to 47.99% (+16.48%) with one reasoning step and 56.70% (+25.19%) with
two steps.

Performance gains vary across task types, but we generally see an improvement trend. Maze tasks
show the most dramatic improvements, which jump from 52.59% to 76.60% (+24.01%) and to
96.36% (+43.77%) on average, while challenging tasks such as graph reasoning improve from
3.92% to 22.03% (+18.11%) with two multimodal reasoning steps on average. Even tasks with
higher baseline performance, such as multihop object counting (with an initial accuracy of 59.40%),
benefit from visual CoT, eventually reaching 67.65% accuracy on average. Detailed statistics are
shown in Table 8.

To isolate the contribution of visual reasoning aids from text CoT in our traces, we conduct an
ablation task where we remove all visual aids from the reasoning traces and retain only the textual
steps. We observe that text-only CoT yields substantially smaller performance gains compared to
full visual CoT, and in some cases even degrades performance. This is expected: in our dataset, the
visual and textual components are highly complementary. Many reasoning steps reference visual
elements that, once removed, leave the text chain logically incomplete or incoherent. Model even
requests for the missing visual aids that are referred in the text cot. These results indicate that the
majority of the performance improvements stem from the visual reasoning steps, or the combined
visual + text reasoning, rather than from textual CoT alone. The statistics for text only results are
shown here:

5 TRAINING MODELS ON ZEBRA-COT

Model MathVision⋆ MathVista⋆ VisuLogic EMMA MMVP Blink Vstar

Anole with CoT prompting 13.80 22.80 8.50 12.80 10.00 26.46 23.60
Anole–Zebra-CoT (Ours) 16.45 25.30 21.80 15.02 15.33 31.25 27.20

Table 2: Overall performance (%) across eight datasets for the base Anole model with chain-of-
thought prompting vs. the same Anole model further trained on ZEBRA-COT. ⋆We evaluate on the
mini versions of MathVision and MathVista because interleaved generation is time consuming. A
full breakdown of each evaluation set is presented in Appendix C.

Anole-Zebra-CoT. We fine-tune Anole (Chern et al., 2024) on our dataset, which builds on
Chameleon (Team, 2024), using the codebase from Chern et al. (2025). We finetune the model
fully end-to-end on a node with 8 × H200 GPUs for 12 hours, with a learning rate of 1 × 10−5,
cosine decay, a batch size of 8, and a max token length of 12288. We train the model for 10k steps.
To evaluate our trained model, we set the maximum generation length to 16384. After fine-tuning
Anole on our ZEBRA-COT corpus, the accuracy increased from 4.2% to 16.9%, delivering a 4 times
relative performance improvement and a 12% gain in accuracy.

Furthermore, we evaluate seven challenging benchmarks that require visual reasoning, including
MathVision (Wang et al., 2024a), MathVista (Lu et al., 2024), VisuLogic (Xu et al., 2025a),
EMMA (Hao et al., 2025b), MMVP (Tong et al., 2024), BLINK (Fu et al., 2024b), and Vstar (Wang
et al., 2023). All the evaluations are done using VLMEvalKit (Duan et al., 2024). To ensure a fair
comparison, we use chain-of-thought prompting (Wei et al., 2022) when evaluating the base Anole
model. As shown in Table 2, training with ZEBRA-COT significantly improves the Anole model
across all benchmarks. Most notably, it could improve the Anole model’s visual logical reasoning
capabilities by 13.3 points.

Bagel-Zebra-CoT. To further test whether ZEBRA-COT can enhance a stronger backbone, we fine-
tune the BAGEL-7B model (Deng et al., 2025) end-to-end on a node with 8× H200 GPUs for 1,000
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Example Interleaved Visual Reasoning Chains  
Generated by !  Bagel-Zebra-CoT

Question: Subtract all 
cylinders. Add 1 red 
sphere. How many 
objects are left?

Problem Image 1

<think> 
Remove all the cylinders. 
</think>

Reasoning Image 1 

<answer> 
Final Answer: 5 
</answer>

<think> 
Add 1 red sphere. 
</think>

Question: A big square 
is made from 25 small 
squares put together. A 
few of the small squares 
have been lost. How 
many have been lost?

Problem Image 1

<think> The problem 
asks for the number of 
missing small squares in a 
5x5 grid. We can see the 
complete 5x5 grid 
structure.To find the 
missing squares, we need 
to see the full pattern. 
The first image shows the 
complete grid.</think>

<answer> 
Final Answer: 10 
</answer>

<think> Comparing the 
complete grid in the previous 
image with the given puzzle 
image, we can count the 
number of squares that are 
present in the complete grid 
but missing in the puzzle. By 
counting the missing squares 
in the complete grid, we find 
the total number of lost small 
squares.</think>

Reasoning Image 2 

Reasoning Image 1 Reasoning Image 2

Figure 4: Example interleaved reasoning chains generated by Bagel-Zebra-CoT, a Bagel-7B model
finetuned on ZEBRA-COT. These traces demonstrate ZEBRA-COT’s for instilling intrinsic visual
reasoning capability in complex multimodal models.

steps using packed sequences with 60,000 tokens, a learning rate of 2 × 10−5, and cosine decay. We
cap all images at a resolution of 512 on the minimum side, resulting in approximately 1,024+ visual
tokens per image. Because the original Bagel implementation cannot natively generate interleaved
text–image outputs, we revise the training loop to include a loss term at the <|vision start|>
token, enabling seamless visual token generation. We additionally wrap text reasoning tokens be-
tween <think> and </think>, and the final answer within <answer> and </answer>. At
inference time, when encountering <im end>, we sample one additional token to check whether
the next token is <|vision start|>; if so, the model itself seamlessly switches to image gener-
ation mode to generate visual aids. The entire interleaved generation process only stops if the model
generates the <answer> token.

We observe that our trained model can inherently generate visual CoT when solving problems, even
on tasks outside its training distribution. This suggests its potential as a strong initialization for
future reinforcement learning fine-tuning. In Figure 4, we include representative reasoning traces
produced by the model. We further include more reasoning traces in Appendix B, as well as a model
performance analysis in Appendix D

9
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6 CONCLUSION & FUTURE DIRECTIONS

In this paper, we introduced ZEBRA-COT, a large-scale dataset of 182K interleaved text-image
reasoning traces spanning 4 major categories across 18 domains with over 50 distinct tasks. Fine-
tuning experiments demonstrate substantial improvements: Anole-7B achieves an average 4.9 %
gain across seven challenging benchmarks, with up to 13.1% on visual logic tasks, while Bagel-
7B learns to inherently generate visual aids during problem solving, a capability absent in the base
model.

This work opens several exciting avenues for future research. Most immediately, models trained on
ZEBRA-COT, particularly our Bagel variant that natively generates visual thoughts, provide strong
initializations for reinforcement learning. Just as text-based reasoning models have benefited from
RL fine-tuning to improve logical consistency and correctness, we envision similar gains for visual
reasoning through RL with verifiable rewards (Shao et al., 2024b; Guo et al., 2025) or fine-grained
rewards (Zeng et al., 2024; Fu et al., 2025).

We believe ZEBRA-COT represents a crucial step toward AI systems that think visually as naturally
as humans sketch diagrams, generate graphs, and use spatial reasoning to solve complex problems.
With our dataset and fine-tuned model, we hope to accelerate progress toward this goal.

