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ABSTRACT

Humans often rely on visual aids, such as diagrams or sketches, when tackling
complex problems. Teaching multimodal models to adopt similar strategies, a
process known as Visual Chain of Thought (visual CoT), is much more difficult.
The main challenges are: (1) weak performance of off-the-shelf visual CoT, which
hinders reinforcement learning, and (2) the lack of high-quality visual CoT train-
ing data. We introduce ZEBRA-COT, a diverse large-scale interleaved text-image
reasoning dataset with 182,384 reasoning traces across 18 domains with over 50
distinct tasks. This dataset is specifically designed to train models to natively per-
form visual CoT. We emphasize four categories of tasks where sketching or visual
reasoning is especially natural, spanning (a) scientific questions such as geometry,
physics, and algorithms; (b) 2D visual reasoning tasks like visual search and jig-
saw puzzles; (¢) 3D reasoning tasks including 3D multi-hop inference, embodied
and robot planning; and (d) visual logic problems and strategic games like chess.
Fine-tuning Anole-7B model on ZEBRA-COT yields a +12% improvement in our
test-set accuracy and up to +13% performance gains on standard VLM bench-
marks. Similarly, fine-tuning Bagel-7B produces models capable of generating
high-quality interleaved visual reasoning chains, underscoring ZEBRA-COT’s ef-
fectiveness in advancing multimodal reasoning.

1 INTRODUCTION

Human cognition naturally integrates multimodal thought processes when solving complex prob-
lems. For example, a high school student sketches diagrams to solve geometry or physics problems,
an engineer creates diagrams to design and debug workflows, and a data scientist generates plots
to better understand data. These visual aids are central to effective problem solving. While recent
vision-language models (VLMs) have shown strong performance on multimodal tasks like visual
question answering, their reasoning traces remain predominantly textual. Enabling models to explic-
itly reason in the visual space, Visual Chain of Thought (visual CoT), remains a fundamental open
challenge. Unlocking visual CoT may improve reasoning performance in domains where visual in-
tuition is relevant and may make the reasoning patterns expressed by models more interpretable to
humans.

Recent advances in frontier multimodal models (Team et al.,[2023} Hurst et al.,|2024;|Bai et al., 2025}
OpenAl, 20254} [Team), [2024; |Chern et al.| [2024; |Sun et al.} 2024; Deng et al., [2025) have made
visual CoT feasible primarily through agentic pipelines that leverage external tools (e.g., Python
functions, or expert vision models) for visual programming (Suris et al.| 2023)), such as generating
sketches for geometry, algorithms, and spatial reasoning tasks (Hu et al.,[2024; |OpenAl, 2025b), or
bounding boxes for fine-grained visual tasks (Shao et al., |2024a; Wu and Xie, 2024} Zheng et al.,
2025). An emerging possibility is innate visual reasoning, where models directly generate explicit
visual tokens during their thinking process (Li et al.| [2025; |Chern et al., 2025} Xu et al., 2025b).
However, current VLMs with interleaved text and image generation capabilities (Team) {2024} |Chern
et al., [2024) either fail to generate useful visual aids for reasoning or are not inherently trained for
such multimodal generation during the reasoning process (Deng et al.,|2025)), making reinforcement
learning approaches to reasoning infeasible. [Li et al. (2025) demonstrate visual CoT in synthetic
mazes by training specialist models, but we remain far from foundation models capable of general
high-quality visual CoT, largely due to the lack of large-scale diverse interleaved text and image
reasoning training datasets.
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Figure 1: We curate a large-scale multimodal dataset by sourcing and cleaning raw traces from real-
world domains, and generating synthetic examples using templated reasoning filled in by VLMs.
ZEBRA-COT comprises 4 major categories and 18 subcategories, encompassing over 182K in-
stances in total. A detailed breakdown of the data statistics appears in Table E}
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Figure 2: Visual CoT helps answer complex visual reasoning questions, as illustrated by examples
from ZEBRA-COT.

To support the development of next generation vision language models that can explicitly reason
with both text and visual modalities, we present ZEBRA-COT, a high quality dataset of interleaved
text and image reasoning traces. Our dataset covers four main categories: scientific questions, 2D
visual reasoning, 3D visual reasoning, and visual logic and strategic games, each containing multiple
subdomains and task types, as exemplified in Figure[2] To the best of our knowledge, ZEBRA-COT is
the first dataset to provide diverse and logically coherent multimodal reasoning traces across such a
wide range of domains. Unlike prior large-scale interleaved datasets that are primarily composed of
web-scraped image-text pairs with weak semantic alignment and no explicit reasoning structure (L1
et al.| [2024b}; |/Awadalla et al.,|2024; |Zhu et al.| 2023), ZEBRA-COT is carefully curated as a training
resource in the spirit of high-quality text-based reasoning datasets. At the same time, compared to
the only existing open-source interleaved text visual reasoning dataset we are aware of, VISUAL-
CoT (Shao et al.|[2024a), which focuses on a single task of visual search, ZEBRA-COT introduces a
much broader and more diverse set of tasks with richer reasoning trajectories. We provide a detailed
comparison with other datasets below in Table[T]
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Dataset Primary Task CoT Modality  Suitability for visual CoT Training
GQA Compositional visual QA Text No visual CoT

ScienceQA Multimodal science QA Text No visual CoT

CLEVR Synthetic compositional visual QA Text No visual CoT

VCR Visual commonsense QA with rationale Text No visual CoT

VideoCoT Video QA Text No visual CoT

EgoCOT Embodied planning Text No visual CoT

LLaVA-CoT Multimodal reasoning QA Text No visual CoT

MAmmoTH-VL  Large scale multimodal instruction tuning Text No visual CoT

MM-Verify Multimodal reasoning with verification Text No visual CoT

R1-Onevision A SFT and RL multimodal reasoning dataset Text No visual CoT

Visual CoT Visual-search QA with bbox CoT Image, Text Limited to visual search tasks
MM-PhyQA Physics visual CoT Image, Text Physics data only, not open sourced
CoT VLA Robotics visual CoT Image, Action No text reasoning

OmniCorpus 10 B-level interleaved corpus None Noisy pretraining data without CoT
MINT-1T 1 T-token web-scale interleaved data None Noisy pretraining data without CoT
ZEBRA-COT Diverse and high quality visual CoT Image, Text Diverse interleaved vision—language CoT

Table 1: ZEBRA-COT introduces a broader set of high quality visual CoT traces compared with
prior datasets and pipelines.

Our contributions are summarized as follows:

1. We release ZEBRA-COT, a high quality and diverse dataset with interleaved text and visual CoT
that contains 182,384 samples for training models to natively perform visual CoT for problem
solving. Details regarding the dataset are shown in Section

2. We evaluate three frontier LLMs, including GPT-5, Claude Sonnet 4, and Gemini 2.5 Pro, on the
tasks in ZEBRA-COT in Section 4] Despite their advanced multimodal reasoning capabilities,
these models perform poorly on those challenging tasks, with an average of 31.51%. Moreover,
to demonstrate the effectiveness and value of visual CoT, we construct a scaffolding experiment
that provides the first one or two multimodal CoT steps in context. Accuracy rises to 47.99%
after one step (+16.48 pts) and 56.70% after two steps (+25.19 pts) overall, with gains of up to
+43.77 pts in specific domains. These findings highlight the challenging nature of our dataset,
the quality of our reasoning traces, and the value of visual CoT.

3. After fine-tuning ANOLE-7B (Chern et al.,|2024) on our training set, we improved the accuracy
on our in-distribution test set from 4.2% to 16.9%. When evaluating the resulting model on
benchmarks requiring visual reasoning, our ANOLE-ZEBRA-COT-7B model achieves an aver-
age improvement of 4.9% across seven challenging datasets, with a maximum gain of 13.1%
on a visual logic benchmark, as shown in Table @

4. We fine-tune BAGEL-7B (Deng et al., 2025)), a high-quality multimodal model that cannot na-
tively generate interleaved text and images on our dataset. After fine-tuning, the model is able to
inherently generate high-quality visual CoT during its own reasoning process, making it well-
suited for future RL training, as shown qualitatively in the examples in Figure[d|and Appendix[B]

2 RELATED WORK

Visual chain of thought. The community has predominantly been tackling visual CoT by using
visual programming to generate images (Suris et al.| 2023} |[Zhang et al.| [2023]; [Mitra et al., 2024;
Yang* et al.| 2023} [Wu and Xie} [2024; Hu et al.| 2024} [Menon et al.| 2024} |OpenAll 2025b; [Zheng
et al.,[2025)). In particular, VISUAL SKETCHPAD (Hu et al., [2024) presents the most versatile open-
source visual reasoning agents among existing works, handling a wide range of tasks. Another line
of work explores model-generated images: for example, Rose et al.|(2023) uses a diffusion model to
bridge gaps in storytelling, and |(Chern et al.[(2025) generates intermediate images to improve image
generation tasks;|Zhao et al.|(2025) generates intermediate images as subgoal predictions and derives
actions based on them for robotic planning; [Li et al.| (2025) and [Xu et al.| (2025b) explore spatial
reasoning tasks like mazes by visualizing each temporal step. However, these model-generated
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image approaches are mostly specialists, and developments are still primitive compared to visual
programming methods that leverage external tools.

