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Abstract

Personalized Intelligence (PI) is the problem of001
providing customized AI experiences tailored002
to each individual user. In many applications,003
PI is preferred or even required (Martinez et al.,004
2017; Rudovic et al., 2018). Existing person-005
alization approaches involve fine-tuning pre-006
trained models to create new customized mod-007
els. However, these approaches require a signif-008
icant amount of computation to train, scaling009
with model size and the number of users, in-010
hibiting PI to be realized widely. In this work,011
we introduce a novel model architecture and012
training/inference framework to enable Person-013
alized Intelligence at scale. We achieve this014
by attaching a Personalization Head (PH) and015
freezing the base pre-trained LM. Since only016
the parameters in PH are updated during train-017
ing, this results in a model much smaller than018
the conventional fine-tuned LM when scaled019
across users. We evaluate on academia and020
industry-focused datasets and show that this is021
much more scalable than traditional fine-tuning022
and outperforms zeroshot baseline in F1 score.023
We identify key factors required for effective024
PH design and training.025

1 Introduction026

As AI becomes ubiquitous in our lives, the expe-027

rience remains largely homogeneous across users.028

Companies invest a tremendous amount of data and029

time into training one or more sets of models which030

are then served to all users (Wiggers, 2021). How-031

ever, in many cases, these "one-size-fits-all" mod-032

els provide suboptimal experience on an individual033

level because of the high degree of heterogeneity in034

the user population (Bellec, 2020; Measures, 2021).035

This calls for Personalized Intelligence enabled by036

AI models that can continuously learn and improve037

with user feedback and are tailored to each user.038

The major obstacle in realizing Personalized In-039

telligence is the cost of training and storing individ-040

ualized models in production (Sharir et al., 2020;041

Figure 1: Example of individually personalized experi-
ence.
Strubell et al., 2019). State-of-the-art deep learning 042

models are larger than ever and require significant 043

computation cycles to train. Therefore, the brute- 044

force approach of fine-tuning pre-trained models 045

per individual user is not feasible due to the high 046

compute and storage complexity which scales with 047

the number of users. 048

Zeroshot models have been studied recently as 049

a method for applying pre-trained models to solve 050

new problems domains without any additional train- 051

ing (Brown et al., 2020a; Raffel et al., 2020; Sanh 052

et al., 2021). While promising, zeroshot models’ 053

performance is still ways off from the level of ac- 054

curacy that is needed for production usage (Halder 055

et al., 2020; Wenpeng Yin and Roth, 2019). Thus, 056

the question remains as to how to enable Personal- 057

ized Intelligence at a production scale for millions 058

of users and beyond. 059

In this work, we propose a novel model training 060

and inference framework for Personalized Intel- 061

ligence at scale. In order to enable individually 062

personalized models for a large user population, 063

we investigate the approach of attaching to a pre- 064

trained transformer-based encoder, a small module 065

called Personalization Head (PH). In our frame- 066

work, we train only the PHs while keeping the 067

base models frozen, as shown in Figure 1. Our in- 068

sight here is that the language representation from 069
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the state-of-the-art encoders (e.g., BERT) captures070