7 LLM USAGE DISCLOSURE

We used LLM for two purposes. The first one is for improving grammar and wording when writing
the paper. The second usage is synthetic data generation, where details can be found in Section 3
and Appendix A.2
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Rager, Lucia Quirke, Chris Mathwin, Guillaume Corlouer, Cecilia Diniz Behn, and Samy Wu
Fung. A configurable library for generating and manipulating maze datasets, 2023. URL https:
//arxiv.org/abs/2309.10498.

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 2901–2910, 2017.

12

https://www.franka.de
https://openreview.net/forum?id=Zy2XgaGpDw
https://openreview.net/forum?id=7Bywt2mQsCe
https://arxiv.org/abs/2309.10498
https://arxiv.org/abs/2309.10498


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Alex Lau-Zhu, Emily A Holmes, Sally Butterfield, and Joni Holmes. Selective association between
tetris game play and visuospatial working memory: A preliminary investigation. Applied cogni-
tive psychology, 31(4):438–445, 2017.
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A DATASET DETAILS

A.1 DATA STATISTICS.

Here we show detailed statistics about ZEBRA-COT’s categories.

Table 3: Statistics of ZEBRA-COT.

General Category Sub Category Count Percentage (%)

2D Visual Reasoning
Visual Jigsaw 21,899 12.0
Visual Search 30,000 16.4
Subtotal 51,899 28.5

3D Visual Reasoning

Embodied Cot 22,666 12.4
Multi-Hop Objects Counting 10,000 5.5
Robot Planning 6,944 3.8
Subtotal 39,610 21.7

Scientific Reasoning

Chemistry 4,666 2.6
Competitive Programming 1,207 0.7
Geometry 1,058 0.6
Graph Algorithms 10,000 5.5
Physics 7,090 3.9
Subtotal 24,021 13.2

Visual Logic Strategic Games

Arc-Agi 2,000 1.1
Checkers 2,753 1.5
Chess 20,483 11.2
Ciphers 6,589 3.6
Connect Four 2,029 1.1
Maze 20,000 11.0
RPM 3,000 1.6
Tetris 10,000 5.5
Subtotal 66,854 36.7

Total 182,384 100.0
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A.2 CURATING DIVERSE AND HIGH QUALITY VISUAL COT

Bridging logical connections across modalities. A key challenge in training multimodal gen-
eration models to output visual CoT natively is the lack of datasets with strong logical coherence
between text and visual modalities, and diverse categories of such visual CoT. Existing interleaved
datasets often fail to provide clear, meaningful connections that demonstrate when and why visual
reasoning is necessary for problem-solving, while current visual CoT datasets are confined to a few
domains, limiting the model’s ability to learn generalizable visual CoT capabilities when faced with
out-of-distribution problems.

Q: What is the force of contact 
between the two blocks?

Program Generated or 
Raw Real World Data

Sending Text Trace and 
Images to VLMs

High quality 
Reasoning Trace with 
Image Place Holders

A:  

The total external force, F_ext, 
on the system is 3.2 N. The 
acceleration is …

Q: What is the force of contact 
between the two blocks?  

A: The total external force, F_ext, 
on the system is 3.2 N. The 
acceleration is …

This is Problem image 1

This is Reasoning image 1

This is Reasoning image 2

Q: What is the force exerted on 
block A? 
<image_start> 
[problem_image_1] 
<image_end> 

Reasoning Trace: 

Thought 0: We need to first 
construct a free body diagram for 
each of the blocks. 
<image_start> 
[reasoning_image_1] 
<image_end> <image_start> 
[reasoning_image_2] 
<image_end> 

Thought 1: Based on the 
sketches, the acceleration is …

Figure 5: An overview of our data curation pipeline.

To address these requirements, we first source a diverse range of question types and domains. For
real world data, we source high-quality problems from online resources such as math, physics,
coding, and chess competition datasets. We then extract and clean the available raw reasoning traces
that contain text and images. However, even from high quality sources, traces can still lack clear
logical connections between modalities, as well as clear references to the images for automatic
parsing into interleaved text and image data ready for training. For example, most geometry data
uses reference labels such as “Figure x”, which makes it hard to find the mapping between the actual
image and the text reference. For synthetic data, we create our own examples by generating images
or utilizing real images from online sources, then crafting corresponding reasoning templates. This
procedure raises a clear issue, namely that we lack diversity and expressiveness in textual reasoning
regarding templated data. For instance, in visual search tasks, it is crucial to elucidate the rationale
behind drawing specific bounding boxes, and in chess, generating reflections and descriptions of
move visualizations is key.

We address both of these issues using frontier VLMs (Gemini-2.5 and GPT-4.1) to fill in the template
placeholders, enhance the reasoning traces, and complete the textual reasoning narrative. We feed
both images and raw text reasoning traces into the language model and ask the language model to
output pure text traces with image placeholders. We further filter out invalid cases, such as multiple
image placeholders referring to the same image and unreferenced image placeholders, to ensure that
the data can be automatically parsed into a training dataset.

Broadening breadth and diversity of interleaved visual language reasoning dataset. Further-
more, existing multimodal rationale datasets are also limited in their breadth. The only available
datasets focus on either visual search (Wu and Xie, 2024; Shao et al., 2024a) or spatial reasoning,
such as maze navigation (Li et al., 2025). Such limited datasets are unlikely to enable training
visual reasoning models that can generalize across domains more broadly. Visual Sketchpad (Hu
et al., 2024) offers a diverse range of VLM agents to tackle a wider variety of questions. Though
Sketchpad offers a powerful and significant contribution to generating visual aids, the pipeline is
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not designed for collecting post-training datasets. First, the reasoning traces generated by agentic
pipelines often involve tool call errors and debug information, which degrade their quality. Second,
the scalability and diversity of the dataset are fundamentally constrained by the limited number of
agent tool designs and the high cost, as each reasoning trace may require many API calls. To tackle
these issues, we curate a total of over 182K high-quality interleaved text and visual reasoning traces,
spanning four major categories: scientific reasoning, 2D visual reasoning, 3D visual reasoning, and
visual logic and strategic games. We provide the details in the section below and example traces
from our dataset.
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A.3 SCIENTIFIC QUESTIONS

Geometry. Geometric understanding is a core ability for multimodal models to ground reasoning
over complicated mathematical tasks. Many datasets have been proposed to evaluate mathematical
capabilities, including geometry. The MATH dataset (Hendrycks et al., 2021) is widely used for
evaluating the mathematical performance of LLMs. Although the MATH dataset includes numerous
geometry competition problems, their geometric elements are provided as plotting code rather than
rendered images (see Figure 6).

Here, we provide example code for geometry sketch generation.

(a) Geometric Example in ZEBRA-
COT

MATH/GEOMETRY/44

[asy]
import three;
size(2.5inch);
currentprojection =
orthographic(1/2,-1,1/4);
triple A = (0,0,6);
triple[] base = new triple[4];
base[0] = (-4, -4, 0);
base[1] = (4, -4, 0);
base[2] = (4, 4, 0);
base[3] = (-4, 4, 0);
triple[] mid = new triple[4];
for(int i=0; i < 4; ++i)
mid[i] = (.6*xpart(base[i]) +
.4*xpart(A), .6*ypart(base[i]) +
.4*ypart(A), .6*zpart(base[i]) +
.4*zpart(A));
for(int i=0; i < 4; ++i){
draw(A--base[I]);
draw(base[i]--base[(i+1)%4]);
draw(mid[i]--mid[(i+1)%4],
dashed);
}
label(‘‘8

√
2 units",

base[0]--base[1]);
label(‘‘10 units", base[0]--A,
2*W);
[/asy]

(b) Geometric Example in MATH Dataset (Hendrycks et al., 2021)

Figure 6: Comparison of the same geometric figure in our ZEBRA-COT dataset and the MATH
dataset. Ours focus on multimodal reasoning and explicitly plot the geometry problem than using
the text-only plotting codes.