Visual reasoning datasets. Many multimodal visual reasoning datasets have been proposed, such
as GQA (Hudson and Manning, [2019), SCIENCEQA (Lu et al.| [2022), VIDEOCOT (Wang et al.,
2024c), EGOCOT (Mu et al., [2023)), LLAVA-COT (Xu et al., [2024), MAMMOTH-VL (Guo et al.,
2024), MM-VERIFY (Sun et al., 2025), R1-ONEVISION (Yang et al.l [2025), CLEVR (Johnson
et all 2017), VCR (Zellers et al., 2019)), although most focus on multi-modality only in the in-
put question, leaving the reasoning traces purely textual. Among them, VISUAL-COT (Shao et al.,
2024a)) stands out as the only open-source dataset featuring interleaved text and image reasoning.
MM-PHYQA (Anand et al.l[2024) on the other hand, introduces a paradigm for incorporating im-
ages into the reasoning process for physics problems, though the dataset is not publicly available.
Several vision-centric benchmarks (Fu et al.| 2024b;|Hao et al.,[2025a) present diverse and challeng-
ing tasks, but they lack annotated reasoning traces.

Interleaved text and image datasets. Large-scale corpora with interleaved text and images have
become essential for pretraining VLMs with reasoning capabilities (Alayrac et al.l 2022} |Chen and
‘Wang, 2022; Sun et al.,|2024; Wang et al., [2024b; |Hurst et al.,[2024;|L1 et al., 2024a; |Bai et al ., [2025j
Team et al., 2025). However, in most existing interleaved text and image datasets MULTIMODAL
C4 (Zhu et al.}[2023)), OBELICS (Laurencon et al.;,[2023), OMNICORPUS (Li et al., 2024b), images
are primarily used for recognition, captioning, or as supplementary context in text-based reasoning,
rather than serving as explicit visual aids that contribute meaningfully to the reasoning process.
While MINT-1T (Awadalla et al.| 2024) includes some scientific content from arXiv where images
may aid reasoning, both the text traces and visual content are often noisy and not well-suited for
post-training or fine-grained reasoning tasks. Instead, our ZEBRA-COT introduces a broader and
higher-quality set of visual CoT examples, enabling effective training for visual reasoning.

3 DATA CURATION DETAILS AND COMPOSITIONS

3.1 CURATING A DIVERSE AND HIGH QUALITY INTERLEAVED VISION AND LANGUAGE
REASONING DATASET

A key challenge in training multimodal generation models to output visual CoT natively is the lack
of datasets with strong logical coherence between text and visual modalities, and diverse categories
of such visual CoT. Existing interleaved datasets often fail to provide clear, meaningful connections
that demonstrate when and why visual reasoning is necessary for problem-solving, while current
visual CoT datasets are confined to a few domains, limiting the model’s ability to learn generalizable
visual CoT capabilities when faced with out-of-distribution problems.

To address these gaps, we developed a comprehensive data curation pipeline that bridges logical
connections across modalities, as shown in Figure E} For logical coherence across modalities, we
leverage frontier vision-language models (Gemini-2.5 Pro) to enrich reasoning traces and ensure a
clear logical flow between textual reasoning and visual aids. For diversity, we combine real-world
problems from multiple domains (mathematics, physics, chemistry, coding, chess, visual question
answering, robotics) with synthetic examples generated through computer programming, simula-
tion, and graphic rendering. This pipeline enabled us to curate over 182 K high-quality interleaved
text and visual reasoning traces spanning four major categories: scientific reasoning, 2D visual rea-
soning, 3D visual reasoning, and visual logic and strategic games. Unlike existing limited datasets
that focus primarily on visual search or spatial reasoning, our curated dataset provides the breadth
and diversity necessary for training models that can generalize across domains. For details regard-
ing our data curation pipeline, please refer to Appendix[A.2] In the following sections, we provide
a brief introduction to the tasks of each broad category. And for the details regarding the subcat-
egory and domains, please refer to Appendices [A.3|to[A.6] For prompt templates, please refer to

Appendix [F}

3.2 SCIENTIFIC QUESTIONS

Visual reasoning is particularly valuable in STEM domains, as it enables the visualization of abstract
concepts such as auxiliary lines, free-body diagrams, and sketches, which clarify ideas that are hard
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to describe in language and support step-by-step problem solving in ways that mirror human cog-
nition. In ZEBRA-COT, this category spans subdomains including geometry, physics, chemistry,
algorithmic problem solving, and graph problems. For geometry, physics, and chemistry, we lever-
age openly licensed datasets and textbooks, using Gemini-2.5 (Comanici et al., [2025) to denoise
and parse them into clean, logically structured visual CoT. For graph problems, we employ com-
puter programs to generate images and text templates, which are then diversified using Gemini-2.5.
For algorithmic problems, we use a GPT-4.1 agent built upon |Hu et al.[(2024)) to produce detailed
traces for solving competitive programming tasks. For details regarding all tasks in this domain, see

Appendix [A.3]

3.3 2D VISUAL REASONING

Visual Jigsaw
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Reasoning Image 1

In 2D visual reasoning, visual aids support the manipulation and interpretation of 2D visual in-
formation, enabling tasks that involve spatial arrangement, pattern recognition, and fine-grained
inspection. For this category, we include tasks such as visual search and visual jigsaw. For visual
search, we adapt datasets from [Shao et al.[(2024a)) and incorporate two types of visual aids: draw-
ing bounding boxes and zooming into focal regions. We apply those visual CoT broadly across
data categories, such as charts, documents, relations, and general VQA. For visual jigsaw tasks, we
crop images from ImageNet (Deng et al., 2009) to create puzzles with a random number of missing
pieces in diverse shapes. The visual CoT is either iteratively filling in the pieces or reconstructing
the original image directly. Further details are provided in Appendix

3.4 3D VISUAL REASONING

For 3D visual reasoning tasks, we focus on two domains: (1) embodied reasoning and robotic
planning in the physical world, and (2) understanding 3D transformations from different view-
points. For the first domain, prior work has shown that generating visual predictions of the physical
world and extracting inverse dynamics can improve performance in long-horizon decision-making
in robotics (Zhao et al.| [2025; [Yang et al.l 2024). To capture this, we reformulate the ALFRED
benchmark (Shridhar et al) 2020) into an image goal-conditioned planning task in which models
generate detailed step-by-step plans to transition from an initial state to a goal state. We also adapt
RoboMIND (Wu et al., 2024)) for real-world robot planning, where models receive initial and goal
images, along with descriptions of robot embodiment, and must produce precise high-level action
plans. For reasoning about 3D transformations, we design multi-hop object counting tasks inspired
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by CLEVR (Johnson et al., 2017)), where scenes undergo sequential modifications, such as adding or
removing objects, requiring models to visually reason through each transformation step. For details,

see Appendix [A3]
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For visual logic puzzles (IQ matrices, Tetris, ciphers, ARC-AGI (Chollet et al.l 2024)), previous
VLMs tended to solve problems primarily using text reasoning. They first verbalize visual inputs
into text, which causes information loss and makes visually salient patterns, such as spatial re-
lationships, difficult to capture. In contrast, humans solve these directly and efficiently via visual
imagination and manipulation, even for babies who have not yet acquired language capabilities (Zhu
et al.,|2020). To bridge the gap, we construct visual CoT traces that include explicit intermediate
visual transformations to encourage models to solve these problems visually. Similarly, for strategic
games (chess, checkers, Connect Four), decision making typically involves searching and generat-
ing counterfactual rollouts. While LLMs can simulate this by symbolizing board states into text,
much of the spatial structure is lost, and rollouts in text space are difficult for problems with large
visual information. Thus, we render those search and simulation steps into images so that models
trained on this data can perform long-horizon planning in the visual space inherently. Finally, we
generate a diverse suite of maze tasks and visual CoT traces that require a combination of capabil-
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ities, including high-level symbolic search and low-level perception. For details of those tasks, see
Appendix [A.6]

4 ANALYSIS OF ZEBRA-COT AND THE VALUE OF VISUAL COT

Proprietary frontier models (GPT-5 (OpenAl, [2025¢c), Gemini-2.5 Pro (Comanici et al.| [2025),
Claude-4 Sonnet (Anthropic}2025)) have achieved state-of-the-art performance on multimodal rea-
soning benchmarks. Despite their advanced multimodal capabilities, we show that they struggle
significantly with the tasks in ZEBRA-COT. To explore these limitations and demonstrate the chal-
lenging nature of our dataset alongside the effectiveness of visual reasoning traces, we design a scaf-
folding experiment. Specifically, our dataset consists of structured reasoning chains: <question>
— <text-reasoning-1> — <visual-reasoning-1> — <text-reasoning-2> —
<visual-reasoning-2> — .. - <answer>.

In the zero-shot setting, we provide models only with the <question> (containing both image
and text). For scaffolding experiments, we incrementally provide the first £ multimodal reasoning
steps as context:

e IMT (k =1): <question> + <text-reasoning—-1>+ <visual-reasoning—-1>
¢ 2MT (k = 2): <question> + <text-reasoning-1>+ <visual-reasoning-1>+
<text-reasoning-2>+ <visual-reasoning-2>

Scaffolding With Multimodal CoT Prompting

Overall Scientific 2D Visual 3D Visual Logic & Games
A
0, 0 0,
60% A/A 60% 80% /A/ 80% | ——— 80% —
>
3 50% / e 60% * & 60% e /_/.
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0% q T amt %%Q wr omt %% T amt %% r aut %% IMT  2MT
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Figure 3: Scaffolding experiment with frontier models. Q represents zero-shot question-only evalu-
ation, IMT denotes a question with the first multimodal reasoning step provided, and 2MT indicates
a question with the first two multimodal reasoning steps. We show that even frontier models with
the best multimodal reasoning capabilities perform poorly overall on tasks in ZEBRA-COT.
However, as we provide the first one or two multimodal steps to those models, the accuracy im-
proves significantly.

