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ABSTRACT

Diffusion Policy has demonstrated strong visuomotor modeling capabilities, but its
high computational cost renders it impractical for real-time robotic control. Despite
huge redundancy across repetitive denoising steps, existing diffusion acceleration
techniques fail to generalize to Diffusion Policy due to fundamental architectural
and data divergences. In this paper, we propose Block-wise Adaptive Caching
(BAC), a method to accelerate Diffusion Policy by caching intermediate action fea-
tures. BAC achieves lossless action generation acceleration by adaptively updating
and reusing cached features at the block level, based on a key observation that fea-
ture similarities vary non-uniformly across timesteps and blocks. To operationalize
this insight, we first propose the Adaptive Caching Scheduler, designed to identify
optimal update timesteps by maximizing the global feature similarities between
cached and skipped features. However, applying this scheduler for each block
leads to significant error surges due to the inter-block propagation of caching errors,
particularly within Feed-Forward Network (FFN) blocks. To mitigate this issue, we
develop the Bubbling Union Algorithm, which truncates these errors by updating
the upstream blocks with significant caching errors before downstream FFNs. As
a training-free plugin, BAC is readily integrable with existing transformer-based
Diffusion Policy and vision-language-action models. Extensive experiments on
multiple robotic benchmarks demonstrate that BAC achieves up to 3× inference
speedup for free.

1 INTRODUCTION

Diffusion Policy has gained substantial attention in robotic control, due to its ability to model action
distributions via conditional denoising processes (Chi et al., 2023). Recently, it has also been widely
adopted by vision-language-action models (Wen et al., 2025; Liu et al., 2025b; Hou et al., 2025)
to perform highly dexterous and complex tasks. However, its massive computational burden in the
denoising process makes the action frequency unable to satisfy real-time and smooth control. For
instance, on a 6-DoF robotic arm executing block pick-and-place, 50 diffusion denoising steps at
1 ms per step restrict the action update rate to 10 Hz, well below the 30–50 Hz needed for smooth
real-time control (Shih et al., 2023).

Despite the aforementioned necessity, the acceleration of Diffusion Policy remains an underexplored
field. Cache-based methods have recently gained significant attention in accelerating diffusion models
on image-generation tasks (Ma et al., 2024b; Wimbauer et al., 2024; Selvaraju et al., 2024; Chen
et al., 2024; Zou et al., 2025) and video-generation tasks (Liu et al., 2024a; Kahatapitiya et al., 2024;
Lv et al., 2024). However, they cannot be directly applied to Diffusion Policy, due to differences in
data characteristics and model architectures.

To address this issue, we aim to propose a customized feature caching method for Diffusion Policy. We
first explore the distinct characteristics of Diffusion Policy models and identify two key observations
in feature similarities: (1) feature similarities across timesteps vary non-uniformly, and (2) different
blocks exhibit distinct temporal similarity patterns as shown in Fig. 1.

Motivated by this observation, we propose Block-wise Adaptive Caching (BAC), a training-free
method that accelerates transformer-based Diffusion Policy by adaptively updating and reusing
cached action features at the block level. BAC integrates an Adaptive Caching Scheduler (ACS)
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(a) Feature similarities across timesteps.
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(b) Similarity change curves, measured between timestep t and t−10.

Figure 1: Temporal and block-wise feature similarity patterns. (a) Similarity matrices of blocks in the
third decoder layer. (b) Similarity change curves of different blocks. The feature similarity between
consecutive timesteps varies non-uniformly over time and differs across blocks.

to allocate block-specific caching schedules and a Bubbling Union Algorithm (BUA) to truncate
inter-block error propagation.

Specifically, the Adaptive Caching Scheduler aims to identify a set of cache update timesteps that
maximize the global feature similarities between cached and skipped features. However, directly
searching this set within an exponential search space is unacceptable. To address this challenge,
we reformulate the problem as a dynamic programming optimization, where the global similarity
serves as the objective and the block-specific similarity matrix defines the scores. Leveraging the high
episode homogeneity within a single task, the scheduler computes once before inference, incurring
virtually no additional cost.

While the Adaptive Caching Scheduler effectively determines update timesteps, extending the
scheduler to the block level can trigger significant error surges, leading to performance collapse.
We examine this problem theoretically and experimentally and attribute this failure to inter-block
caching error propagation: FFN blocks introduce the caching errors from upstream blocks during
their updates, due to the lack of intermediate normalization. To truncate the error propagation, we
propose the Bubbling Union Algorithm, which first selects the upstream blocks with large caching
errors and then enforces them to update their cache if downstream FFNs do.