In ZEBRA-COT, we convert every piece of plotting code into figure renderings, producing both the
problem diagram and its solution illustration to serve as an explicit visual reasoning chain for model
training.

In total, we collect 1,061 samples from the MATH dataset’s train split. Our data provides only
rendered images for both the problem and solution reasoning chains, with no plotting code included.
Solving these problems requires generating images to assist. The problems are not restricted to the
geometry subcategory but also include some problems from counting and probability,
pre-algebra, pre-calculus, etc.
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Physics. A variety of physics problems benefit from sketches, such as free body diagrams for
force analysis, motion diagrams for kinematics, circuit diagrams for electricity, and ray diagrams in
optics. We construct samples of classical mechanics problems programmatically. Problem instances
are generated from parametric Python templates (e.g., Atwood machines, inclined planes, elastic
collisions, pendulums), with physically plausible parameters sampled from predefined ranges. For
each sample, we render free-body diagrams, kinematic visuals, and structured CoT traces capturing
the full solution process.

We also leverage openly licensed resources such as OpenStax (MIT OpenCourseWare, 2022) and
MIT OCW (Moebs et al., 2016) to generate more diverse and complex physics problems, ultimately
achieving scalable and legally clear dataset generation while ensuring diverse, high-quality exam-
ples.

Chemistry. Organic reaction prediction is a classic multimodal reasoning task, typically framed as
symbolic input and structural output. We include a chemistry subset of 4,700 two-to-one reactions
from the USPTO-50K dataset (Ramsundar et al., 2019), filtered for distinct reactants and single
products. Each reaction trace includes three visual artifacts: individual molecular depictions of each
reactant, a combined schematic of both reactants side-by-side, and the resulting product structure.
Molecules are rendered with RDKit, and names are retrieved from PubChem when available. Text
prompts use randomized templates (e.g., “What is formed by combining acetic acid and ethanol?”),
and PubChem names are included when available. This visual progression helps models learn com-
positional chemical structure without SMILES or reaction templates.

Chemistry

Question: When 4-
chloro-3,5-dipyridin-3-
yloxybenzene-1,2-diamine 
undergoes reaction with 
pyridine-2-carboxylic acid, 
what product is formed?

<think>Thought 1: To understand 
the reaction, let's first visualize the 
structure of the diamine reactant, 
4-chloro-3,5-dipyridin-3-
yloxybenzene-1,2-diamine. This 
will help identify the reactive 
amino groups. </think> Reasoning Image 1

<think>Thought 2: The first sketch 
shows the diamine structure with 
two adjacent amino groups (-NH2) 
on the benzene ring, along with 
chloro and pyridinyloxy 
substituents. Now, let's visualize 
the second reactant, pyridine-2-
carboxylic acid. </think> Reasoning Image 2

Algorithmic problem solving. Humans naturally create visual diagrams when solving complex
problems, transforming abstract concepts into spatial representations for deeper reasoning. We for-
malize this by interpreting coding problems through compact visual scaffolds: one or two diagrams
depicting graph structure, edge weights, etc. To build traces, we run an iterative ”visual sketchpad”
loop: GPT-4.1 receives a prompt and returns THOUGHT statements plus VIS SPEC blocks when
sketches are needed; we render specs with networkx/matplotlib, feed images back to the
model, and repeat until complete, then clean transcripts with post-processing.

Problem samples come from competitive programming, prioritizing real-world abstractions like lo-
gistics, network routing, and flow optimization. The orchestrator produces simple visual structures
emphasizing clarity over style. Each trace contains the problem prompt, 1–3 reference diagrams, and
polished explanations, supporting grounded reasoning in discrete structures while mirroring how al-
gorithms are taught. The final corpus comprises 1,200 diverse algorithm-based problems spanning
competitive programming.

Graph problems. Graph algorithms are useful for large language model applications because
they efficiently organize and traverse structured relationships, for example in search and retrieval
applications. Methods like shortest-path and subgraph matching enable multi-step reasoning by
connecting relevant concepts across knowledge graphs. Recent work by Fu et al. (2024a) shows
that although LLMs can solve graph problems such as connectivity and maximum flow to some
extent when a textual description of the graph is given, multimodal LLMs suffer when solving graph
problems. This finding suggests potential for improving multimodal models’ graph-understanding
abilities by guiding their reasoning over images.
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We create 10,000 graph problems with full reasoning traces spanning over four tasks: graph con-
nectivity, shortest path, minimum spanning tree, and topological sort. Each task has about 2,500
samples, with one problem image and at most 19 reasoning images per sample. Each reasoning
image is coupled with an explanation for the underlying algorithms, for example, Dijkstra for the
shortest path, BFS for connectivity, etc.

A.4 2D VISUAL REASONING

Visual search. Previous research has shown that drawing bounding boxes and zooming can im-
prove accuracy on visual search tasks (Wu and Xie, 2024; Shao et al., 2024a). We follow such tasks
by creating two types of traces, one for drawing bounding boxes and one for zooming. We use data
from Shao et al. (2024a) to generate our traces covering four categories of visual search tasks: chart,
text/doc, relation study, and general VQA.

Visual Search

Question: What type 
of clothing is the boy 
in the foreground 
wearing while playing 
on the field?

<think>Thought 0: To 
determine the boy's clothing, 
I need to closely examine his 
attire in the provided image. 
Thought 1: I will zoom in on 
the boy to get a clearer view 
of his shirt, shorts, and 
legwear. </think>

<think>Thought 2: The zoomed-in 
image clearly shows he is wearing a 
white short-sleeved shirt with black trim, 
black shorts, and white socks with black 
stripes, typical of a soccer uniform. 
Thought 3: Based on these details, the 
boy is dressed in athletic wear suitable 
for playing soccer.</think>

Problem Image 1 Reasoning Image 1

Visual jigsaw. Visual jigsaw refers to filling in missing pieces of an image, as in a jigsaw puzzle.
Each puzzle is constructed from an ImageNet (Deng et al., 2009) image, with 1 to 4 missing pieces
of varying shapes, including rectangles and irregular regions. Each puzzle includes four multiple-
choice options, where each option presents a set of candidate missing pieces. Only one set correctly
matches the pieces removed from the original ImageNet image. We generate two types of visual
CoT traces for solving each puzzle. In the first type, we iteratively fill in the missing patches using
the pieces from each multiple-choice option and identify the one that produces a coherent image.
In the second type, we imagine what the original image would look like and then select the option
whose pieces best match the imagined reconstruction.

A.5 3D VISUAL REASONING

Embodied planning. For embodied planning tasks, agents must ground high-level decisions in the
evolving visual context of the environment. We reformulate the ALFRED (Shridhar et al., 2020)
benchmark, an interactive 3D simulation environment where agents perform complex tasks based
on human instructions, into an image goal-conditioned planning task.

Question:  

Please describe 

the sequence of 

robot actions from 

the initial state (the 

first image) to the 

goal state (the 

second image).