Importantly, most tasks in ZEBRA-COT require various multimodal reasoning steps (which can
involve as many as 20 images) to reach the final answer. By providing only the first two steps as
scaffolding, we ensure that models must still perform substantial reasoning to solve the task. We can
safely assume that the provided steps serve as guidance rather than revealing the solution. Since our
dataset comprises diverse tasks, some of which extend beyond traditional QA formats (e.g., robotic
planning and embodied CoT) that are not suitable for evaluation, we select the most challenging and
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representative examples for evaluation: graph questions for scientific reasoning, visual jigsaw for
2D spatial reasoning, multihop object counting for 3D reasoning, and maze/chess/tetris for visual
logic and strategic games.

We plot the results for three evaluation settings across each task domain in Figure[3] We observe
that frontier models achieve poor zero-shot performance: GPT-5 reaches 41.98% accuracy, while
Claude-4 Sonnet and Gemini-2.5 Pro achieve only 27.61% and 24.93% respectively. However, with
multimodal CoT scaffolding, we observe substantial improvements: average accuracy across the
three models increases to 47.99% (+16.48 %) with one reasoning step and 56.70% (+25.19% ) with
two steps.

Performance gains vary across task types, but we generally see an improvement trend. Maze tasks
show the most dramatic improvements, which jump from 52.59% to 76.60% (+24.01%) and to
96.36% (+43.77%) on average, while challenging tasks such as graph reasoning improve from
3.92% to 22.03% (+18.11%) with two multimodal reasoning steps on average. Even tasks with
higher baseline performance, such as multihop object counting (with an initial accuracy of 59.40%),
benefit from visual CoT, eventually reaching 67.65% accuracy on average. Detailed statistics are
shown in Table[§]

To isolate the contribution of visual reasoning aids from text CoT in our traces, we conduct an
ablation task where we remove all visual aids from the reasoning traces and retain only the textual
steps. We observe that text-only CoT yields substantially smaller performance gains compared to
full visual CoT, and in some cases even degrades performance. This is expected: in our dataset, the
visual and textual components are highly complementary. Many reasoning steps reference visual
elements that, once removed, leave the text chain logically incomplete or incoherent. Model even
requests for the missing visual aids that are referred in the text cot. These results indicate that the
majority of the performance improvements stem from the visual reasoning steps, or the combined
visual + text reasoning, rather than from textual CoT alone. The statistics for text only results are
shown here:

5 TRAINING MODELS ON ZEBRA-COT

Model MathVision* MathVista®* VisuLogic EMMA MMVP Blink Vstar
Anole with CoT prompting 13.80 22.80 8.50 12.80 10.00 26.46 23.60
Anole-Zebra-CoT (Ours) 16.45 25.30 21.80 15.02 15.33 31.25 27.20

Table 2: Overall performance (%) across eight datasets for the base Anole model with chain-of-
thought prompting vs. the same Anole model further trained on ZEBRA-COT. *We evaluate on the
mini versions of MathVision and MathVista because interleaved generation is time consuming. A
full breakdown of each evaluation set is presented in Appendix

Anole-Zebra-CoT. We fine-tune Anole (Chern et al., 2024) on our dataset, which builds on
Chameleon (Team, 2024), using the codebase from |(Chern et al.| (2025). We finetune the model
fully end-to-end on a node with 8 x H200 GPUs for 12 hours, with a learning rate of 1 x 1075,
cosine decay, a batch size of 8, and a max token length of 12288. We train the model for 10k steps.
To evaluate our trained model, we set the maximum generation length to 16384. After fine-tuning
Anole on our ZEBRA-COT corpus, the accuracy increased from 4.2% to 16.9%, delivering a 4 times
relative performance improvement and a 12% gain in accuracy.

Furthermore, we evaluate seven challenging benchmarks that require visual reasoning, including
MathVision (Wang etal.l|2024a), MathVista (Luetall[2024), VisuLogic (Xuet al.,2025a),
EMMA (Hao et al., 2025b), MMVP (Tong et al.,[2024), BLINK (Fu et al.,|2024b)), and Vstar (Wang
et al.,[2023)). All the evaluations are done using VLMEvalKit (Duan et al.,[2024). To ensure a fair
comparison, we use chain-of-thought prompting (Wei et al., 2022) when evaluating the base Anole
model. As shown in Table [2] training with ZEBRA-COT significantly improves the Anole model
across all benchmarks. Most notably, it could improve the Anole model’s visual logical reasoning
capabilities by 13.3 points.

Bagel-Zebra-CoT. To further test whether ZEBRA-COT can enhance a stronger backbone, we fine-
tune the BAGEL-7B model (Deng et al., [2025) end-to-end on a node with 8x H200 GPUs for 1,000
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Question: Subtract all
cylinders. Add 1 red
sphere. How many
objects are left?

Problem Image 1

<think>
Remove all the cylinders.
</think>

Reasoning Image 1

Example Interleaved Visual Reasoning Chains
)% Generated by € Bagel-Zebra-CoT

<think>
Add 1 red sphere.
</think>

Reasoning Image 2

Question: A big square
is made from 25 small
squares put together. A

few of the small squares
have been lost. How
many have been lost?

<think> The problem
asks for the number of
missing small squares in a
5x5 grid. We can see the
complete 5x5 grid
structure.To find the
missing squares, we need
to see the full pattern.
The first image shows the

<think> Comparing the
complete grid in the previous
image with the given puzzle
image, we can count the
number of squares that are
present in the complete grid
but missing in the puzzle. By
counting the missing squares
in the complete grid, we find
the total number of lost small

<answer>
Final Answer: 5
</answer>

<answer>

complete grid.</think>

Final Answer: 10
</answer>

squares.</think>

Problem Image 1

Reasoning Image 1 Reasoning Image 2

Figure 4: Example interleaved reasoning chains generated by Bagel-Zebra-CoT, a Bagel-7B model
finetuned on ZEBRA-COT. These traces demonstrate ZEBRA-COT’s for instilling intrinsic visual
reasoning capability in complex multimodal models.

steps using packed sequences with 60,000 tokens, a learning rate of 2 x 1075, and cosine decay. We
cap all images at a resolution of 512 on the minimum side, resulting in approximately 1, 024+ visual
tokens per image. Because the original Bagel implementation cannot natively generate interleaved
text—image outputs, we revise the training loop to include a loss term at the < | vision_start|>
token, enabling seamless visual token generation. We additionally wrap text reasoning tokens be-
tween <think> and </think>, and the final answer within <answer> and </answer>. At
inference time, when encountering <im_end>, we sample one additional token to check whether
the next token is < | vision_start | >; if so, the model itself seamlessly switches to image gener-
ation mode to generate visual aids. The entire interleaved generation process only stops if the model
generates the <answer> token.

We observe that our trained model can inherently generate visual CoT when solving problems, even
on tasks outside its training distribution. This suggests its potential as a strong initialization for
future reinforcement learning fine-tuning. In Figure 4] we include representative reasoning traces
produced by the model. We further include more reasoning traces in Appendix [B] as well as a model
performance analysis in Appendix D]



Under review as a conference paper at ICLR 2026

6 CONCLUSION & FUTURE DIRECTIONS

In this paper, we introduced ZEBRA-COT, a large-scale dataset of 182K interleaved text-image
reasoning traces spanning 4 major categories across 18 domains with over 50 distinct tasks. Fine-
tuning experiments demonstrate substantial improvements: Anole-7B achieves an average 4.9 %
gain across seven challenging benchmarks, with up to 13.1% on visual logic tasks, while Bagel-
7B learns to inherently generate visual aids during problem solving, a capability absent in the base
model.

This work opens several exciting avenues for future research. Most immediately, models trained on
ZEBRA-COT, particularly our Bagel variant that natively generates visual thoughts, provide strong
initializations for reinforcement learning. Just as text-based reasoning models have benefited from
RL fine-tuning to improve logical consistency and correctness, we envision similar gains for visual
reasoning through RL with verifiable rewards (Shao et al.| 2024b; |Guo et al., [2025) or fine-grained
rewards (Zeng et al.| 2024; Fu et al., [2025).

We believe ZEBRA-COT represents a crucial step toward Al systems that think visually as naturally
as humans sketch diagrams, generate graphs, and use spatial reasoning to solve complex problems.
With our dataset and fine-tuned model, we hope to accelerate progress toward this goal.

7 LLM USAGE DISCLOSURE

We used LLM for two purposes. The first one is for improving grammar and wording when writing
the paper. The second usage is synthetic data generation, where details can be found in Section 3|

and Appendix [A.7]
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A DATASET DETAILS
A.1 DATA STATISTICS.
Here we show detailed statistics about ZEBRA-COT’s categories.

Table 3: Statistics of ZEBRA-COT.

General Category Sub Category Count Percentage (%)
Visual Jigsaw 21,899 12.0

2D Visual Reasoning Visual Search 30,000 16.4
Subtotal 51,899 28.5

Embodied Cot 22,666 12.4

. . Multi-Hop Objects Counting 10,000 5.5

3D Visual Reasoning Robot Planning 6,944 3.8
Subtotal 39,610 21.7

Chemistry 4,666 2.6

Competitive Programming 1,207 0.7

Scientific Reasonin Geometry 1,058 0.6
& Graph Algorithms 10,000 55

Physics 7,090 3.9

Subtotal 24,021 13.2

Arc-Agi 2,000 1.1

Checkers 2,753 1.5

Chess 20,483 11.2

Ciphers 6,589 3.6

Visual Logic Strategic Games Connect Four 2,029 1.1
Maze 20,000 11.0

RPM 3,000 1.6

Tetris 10,000 5.5

Subtotal 66,854 36.7

Total 182,384 100.0
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A.2 CURATING DIVERSE AND HIGH QUALITY VISUAL COT

Bridging logical connections across modalities. A key challenge in training multimodal gen-
eration models to output visual CoT natively is the lack of datasets with strong logical coherence
between text and visual modalities, and diverse categories of such visual CoT. Existing interleaved
datasets often fail to provide clear, meaningful connections that demonstrate when and why visual
reasoning is necessary for problem-solving, while current visual CoT datasets are confined to a few
domains, limiting the model’s ability to learn generalizable visual CoT capabilities when faced with
out-of-distribution problems.