Our main contributions are as follows:

1. We propose Block-wise Adaptive Caching, a training-free acceleration method for
transformer-based Diffusion Policy, which adaptively updates and reuses cached features at
the block level.

2. We develop the Adaptive Caching Scheduler that optimally determines cache update
timesteps by maximizing the global feature similarity with a dynamic programming solver.

3. We design the Bubbling Union Algorithm to further extend the caching schedule to the
block level by truncating inter-block caching error propagation, based on the theoretical and
empirical analysis of the error surge phenomenon in Diffusion Policy.

4. We conduct extensive robotic experiments to evaluate our method. The results demonstrate
that our method efficiently boosts Diffusion Policy by 3× for free.
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Figure 2: Comparison of Block-wise Adaptive Caching and Previous Caching Paradigms.

2 RELATED WORK

2.1 DIFFUSION POLICY

Diffusion models, initially developed for image generation (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Esser et al., 2024; Bar-Tal et al., 2024), have been adapted for robot policy learning (Martinez-
Cantin et al., 2007). Within the Diffusion Policy framework (Chi et al., 2023), both U-Net (Ron-
neberger et al., 2015) and Diffusion Transformer (DiT) (Peebles & Xie, 2023; Yuan et al., 2024; Zhao
et al., 2024) denoisers are supported, enabling scalable backbone designs. Recent VLA methods (Bro-
han et al., 2023; Kim et al., 2024; Wen et al., 2024; 2025) increasingly adopt Transformer-based
denoisers for stronger expressivity, but the iterative denoising steps induce significant inference
latency, motivating acceleration techniques (Xu et al., 2025; Song et al., 2025). Detailed discussion is
provided in Appendix A.2.

2.2 DIFFUSION MODELS CACHING

Despite the success of cache-based methods for diffusion models, their adaptation to Diffusion
Policy remains underexplored. Existing caching methods primarily target U-Net-based diffusion
models (Ma et al., 2024b; Wimbauer et al., 2024). For example, DeepCache (Ma et al., 2024b)
exploits the temporal redundancy inherent in U-Nets by caching high-level feature representations.
Nevertheless, these methods cannot be generalized to transformer backbones. Recently, some
methods (Selvaraju et al., 2024; Ma et al., 2024a; Chen et al., 2024; Zou et al., 2025) explore the
caching mechanism in transformer-based diffusion models. These methods typically operate at a
coarse granularity, with all the blocks sharing a uniform caching schedule (Selvaraju et al., 2024;
Ma et al., 2024b), i.e., updating the cache at uniform intervals. Despite some works extending this
schedule in a finer architectural granularity, they either require extra training (Ma et al., 2024a) or are
specifically designed for the patterns of the image generation process (Chen et al., 2024).

3 BLOCK-WISE ADAPTIVE CACHING

As illustrated in Fig. 3, BAC achieves a finer-grained cache schedule by first applying the Adaptive
Caching Scheduler to compute optimal update timesteps for each block and then employing the
Bubbling Union Algorithm to truncate inter-block error propagation. In this section, we first present
the preliminaries in Sec. 3.1. Next, we introduce the Adaptive Caching Scheduler in Sec. 3.2. To
extend the scheduler to the block level, we analyze the error surge phenomenon in Sec. 3.3 and
describe the Bubbling Union Algorithm in Sec. 3.4.

3.1 PRELIMINARIES

Diffusion Policy. Diffusion Policy treats robot visuomotor control as sampling from a conditional
denoising diffusion model (Chi et al., 2023). At each time step t, we first draw an initial noisy action
a
(K)
t from a standard Gaussian prior and then apply K learned reverse-diffusion steps:

a
(k−1)
t = fθ

(
a
(k)
t , o1:t, k

)
, k = K, K − 1, . . . , 1, (1)

3
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Figure 3: Framework of Block-wise Adaptive Caching (BAC). BAC enables adaptive feature caching
by introducing the Adaptive Caching Scheduler, and further supports block-wise scheduling through
the Bubbling Union Algorithm.

where fθ parameterizes the conditional reverse kernel (i.e. the denoiser) and the final sample a
(0)
t is

used as the control action.