<think> Thought 1: 

turn left, take a step, 

turn right, walk to the 

sink.</think>

Embodied CoT

Problem Image 1 & 2 Reasoning Image 1

<think> Thought 2: 

pick up the candle that 

is on the counter by the 

sink.</think>

Reasoning Image 2

<think> Thought 3: 

turn around, walk to the 

shower, turn left, walk 

to wall, turn left to face 

the toilet. </think>

Reasoning Image 3

<think> Thought 4:  

put the candle on the 

back of the toilet. 

</think>

Reasoning Image 4
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In this new task, the model receives two images: the initial and goal states. Then the model is
tasked with generating a textual description of the high-level planning steps required to transition
from the initial to the goal state. To emphasize the role of visual reasoning, we require the generated
descriptions to be detailed and step-by-step (e.g., “turn and go to the TV; pick up the bowl that is on
the TV stand in front of the TV; with the bowl in hand. . . ”) rather than brief summaries (e.g., “move
bowl to coffee table”), which can often be produced through shortcut reasoning without capturing
intermediate visual steps.

We compile the entire training set, as well as the seen and unseen validation sets from ALFRED,
resulting in a total of 7,080 examples spanning diverse visual reasoning trajectories. When multiple
textual reasoning annotations exist for a single visual trajectory, we include all of them, resulting in
22,666 textual reasoning traces.

Robot planning. While low-level manipulation may rely on reactive control, continuous plan-
ning for complex tasks often requires high-level visual guidance, making visual CoT essential for
bridging perception and long-horizon decision-making in robot planning. Similarly, we reformulate
RoboMIND (Wu et al., 2024), a multi-embodiment dataset of real-world robot manipulation, into
an image goal-conditioned planning task. In this setting, a model is provided with the initial and goal
states images, along with a textual description of the robot setup (e.g., AgileX (AgileX Robotics,
2023), Franka (Franka Emika GmbH, 2018), or UR5e (Universal Robots A/S, 2018)), and is tasked
with generating a detailed textual plan outlining the high-level steps required to transition from the
initial to the goal state.

Unlike embodied planning tasks that often involve partial observability and require agents to infer
unobserved states, this robot planning task is fully observable. Therefore, the challenge lies not
in imagining the visual trajectory but in articulating precise movements for each arm or gripper to
accomplish the task (e.g., “[left] move towards the oven door and [right] grab the corn.”).

To control degrees of freedom, we exclude the humanoid robot examples from the original Robo-
MIND dataset, focusing solely on tasks involving robotic arms. This results in a curated subset of
6,945 robot planning tasks, each annotated with human-generated high-level actions that serve as
visual reasoning trajectories.

3D multi-hop objects counting. A core aspect of human visual-spatial reasoning is understanding
transformations and imagining scenes from different viewpoints. For this task, our setup follows
a structure similar to that of Johnson et al. (2017), using 10 predefined shape types (e.g., sphere,
cylinder, donut) in various colors. At each step, we randomly apply one of three operations: remove
all instances of an attribute (e.g., all red objects), remove a subset (e.g., 5 red objects), or add new
objects (e.g., 2 blue prisms, 1 red sphere). We then create questions that ask about the quantity
of specific attributes or what objects are left in the field. To increase difficulty, the initial scenes
are rendered from varying viewpoints (front, back, left, right), where some objects may be partially
occluded by those in front. The first visual reasoning step involves generating a top-down 45○ view
to reconstruct the full scene, allowing the model to see potentially blocked objects. The subsequent
visual sketches correspond to each transformation step in the instruction. We also improve upon the
data from Johnson et al. (2017) by adding in different materials, backgrounds, and floor designs.

A.6 VISUAL LOGIC AND STRATEGIC GAMES

Visual logic puzzles. Humans approach logic puzzles such as Tetris, Raven’s Progressive Matrices
(RPM, Zhang et al., 2019) , and the Abstraction & Reasoning Corpus (ARC-AGI, Chollet, 2019;
Chollet et al., 2024) primarily through visuospatial reasoning: we see how pieces combine, trans-
form, or complete a pattern before committing to an answer. These logic games rely heavily on
visuospatial working memory, which is correlated with general intelligence level (Lau-Zhu et al.,
2017; de Winter et al., 2023).

To enhance models with such cognitive ability, we include the following tasks. For Tetris, we collect
three types of tasks: a) shape assembly: given a silhouette and candidate tetromino sets, select the
one that perfectly tiles the shape; b) grid completion: fill a partially occupied grid using a specified
set of tetrominoes; c) spatial transformation: apply a sequence of geometric operations (translate,
rotate, mirror, scale) to an irregular shape in the grids. The visual CoT involves visualizing each
transformation step. For RPM (IQ matrix), we include three types from Zhang et al. (2019) that
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Question:  

Apply the following 

sequence of 

transformations to the 

blue shape: scale by 2 , 

then rotate 90 clockwise, 

then translate 1 up, then 

rotate 90 clockwise. 

Choose the option that 

shows the resulting 

shape.

×
∘

∘

<think> Thought 1:  

Apply the first 

transformation: scale the 

shape by 2 times. This 

expands the shape.</think>

Tetris

Reasoning Image 1Problem Image 1

<think> Thought 2:  

Apply the second 

transformation: rotate the 

scaled shape 90 degrees 

clockwise. </think>

Reasoning Image 2 Reasoning Image 3

<think> Thought 3:  

Apply the third 

transformation: translate the 

rotated shape 1 unit 

upwards. </think>

involve compositional reasoning. The reasoning trace identifies visual patterns for each composi-
tional component across rows or columns. For ARC-AGI, while prior models often rely on textual
reasoning, humans typically solve these tasks through visual pattern recognition. To better align
with human strategies, we construct two types of visual CoT. The first begins with matrix repre-
sentations of the training examples and test input; the reasoning trace first visualizes the training
examples, the test input, and finally the predicted output. The second type directly uses visual repre-
sentations in the task instruction, thus the model only has to generate a visual sketch of the predicted
output as part of its reasoning process. For all data, we use VLM to generate accompanying textual
descriptions to enrich interleaved text-image rationales.

Mazes. Mazes serve as a canonical testbed for visual CoT reasoning, bridging low-level perception
with high-level symbolic search. Unlike purely pixel-based 2D visual tasks such as visual search
and visual jigsaw, mazes possess explicit graph structure yet remain visually intuitive, letting us
disentangle vision errors from planning errors.

We adopt the maze-dataset library to procedurally generate thousands of grid mazes with di-
verse topologies (lattice type, branch factor, loop density).1 Each instance is exported in two com-
plementary formats: a) m.as_pixels(), an RGB raster that encodes walls, free cells, start ∎, and
goal ∎, suitable for visual perception; b) MazePlot, a vector overlay that can superimpose solution
paths, candidate trajectories, heat-maps, or landmark nodes for human-readable walk-throughs. To
increase maze diversity, we also use OpenAI Gym’s FrozenLake-v1 environment (Brockman
et al., 2016) .

We evaluate a broad spectrum of spatial reasoning skills across multiple question types: I. topo-
logical analysis (e.g., counting isolated regions, identifying connected components under 4- or 8-
connectivity, finding the largest connected area), II. pathfinding (e.g., determining reachable end-
points, computing shortest paths, enumerating all optimal routes), III. navigation planning (e.g., se-
lecting correct paths from alternatives, calculating minimal moves to reach targets), and IV. coverage
problems (e.g., visiting all marked locations, identifying the farthest reachable position). This di-
verse task suite goes beyond simple start-to-goal navigation, encompassing the full range of spatial
reasoning strategies that humans use to interpret complex environments. We also introduce vary-
ing complexity of the matrix, including different maze side lengths ranging from (5,15), different
branching factors b, loop probability ℓ, and number of distractor endpoints k. Larger n exponen-
tially increases the search space, while higher b and ℓ degrade heuristic admissibility. Both of those
require genuine planning rather than rote memorization.