Y = High qualit
Program Generated or 'S Sending Text Trace and Reasong':nquraceywith
Raw Real World Dat:
RAw | aw Real Worl ata - Images to VLMs Image Place Holders
Q: What is the f ; Q: What is the force of contact Q: What is the force exerted on
giliadepnelioeleiceniacy between the two blocks? block A?

between the two blocks? .
<image_start>

[problem_image_1]

A: The total external force, F_ext, <image_end>

K| on the system is 3.2 N. The
g acceleration is ...

This is Problem image 1 Reasoning Trace:

Thought 0: We need to first
construct a free body diagram for
! ) ) This is Reasoning image 1 eelzch of the blocks.
| Ea <image_start>
[reasoning_image_1]
<image_end> <image_start>

[reasoning_image_2]

The total external force, F_ext, ;
<image_end>

on the system is 3.2 N. The This is Reasoning image 2

acceleration is ... Thought 1: Based on the

sketches, the acceleration is ...

Figure 5: An overview of our data curation pipeline.

To address these requirements, we first source a diverse range of question types and domains. For
real world data, we source high-quality problems from online resources such as math, physics,
coding, and chess competition datasets. We then extract and clean the available raw reasoning traces
that contain text and images. However, even from high quality sources, traces can still lack clear
logical connections between modalities, as well as clear references to the images for automatic
parsing into interleaved text and image data ready for training. For example, most geometry data
uses reference labels such as “Figure =, which makes it hard to find the mapping between the actual
image and the text reference. For synthetic data, we create our own examples by generating images
or utilizing real images from online sources, then crafting corresponding reasoning templates. This
procedure raises a clear issue, namely that we lack diversity and expressiveness in textual reasoning
regarding templated data. For instance, in visual search tasks, it is crucial to elucidate the rationale
behind drawing specific bounding boxes, and in chess, generating reflections and descriptions of
move visualizations is key.

We address both of these issues using frontier VLMs (Gemini-2.5 and GPT-4.1) to fill in the template
placeholders, enhance the reasoning traces, and complete the textual reasoning narrative. We feed
both images and raw text reasoning traces into the language model and ask the language model to
output pure text traces with image placeholders. We further filter out invalid cases, such as multiple
image placeholders referring to the same image and unreferenced image placeholders, to ensure that
the data can be automatically parsed into a training dataset.

Broadening breadth and diversity of interleaved visual language reasoning dataset. Further-
more, existing multimodal rationale datasets are also limited in their breadth. The only available
datasets focus on either visual search (Wu and Xie} |2024; [Shao et al., [2024a) or spatial reasoning,
such as maze navigation (Li et al., 2025). Such limited datasets are unlikely to enable training
visual reasoning models that can generalize across domains more broadly. Visual Sketchpad (Hu
et al., 2024) offers a diverse range of VLM agents to tackle a wider variety of questions. Though
Sketchpad offers a powerful and significant contribution to generating visual aids, the pipeline is
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not designed for collecting post-training datasets. First, the reasoning traces generated by agentic
pipelines often involve tool call errors and debug information, which degrade their quality. Second,
the scalability and diversity of the dataset are fundamentally constrained by the limited number of
agent tool designs and the high cost, as each reasoning trace may require many API calls. To tackle
these issues, we curate a total of over 182K high-quality interleaved text and visual reasoning traces,
spanning four major categories: scientific reasoning, 2D visual reasoning, 3D visual reasoning, and
visual logic and strategic games. We provide the details in the section below and example traces
from our dataset.
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A.3 SCIENTIFIC QUESTIONS

Geometry. Geometric understanding is a core ability for multimodal models to ground reasoning
over complicated mathematical tasks. Many datasets have been proposed to evaluate mathematical
capabilities, including geometry. The MATH dataset (Hendrycks et al.| |2021) is widely used for
evaluating the mathematical performance of LLMs. Although the MATH dataset includes numerous
geometry competition problems, their geometric elements are provided as plotting code rather than
rendered images (see Figure[6).

Here, we provide example code for geometry sketch generation.

MATH/GEOMETRY/44

[asy]

import three;

size (2.5inch) ;
currentprojection =
orthographic(1/2,-1,1/4);
triple A = (0,0,6);

triple[] base = new triple[4];
base[0] (-4, -4, 0);

base[1l] = (4, -4, 0);

base([2] = (4, 4, 0);

base[3] = (-4, 4, 0);

triple[] mid = new triple[4];

for (int 1i=0; i < 4; ++i)

mid[i] = (.6xxpart (base[i]) +
.4dxxpart (A), .o6xypart (basel[i]) +
.4xypart (A), .6xzpart (base[i]) +
.4xzpart (A));

for (int i=0; 1 < 4; ++i){

draw (A——-base[I]);

draw (base[i]--base[ (i+1)%4]) ;
draw (mid[i]—-——mid[ (i+1) %47,
dashed) ;
‘ }
10 units label (" ‘8\/§ units",

base[0]--base[l]);

label (Y'10 units", base[0]--A,
[/asy]

8v/2 units

(a) Geometric Example in ZEBRA-
CoT (b) Geometric Example in MATH Dataset (Hendrycks et al.,|2021)

Figure 6: Comparison of the same geometric figure in our ZEBRA-COT dataset and the MATH
dataset. Ours focus on multimodal reasoning and explicitly plot the geometry problem than using
the text-only plotting codes.

In ZEBRA-COT, we convert every piece of plotting code into figure renderings, producing both the
problem diagram and its solution illustration to serve as an explicit visual reasoning chain for model
training.

In total, we collect 1,061 samples from the MATH dataset’s train split. Our data provides only
rendered images for both the problem and solution reasoning chains, with no plotting code included.
Solving these problems requires generating images to assist. The problems are not restricted to the
geomet ry subcategory but also include some problems from counting and probability,
pre—-algebra, pre-calculus, etc.
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Physics. A variety of physics problems benefit from sketches, such as free body diagrams for
force analysis, motion diagrams for kinematics, circuit diagrams for electricity, and ray diagrams in
optics. We construct samples of classical mechanics problems programmatically. Problem instances
are generated from parametric Python templates (e.g., Atwood machines, inclined planes, elastic
collisions, pendulums), with physically plausible parameters sampled from predefined ranges. For
each sample, we render free-body diagrams, kinematic visuals, and structured CoT traces capturing
the full solution process.

We also leverage openly licensed resources such as OpenStax (MIT OpenCourseWare, 2022) and
MIT OCW (Moebs et al., |2016) to generate more diverse and complex physics problems, ultimately
achieving scalable and legally clear dataset generation while ensuring diverse, high-quality exam-
ples.

Chemistry. Organic reaction prediction is a classic multimodal reasoning task, typically framed as
symbolic input and structural output. We include a chemistry subset of 4,700 two-to-one reactions
from the USPTO-50K dataset (Ramsundar et al., 2019), filtered for distinct reactants and single
products. Each reaction trace includes three visual artifacts: individual molecular depictions of each
reactant, a combined schematic of both reactants side-by-side, and the resulting product structure.
Molecules are rendered with RDK1it, and names are retrieved from PubChem when available. Text
prompts use randomized templates (e.g., “What is formed by combining acetic acid and ethanol?”),
and PubChem names are included when available. This visual progression helps models learn com-
positional chemical structure without SMILES or reaction templates.

Chemistry

<think>Thought 2: The first sketch

3 shows the diamine structure with
the reaction, let's first visualize the -

Q ) , —N 0
w, v >ups (-NH2)
structure of the diamine reactant, - ' g wi <\:/>—<
4- - @\ B chloro and pyr o
H is LSS o
) sualiz

Question: When 4 <think>Thought 1: To understand &

chloro-3,5-dlipyridin-3-
yloxybenzene-1,2-diamine

undergoes reaction with
pyridine-2-carboxylic acid,
what oroduct is formed?

substituents. Now,

the second rea -
amino groups. </think> Reasoning Image 1 carboxylic acid. </think> Reasoning Image 2

Algorithmic problem solving. Humans naturally create visual diagrams when solving complex
problems, transforming abstract concepts into spatial representations for deeper reasoning. We for-
malize this by interpreting coding problems through compact visual scaffolds: one or two diagrams
depicting graph structure, edge weights, etc. To build traces, we run an iterative ’visual sketchpad”
loop: GPT-4.1 receives a prompt and returns THOUGHT statements plus VIS_SPEC blocks when
sketches are needed; we render specs with networkx/matplotlib, feed images back to the
model, and repeat until complete, then clean transcripts with post-processing.

Problem samples come from competitive programming, prioritizing real-world abstractions like lo-
gistics, network routing, and flow optimization. The orchestrator produces simple visual structures
emphasizing clarity over style. Each trace contains the problem prompt, 1-3 reference diagrams, and
polished explanations, supporting grounded reasoning in discrete structures while mirroring how al-
gorithms are taught. The final corpus comprises 1,200 diverse algorithm-based problems spanning
competitive programming.

Graph problems. Graph algorithms are useful for large language model applications because
they efficiently organize and traverse structured relationships, for example in search and retrieval
applications. Methods like shortest-path and subgraph matching enable multi-step reasoning by
connecting relevant concepts across knowledge graphs. Recent work by [Fu et al| (2024a)) shows
that although LLMs can solve graph problems such as connectivity and maximum flow to some
extent when a textual description of the graph is given, multimodal LLMs suffer when solving graph
problems. This finding suggests potential for improving multimodal models’ graph-understanding
abilities by guiding their reasoning over images.
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We create 10,000 graph problems with full reasoning traces spanning over four tasks: graph con-
nectivity, shortest path, minimum spanning tree, and topological sort. Each task has about 2,500
samples, with one problem image and at most 19 reasoning images per sample. Each reasoning
image is coupled with an explanation for the underlying algorithms, for example, Dijkstra for the
shortest path, BES for connectivity, etc.