Diffusion Transformer (DiT). The DiT architecture in Diffusion Policy utilizes an MLP to encode
observation embeddings, which are then passed into a transformer-based decoder. The decoder
consists of L layers, where each layer l contains a cross-attention (CA) block that conditions on
timesteps and observations, a self-attention (SA) block, and a feed-forward network (FFN) block. For
a given input h(l−1)

k at denoising step k, the output of layer l is computed by summing the residual
outputs of these blocks:

h
(l)
k = h

(l−1)
k + SA(l)

k + CA(l)
k + FFN(l)

k . (2)

Problem Formulation. To reduce redundant computations across timesteps in the denoising process
of diffusion models, cache-based methods reuse intermediate features to skip repeated computations
partially. Following existing caching methods (Ma et al., 2024b; Selvaraju et al., 2024), we adopt an
update-then-reuse paradigm.

Let bk denote the output of a target block at step k. A caching mechanism defines a set of update
steps C ⊆ {1, . . . ,K}, where:

• The update step: If k ∈ C, computes bk and updates its cached features.

• The reuse step: The block reuses the cached feature bk′ , which is computed in the most
recent update step k′ = min{i ∈ C | i > k}.

Following prior work (Zou et al., 2025; Selvaraju et al., 2024; Ma et al., 2024b), we construct a
baseline in which all blocks share a unified caching schedule, with a fixed update interval C (e.g.,
updating the cache every three timesteps). BAC aims to improve upon this baseline by allocating an
optimal C∗ for each block.

4
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3.2 ADAPTIVE CACHING SCHEDULER

Optimization Objective. In this work, we use cosine similarity to measure the similarity be-
tween features due to its superior performance in measuring directional consistency between high-
dimensional feature vectors. The consecutive similarity is calculated as:

sk = cos(bk,bk−1) =
b⊤
k−1bk

∥bk−1∥2∥bk∥2
, k = 1, . . . ,K, (3)

We define the interval similarity between timesteps i and j as ϕ(i, j) =
∑j

k=i+1 sk. A larger ϕ(i, j)
indicates lower caching errors incurred by reusing the cached feature bj over the interval [i, j]. The
value function is then:

max
C⊆{1,...,K}

|C|=M

M∑
m=0

ϕ(cm, cm+1 − 1), with c0 = 0, cM+1 = K, (4)

where c0 and cM+1 are boundary conditions representing the start step and the end step of the path.

Optimal Schedule Solver. The combinatorial nature of selecting M update steps from K timesteps
renders exhaustive search computationally infeasible for large K. To address this, we design a
dynamic programming (DP) solver that efficiently computes the optimal cache schedule.

Define the DP state DP[m][j] as the maximum cumulative similarity achievable when the m-th cache
update occurs at timestep j:

DP[m][j] = max

m∑
i=0

ϕ
(
ci, ci+1 − 1

)
. (5)

The corresponding state transition equation is given by:

DP[m][j] = max
0≤i<j

{DP[m− 1][i] + ϕ(i, j)} , (6)

To recover the optimal update schedule C∗ from the DP table, we introduce a pointer matrix:

PTR[m][j] = arg max
0≤i<j

{
DP[m− 1][i] + ϕ(i, j)

}
, m = 1, . . . ,M, j = 1, . . . ,K. (7)

Once both DP table and PTR table are filled, we dertermine the final endpoint as:

j∗ = arg max
1≤j≤K

DP[M ][j], (8)

and backtrack from j∗ to reconstruct the full update schedule:

c∗M = j∗, c∗m−1 = PTR[m][ c∗m ], m = M, . . . , 1. (9)

The solved optimal update step set is given by C∗ = {c∗1 < · · · < c∗M}. Adaptive Caching Scheduler
maximizes the performance efficiency trade-off by computing C∗ for each block under the given
computation budget.

3.3 THE ERROR SURGE PHENOMENON AND ANALYSIS.

However, purely extending the Adaptive Caching Scheduler to the block level can trigger significant
error surges, particularly within FFN blocks. We provide a detailed analysis of this failure mode in
the following section and introduce our remedy Bubbling Union Algorithm in Sec. 3.4.

Identifying Error Surge. Extending Adaptive Caching Scheduler to the block level leads to
unexpected performance collapse. Our observation uncovers a surprising phenomenon: instead of
reducing errors, block-wise updates amplify them, resulting in sudden error surges in the FFN blocks,
as illustrated in Fig. 4a.