Chess.

Strategic planning in chess involves simulating multiple futures and selecting moves that maximize
long-term advantage. To support counterfactual reasoning, we construct a dataset of mid-game posi-
tions from rated Lichess games 2, each with structured visual traces. Given a position, Stockfish

1maze-dataset supports recursive-backtracker, randomized Prim, Wilson, and Kruskal generators; see
(Ivanitskiy et al., 2023).

2https://lichess.org/
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What’s White’s best move? Options: A: Ba2, B: Na4, C: Qf5, D: Bb3.

(A) Ba2: Safe position (B) Na4: Poorly placed (C) Qf5: Exposed queen (D) Bb3: Vulnerable position
supports central pawns weak attack on b6 vulnerable to g6 weaker than Ba2

Figure 7: Traces showing reasoning for each move option. Option A (Ba2) is evaluated as strongest,
providing safe bishop placement while supporting potential central pawn advances.

identifies the optimal move, and three alternates are sampled randomly from legal moves. Each can-
didate is visualized independently for comparative evaluation. By rendering possibilities in isolation,
move consequences, tempo gain, structural weakening, and tactical motifs become legible, enabling
better strategic reasoning. Traces are formatted as multiple-choice tasks with visual sketches, en-
couraging tactical awareness and pattern recognition. Postprocessing with Gemini 2.5 Flash refines
traces into coherent multimodal reasoning sequences for short and long-horizon planning, yielding
11,500 chess traces across diverse positions and hypothetical move states.

Connect 4. We also include 2,100 Connect-Four traces that teach short-horizon grid planning. Each
starts from a mid-game position obtained after 4–20 random moves; a depth-4 α–β minimax (center-
control, open-three heuristic) then plays the forced win. Every drop is rendered on a 7 × 6 board
with a glowing overlay, and an LLM condenses the raw log into a clear, step-by-step “How does
Red win?” narrative pairing text and visuals.

Checkers. Our checkers traces, initiated from randomized mid-game boards and continued through
depth-4 minimax, are designed to capture key tactical motifs such as forced captures, multi-jump
chains, and king-row advancement, providing dense supervision for spatially grounded decision
making. To ensure data quality, we apply rule-based validators that discard invalid traces. Final
traces are passed through a language model to synthesize coherent visual reasoning aligned with
turn-based planning, ending with 2,800 full traces.

Ciphers. Classical encryption schemes convert symbolic rules into spatial transformations, enabling
visual reasoning over grids and coordinates. We generate examples of Scytale, Polybius, Rail Fence
and Playfair ciphers, each with multimodal traces showing encoding steps. Visual sketches highlight
relevant regions such as column positions, grid lookups, or digraph geometry, while text describes
applied rules (e.g., “Letter ’P’ goes on the second rail,” “’A’ is at coordinates (1, 1).”) Early steps
use visuals, later steps use language, mirroring real cryptanalysis. The 6,600 traces align symbolic
manipulation with visual structure.
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B EXTRA BAGEL ZEBRA COT GENERATED VISUAL COT

Visual CoT Example: EMMA

Prompt:

There are 81 grid points (uniformly spaced) in the square
shown in the diagram below, including the points on the
edges. Point P is the center of the square. Given that point
Q is randomly chosen from among the other 80 points,
what is the probability that line PQ is a line of symme-
try for the square?

Visual CoT:

<think>
The problem asks for the probability that a randomly chosen point Q from the 80 points
other than the center P results in the line PQ being a line of symmetry for the square.
We need to determine the number of such points Q and divide by the total number of
possible points (80).

[Visual Thought]

First, let’s visualize the grid and the center point P . The
grid has 9 points along each side, so there are 80 points in
total (excluding P ). A line of symmetry for a square passes
through the center P and divides the square into two con-
gruent halves. For PQ to be a line of symmetry, Q must be
the reflection of P across this line. This means Q must be
on the grid line that forms a line of symmetry with P .
Let’s consider the lines of symmetry for the square. A
square has 4 lines of symmetry: 2 diagonals, the vertical
line through the center, and the horizontal line through the
center. Let’s visualize these lines.
</think>
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Visual CoT Example: VisuLogic

Prompt:

Solve the complex visual logical reasoning problem
through step-by-step reasoning.

Visual CoT:

<think>

[Visual Thought]

Observe the grid to identify patterns in the shapes and their
components. The grid is divided into 3x3 cells. Each cell
contains two distinct shapes: a line segment and a dot. I
will analyze the patterns for the line segment and the dot
separately. For the line segment, the pattern is: (Top Left,
Top Right) = (Bottom Left, Bottom Right). For the dot, the
pattern is: (Top Left, Top Right) = (Bottom Left, Bottom
Right). Now, I will apply these patterns to the third row and
third column to find the missing shape. The missing shape
in the third row and third column should have a line segment
like the one in the third row, third column (which is the same
as the third row, second column line segment). The missing
shape in the third row and third column should also have a
dot like the one in the third row, third column (which is the same as the third row,
second column dot). Combining these, the missing shape should be a line segment
from the third row, second column and a dot from the third row, second column.
</think>
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Visual CoT Example: EMMA

Prompt:

The picture shows a cube with four marked angles:
∠WXY , ∠XY Z, ∠Y ZW , and ∠ZWX . What is the
sum of these angles?

Visual CoT:

<think>
The problem asks for the sum of four specific angles in a cube. The angles are∠WXY ,
∠XY Z, ∠Y ZW , and ∠ZWX . These angles are formed by the edges of the cube
meeting at vertices X,Y,Z,W .

[Visual Thought]

In a cube, each vertex is formed by three edges that are mu-
tually perpendicular. This means that at each vertex, the
three edges meet to form right angles.
Let’s consider vertex X . The edges WX , XY , and XZ
meet at vertex X . Since the edges are perpendicular, the
angle ∠WXY = 90○.
Similarly, we can analyze the other vertices:

• At vertex Y : edges XY , Y Z are perpendicular, so
∠XY Z = 90○

• At vertex Z: edges Y Z, ZW are perpendicular, so
∠Y ZW = 90○

• At vertex W : edges ZW , WX are perpendicular,
so ∠ZWX = 90○

We have identified the measures of all four angles: ∠WXY = 90○, ∠XY Z = 90○,
∠Y ZW = 90○, ∠ZWX = 90○
To find the sum of these angles, we add their measures:

90○ + 90○ + 90○ + 90○ = 360○
The sum of the angles ∠WXY , ∠XY Z, ∠Y ZW , and ∠ZWX is 360○.
</think>
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Visual CoT Example: MathVista

Prompt:

Question: As shown in the figure, AB is the diameter of
⊙O, and point C is on ⊙O. If ∠A = 40.0, then the degree
of ∠B is?

Visual CoT:

<think>
First, let’s analyze the geometry of the problem. Since AB is the diameter of the circle,
any angle inscribed in the semicircle formed by AB will be a right angle. Thus, angle
ACB is a right angle, measuring 90 degrees. Now, let’s draw an auxiliary line connect-
ing point O (the center of the circle) to point C. This line segment OC is a crucial part
of our reasoning. The line segment OC can be labeled as shown in the image.