A.4 2D VISUAL REASONING

Visual search. Previous research has shown that drawing bounding boxes and zooming can im-
prove accuracy on visual search tasks (Wu and Xie, [2024; [Shao et al.,2024a). We follow such tasks
by creating two types of traces, one for drawing bounding boxes and one for zooming. We use data
from[Shao et al.|(2024a)) to generate our traces covering four categories of visual search tasks: chart,
text/doc, relation study, and general VQA.

Visual Search

<think>Thought 0: To
determine the boy's clothing,
I need to closely examine his

<think>Thought 2: The zoomed-in

) image clearly shows he is wearing a
Question: What type >

of clothing is the boy

white short-s hirt with black trim,

attire in the provided image. black shorts, a te socks with black

in the foreground
wearing while playing
on the field?

occer uniforr

Thought 1: | will zoom in on

the boy to g on these detal

of his shi . boy is dressed letic wear suitable
Problem Image 1 )y Reasoning Image 1 5 . I
legwear. </think> for playing soccer.</think>

Visual jigsaw. Visual jigsaw refers to filling in missing pieces of an image, as in a jigsaw puzzle.
Each puzzle is constructed from an ImageNet (Deng et al.,2009) image, with 1 to 4 missing pieces
of varying shapes, including rectangles and irregular regions. Each puzzle includes four multiple-
choice options, where each option presents a set of candidate missing pieces. Only one set correctly
matches the pieces removed from the original ImageNet image. We generate two types of visual
CoT traces for solving each puzzle. In the first type, we iteratively fill in the missing patches using
the pieces from each multiple-choice option and identify the one that produces a coherent image.
In the second type, we imagine what the original image would look like and then select the option
whose pieces best match the imagined reconstruction.

A.5 3D VISUAL REASONING

Embodied planning. For embodied planning tasks, agents must ground high-level decisions in the
evolving visual context of the environment. We reformulate the ALFRED (Shridhar et al., [2020)
benchmark, an interactive 3D simulation environment where agents perform complex tasks based
on human instructions, into an image goal-conditioned planning task.

Embodied CoT

<think> Thought 1: <think> Thought 2: <think> Thought 3: <think> Thought 4:
turn left, take a step, pick up the candle that | turn around, walk to the 8 put the candle on the
walk to the is on the counter by the fll shower, turn left, walk
sink.</think> to wall, turn left to face

Question:

Please describe
the sequence of
robot actions from
the initial state (the
first image) to the

goal state (the H:

second image). =

; g .MI !“

Problem Image 1 & 2 Reasoning Image 1 Reasoning Image 2 Reasoning Image 3 Reasoning Image 4
4

_.

the toilet. </think>

o " P
I
1
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In this new task, the model receives two images: the initial and goal states. Then the model is
tasked with generating a textual description of the high-level planning steps required to transition
from the initial to the goal state. To emphasize the role of visual reasoning, we require the generated
descriptions to be detailed and step-by-step (e.g., “turn and go to the TV; pick up the bowl that is on
the TV stand in front of the TV; with the bowl in hand. .. ) rather than brief summaries (e.g., “move
bowl to coffee table”), which can often be produced through shortcut reasoning without capturing
intermediate visual steps.

We compile the entire training set, as well as the seen and unseen validation sets from ALFRED,
resulting in a total of 7,080 examples spanning diverse visual reasoning trajectories. When multiple
textual reasoning annotations exist for a single visual trajectory, we include all of them, resulting in
22,666 textual reasoning traces.

Robot planning. While low-level manipulation may rely on reactive control, continuous plan-
ning for complex tasks often requires high-level visual guidance, making visual CoT essential for
bridging perception and long-horizon decision-making in robot planning. Similarly, we reformulate
RoboMIND (Wu et al |2024), a multi-embodiment dataset of real-world robot manipulation, into
an image goal-conditioned planning task. In this setting, a model is provided with the initial and goal
states images, along with a textual description of the robot setup (e.g., AgileX (AgileX Robotics,
2023)), Franka (Franka Emika GmbH| 2018]), or URS5e (Universal Robots A/S|[2018)), and is tasked
with generating a detailed textual plan outlining the high-level steps required to transition from the
initial to the goal state.

Unlike embodied planning tasks that often involve partial observability and require agents to infer
unobserved states, this robot planning task is fully observable. Therefore, the challenge lies not
in imagining the visual trajectory but in articulating precise movements for each arm or gripper to
accomplish the task (e.g., “[left] move towards the oven door and [right] grab the corn.”).

To control degrees of freedom, we exclude the humanoid robot examples from the original Robo-
MIND dataset, focusing solely on tasks involving robotic arms. This results in a curated subset of
6,945 robot planning tasks, each annotated with human-generated high-level actions that serve as
visual reasoning trajectories.

3D multi-hop objects counting. A core aspect of human visual-spatial reasoning is understanding
transformations and imagining scenes from different viewpoints. For this task, our setup follows
a structure similar to that of Johnson et al.| (2017), using 10 predefined shape types (e.g., sphere,
cylinder, donut) in various colors. At each step, we randomly apply one of three operations: remove
all instances of an attribute (e.g., all red objects), remove a subset (e.g., 5 red objects), or add new
objects (e.g., 2 blue prisms, 1 red sphere). We then create questions that ask about the quantity
of specific attributes or what objects are left in the field. To increase difficulty, the initial scenes
are rendered from varying viewpoints (front, back, left, right), where some objects may be partially
occluded by those in front. The first visual reasoning step involves generating a top-down 45° view
to reconstruct the full scene, allowing the model to see potentially blocked objects. The subsequent
visual sketches correspond to each transformation step in the instruction. We also improve upon the
data from Johnson et al.|(2017) by adding in different materials, backgrounds, and floor designs.

A.6 VISUAL LOGIC AND STRATEGIC GAMES

Visual logic puzzles. Humans approach logic puzzles such as Tetris, Raven’s Progressive Matrices
(RPM, [Zhang et al, 2019) , and the Abstraction & Reasoning Corpus (ARC-AGI, |Chollet, |2019;
Chollet et al., |2024) primarily through visuospatial reasoning: we see how pieces combine, trans-
form, or complete a pattern before committing to an answer. These logic games rely heavily on
visuospatial working memory, which is correlated with general intelligence level (Lau-Zhu et al.,
2017;|de Winter et al., [2023).

To enhance models with such cognitive ability, we include the following tasks. For Tetris, we collect
three types of tasks: a) shape assembly: given a silhouette and candidate tetromino sets, select the
one that perfectly tiles the shape; b) grid completion: fill a partially occupied grid using a specified
set of tetrominoes; c) spatial transformation: apply a sequence of geometric operations (translate,
rotate, mirror, scale) to an irregular shape in the grids. The visual CoT involves visualizing each
transformation step. For RPM (IQ matrix), we include three types from Zhang et al.| (2019) that
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Tetris

Question:

Apply the following
sequence of
transformations to the

<think> Thought 1:
Apply the first
transformation: scale the

<think> Thought 2: <think> Thought 3:

ply the second Apply the third
transformation: rotate the transformation: translate the
scaled shape 90 degrees rotated shape 1 unit
clockwise. </think> upwards. </think>

shape by 2 times. This
expands the shape.</think>

blue shape: scale by 2 x,
then rotate 90 “clockwise,
then translate 1 up, then

rotate 90 “clockwise.

Choose the option that
shows the resulting
shape.

Problem Image 1 Reasoning Image 1 Reasoning Image 2 Reasoning Image 3

involve compositional reasoning. The reasoning trace identifies visual patterns for each composi-
tional component across rows or columns. For ARC-AGI, while prior models often rely on textual
reasoning, humans typically solve these tasks through visual pattern recognition. To better align
with human strategies, we construct two types of visual CoT. The first begins with matrix repre-
sentations of the training examples and test input; the reasoning trace first visualizes the training
examples, the test input, and finally the predicted output. The second type directly uses visual repre-
sentations in the task instruction, thus the model only has to generate a visual sketch of the predicted
output as part of its reasoning process. For all data, we use VLM to generate accompanying textual
descriptions to enrich interleaved text-image rationales.

Mazes. Mazes serve as a canonical testbed for visual CoT reasoning, bridging low-level perception
with high-level symbolic search. Unlike purely pixel-based 2D visual tasks such as visual search
and visual jigsaw, mazes possess explicit graph structure yet remain visually intuitive, letting us
disentangle vision errors from planning errors.

We adopt the maze—-dataset library to procedurally generate thousands of grid mazes with di-
verse topologies (lattice type, branch factor, loop density) Each instance is exported in two com-
plementary formats: a) m.as_pixels (), an RGB raster that encodes walls, free cells, start m, and
goal m, suitable for visual perception; b) MazeP1lot, a vector overlay that can superimpose solution
paths, candidate trajectories, heat-maps, or landmark nodes for human-readable walk-throughs. To
increase maze diversity, we also use OpenAl Gym’s FrozenLake-v1 environment (Brockman
et al.,[2016) .

We evaluate a broad spectrum of spatial reasoning skills across multiple question types: 1. fopo-
logical analysis (e.g., counting isolated regions, identifying connected components under 4- or 8-
connectivity, finding the largest connected area), II. pathfinding (e.g., determining reachable end-
points, computing shortest paths, enumerating all optimal routes), IIl. navigation planning (e.g., se-
lecting correct paths from alternatives, calculating minimal moves to reach targets), and IV. coverage
problems (e.g., visiting all marked locations, identifying the farthest reachable position). This di-
verse task suite goes beyond simple start-to-goal navigation, encompassing the full range of spatial
reasoning strategies that humans use to interpret complex environments. We also introduce vary-
ing complexity of the matrix, including different maze side lengths ranging from (5, 15), different
branching factors b, loop probability ¢, and number of distractor endpoints k. Larger n exponen-
tially increases the search space, while higher b and ¢ degrade heuristic admissibility. Both of those
require genuine planning rather than rote memorization.