high-level language features and can be "trans-071

lated" to solve personalized problems. We address072

the following key questions in this paper:073

1. Can the PHs effectively leverage output pre-074

trained LM despite not being jointly trained?075

2. How should PHs be designed to scale to mil-076

lions of users and beyond?077

3. How should the PH design change based on078

its target personalization task?079

Transformer architectures have been shown080

to be effective in a wide range of translation081

tasks (Vaswani et al., 2017; Liu et al., 2020; Gheini082

et al., 2021). Leveraging this insight, we design083

our PH to constitute of a single transformer en-084

coder block with multi-head attention, followed085

by a linear classification layer. Because the large-086

scale transformer base is frozen during training,087

this base can be used to serve across users and088

only a small PH needs to be fine-tuned and stored089

individually. We explore the design space of PH090

by experimenting with a spectrum of designs with091

varying model sizes and training costs.092

For evaluation, we explore the efficacy of093

our PHs on academia and industry-oriented094

datasets, comparing with the performance of ze-095

roshot models and traditional fine-tuning approach.096

We show that the PHs can effectively leverage the097

output from the frozen encoder to achieve com-098

parable state-of-the-art performance. Specifically,099

we show that current zeroshot models are not ef-100

fective in this context and the PHs outperform the101

zeroshot baselines by up to XX. Furthermore, we102

show that our personalization framework requires103

orders of magnitude less training cycles and model104

storage cost while maintaining comparable perfor-105

mance when compared to fine-tuning the entire106

model, drastically improving the applicability of107

these LMs for production usage. We make the108

following specific contributions in this paper:109

• We introduce a novel training and infer-110

ence framework for Personalized Intelligence111

where only a small Personalized Head needs112

to be trained and stored for each user instead113

of the traditional approach of fine-tuning a114

language model.115

• We design the Personalization Heads (PH),116

a transformer-based "head" module that ef-117

fectively adapts its frozen LM base outputs to118

specific personalized problems without having119

to fine-tune the base LM. The implementation 120

of the proposed framework and PH architec- 121

ture are open-sourced.1 122

• We evaluate the proposed PH on academia 123

and industry-oriented datasets and show it out- 124

performs current approaches in accuracy and 125

scalability. We present a series of insights and 126

design considerations for delivering personal- 127

ized intelligence at scale. 128

2 Fine-tuning at Scale 129

Let M be a pre-trained language model (LM) and 130

ΘM be the set of parameters of M . When applying 131

M to a downstream task T with labelled training 132

data DT , a linear output layer L with parameters 133

ΘL is attached to M . M and L are trained jointly: 134

Θ1M ,Θ1L Ð argmin
ΘM ,ΘL

LT pDT ; ΘM ,ΘLq (1) 135

where L is the loss function and Θ1M and Θ1L are 136

the fine-tuned parameters of the language model 137

M and linear layer L, which are distinct from ΘM . 138

Let ΩpΘq be the computation complexity required 139

to train a set of parameters Θ. We then define 140

the training complexity of the above fine-tuning 141

operation as: 142

ΩpΘ1M q ` ΩpΘ1Lq (2) 143

Consider the scenario of fine-tuning for an in- 144

dividual user to create a personalized model. We 145

define U “ tpD1, L1q, pD2, L2q, ..., pDN , LN qu 146

as the collection of personalization tasks where 147

i P r1, ..., N s for N users. Di is the unique data 148

for user i and Li is the loss function. The problem 149

of fine-tuning to personalize for user i becomes 150

Θ1M,i,Θ1L,i Ð argmin
ΘM ,ΘL

LipDi; ΘM ,ΘLq (3) 151

The aggregated training complexity is 152

N
ÿ

1

ΩpΘ1M,iq `

N
ÿ

1

ΩpΘ1L,iq (4) 153

The collection of model parameters to be stored is: 154

155
N
ÿ

1

|Θ1M,i| `

N
ÿ

1

|Θ1L,i| (5) 156

1https://datasets.code URL obfuscated for
blind review.
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Figure 2: Overview of the proposed approach for personalization at scale with Personalization Head (PH).