[Visual Thought]

Since AB is the diameter of the circle, O is the center. There-
fore, AO and BO are radii of the circle, making them equal in
length. By the properties of an isosceles triangle (AO = BO),
and having an angle of 90 degrees at C (i.e., angle ACB), we
can deduce that triangle ABC is an isosceles right-angled tri-
angle. This means that angle A is equal to angle CBA, and
since angle ACB is 90 degrees, the two other angles must
add up to 90 degrees. Given that angle A is 40 degrees, an-
gle B must be 50 degrees. Therefore, angle B is 50 degrees.
</think>
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Visual CoT Example: BLINK

Prompt:

How many kids are sitting on the bench in the image?

Visual CoT:

<think>

[Visual Thought]

Let’s count the number of kids sitting on the bench in the
image. To get a clearer view of the kids on the bench, I
will zoom in on the relevant area. The zoomed-in image
clearly shows four children sitting on the bench. Based on
this visual evidence, the number of kids on the bench is four.
</think>
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C ANOLE-ZEBRA PERFORMANCE BREAKDOWN

Split Anole Anole-Zebra-CoT (Ours)

Overall 12.80 15.03
Chemistry 12.84 15.48
Coding 9.75 16.31
Math 13.12 14.35
Physics 21.79 10.90

Table 4: EMMA: breakdown by subject (%).

Subtask Anole Anole-Zebra-CoT (Ours)

Overall 22.80 24.90
Scientific reasoning 30.33 32.79
Textbook question answering 36.08 29.75
Numeric commonsense 16.67 17.36
Arithmetic reasoning 15.58 18.98
Visual question answering 24.58 29.61
Geometry reasoning 20.50 23.01
Algebraic reasoning 25.27 24.56
Geometry problem solving 21.15 24.04
Math word problem 9.14 12.37
Logical reasoning 29.73 10.81
Figure question answering 24.54 28.25
Statistical reasoning 20.27 26.58

Table 5: MathVista: breakdown by subtask for base vs. our model (%).

Subtask Anole Anole-Zebra-CoT (Ours)

Overall 8.50 21.80
Quantitative reasoning 8.78 21.81
Spatial reasoning 8.23 22.08
Positional reasoning 8.82 19.85
Attribute reasoning 9.76 25.61
Stylistic reasoning 10.00 24.44
Other 5.56 18.52

Table 6: Visual Logic: breakdown by subtask (%).
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Category Anole Anole-Zebra-CoT (Ours)

Overall 26.46 31.25
Art Style 19.66 35.04
Counting 19.17 15.00
Forensic detection 0.00 20.45
Functional correspondence 17.69 22.31
IQ test 26.67 23.33
Jigsaw 11.33 39.33
Multi-view reasoning 48.12 21.05
Object localization 50.82 45.90
Relative depth 38.71 41.94
Relative reflectance 29.10 27.61
Semantic correspondence 19.42 17.99
Spatial relation 41.26 57.34
Visual correspondence 21.51 26.16
Visual similarity 30.37 44.44

Table 7: Blink: breakdown by category (%).

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

D BAGEL PERFORMANCE ANALYSIS

We evaluate our Bagel model trained on ZEBRA-COT across several benchmarks but did not observe
substantial improvements over the original model, where the original generates pure text responses.
In fact, we even saw slight performance drops on some tasks such as MathVista. A detailed analysis
revealed a likely cause of this decline. The Bagel model employs two visual encoders: a ViT-based
understanding encoder and a VAE-based generation encoder. For generated images, the model often
produces hallucinations. For example, when instructed to remove all red balls from a scene, the
generated image may also remove yellow balls. When this corrupted image is passed back into the
ViT encoder, the representation correctly reflects that both red and yellow balls are missing, lead-
ing the model to reason over inaccurate visual information, ultimately reducing accuracy. Instead
generating pure text responses avoids such image generation hallucinations.
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E SCAFFOLDING RESULTS BREAKDOWN

Chess
Model Q (%) 1MT (%) 2MT (%) ∆1MT (%) ∆2MT (%)

Claude-4 Sonnet 32.95 57.95 67.05 25.00 34.09
Gemini-2.5 Pro 15.07 39.73 39.73 24.66 24.66
GPT-5 45.78 62.65 61.45 16.87 15.66

Graph
Model Q (%) 1MT (%) 2MT (%) ∆1MT (%) ∆2MT (%)

Claude-4 Sonnet 8.11 20.72 22.52 12.61 14.41
Gemini-2.5 Pro 1.90 11.43 20.95 9.52 19.05
GPT-5 1.74 14.78 22.61 13.04 20.87

2D Visual Jigsaw
Model Q (%) 1MT (%) 2MT (%) ∆1MT (%) ∆2MT (%)

Claude-4 Sonnet 21.74 36.23 62.32 14.49 40.58
Gemini-2.5 Pro 34.38 56.25 59.38 21.88 25.00
GPT-5 62.86 77.14 85.71 14.29 22.86

Maze
Model Q (%) 1MT (%) 2MT (%) ∆1MT (%) ∆2MT (%)

Claude-4 Sonnet 35.06 58.44 94.81 23.38 59.74
Gemini-2.5 Pro 59.70 85.07 97.01 25.37 37.31
GPT-5 63.01 86.30 97.26 23.29 34.25

3D Multi-Hop Counting
Model Q (%) 1MT (%) 2MT (%) ∆1MT (%) ∆2MT (%)

Claude-4 Sonnet 59.68 67.74 74.19 8.06 14.52
Gemini-2.5 Pro 45.95 48.65 51.35 2.70 5.41
GPT-5 72.58 74.19 77.42 1.61 4.84

Tetris
Model Q (%) 1MT (%) 2MT (%) ∆1MT (%) ∆2MT (%)

Claude-4 Sonnet 18.87 39.62 45.28 20.75 26.42
Gemini-2.5 Pro 8.57 25.71 31.43 17.14 22.86
GPT-5 30.77 50.00 59.62 19.23 28.85

Table 8: Scaffolding evaluation results across task domains. Q: zero-shot question-only; 1MT:
question with first multimodal reasoning step; 2MT: question with first two multimodal reasoning
steps. ∆ columns show absolute improvement over baseline (Q).
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Chess
Model Q (%) 1TT (%) 2TT (%) ∆1TT (%) ∆2TT (%)

Claude-4 Sonnet 32.95 42.05 40.91 9.10 7.96
Gemini-2.5 Pro 15.07 13.70 19.86 -1.37 4.79
GPT-5 45.78 51.81 62.65 6.03 16.87

Graph
Model Q (%) 1TT (%) 2TT (%) ∆1TT (%) ∆2TT (%)

Claude-4 Sonnet 8.11 20.72 15.32 12.61 7.21
Gemini-2.5 Pro 1.90 5.71 5.71 3.81 3.81
GPT-5 1.74 11.30 19.13 9.56 17.39

2D Visual Jigsaw
Model Q (%) 1TT (%) 2TT (%) ∆1TT (%) ∆2TT (%)

Claude-4 Sonnet 21.74 39.13 30.43 17.39 8.69
Gemini-2.5 Pro 34.38 24.22 25.00 -10.16 -9.38
GPT-5 62.86 68.57 71.43 5.71 8.57