5
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Figure 4: (a) Caching error of the third FFN block when updated using the block-wise versus a
unified schedule. (b) Caching error of sub-layers within the third FFN block at update timesteps
14 and 31. (c) Correlation between the caching errors of the seventh and eighth FFN blocks. (d)
Update-induced error under varying input error magnitudes, controlled by the scaling factor β. (e)
Caching error across all blocks throughout the diffusion process, with white dots indicating update
steps. All experiments are conducted on the Square task.

Generally, caching errors arise from either feature reuse or feature update. In the reuse case, the error
comes from a mismatch between cached features and the shifted ground-truth distribution. In the
update case, the error results from inaccurate inputs caused by errors from upstream blocks. We
observe that error surges often occur during update steps of FFN blocks, where update-induced errors
exceed reuse-induced errors, indicating a failure in the update process. We first elucidate how FFN
blocks incorporate these upstream errors during updates, then delineate the complete inter-block error
propagation process.

Error Propagation in FFN Blocks. To understand how FFN blocks incorporate the upstream
errors, we begin by formalizing the error propagation process. Let

FFN(X) = Woutϕ(WinLN(X) + b1) + b2, (10)
Proposition 3.1. Given an upstream error δ, we have

∆ = Wout diag
(
ϕ′(U)

)
Win (A−B) δ +O(∥δ∥2), (11)

where

A =
diag(γ)

(
I − 1

d11
⊤)

σ(X)
, B =

diag(γ) (X − µ(X)1)(X − µ(X)1)⊤

d σ(X)3
. (12)

To further analyze the correlation between inter-block errors, we design a toy experiment where the
upstream block (FFN.6) uses only cached activations, while the downstream block (layer.7.FFN)
performs full computation. The relationship between the update-induced error and its corresponding
upstream error is depicted in Fig. 4c, with a Pearson correlation coefficient of r = 0.9894, indicating
a strong correlation. To isolate the influence of the timestep, we fix it and use a factor β to control the
magnitude of the upstream error. The result in Fig. 4d also shows a strong positive correlation between
upstream and downstream errors, further confirming the effect of inter-block error propagation.

Inter-block Error Propagation. A complete propagation chain is shown in Fig. 4e. When a block
updates at a timestep when its upstream block does not update and has a larger caching error, an
error surge occurs, visually manifested by a sudden deepening of block colors without any gradual
transition. Although the upstream block updates later, the surging error in the downstream block still
persists, indicating the failure of this update.
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3.4 BUBBLING UNION ALGORITHM

To truncate inter-block error propagation, we propose a simple yet effective algorithm to revise the
original scheduler. The core insight of our algorithm is that if an FFN block updates its cache, its
upstream blocks with large errors should also update. Therefore, the updated error ∆ can be mitigated
due to the suppressed propagated upstream error δ.

Our algorithm consists of two stages:

Stage 1: Selecting Upstream Blocks with Large Caching Errors. To estimate the caching error
magnitude for each block j, we compute the average of ℓ1 norm across features over all pairs of
denoising timesteps:

ℓj =
1

K2

K∑
t=1

K∑
u=1

∥∥X(t)
j −X

(u)
j

∥∥
1
. (13)

A larger ℓj indicates that the block has larger reuse-induced errors. We then select the top n blocks
with the largest ℓj and denote this block set by U .

Remark 3.1. As discussed in Sec. 3.3, caching error consists of both reuse-induced errors and
update-induced errors. We choose not to account for the update-induced error of upstream blocks
because it occurs less frequently and is difficult to approximate reliably. Moreover, incorporating
it would require treating all FFN blocks as upstream blocks, which would compromise the overall
trade-off between efficiency and precision.

Stage 2: Unioning Update Timesteps of FFNs from Downstream to Upstream. Our algorithm
truncates error propagation by enforcing that each upstream block in U updates its cache before its
downstream FFN blocks. Concretely, let C(u) denote cache update timesteps set of block u. Let
D(u) be the set of all FFN blocks downstream of block u. Then for each u ∈ U , we update C(u) as:

C(u) = C(u) ∪
⋃

v∈D(u)

C(v) (14)

4 EXPERIMENTS

We first outline the experimental setup, covering models, benchmarks, metrics, and implementation
details in Sec. 4.1. Following that, we demonstrate the experimental results in Sec. 4.2. Finally, we
present an ablation study of BAC in Sec. 4.3.