3 Scalable Personalized Intelligence157

Large-scale pre-trained language models can be158

adapted and personalized for each individual159

through the fine-tuning process defined above. The160

shortcoming is LMs (M ) have millions to billions161

of parameters (ΘM ) (Brown et al., 2020b). The162

training complexity (ΩpΘM q) is high for a given163

task and it scales with the number of users, as de-164

fined in Equation 4.165

Inspired by the effectiveness of adapting pre-166

trained LMs to new tasks, we hypothesis that by167

adding a lightweight transformer module between168

the LM and the linear output layer, we can elimi-169

nate the need for fine-tuning the LMs and keep it170

constant across all users. The intuition is that the171

LMs learn to capture generalized language features172

and a small transformer can leverage that for new173

tasks. To this end, we introduce Personalization174

Head (PH). Figure 2 provides an overview of the175

proposed approach.176

3.1 Fine-tuning with PH177

We define PHi as the Personalization Head for178

user i. When fine-tuning for a given user, we keep179

the LM parameters frozen and only train the PH180

and the linear output layer:181

Θ1PH ,Θ1L Ð argmin
ΘPH ,ΘL

LT pDT ; ΘM ,ΘPH,ΘLq

(6)182

Note that, compared to the traditional fine-tuning183

defined in Equation 1, no Θ1M is generated. The184

aggregated training complexity for fine-tuning with185

PH is: 186

N
ÿ

1

ΩpΘ1PH,iq `

N
ÿ

1

ΩpΘ1L,iq (7) 187

and the total parameters is: 188

ΘM `

N
ÿ

1

|Θ1PH,i| `

N
ÿ

1

|Θ1L,i| (8) 189

PH’s model architecture is much smaller than a 190

state-of-the-art language model. Therefore the 191

model size and training cost is significantly lower: 192

|ΘPH | ăă |ΘM |, ΩpΘ1PHq ăă ΩpΘ1M q (9) 193

As a result, the training complexity and model size 194

are significantly reduced when fine-tuning with PH. 195

3.2 Universal Binary Classification 196

We aim to design a personalization framework that 197

is generalizable to arbitrary classification tasks 198

without requiring modification to the model ar- 199

chitecture. To that end, we draw inspiration 200

from (Halder et al., 2020) and formulate the multi- 201

class classification problem as a series of binary 202

classification tasks: 203

fplabelpyiq, xq “ P pTrue|yi, xq @Y (10) 204

We provide the model with both the class label 205

labelpyiq and the input text x and the output layer 206

generates a binary True{False prediction with 207

a confidence score P . The class with the most 208
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Dataset Description # Classes # Train # Test
SNIPS Smart assistants questions 7 13,034 1,442