Chess.

Strategic planning in chess involves simulating multiple futures and selecting moves that maximize
long-term advantage. To support counterfactual reasoning, we construct a dataset of mid-game posi-
tions from rated Lichess gamesﬂ each with structured visual traces. Given a position, Stockfish

'maze-dataset supports recursive-backtracker, randomized Prim, Wilson, and Kruskal generators; see

(Ivanitskiy et al.} [2023)).
“https://lichess.org/
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(A) Ba2: Safe position (B) Na4: Poorly placed (C) QfS: Exposed queen (D) Bb3: Vulnerable position
supports central pawns ~ weak attack on b6 vulnerable to gb weaker than Ba2

Figure 7: Traces showing reasoning for each move option. Option A (Ba2) is evaluated as strongest,
providing safe bishop placement while supporting potential central pawn advances.

identifies the optimal move, and three alternates are sampled randomly from legal moves. Each can-
didate is visualized independently for comparative evaluation. By rendering possibilities in isolation,
move consequences, tempo gain, structural weakening, and tactical motifs become legible, enabling
better strategic reasoning. Traces are formatted as multiple-choice tasks with visual sketches, en-
couraging tactical awareness and pattern recognition. Postprocessing with Gemini 2.5 Flash refines
traces into coherent multimodal reasoning sequences for short and long-horizon planning, yielding
11,500 chess traces across diverse positions and hypothetical move states.

Connect 4. We also include 2,100 Connect-Four traces that teach short-horizon grid planning. Each
starts from a mid-game position obtained after 4-20 random moves; a depth-4 a—( minimax (center-
control, open-three heuristic) then plays the forced win. Every drop is rendered on a 7 x 6 board
with a glowing overlay, and an LLM condenses the raw log into a clear, step-by-step “How does
Red win?” narrative pairing text and visuals.

Checkers. Our checkers traces, initiated from randomized mid-game boards and continued through
depth-4 minimax, are designed to capture key tactical motifs such as forced captures, multi-jump
chains, and king-row advancement, providing dense supervision for spatially grounded decision
making. To ensure data quality, we apply rule-based validators that discard invalid traces. Final
traces are passed through a language model to synthesize coherent visual reasoning aligned with
turn-based planning, ending with 2,800 full traces.

Ciphers. Classical encryption schemes convert symbolic rules into spatial transformations, enabling
visual reasoning over grids and coordinates. We generate examples of Scytale, Polybius, Rail Fence
and Playfair ciphers, each with multimodal traces showing encoding steps. Visual sketches highlight
relevant regions such as column positions, grid lookups, or digraph geometry, while text describes
applied rules (e.g., “Letter 'P’ goes on the second rail,” “’A’ is at coordinates (1, 1).”) Early steps
use visuals, later steps use language, mirroring real cryptanalysis. The 6,600 traces align symbolic
manipulation with visual structure.

25



Under review as a conference paper at ICLR 2026

B EXTRA BAGEL ZEBRA COT GENERATED VISUAL COT

Prompt:

There are 81 grid points (uniformly spaced) in the square

shown in the diagram below, including the points on the I
edges. Point P is the center of the square. Given that point I R
Q@ is randomly chosen from among the other 80 points, I
what is the probability that line PQ is a line of symme- R S
try for the square? « e e e e e e

Visual CoT:

<think>
The problem asks for the probability that a randomly chosen point ) from the 80 points
other than the center P results in the line P() being a line of symmetry for the square.
We need to determine the number of such points @) and divide by the total number of
possible points (80).

First, let’s visualize the grid and the center point P. The

grid has 9 points along each side, so there are 80 points in o e =

total (excluding P). A line of symmetry for a square passes . . . "
through the center P and divides the square into two con- . B
gruent halves. For P(Q to be a line of symmetry, () must be ] 1
the reflection of P across this line. This means () must be I oy

on the grid line that forms a line of symmetry with P. . 5 s :
Let’s consider the lines of symmetry for the square. A . ® 5 @
square has 4 lines of symmetry: 2 diagonals, the vertical

line through the center, and the horizontal line through the
center. Let’s visualize these lines.
</think>

[Visual Thought]
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Prompt:

Solve the complex visual logical reasoning problem p— .

through step-by-step reasoning. /. 1\ ._/.
Ry Y )
" s §
v.ic1?

Visual CoT:

<think>
Observe the grid to identify patterns in the shapes and their
components. The grid is divided into 3x3 cells. Each cell o S/

contains two distinct shapes: a line segment and a dot. | . 1\ 3
will analyze the patterns for the line segment and the dot \: . .M .
'
des 3

separately. For the line segment, the pattern is: (Top Left,
Top Right) = (Bottom Left, Bottom Right). For the dot, the i
pattern is: (Top Left, Top Right) = (Bottom Left, Bottom V.
Right). Now, I will apply these patterns to the third row and
third column to find the missing shape. The missing shape [ [\" |\ "|." /., /
in the third row and third column should have a line segment AT AN
like the one in the third row, third column (which is the same A B c D
as the third row, second column line segment). The missing [Visual Thought]
shape in the third row and third column should also have a

dot like the one in the third row, third column (which is the same as the third row,
second column dot). Combining these, the missing shape should be a line segment
from the third row, second column and a dot from the third row, second column.
</think>
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Prompt:
The picture shows a cube with four marked angles: 7
«cWXY, ¢ XYZ, cYZW, and « ZWX. What is the ¥

sum of these angles?

P T F=* X

Visual CoT:

<think>

The problem asks for the sum of four specific angles in a cube. The angles are « W XY,
«XYZ, cYZW, and « ZW X. These angles are formed by the edges of the cube
meeting at vertices X,Y, Z, W.

In a cube, each vertex is formed by three edges that are mu-
tually perpendicular. This means that at each vertex, the
three edges meet to form right angles.

Let’s consider vertex X. The edges WX, XY, and XZ
meet at vertex X. Since the edges are perpendicular, the

angle «WXY =90°.
Similarly, we can analyze the other vertices:
e Atvertex Y: edges XY, Y Z are perpendicular, so
< XY Z =90°

* Atvertex Z: edges Y Z, ZW are perpendicular, so
<Y ZW =90°

o At vertex W: edges ZW, W X are perpendicular,
so £ ZWX =90°

We have identified the measures of all four angles: «W XY = 90°, 2 XY Z = 90°,
<YZW =90°, £ ZW X =90°
To find the sum of these angles, we add their measures:

90° +90° + 90° + 90° = 360°

The sum of the angles « W XY, « XY Z, 2YZW ,and « ZW X is 360°.
</think>

[Visual Thought]
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Prompt:

Question: As shown in the figure, AB is the diameter of i
®0, and point C is on ©0. If 2 A = 40.0, then the degree
of 2B is?

Visual CoT:

<think>

First, let’s analyze the geometry of the problem. Since AB is the diameter of the circle,

any angle inscribed in the semicircle formed by AB will be a right angle. Thus, angle

ACB is a right angle, measuring 90 degrees. Now, let’s draw an auxiliary line connect-

ing point O (the center of the circle) to point C. This line segment OC is a crucial part

of our reasoning. The line segment OC can be labeled as shown in the image.

C Since AB is the diameter of the circle, O is the center. There-
fore, AO and BO are radii of the circle, making them equal in
length. By the properties of an isosceles triangle (AO = BO),
and having an angle of 90 degrees at C (i.e., angle ACB), we

A B can deduce that triangle ABC is an isosceles right-angled tri-

angle. This means that angle A is equal to angle CBA, and

since angle ACB is 90 degrees, the two other angles must
add up to 90 degrees. Given that angle A is 40 degrees, an-

[Visual Thought] gle B must be 50 degrees. Therefore, angle B is 50 degrees.

</think>
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1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580

:gz; Visual CoT Example: BLINK

1583

1584 Prompt:
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595 <think>
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

How many kids are sitting on the bench in the image?

Visual CoT:

Let’s count the number of kids sitting on the bench in the
image. To get a clearer view of the kids on the bench, I
will zoom in on the relevant area. The zoomed-in image
clearly shows four children sitting on the bench. Based on
this visual evidence, the number of kids on the bench is four.
</think>

[Visual Thought]
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C ANOLE-ZEBRA PERFORMANCE BREAKDOWN

Split Anole Anole-Zebra-CoT (Ours)
Overall 12.80 15.03
Chemistry  12.84 15.48
Coding 9.75 16.31
Math 13.12 14.35
Physics 21.79 10.90

Table 4: EMMA: breakdown by subject (%).

Subtask Anole Anole-Zebra-CoT (Ours)
Overall 22.80 24.90
Scientific reasoning 30.33 32.79
Textbook question answering ~ 36.08 29.75
Numeric commonsense 16.67 17.36
Arithmetic reasoning 15.58 18.98
Visual question answering 24.58 29.61
Geometry reasoning 20.50 23.01
Algebraic reasoning 25.27 24.56
Geometry problem solving 21.15 24.04
Math word problem 9.14 12.37
Logical reasoning 29.73 10.81
Figure question answering 24.54 28.25
Statistical reasoning 20.27 26.58

Table 5: MathVista: breakdown by subtask for base vs. our model (%).