4.1 EXPERIMENTAL SETUP

Models, Benchmarks and Metrics. Following the original settings in Diffusion Policy (Chi et al.,
2023), we select the transformer-based Diffusion Policy (DP-T) for our evaluation. The pretrained
checkpoints are from this source1. BAC is implemented as a plugin module that can be invoked with
a single line of code. We evaluate BAC on DP-T across four different robot manipulation benchmarks
with fixed seeds: Robomimic, Push-T, Multimodal Block Pushing, and Kitchen. Demonstration data
is sourced from proficient human (PH) and mixed proficient/non-proficient human (MH) teleoperation,
as well as scripted Markovian policies (e.g., Block Pushing). For most tasks, the primary precision
metric is Success Rate, while Push-T uses target area coverage instead. Efficiency is measured in
terms of FLOPs and Speedup during action generation. To further examine the performance of BAC
on Diffusion Policy-based VLAs, we evaluate it on RDT-1B (Liu et al., 2024b) using the ManiSkill
simulation benchmark. RDT-1B is a large diffusion transformer foundation model for bimanual
robotic manipulation, enabling scalable pretraining and strong zero-shot and few-shot generalization.
We focus on four representative tasks: PegInsertionSide, PickCube, StackCube and PushCube. Each
task is run with 20 denoising steps and 25 episodes, and we report the mean success rate across three
independent trials.

Baseline. We report the result of DP-T as Full Precision and utilize the baseline constructed in
Sec. 3.1, in which all blocks update and reuse their cache at uniform intervals simultaneously. We refer

1https://diffusion-policy.cs.columbia.edu/data/experiments/

7
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to this baseline as Uniform. In addition, we migrate the cache update strategy from TeaCache (Liu
et al., 2025a) and adapt it to our setting, which serves as another baseline, denoted as TeaCache.

Implementation Details. We set the hyperparameter n as 5 in all the experiments. The experiments
were conducted on a workstation equipped with an NVIDIA GeForce RTX 4090D 24 GB GPU.

Table 1: Results on different benchmarks. We present success rates of different checkpoints in the
format of (max performance) / (average of last 10 checkpoints), with each averaged across 3 training
seeds. The overall average success rate is denoted as AVG, with average flops and speedup reported
as FLOPs and Speed×, respectively.

Benchmark on Proficient Human (PH) demonstration data.

Method Success Rate ↑ AVG FLOPs Speed×
Lift Can Square Transport Tool Push–T

Full Precision 1.00/1.00 0.95/0.97 0.82/0.88 0.78/0.81 0.43/0.53 0.59/0.64 0.76 15.77G –

Uniform(fast) 0.99/1.00 0.93/0.96 0.86/0.88 0.78/0.77 0.39/0.50 0.58/0.64 0.79 3.15G 2.69
Uniform(fastest) 0.99/1.00 0.79/0.95 0.73/0.83 0.73/0.78 0.23/0.64 0.57/0.65 0.76 2.72G 3.20

Teacache(fast) 0.99/1.00 0.97/0.95 0.57/0.82 0.79/0.56 0.34/0.23 0.65/0.65 0.71 3.40G 2.23
Teacache(fastest) 1.00/1.00 0.96/0.96 0.67/0.82 0.77/0.52 0.44/0.38 0.63/0.52 0.72 2.78G 3.14

BAC(S = 7) 1.00/1.00 0.90/0.95 0.78/0.87 0.75/0.81 0.36/0.47 0.57/0.61 0.74 2.02G 3.54
BAC(S = 10) 1.00/1.00 0.94/0.97 0.82/0.89 0.77/0.82 0.49/0.55 0.59/0.62 0.79 2.66G 3.40

Benchmark on Mixed Human (MH) demonstration data.