Clinc150 Production VA tasks 150 15,100 1,500

Table 1: Dataset Statistics

confident True prediction is selected as the final209

prediction:210

y “ argmax
iPt1...Mu

fplabelpyiq, xq (11)211

where M is the number of classes.212

3.3 PH Architecture213

The functionality of the PH is converting the feature214

representation from pre-trained language models215

to new representations suited for a new problem216

unique to an individual. This is akin to a language217

translation problem, at which Transformer models218

have been proven to perform well (Raganato et al.,219

2018; Wang et al., 2019; Lu et al., 2021). We220

draw inspiration from these works and base our PH221

design on the Transformer architecture.222

Figure 2 shows an overview of the PH, which223

consists of a single Transformer encoder layer. We224

follow the Transformer architecture defined in the225

original transformer paper (Vaswani et al., 2017).226

Each PH has a multi-head self-attention layer and227

two fully-connected layers, followed by layer nor-228

malization (Ba et al., 2016). Dropout (Srivastava229

et al., 2014) is applied to the output of the fully-230

connected layers.231

It is important to understand how to configure the232

encoder block to design an effective PH. To help233

us explore the design space, we parameterize the234

following configuration: the size of the hidden di-235

mension of the feedforward network in the encoder236

and the number of attention heads in the attention237

layer. We select these parameters to study because238

they have a significant effect on the size and capa-239

bility of a Transformer encoder. We investigate the240

impact of these factors on the performance of PH241

in detail in Section 5.242

4 Experiments243

4.1 Datasets244

We evaluate the proposed approach by apply-245

ing PHs to adapt to a pre-trained LM to the246

SNIPS (Coucke et al., 2018) dataset and Clinc-247

150 (Larson et al., 2019) dataset. We select SNIPS248

because its classes feature intents that cover many249

popular user daily interaction topics and it is a rep- 250

resentative dataset widely studied in the literature. 251

We select Clinc-150 for its focus on production use 252

cases. It has 150 intents and features intent and 253

sentences inspired by real virtual assistants in pro- 254

duction. An overview of the datasets is shown in 255

Table 1. Due to the large number of testing exam- 256

ples in Clinc’s original test set, we randomly sam- 257

ple 10 examples (out of 30) per class to construct a 258

representative test set. This test set is used across 259

all experiments, including baselines and PHs. 260

We generate ă class, text ą pair as training 261

and testing input and True{False label as output 262

for each training example in the dataset. We decide 263

consciously to include only the True examples and 264

leave out the False examples to optimize training 265

cost. Training with True and False examples in- 266

creases the size of training data by a factor equal 267

to the number of classes, incurring significant ad- 268

ditional training cost (Halder et al., 2020). This 269

issue is further exacerbated in production use cases, 270

where there can exist hundreds of classes, as in the 271

Clinc-150 dataset. 272

4.2 Experimental Settings 273

We implement our model using the Flair NLP 274

framework (Akbik et al., 2019) with an underlying 275

pytorch runtime (Paszke et al., 2019). We use the 276

uncased BERT encoder as the base LM (Devlin 277

et al., 2018). We train for 50 epochs (unless noted 278

otherwise) and report F1 scores on the test set. For 279

hyper-parameters, we use a batch size of 16 and 280

a learning rate of 0.02, following the standard in 281

(Halder et al., 2020). 282

5 Results 283

We compare PHs to fine-tuning both LM and linear 284

output layer, fine-tuning just the linear layer, and 285

applying the model zeroshot. 286

5.1 Understanding zero-shot efficacy 287

We first investigate the efficacy of the zeroshot ap- 288

proach. We use the TARS classifier from (Halder 289

et al., 2020) to predict the test examples without ad- 290

ditional training and measure the F1 score, shown 291

in the first row of table 2. The TARS classifier uses 292

BERT as the underlying language model and is pre- 293

trained on a suite of datasets including classifica- 294

tion datasets such as AGNews and DBPedia (Zhang 295

et al., 2015). It achieves an F1 score of 35.27 296

and 23.98 on SNIPS and Clinc, respectively, much 297
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Model
# Params

/ User
Size

/ User
SNIPS

F1 / Acc.
Clinc

F1 / Acc.
Zero-shot TARS (BERT) - - 35.27 / 26.70 23.98 / 23.67

Fine-tuning
LM + Linear Layer

BERT 109M 417MB 98.61 / 98.61 93.79 / 95.70
TARS 109M 417MB 98.13 / 98.06 91.18 / 94.27

Fine-tuning
Linear Layer Only

BERT 1.5K 7KB 68.70 / 58.67 52.43 / 50.27
TARS 1.5K 7KB 71.12 / 63.11 33.27 / 33.20

Personalization Head (PH)
w/ frozen LM

Hidden Dim # Attn. Heads

2048
8

5.52M 21MB
96.52 / 96.12 76.57 / 77.00

4 97.18 / 96.74 76.46 / 76.47
2 97.33 / 97.16 76.36 / 75.93

1024
8

3.94M 15MB
97.09 / 97.09 76.37 / 74.40

4 96.76 / 96.39 75.82 / 75.73
2 96.77 / 96.67 76.61 / 76.60

512
8

3.15M 12MB
97.05 / 97.02 75.95 / 76.33

4 96.26 / 95.49 70.79 / 71.20
2 96.94 / 96.74 75.29 / 75.27

256
8

2.76M 11MB
95.90 / 95.70 66.99 / 67.53

4 95.64 / 95.15 68.64 / 67.87
2 97.06 / 96.32 67.68 / 67.13

128
8

2.76M 11MB
95.32 / 95.28 63.43 / 64.53

4 96.32 / 96.32 62.70 / 63.67
2 96.36 / 96.36 63.82 / 64.60

Table 2: F1 score and accuracy of the proposed PHs and baselines of zeroshot, fine-tuning the LM + linear head
and fine-tuning the linear head only, evaluated on SNIPS and Clinc-150 datasets. We also show the number of
parameters that are required to be fine-tuned for each approach, as well as the size of the personalized model to be
managed for each user as a representation of the scalability of each approach.

Hidden Dims # Params Size
epoch=50

# data/class=100
epoch=100

# data/class=100
epoch=50

# data/class=200
epoch=100

# data/class=200
2048 2.7M 10.5MB 65.92 70.43 (+4.50) 78.12 (+12.20) 92.99 (+27.70)
1024 3.2M 12.0MB 57.42 65.39 (+7.97) 80.17 (+22.75) 93.72 (+36.30)
512 3.9M 15.0MB 61.75 67.01 (+5.26) 83.72 (+21.97) 93.99 (+32.24)
256 5.5M 21.0MB 57.40 63.58 (+6.18) 79.85 (+22.45) 94.58 (+37.18)