Subtask Anole Anole-Zebra-CoT (Ours)
Overall 8.50 21.80
Quantitative reasoning  8.78 21.81
Spatial reasoning 8.23 22.08
Positional reasoning 8.82 19.85
Attribute reasoning 9.76 25.61
Stylistic reasoning 10.00 24.44
Other 5.56 18.52

Table 6: Visual Logic: breakdown by subtask (%).
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Category Anole  Anole-Zebra-CoT (Ours)
Overall 26.46 31.25
Art Style 19.66 35.04
Counting 19.17 15.00
Forensic detection 0.00 20.45
Functional correspondence  17.69 22.31
IQ test 26.67 23.33
Jigsaw 11.33 39.33
Multi-view reasoning 48.12 21.05
Object localization 50.82 45.90
Relative depth 38.71 41.94
Relative reflectance 29.10 27.61
Semantic correspondence 19.42 17.99
Spatial relation 41.26 57.34
Visual correspondence 21.51 26.16
Visual similarity 30.37 44.44

Table 7: Blink: breakdown by category (%).
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D BAGEL PERFORMANCE ANALYSIS

We evaluate our Bagel model trained on ZEBRA-COT across several benchmarks but did not observe
substantial improvements over the original model, where the original generates pure text responses.
In fact, we even saw slight performance drops on some tasks such as MathVista. A detailed analysis
revealed a likely cause of this decline. The Bagel model employs two visual encoders: a ViT-based
understanding encoder and a VAE-based generation encoder. For generated images, the model often
produces hallucinations. For example, when instructed to remove all red balls from a scene, the
generated image may also remove yellow balls. When this corrupted image is passed back into the
ViT encoder, the representation correctly reflects that both red and yellow balls are missing, lead-
ing the model to reason over inaccurate visual information, ultimately reducing accuracy. Instead
generating pure text responses avoids such image generation hallucinations.
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E SCAFFOLDING RESULTS BREAKDOWN

Chess
Model Q (%) IMT (%) 2MT (%) AIMT (%) A2MT (%)
Claude-4 Sonnet  32.95 57.95 67.05 25.00 34.09
Gemini-2.5 Pro 15.07 39.73 39.73 24.66 24.66
GPT-5 45.78 62.65 61.45 16.87 15.66
Graph
Model Q (%) IMT (%) 2MT (%) AIMT (%) A2MT (%)
Claude-4 Sonnet 8.11 20.72 22.52 12.61 14.41
Gemini-2.5 Pro 1.90 11.43 20.95 9.52 19.05
GPT-5 1.74 14.78 22.61 13.04 20.87
2D Visual Jigsaw
Model Q (%) IMT (%) 2MT (%) AIMT (%) A2MT (%)
Claude-4 Sonnet 21.74 36.23 62.32 14.49 40.58
Gemini-2.5 Pro 34.38 56.25 59.38 21.88 25.00
GPT-5 62.86 77.14 85.71 14.29 22.86
Maze
Model Q (%) IMT (%) 2MT (%) AIMT (%) A2MT (%)
Claude-4 Sonnet  35.06 58.44 94.81 23.38 59.74
Gemini-2.5 Pro 59.70 85.07 97.01 25.37 37.31
GPT-5 63.01 86.30 97.26 23.29 34.25
3D Multi-Hop Counting
Model Q (%) IMT (%) 2MT (%) AIMT (%) A2MT (%)
Claude-4 Sonnet  59.68 67.74 74.19 8.06 14.52
Gemini-2.5 Pro 45.95 48.65 51.35 2.70 5.41
GPT-5 72.58 74.19 77.42 1.61 4.84
Tetris
Model Q (%) IMT (%) 2MT (%) AIMT (%) A2MT (%)
Claude-4 Sonnet  18.87 39.62 45.28 20.75 26.42
Gemini-2.5 Pro 8.57 25.71 3143 17.14 22.86
GPT-5 30.77 50.00 59.62 19.23 28.85

Table 8: Scaffolding evaluation results across task domains. Q: zero-shot question-only; 1MT:
question with first multimodal reasoning step; 2MT: question with first two multimodal reasoning
steps. A columns show absolute improvement over baseline (Q).
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Chess
Model Q%) 1TT (%) 2TT (%) AITT (%) A2TT (%)
Claude-4 Sonnet  32.95 42.05 40.91 9.10 7.96
Gemini-2.5 Pro 15.07 13.70 19.86 -1.37 4.79
GPT-5 45.78 51.81 62.65 6.03 16.87
Graph
Model Q%) 1TT (%) 2TT (%) AITT (%) A2TT (%)
Claude-4 Sonnet 8.11 20.72 15.32 12.61 7.21
Gemini-2.5 Pro 1.90 5.71 5.71 3.81 3.81
GPT-5 1.74 11.30 19.13 9.56 17.39
2D Visual Jigsaw
Model Q%) 1TT (%) 2TT (%) AITT (%) A2TT (%)
Claude-4 Sonnet 21.74 39.13 30.43 17.39 8.69
Gemini-2.5 Pro 34.38 24.22 25.00 -10.16 -9.38
GPT-5 62.86 68.57 71.43 5.71 8.57
Maze
Model Q%) 1TT (%) 2TT (%) AITT (%) A2TT (%)
Claude-4 Sonnet  35.06 49.35 55.84 14.29 20.78
Gemini-2.5 Pro 59.70 23.29 39.73 -36.41 -19.97
GPT-5 63.01 63.01 75.34 0.00 12.33
3D Multi-Hop Counting
Model Q%) 1TT (%) 2TT (%) AITT (%) A2TT (%)
Claude-4 Sonnet  59.68 69.35 69.35 9.67 9.67
Gemini-2.5 Pro 45.95 54.84 56.45 8.89 10.50
GPT-5 72.58 72.58 74.19 0.00 1.61
Tetris
Model Q%) 1TT (%) 2TT (%) AITT (%) A2TT (%)
Claude-4 Sonnet  18.87 26.42 32.08 7.55 13.21
Gemini-2.5 Pro 8.57 11.54 7.69 2.97 -0.88
GPT-5 30.77 28.85 42.31 -1.92 11.54

Table 9: Text-only CoT evaluation results across task domains. Q: zero-shot question; 1TT: first text
reasoning step; 2TT: first two text reasoning steps. A columns show absolute improvement over Q.
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F PROMPT TEMPLATES

F.1 PROMPT FOR ENHANCING RAW REASONING TRACES FOR ONLINE AND AGENTIC DATA

Prompt Template 1

You are an expert in creating clean and logically coherent

- multimodal chain of thought traces. Your task is to

-~ analyze

and comprehend a raw reasoning trace with interleaved text

- and images, then transform it into a clean, step-by-step
-~ multimodal

reasoning trace that correctly solves the original problem.

INPUT
1. Problem & Noisy Trace: A raw interleaved text and image
—~ reasoning trace. Images in this trace are represented by
- placeholders:
— " [problem_image_X]~ for original problem images (e.g.,
- “[problem_image_1]", "~ [problem_image_2]")
— “[reasoning_image_X]~ for images generated during
-~ reasoning (e.g., ~[reasoning_image_1]"7,
-~ " [reasoning_image_2]")
2. Image Data: The actual image data corresponding to the
-~ placeholders, provided separately.

Your Task =================
Generate a clean, logical multimodal reasoning trace as
~ **plain textxx that represents the *idealx reasoning
-~ process to solve the problem.

== = OUTPUT FORMAT =
You MUST generate the formatted reasoning trace with the
-~ following structure:

QUESTION:

<The original problem statement with text and image

—~ placeholders: <image_start>[problem_image_1]<image_end>,
~ <image_start>[problem_image_2]<image_end>, etc. Stay as
- close to the original problem statement as possible but
~ remove noise to ensure clarity>

REASONING TRACE:

THOUGHT 0: <Clear description of initial reasoning step that
-~ ddentifies key elements of the problem>

THOUGHT 1: <Next reasoning step, often explaining why an
~ image will be created>
<image_start>[reasoning_image_1l]<image_end>

THOUGHT 2: <Further reasoning step based on the image,

~ explaining insights gained>
<image_start>[reasoning_image_2]<image_end>

// Additional thoughts and images as needed
<image_start>[reasoning_image_X]<image_end>

THOUGHT N: <Final reasoning step before the answer,

~ summarizing key insights>

FINAL ANSWER:
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<The final calculated answer based on the reasoning>
e T T T Guidelines e

1. Enhancing Original Trace Rather than Generating New Trace:
— Instead of generating a new trace, your task is to
-~ enhance the original trace (which is a correct trace
-~ but rather concise and lacks coherent multimodal
-~ reasoning) by adding more details and explanations, see
-~ the following sections of guidelines for more details.
— You MUST use all the images provided in the original
- trace.
- You should use the original trace as a reference rather
~ than copying it verbatim.

2. Multimodal Reasoning Flow:
— Develop a coherent, step-by-step chain of thought that
-~ seamlessly integrates textual and visual reasoning.
— Clearly explain the necessity of generating a sketch /
» visual thought / image before introducing its
- placeholder.
— After each image placeholder, describe the insights
-~ gained from the sketch / visual thought / image, and
- how it contributes to advancing the solution.
— Ensure each step logically builds on the previous ones,
-~ especially between text reasoning and visual reasoning
steps.

3. Image Placeholders and References:

— Use placeholder tags ONLY when you want to actually
-~ 1insert/show/generate an image in your trace. When
-~ doing so, write the corresponding placeholder tag
- exactly as shown, including the <image_start> and
-~ <image_end> tags.

— Each unique image in the original problem and the
-~ reasoning trace should be represented by a unique
-~ placeholder tag, and each unique placeholder tag
-~ should only show up once in the trace.

— When referring to images in your explanations, use

-~ natural language descriptions (e.g., "the diagram in
-~ the question”, "the first sketch", "the visual thought
- X I created") instead of using placeholder tags. This

-~ 1s important because it helps us to parse into

-~ interleaved text and image sequences.