Method Success Rate ↑ AVG FLOPs Speed×
Lift Can Square Transport

Full Precision 0.99/1.00 0.92/0.97 0.76/0.79 0.35/0.46 0.76 15.77G –

Uniform(fast) 0.99/0.99 0.91/0.96 0.80/0.75 0.24/0.42 0.76 3.15G 2.69
Uniform(fastest) 0.95/1.00 0.65/0.92 0.73/0.78 0.01/0.06 0.64 2.72G 3.20

Teacache(fast) 0.00/0.02 0.97/0.90 0.26/0.22 0.35/0.31 0.38 2.62G 3.44
Teacache(fastest) 0.79/0.85 0.97/0.92 0.76/0.66 0.50/0.40 0.73 5.25G 1.41

BAC(S = 7) 0.96/0.99 0.39/0.79 0.56/0.53 0.17/0.41 0.60 2.03G 3.48
BAC(S = 10) 0.99/0.98 0.95/0.97 0.77/0.79 0.30/0.46 0.77 2.64G 3.41

Benchmark on multi-stage tasks. For Block-Pushing, px is the frequency of pushing x blocks into the targets.
For Kitchen, px is the frequency of interacting with x or more objects (e.g. bottom burner).

Method Success Rate ↑ AVG FLOPs Speed×
BPp1 BPp2 Kitp1 Kitp2 Kitp3 Kitp4

Full Precision 0.98/0.98 0.98/0.96 1.00/1.00 0.98/1.00 0.97/1.00 0.95/0.97 0.98 15.77G –

Uniform(fast) 1.00/1.00 0.97/0.97 0.97/1.00 0.93/1.00 0.91/0.99 0.79/0.93 0.96 3.15G 2.85
Uniform(fastest) 0.99/0.99 0.95/0.95 0.66/0.89 0.42/0.79 0.29/0.63 0.08/0.34 0.66 2.72G 3.34

Teacache(fast) 0.33/0.33 0.33/0.49 0.75/0.76 0.24/0.18 0.27/0.13 0.00/0.00 0.52 1.82G 4.42
Teacache(fastest) 0.33/0.33 0.00/0.00 0.75/0.76 0.24/0.18 0.27/0.13 0.00/0.00 0.25 1.80G 4.46

BAC(S = 7) 0.99/0.99 0.91/0.93 0.80/0.85 0.61/0.69 0.45/0.57 0.23/0.39 0.69 1.92G 3.78
BAC(S = 10) 1.00/0.99 0.97/0.95 1.00/0.99 1.00/0.99 1.00/0.99 0.94/0.97 0.98 2.44G 3.60

4.2 MAIN RESULTS

Diffusion Policy Experiemnts. In Sec. 4.2, we demonstrate the effectiveness of our proposed
BAC. We compare BAC against the baselines across multiple benchmarks in Table 1. We control the
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(a) (b)

Figure 5: (a)Performance of BAC on RDT-1B. (b)Ablation study on BAC.

computation budget by setting the number of cache update steps S. BAC achieves lossless acceleration
with S = 10 on all the benchmarks, with an average success rate of 0.79, 0.77, 0.98 versus 0.76,
0.76, 0.98 for the full-precision DP-T, even exhibiting a modest improvement. BAC consistently
achieves stable acceleration rates above 3.4× across most of the tasks. Compared with Uniform and
Teacache, BAC has two advantages: (1) BAC improves the success rate significantly on the hard
tasks such as Kitchenp4, where Uniform and Teacache fail to restore the correct action generation.
(2) BAC maintains a strong and stable performance in all tasks, demonstrating the reliability of a
lossless acceleration plugin. We attribute this to BAC’s ability to reduce the reuse-induced error by
ACS and precisely avoid the update-induced errors by BUA.

VLA Experiments. As summarized in Figure 5a, BAC achieves up to a 3.55× acceleration with
negligible performance drop compared to original RDT-1B (Liu et al., 2024b). This result provides
strong evidence for the robust generalization of BAC across diffusion policy-based VLA models.

4.3 ABLATION STUDY

Ablation Study Methods. We consider three variants of our caching method. To evaluate the
effectiveness of ACS, we build Unified ACS, the Adaptive Caching Scheduler is applied solely to
the self-attention block in layer 0, which is the very first block in the decoder. The computed update
steps are then used by every block. To evaluate the effectiveness of BUA, we build Block-wise ACS,
the scheduler is naively applied to each block, producing a distinct set of update steps for all blocks.
Finally, in Block-wise ACS + BUA, we first compute block-wise update steps via the Adaptive
Caching Scheduler and then integrate the Bubbling Union Algorithm, yielding our full BAC method.
Results of these methods are presented in Figure 5b.

Effectiveness of ACS. Experiments with the Unified ACS schedule demonstrate a clear performance
improvement over Uniform. This result confirms the necessity and effectiveness of reducing the
reuse-induced error.