Table 3: F1 score (and differential) with increasing training data and/or training for more epochs

lower than the reported state-of-the-art results. This298

shows that zeroshot approach requires significant299

improvement to reach the level of performance re-300

quired for adapting to new tasks in production.301

5.2 PH performance302

Table 2 shows the performance of the Personaliza-303

tion Head(PH) when fully trained and evaluated on304

SNIPS and Clinc. We experiment with a wide range305

of PH configurations by varying the hidden dimen-306

sion of the feedforward network and the number of307

attention heads. For brevity, we include results for308

configurations with hidden dimensions from 128 to309

2048 and # attention heads of 2, 4, and 8. Results310

for additional configurations are included in the311

Appendix. We compare to the current approach of312

fine-tuning both LM and the linear output layer and313

fine-tuning only the linear output layer while keep-314

ing the base LM frozen. We also include in Table 2315

the # training parameters and model size required316

per user for PHs and the fine-tuning baselines.317

We observe that PHs, across all configurations,318

significantly outperform fine-tuning just the linear 319

layer on both datasets. When comparing to the 320

baseline of fine-tuning the entire model stack of the 321

base language model and the linear output layer, 322

PH achieves similar results for the SNIPS dataset, 323

while requiring orders of magnitude less training 324

parameters. Fine-tuning both LM and linear layer 325

achieves the better F1-score on Clinc but it requires, 326

for each user, the training of 109 million parame- 327

ters which generates a 417MB model, while each 328

PH only incurs for each user 2-5 million additional 329

parameters to learn and 11 - 21MB model to store. 330

The large computation cycles and storage capacity 331

required for the fine-tuning approach renders it in- 332

applicable for production applications that require 333

scaling to millions of users and beyond. We ana- 334

lyze the scalability impact of PHs in more detail in 335

Section 6.3 336

6 Analysis 337

We conduct experiments aimed at understanding 338

the learning behavior of PHs and gain insights into 339
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Figure 3: F1 Score w.r.t # training epochs, for fixed amounts of data.
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Figure 4: F1 Score w.r.t # training data, for fixed amounts of epochs.

how to design and deploy an effective PH for real-340

world use cases. We aim to answer the following341

questions: 1) how to effectively train PHs in pro-342

duction? 2) how does the PH configuration affect343

its learning behavior? 3) does larger PH achieve344

better performance? is there a sweet spot of PH345

design that is the most compute and data effective?346

6.1 Impact of data vs epoch on training PHs347

We study the impact of training data scale and train-348

ing epochs on the PH performance. In real-time349

training in production, there is often limited train-350

ing data and training cycles available. Therefore it351

is imperative to understand which training methods352

are effective. To this end, we construct a SNIPS353

sub-dataset by random sampling of 100 training354

samples per class (1400 samples in total). We keep355

the full SNIPS test set for F1-score measurement.356

We train the spectrum of PH designs for 50 epochs357

and then 50 more epochs (100 epochs in total) and358

record the F1 score at both points. We then select359

another 100 training samples per class to add to360

the training set and repeat the same experiment.361

Table 3 shows the average F1 scores, as well as 362

improvement gained by increasing training data, 363

training epochs, and both. 364

We observe that increasing the training data from 365

100 per class to 200 per class provides a signifi- 366

cantly higher F1 score increase (+19.85 on aver- 367

age), compared to training for more epochs (+5.98 368

average). This behavior is consistent across the 369

PH configurations. This is intuitive because 100 370

training samples/class represents only 5.3% of the 371

full SNIPS training set and does not provide robust 372

coverage of the problem space. Therefore, training 373

data scale should be the priority over more training 374

iterations in the early stages of applying a PH to a 375

personalized problem. 376

6.2 PH Design Analysis 377

Two main design choices for PH are the hidden di- 378

mension size of the encoder block and the number 379

of attention heads in the multi-attention layer. We 380

study how these design choices impact the learning 381

behavior of the PH. To that end, we conduct a set 382

of experiments where we gradually increase the 383
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amount of training data or epochs and measure the384