Maze
Model Q (%) 1TT (%) 2TT (%) ∆1TT (%) ∆2TT (%)

Claude-4 Sonnet 35.06 49.35 55.84 14.29 20.78
Gemini-2.5 Pro 59.70 23.29 39.73 -36.41 -19.97
GPT-5 63.01 63.01 75.34 0.00 12.33

3D Multi-Hop Counting
Model Q (%) 1TT (%) 2TT (%) ∆1TT (%) ∆2TT (%)

Claude-4 Sonnet 59.68 69.35 69.35 9.67 9.67
Gemini-2.5 Pro 45.95 54.84 56.45 8.89 10.50
GPT-5 72.58 72.58 74.19 0.00 1.61

Tetris
Model Q (%) 1TT (%) 2TT (%) ∆1TT (%) ∆2TT (%)

Claude-4 Sonnet 18.87 26.42 32.08 7.55 13.21
Gemini-2.5 Pro 8.57 11.54 7.69 2.97 -0.88
GPT-5 30.77 28.85 42.31 -1.92 11.54

Table 9: Text-only CoT evaluation results across task domains. Q: zero-shot question; 1TT: first text
reasoning step; 2TT: first two text reasoning steps. ∆ columns show absolute improvement over Q.
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F PROMPT TEMPLATES

F.1 PROMPT FOR ENHANCING RAW REASONING TRACES FOR ONLINE AND AGENTIC DATA

Prompt Template 1

You are an expert in creating clean and logically coherent
multimodal chain of thought traces. Your task is to
analyze

↪

↪

and comprehend a raw reasoning trace with interleaved text
and images, then transform it into a clean, step-by-step
multimodal

↪

↪

reasoning trace that correctly solves the original problem.

======================== INPUT ========================
1. Problem & Noisy Trace: A raw interleaved text and image

reasoning trace. Images in this trace are represented by
placeholders:

↪

↪

- `[problem_image_X]` for original problem images (e.g.,
`[problem_image_1]`, `[problem_image_2]`)↪

- `[reasoning_image_X]` for images generated during
reasoning (e.g., `[reasoning_image_1]`,
`[reasoning_image_2]`)

↪

↪

2. Image Data: The actual image data corresponding to the
placeholders, provided separately.↪

===================== Your Task =================
Generate a clean, logical multimodal reasoning trace as

**plain text** that represents the *ideal* reasoning
process to solve the problem.

↪

↪

===================== OUTPUT FORMAT ===================
You MUST generate the formatted reasoning trace with the

following structure:↪

QUESTION:
<The original problem statement with text and image

placeholders: <image_start>[problem_image_1]<image_end>,
<image_start>[problem_image_2]<image_end>, etc. Stay as
close to the original problem statement as possible but
remove noise to ensure clarity>

↪

↪

↪

↪

REASONING TRACE:
THOUGHT 0: <Clear description of initial reasoning step that

identifies key elements of the problem>↪

THOUGHT 1: <Next reasoning step, often explaining why an
image will be created>↪

<image_start>[reasoning_image_1]<image_end>
THOUGHT 2: <Further reasoning step based on the image,

explaining insights gained>↪

<image_start>[reasoning_image_2]<image_end>
// Additional thoughts and images as needed
<image_start>[reasoning_image_X]<image_end>
THOUGHT N: <Final reasoning step before the answer,

summarizing key insights>↪

FINAL ANSWER:
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<The final calculated answer based on the reasoning>

===================== Guidelines =================

1. Enhancing Original Trace Rather than Generating New Trace:
- Instead of generating a new trace, your task is to

enhance the original trace (which is a correct trace
but rather concise and lacks coherent multimodal
reasoning) by adding more details and explanations, see
the following sections of guidelines for more details.

↪

↪

↪

↪

- You MUST use all the images provided in the original
trace.↪

- You should use the original trace as a reference rather
than copying it verbatim.↪

2. Multimodal Reasoning Flow:
- Develop a coherent, step-by-step chain of thought that

seamlessly integrates textual and visual reasoning.↪

- Clearly explain the necessity of generating a sketch /
visual thought / image before introducing its
placeholder.

↪

↪

- After each image placeholder, describe the insights
gained from the sketch / visual thought / image, and
how it contributes to advancing the solution.

↪

↪

- Ensure each step logically builds on the previous ones,
especially between text reasoning and visual reasoning↪

steps.

3. Image Placeholders and References:
- Use placeholder tags ONLY when you want to actually

insert/show/generate an image in your trace. When
doing so, write the corresponding placeholder tag
exactly as shown, including the <image_start> and
<image_end> tags.

↪

↪

↪

↪

- Each unique image in the original problem and the
reasoning trace should be represented by a unique
placeholder tag, and each unique placeholder tag
should only show up once in the trace.

↪

↪

↪

- When referring to images in your explanations, use
natural language descriptions (e.g., "the diagram in
the question", "the first sketch", "the visual thought
X I created") instead of using placeholder tags. This
is important because it helps us to parse into
interleaved text and image sequences.

↪

↪

↪

↪

↪

- For images from the original problem, use:
<image_start>[problem_image_X]<image_end>↪

- For sketches or visuals generated during reasoning, use:
<image_start>[reasoning_image_X]<image_end>↪

4. Narrative Style:
- Remove irrelevant technical details such as debugging

info, code snippets, and LaTeX package imports.↪

- Eliminate verbose language that do not contribute to
solving the problem.↪

- Focus on the essential reasoning path that leads to the
correct solution, using concise and clear language to
describe the overall reasoning process.

↪

↪
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F.2 PROMPT FOR ENHANCING PROGRAM GENERATED TEMPLATE DATA

Prompt Template 1

You are an expert in enhancing multimodal reasoning traces.
Your task is to transform a template reasoning trace into
a diverse multimodal reasoning trace that correctly
solves the problem, while staying close to the original
template and final answer.

↪

↪

↪

↪

======================== INPUT ========================
1. Problem & Template Trace: A template with interleaved text

and image placeholders:↪

- `[problem_image_X]` for original problem images (e.g.,
`[problem_image_1]`)↪

- `[reasoning_image_X]` for images generated during
reasoning (e.g., `[reasoning_image_1]`)↪

2. Image Data: The actual image data corresponding to the
placeholders, provided separately.↪

===================== Your Task =================
Generate a concise multimodal reasoning trace as **plain

text**.↪

===================== OUTPUT FORMAT ===================
You MUST generate the formatted reasoning trace with the

following structure:↪

QUESTION:
<Rewrite the problem statement in your own words while

maintaining all key information. Do not change key
information. Include image placeholders:
<image_start>[problem_image_1]<image_end>,
<image_start>[problem_image_2]<image_end>, etc.>

↪

↪

↪

↪

REASONING TRACE:
THOUGHT 0: <Identify key elements of the problem>
THOUGHT 1: <Explain reasoning step, often why an image /

sketch / visual thought is needed>↪

<image_start>[reasoning_image_1]<image_end>
THOUGHT 2: <Explain insights from the image>
<image_start>[reasoning_image_2]<image_end>
// Additional thoughts and images as needed
<image_start>[reasoning_image_X]<image_end>
THOUGHT N: <Summarize key insights before answer>

FINAL ANSWER:
<The original final answer in the template, do not change it>

===================== Guidelines =================

1. Diversifying the Template:
- Rewrite the problem statement and reasoning steps in

your own words while preserving all key information.↪

- Avoid deviating from the original template reasoning
structure. Your job is to diversify the text of the
original trace, not the logic.