— For images from the original problem, use:

-~ <image_start>[problem_image_X]<image_end>

— For sketches or visuals generated during reasoning, use:
-~ <image_start>[reasoning_image_X]<image_end>

4. Narrative Style:
- Remove irrelevant technical details such as debugging
-~ info, code snippets, and LaTeX package imports.
- Eliminate verbose language that do not contribute to
- solving the problem.
— Focus on the essential reasoning path that leads to the
~ correct solution, using concise and clear language to
-~ describe the overall reasoning process.
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F.2 PROMPT FOR ENHANCING PROGRAM GENERATED TEMPLATE DATA

Prompt Template 1

You are an expert in enhancing multimodal reasoning traces.

—~ Your task is to transform a template reasoning trace into
-~ a diverse multimodal reasoning trace that correctly

-~ solves the problem, while staying close to the original

—~ template and final answer.

—————— == INPUT ====== == =
1. Problem & Template Trace: A template with interleaved text
-~ and image placeholders:

- " [problem_image_X]~ for original problem images (e.g.,

-~ " [problem_image_1]7)
— " [reasoning_image_X]  for images generated during
-~ reasoning (e.g., ~[reasoning_image_1]")

2. Image Data: The actual image data corresponding to the
-~ placeholders, provided separately.

Your Task =================
Generate a concise multimodal reasoning trace as =*x*plain
>  text*x.

======= ====== OUTPUT FORMAT = == =
You MUST generate the formatted reasoning trace with the
-~ following structure:

QUESTION:

<Rewrite the problem statement in your own words while
-~ maintaining all key information. Do not change key
~ information. Include image placeholders:

~ <image_start>[problem_image_1]<image_end>,

-~ <image_start>[problem_image_2]<image_end>, etc.>

REASONING TRACE:

THOUGHT 0: <Identify key elements of the problem>
THOUGHT 1: <Explain reasoning step, often why an image /
~ sketch / visual thought is needed>
<image_start>[reasoning_image_1l]<image_end>

THOUGHT 2: <Explain insights from the image>
<image_start>[reasoning_image_2]<image_end>

// Additional thoughts and images as needed
<image_start>[reasoning_image_X]<image_end>

THOUGHT N: <Summarize key insights before answer>

FINAL ANSWER:
<The original final answer in the template, do not change it>

Guidelines ==

1. Diversifying the Template:
- Rewrite the problem statement and reasoning steps in
-~ your own words while preserving all key information.
— Avoid deviating from the original template reasoning
~ structure. Your job is to diversify the text of the
-~ original trace, not the logic.
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- Vary the language and phrasing to avoid repetitive

- patterns.

— You MUST use all the images provided in the original

- trace.

— You MUST keep the original final answer.
— Maintain the original template's core reasoning

~ structure and rationale while introducing textual

-~ reasoning refinements rather than substantial changes
-~ to the logical flow.

2. Multimodal Reasoning Flow:
— Develop a coherent, step-by-step chain of thought that
-~ seamlessly integrates textual and visual reasoning.
- Clearly explain the necessity of generating a sketch /
~ visual thought / image before introducing its
- placeholder.
— After each image placeholder, describe the insights
-~ gained from the sketch / visual thought / image, and
-~ how it contributes to advancing the solution.
— Ensure each step logically builds on the previous ones,
~ especially between text reasoning and visual reasoning
- Steps.

3. Image Placeholders and References:
— Use placeholder tags ONLY when you want to actually
~ insert/show/generate an image in your trace. When
-~ doing so, write the corresponding placeholder tag
-~ exactly as shown, including the <image_start> and
-~ <image_end> tags.
— Each unique image in the original problem and the
~ reasoning trace should be represented by a unique
-~ placeholder tag, and each unique placeholder tag
~ should only show up once in the trace.
— When referring to images in your explanations, use
-~ natural language descriptions (e.g., "the diagram in
-~ the question", "the first sketch", "the visual thought
- X I created") instead of using placeholder tags. This
~ 1s important because it helps us to parse into
-~ interleaved text and image sequences.
— For images from the original problem, use:
-~ <image_start>[problem_image_X]<image_end>
- For sketches or visuals generated during reasoning, use:
~ <image_start>[reasoning_image_X]<image_end>

F.3 PROMPT FOR ALGORITHMIC PROBLEMS

Prompt Template 2

You are an expert in mathematical problem solving,
~ algorithmic reasoning, visual explanation, and creating
-~ multimodal reasoning traces.

1. STRICT VISUALIZATION POLICY (IMPORTANT) :
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You are only allowed to produce at most 3 [VIS_SPEC]
—~ visualizations, and they must all appear at the very
- beginning of your reasoning (within the first 3--4
~ thoughts). You may only use the following types for these
~ visualizations:
- graph
- flow_network
- tree_from_dict
- tree_from_root
- grid

After these initial visualizations, you must do all further
-~ reasoning purely mentally/textually or with
- pseudocode——NO MORE [VIS_SPEC] blocks are allowed after
- the first 3. Any attempt to include more than 3
—~ visualizations or use a disallowed type will be ignored.
The visual reasoning should only be used to understand the
- setup of the question - humans visualize at the beginning
- to ““set the board.'' The actual problem solving is done
- purely textually.

**xGeneral Rules:xx
— Interleave THOUGHT steps and [VIS_SPEC] image requests.
— Your final reasoned solution must match the logic of the
-~ gilven solution code.
— Prefix THOUGHT 0 with REASONING TRACE in the previous line.
- Prefix each reasoning step with “"THOUGHT n:'' (n starts at
- 0, less than 50 words each).
- Max 3 [VIS_SPEC] blocks, all within the first 3--4
-~ thoughts.
— Diagram #1: raw structural sketch (graph topology, blank
-~ grid, etc.).
- Diagram #2--3: showcase pivotal elements if helpful.
— *«xInternal self-check (no output) :x* ~“Would a human

—~ scribble this as a quick setup sketch?'' If the answer is
- no, **xdo not*x emit a VIS_SPEC.
— Strictly do not regenerate the same image - simply refer to

-~ the previous images in text if needed.

- Max of 10 thoughts.

- Every visualization request xxmustx* use a minimal

- [VIS_SPEC] block with the correct type specified. Do not
- use any other format.

— Do #**notxx include file names, imports, or drawing code.

—~ The orchestrator will handle image generation.

- If you cannot meaningfully wvisualize or correctly visualize
-~ a thought using the provided tools and inputs, then do

-~ not generate an image.

- Images are meant to be simple and visually cohesive - do

-~ not make grandiose images with titles and axis - it's

-~ simply for a baseline understanding of the question.

— The first line of the trace should be QUESTION: followed by
-~ a detailed in depth recap of the problem, specifying all
-~ the important aspects, without mentioning the solution.

2. Validity Rules:
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- All [VIS_SPEC] parameters must be valid, fully-formed

~ Python literals.

- For [VIS_SPEC] type "grid", the values must be a valid

~ Python list of lists with exactly rows rows and cols

-~ columns (or a flat list of length rows = cols), and each
- value should be a number or string.

- For type graph, tree_from_dict, tree_from_root, and

~ similar, node and edge labels may be strings or integers,
- but all structures must be valid Python literals.

— Never output incomplete or empty lists/arrays/dicts in

—~ [VIS_SPEC] blocks. All lists must be fully closed and

- contain at least one value, unless an empty structure is
~ explicitly required by the problem.

— Do not use variable names, symbolic labels, ellipses, or

-~ placeholders (e.g., al, x, \ldots, an) anywhere in the

-~ [VIS_SPEC].

*% [VIS_SPEC] Reference Examples: Your blocks must follow the
- same format as these.x*x

[VIS_SPEC]

type: graph

nodes: [A,B,C]
edges: [(A,B), (B,C)]
[/VIS_SPEC]

[VIS_SPEC]

type: flow_network

nodes: [A,B,C]

edges: [(A,B), (B,C)]

flows (optional): {(A,B): 2, (B,C): 1}
capacities (optional): {(A,B): 3, (B,C): 2}
[/VIS_SPEC]

\ldots
\ldots
\ldots

3. Reflection step immediately after each VIS_SPEC
— Write a new THOUGHT that:
a. Describes what you see in the previous generated
-~ “reasoning_image_N.png.
b. Explains how it informs your next reasoning move.

4. FINAL ANSWER
- After all reasoning, output ““FINAL ANSWER:'' and your
~ concise solution (pseudocode is sufficient)

5. Formatting and Output Requirements
— Everything must be plain text with only the full
~ QUESTION (just the problem itself, not the name of the
- problem), FINAL ANSWER, REASONING TRACE marker,
~ THOUGHT lines and VIS_SPEC markers.

41



Under review as a conference paper at ICLR 2026

G IMPACT STATEMENT

All data sourced in this work were either publicly available under open licenses or generated syn-
thetically. We ensured that all original content and assets used in the dataset creation process respect
copyright and licensing terms. No human subjects were involved, and we do not foresee any di-
rect harm to individuals or communities as a result of this work. The dataset is intended solely for
academic research to improve multimodal reasoning capabilities in Al systems.

H LICENSES

We list the licenses involved in this work as follows,

e Anole-7B model is under Chameleon Research License.

* BAGEL-7B-MoT model is licensed under the Apache 2.0 license. It is finetuned from
Owen2.5-7B-Instruct and siglip-so400m-14-384-flash-attn2 model, and uses the FLUX.1-
schnell VAE model, all under Apache 2.0.

* ImageNet dataset in under BSD 3 license.

* Visual CoT dataset is licensed under CC BY 4.0

e MATH dataset (Hendrycks et al.,[2021) is under MIT License.
* OpenStax Physics books are license under CC BY 4.0.

* MIT OCW Physics lecture notes under CC BY 4.0.

* Maze datasets is licensed under CC BY 4.0.
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