F1 score at each stopping point. This is to simulate385

a training setup in production, where the model386

gradually gets exposed to more training data as the387

applications collect more data from the users.388

Hidden Dimension Size Figure 3 shows the F1389

score of PHs with different hidden dimensions as390

they are trained with more epochs on the same391

amount of training data. We experiment with 50,392

100,150, and 200 training examples per class for393

25, 50, 75, and 100 epochs. Conversely, Figure 4394

shows the F1 score of the same suite of PHs as they395

are trained with more training examples for the396

same number of training epochs. We make several397

observations from the result.398

First, we observe that when the model’s exposure399

to data is limited in the early stages of training, PH400

training can exhibit unpredictable behavior. This401

is shown in the leftmost graphs of Figure 3 and 4,402

where the model performance is not improving with403

additional training data or more training epochs.404

Furthermore, larger PHs perform better than405

smaller PHs but with diminishing returns at higher406

ends, indicating a sweet spot of PH design. We407

observe 512 to be the sweet spot of PH design408

for SNIPS as it performs better or similar to the409

other configuration across all experiments. This410

finding is corroborated with results on the Clinc-411

150 dataset. Figure 5 shows the F1 score of PHs412

with varying hidden dimensions on both SNIPS and413

Clinc-150. We observe similar trends for dimin-414

ishing return in performance for Clinc as the PH415

design gets larger. Similarly, 512 is the inflection416

point of F1 score improvement for Clinc, making417

it the sweet spot PH design for Clinc. Furthermore,418

when comparing Clinc against SNIPS, we observe419

a slower rate of F1 score growth with respect to420

hidden dimension sizes in Clinc than SNIPS. This421

makes sense because, as described in Section 4.1,422

Clinc is a more diverse and challenging task with423

significantly more classes than SNIPS.424

# Attention Heads We study the impact of atten-425

tion heads on PHs performance. Figure 6 shows F1426

score w.r.t hidden dimensions per attention head.427

We follow the description in (Vaswani et al., 2017)428

that when changing the number of attention heads,429

the hidden dimensions of the feedforward layer430

are effectively distributed evenly among the avail-431

able attention heads. We observe that PHs achieve432

better performance with higher hidden dimensions433

per head but eventually see diminishing returns at434
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Figure 5: F1 score of PH w.r.t. hidden dimension size

higher dimensionality. This is aligned with our 435

findings on the impact of total hidden dimensions 436

on PH performance. 437
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PH - Hidden dimensions per attention head

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

SNIPS
CLINC150

Figure 6: F1 score of PH w.r.t. hidden dims per head

6.3 Scalability 438

We study the scalability of the PH approach and 439

its impact on production deployment. Because of 440

the complexity of personalization in production, 441

we first introduce a new metric, Personalization 442

Efficiency: 443

PE “
F ´ score2

Training Cost ˆ Model Size
(12) 444

to holistically evaluate a personalization approach. 445

Figure 7 shows the efficiency of 4 PH configura- 446

tions normalized to the fine-tuning BERT baseline. 447

We show that PHs achieve efficiency up to 155X 448

compared to the fine-tuning baseline. Furthermore, 449

for SNIPS we observe smaller heads generally mea- 450

sure higher in efficiency than larger heads but see 451

a diminishing return. For Clinc, 512 achieves the 452

highest efficiency of the PHs tested. This corrob- 453

orates our recommendation earlier that 512 is the 454

PH design sweet spot. 455
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We also quantify the potential storage overhead456