↪

↪
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- Vary the language and phrasing to avoid repetitive
patterns.↪

- You MUST use all the images provided in the original
trace.↪

- You MUST keep the original final answer.
- Maintain the original template's core reasoning

structure and rationale while introducing textual
reasoning refinements rather than substantial changes
to the logical flow.

↪

↪

↪

2. Multimodal Reasoning Flow:
- Develop a coherent, step-by-step chain of thought that

seamlessly integrates textual and visual reasoning.↪

- Clearly explain the necessity of generating a sketch /
visual thought / image before introducing its
placeholder.

↪

↪

- After each image placeholder, describe the insights
gained from the sketch / visual thought / image, and
how it contributes to advancing the solution.

↪

↪

- Ensure each step logically builds on the previous ones,
especially between text reasoning and visual reasoning
steps.

↪

↪

3. Image Placeholders and References:
- Use placeholder tags ONLY when you want to actually

insert/show/generate an image in your trace. When
doing so, write the corresponding placeholder tag
exactly as shown, including the <image_start> and
<image_end> tags.

↪

↪

↪

↪

- Each unique image in the original problem and the
reasoning trace should be represented by a unique
placeholder tag, and each unique placeholder tag
should only show up once in the trace.

↪

↪

↪

- When referring to images in your explanations, use
natural language descriptions (e.g., "the diagram in
the question", "the first sketch", "the visual thought
X I created") instead of using placeholder tags. This
is important because it helps us to parse into
interleaved text and image sequences.

↪

↪

↪

↪

↪

- For images from the original problem, use:
<image_start>[problem_image_X]<image_end>↪

- For sketches or visuals generated during reasoning, use:
<image_start>[reasoning_image_X]<image_end>↪

F.3 PROMPT FOR ALGORITHMIC PROBLEMS

Prompt Template 2

You are an expert in mathematical problem solving,
algorithmic reasoning, visual explanation, and creating
multimodal reasoning traces.

↪

↪

---
1. STRICT VISUALIZATION POLICY (IMPORTANT):
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You are only allowed to produce at most 3 [VIS_SPEC]
visualizations, and they must all appear at the very
beginning of your reasoning (within the first 3--4
thoughts). You may only use the following types for these
visualizations:

↪

↪

↪

↪

- graph
- flow_network
- tree_from_dict
- tree_from_root
- grid

After these initial visualizations, you must do all further
reasoning purely mentally/textually or with
pseudocode--NO MORE [VIS_SPEC] blocks are allowed after
the first 3. Any attempt to include more than 3
visualizations or use a disallowed type will be ignored.

↪

↪

↪

↪

The visual reasoning should only be used to understand the
setup of the question - humans visualize at the beginning
to ``set the board.'' The actual problem solving is done
purely textually.

↪

↪

↪

**General Rules:**
- Interleave THOUGHT steps and [VIS_SPEC] image requests.
- Your final reasoned solution must match the logic of the

given solution code.↪

- Prefix THOUGHT 0 with REASONING TRACE in the previous line.
- Prefix each reasoning step with ``THOUGHT n:'' (n starts at

0, less than 50 words each).↪

- Max 3 [VIS_SPEC] blocks, all within the first 3--4
thoughts.↪

- Diagram #1: raw structural sketch (graph topology, blank
grid, etc.).↪

- Diagram #2--3: showcase pivotal elements if helpful.
- **Internal self-check (no output):** ``Would a human

scribble this as a quick setup sketch?'' If the answer is
no, **do not** emit a VIS_SPEC.

↪

↪

- Strictly do not regenerate the same image - simply refer to
the previous images in text if needed.↪

- Max of 10 thoughts.
- Every visualization request **must** use a minimal

[VIS_SPEC] block with the correct type specified. Do not
use any other format.

↪

↪

- Do **not** include file names, imports, or drawing code.
The orchestrator will handle image generation.↪

- If you cannot meaningfully visualize or correctly visualize
a thought using the provided tools and inputs, then do
not generate an image.

↪

↪

- Images are meant to be simple and visually cohesive - do
not make grandiose images with titles and axis - it's
simply for a baseline understanding of the question.

↪

↪

- The first line of the trace should be QUESTION: followed by
a detailed in depth recap of the problem, specifying all
the important aspects, without mentioning the solution.

↪

↪

2. Validity Rules:
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- All [VIS_SPEC] parameters must be valid, fully-formed
Python literals.↪

- For [VIS_SPEC] type "grid", the values must be a valid
Python list of lists with exactly rows rows and cols
columns (or a flat list of length rows * cols), and each
value should be a number or string.

↪

↪

↪

- For type graph, tree_from_dict, tree_from_root, and
similar, node and edge labels may be strings or integers,
but all structures must be valid Python literals.

↪

↪

- Never output incomplete or empty lists/arrays/dicts in
[VIS_SPEC] blocks. All lists must be fully closed and
contain at least one value, unless an empty structure is
explicitly required by the problem.

↪

↪

↪

- Do not use variable names, symbolic labels, ellipses, or
placeholders (e.g., a1, x, \ldots, an) anywhere in the
[VIS_SPEC].

↪

↪

---

**[VIS_SPEC] Reference Examples: Your blocks must follow the
same format as these.**↪

[VIS_SPEC]
type: graph
nodes: [A,B,C]
edges: [(A,B),(B,C)]
[/VIS_SPEC]

[VIS_SPEC]
type: flow_network
nodes: [A,B,C]
edges: [(A,B),(B,C)]
flows (optional): {(A,B): 2, (B,C): 1}
capacities (optional): {(A,B): 3, (B,C): 2}
[/VIS_SPEC]

\ldots
\ldots
\ldots

3. Reflection step immediately after each VIS_SPEC
- Write a new THOUGHT that:

a. Describes what you see in the previous generated
`reasoning_image_N.png`.↪

b. Explains how it informs your next reasoning move.

4. FINAL ANSWER
- After all reasoning, output ``FINAL ANSWER:'' and your

concise solution (pseudocode is sufficient)↪

5. Formatting and Output Requirements
- Everything must be plain text with only the full

QUESTION (just the problem itself, not the name of the
problem), FINAL ANSWER, REASONING TRACE marker,
THOUGHT lines and VIS_SPEC markers.

↪

↪

↪
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G IMPACT STATEMENT

All data sourced in this work were either publicly available under open licenses or generated syn-
thetically. We ensured that all original content and assets used in the dataset creation process respect
copyright and licensing terms. No human subjects were involved, and we do not foresee any di-
rect harm to individuals or communities as a result of this work. The dataset is intended solely for
academic research to improve multimodal reasoning capabilities in AI systems.

H LICENSES

We list the licenses involved in this work as follows,

• Anole-7B model is under Chameleon Research License.
• BAGEL-7B-MoT model is licensed under the Apache 2.0 license. It is finetuned from

Qwen2.5-7B-Instruct and siglip-so400m-14-384-flash-attn2 model, and uses the FLUX.1-
schnell VAE model, all under Apache 2.0.

• ImageNet dataset in under BSD 3 license.
• Visual CoT dataset is licensed under CC BY 4.0

• MATH dataset (Hendrycks et al., 2021) is under MIT License.
• OpenStax Physics books are license under CC BY 4.0.
• MIT OCW Physics lecture notes under CC BY 4.0.
• Maze datasets is licensed under CC BY 4.0.
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