required for personalized models. Figure 8 shows457

the additional storage overhead required by the per-458

sonalized models per individual relative to the ex-459

isting user data in production. We use Gmail as an460

example application. We calculate approximately461

the current per-user data usage based on a report462

that Gmail user creates up to 1.4MB of data per day463

and 3 years is the average account lifetime (ZDNet,464

2012). Figure 8 shows that proposed PHs constitute465

1% - 1.5% of additional storage overhead across all466

4 sizes, while the fine-tuning baselines would incur467

around 40% additional storage overhead per user.468

7 Related Work469

The most common approach to NLU problems to-470

day is to leverage large pre-trained transformer-471

based language models (Devlin et al., 2018; Liu472

et al., 2019) typically trained on language under-473

standing objectives such as Masked Language Mod-474

eling and Next Sentence Prediction. These lan-475

guage models is then fine-tuned on a specific target476

task and have been shown to produce state-of-the-477

art results. This transfer of learning to the task478

of interest is achieved by tuning all of the model479

weights on that singular task. The performance of480

these LMs have shown to scale with model size481

(Kaplan et al., 2020) resulting in massive models482

consisting of billions of parameters (Brown et al.,483

2020a; Raffel et al., 2020; Sanh et al., 2021). While484

undeniably packed with knowledge, when applied485

to the online setting of personalization where data486

arrives in a stream the applicability of these lan-487

guage models is severely constrained as it results488

in a dedicated model of each user. This section ex-489

plores existing works improving the applicability490

of transformer models at scale.491

7.1 Zero-shot Learning 492

Zero-shot learning approaches aim to provide out- 493

of-the-box generalizable performance on a range 494

of language-based tasks without needing additional 495

training steps as required by traditional transfer 496

learning approaches. Recent approaches to this 497

problem frame this as a text-to-text generation task 498

(Brown et al., 2020a; Raffel et al., 2020; Sanh et al., 499

2021) giving rise heavy focus on prompt design 500

(Perez et al., 2021; Khashabi et al., 2020). While 501

shown to be fairly proficient in tasks such as QA 502

and Summarization, when applied text classifica- 503

tion tasks out-of-the-box zero-shot perform sub- 504

par (Halder et al., 2020; Wenpeng Yin and Roth, 505

2019). This is further shown in our zero-shot exper- 506

imental results. Halder et al. (2020) in their work 507

explores the shortcomings of the existing transfer 508

learning mechanisms for text classification, propos- 509

ing the formalization of text classification as a gen- 510

eral binary classification problem. We utilize this 511

formalization as a basis of our text classification 512

experimental architecture. 513

7.2 Adapter Networks 514

Another method used to finetune transformers is 515

adapter networks (Houlsby et al., 2019; Pfeiffer 516

et al., 2021). Adapters are new modules that add 517

a fully connected residual block for each unique 518

downstream task and finetune the layer norm pa- 519

rameters. Our approach is similar in nature but 520

instead applies a small trainable module allowing 521

us to keep the base language model completely 522

frozen during training. 523

8 Conclusion 524

Today’s AI experience remains largely homoge- 525

neous across all users. This is because they are of- 526

ten served with the same pre-trained models. Many 527

applications prefer or even require AI capability 528

personalized at the individual level. In this work, 529

we investigate achieving personalized intelligence 530

at scale. We introduce a novel model training and 531

inference framework, where a small personaliza- 532

tion head is added to adapt large-scale pre-trained 533

LMs. We only train the small PH and keep the base 534

LM frozen, thus significantly reducing the com- 535

putation and storage cost compared to the current 536

fine-tuning approach. We show that the PHs outper- 537

form zeroshot in accuracy and scales far better than 538

traditional fine-tuning approach. We then perform 539

analysis on various PH design factors. 540

8
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A Appendix 722

A.1 More PH configurations 723

hidden dim # attn. heads SNIPS Clinc

64
8 95.89 57.85
4 96.32 54.41
2 96.03 56.60

32
8 96.32 51.37
4 96.24 50.83
2 95.15 46.92

16
8 94.87 49.92
4 94.43 49.99
2 94.94 50.28

8
8 83.09 52.58
4 80.86 52.66
2 86.34 53.29

Table 4: F1 score of PHs with smaller sizes.

Table 4 shows the F1 score of PHs with 64, 32, 724

16, and 8 hidden dimensions, on SNIPS and Clinc 725

datasets. This is an extension to the result shown 726

in Table 2. We observe similar trends carry over to 727

this set of even smaller PHs. This shows that even 728

a tiny PH can adapt LM well to the SNIPS task. On 729

the other hand, the smaller PHs are not as effective 730

for the more challenging Clinc datasets. 731

A.2 Training for more epochs on Clinc 732

Table 5 shows the F1 scores of PHs of 4 different 733

sizes on Clinc when training for an additional 50 734

epochs (100 epochs in total). This shows that PHs 735

performance continues to improve with more train- 736

ing iterations, indicating that continuing training 737

for more iterations could still be beneficial in im- 738

proving PH performance after training on a decent 739

amount of training data and epochs. 740

A.3 Analyzing # of attention heads 741

Figure 9 and 10 analyzes the impact of # attention 742

heads on the performance of PHs. We conduct 743

experiments similar to that in Section 6.1. We grad- 744

ually increase the amount of training data while 745
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hidden dim # attn. heads Clinc

2048
2 78.29
4 77.25
8 77.78

512
2 75.82
4 75.05
8 74.98

128
2 65.29
4 65.72
8 63.63

32
2 51.35
4 53.24
8 52.84

Table 5: F1 score of PHs trained on clinc150 dataset for
an additional 50 epochs (100 epochs in total)

holding the training epochs fixed and measure the746

F1 score at each stopping point, and vice versa. We747

observe that, compared to hidden dimension sizes,748

# of attention heads has less effect on the learning749

behavior and capacity of the PHs.750

Figure 9: With the same number of training epochs, the
impact of training data on performance.

Figure 10: With the same amount of training examples
per class, the impact of epochs on performance.
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