Effectiveness of BUA. The performance of Block-wise ACS unexpectedly falls below that of the
Unified ACS, empirically substantiating the Error Surge Phenomenon. Integrating BUA into the
block-wise schedule recovers full-precision performance across all tasks with the highest score of
0.79, demonstrating the effectiveness of the Bubbling Union Algorithm.

5 CONCLUSION

In this paper, we propose BAC, a novel training-free acceleration method for transformer-based
Diffusion Policy. BAC minimizes the caching error by adaptively scheduling cache updates through
the Adaptive Caching Scheduler. Moreover, we conduct theoretical and empirical analysis on the error
surge phenomenon due to inter-block error propagation, and propose the Bubbling Union Algorithm
to truncate the propagation. Extensive experiments demonstrate that BAC achieves substantial
speedups without performance degradation, typically exceeding 3× compared to full computation.

9
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6 ETHICS STATEMENT

In this work, all experiments are based on publicly available robotic simulation datasets, without
involving new human subjects, personal data, or sensitive information. Our method focuses solely on
improving computational efficiency and raises no concerns of privacy infringement, discrimination,
bias, or legal non-compliance.

7 REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure reproducibility of our results. All datasets used in this work
are publicly available robotic simulation benchmarks (RoboMimic, Push-T, Kitchen, Block-Pushing,
ManiSkill), with details of preprocessing and task setups provided in Appendix A.6. The proposed
Block-wise Adaptive Caching (BAC) algorithm is fully described in Section 3, with implementation
details and hyperparameters reported in Section 4.1. Complete theoretical assumptions and proofs,
including Proposition 3.1, are presented in Appendix A.4. Additional ablation studies, parameter
sensitivity analyses, and visualizations are included in the supplemental material (Appendix A.6, A.7,
A.8, A.11, A.12) to further support reproducibility. The full implementation and instructions will be
released on an open-source GitHub repository to enable replication of all experiments.
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A APPENDIX / SUPPLEMENTAL MATERIAL

In this supplemental material, we provide declaration of LLMs uses in Appendix A.1, detailed
background on diffusion-based VLA models in Appendix A.2, limitation of our work in Appendix A.3,
complete proofs of Proposition 3.1 in Appendix A.4, along with additional experiments examining
the choice of parameter n in Appendix A.6. We further include ablation studies analyzing different
metrics in Appendix A.7, and present more temporal similarity figures in Appendix A.8. Additionally,
Appendix A.9 contains illustrations demonstrating episode homogeneity within individual tasks, while
Appendix A.10 offers supplementary visualizations supporting Figure 3. Finally, in Appendix A.11
and Appendix A.12, we present the update steps obtained under S = 10, n = 5, while using cosine
as metric via BAC, showing the update steps obtained after employing ACS and BUA, respectively.

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, Large Language Models (LLMs) were used solely to polish the language for clarity and
readability. No LLMs were employed for idea generation, experimental design, data analysis, or any
other part of the research process.

A.2 BACKGROUND ON DIFFUSION-BASED VLA MODELS

Diffusion models (Esser et al., 2024; Bar-Tal et al., 2024) were originally proposed for image
generation (Sohl-Dickstein et al., 2015; Ho et al., 2020) and have been adapted for robot policy learn-
ing (Martinez-Cantin et al., 2007). Traditionally, diffusion-based vision–language–action (VLA) (Ma
et al., 2024c; Brohan et al., 2023; Kim et al., 2024) methods have depended on U-Net (Ronneberger
et al., 2015) based denoising backbones borrowed directly from image generation pipelines to model
multimodal action distributions and ensure stable training. Within the Diffusion Policy framework
(Chi et al., 2023), both U-Net and Diffusion Transformer (DiT) (Peebles & Xie, 2023; Yuan et al.,
2024; Zhao et al., 2024) denoisers are supported, enabling exploration of hybrid backbone designs.
More recent work has begun to replace U-Net with DiT architectures to improve scalability and
expressive power. Diffusion Transformer Policy (Hou et al., 2024) is itself a DiT variant within the
broader Diffusion Policy framework and uses a large-scale Transformer (Vaswani et al., 2017) as the
denoiser in continuous action spaces, conditioned on visual observations and language instructions.
The Diffusion-VLA framework (Wen et al., 2024) unifies autoregressive next-token reasoning with
diffusion-based action generation into a single, scalable framework for fast, interpretable, and gener-
alizable visuomotor robot policies. DexVLA (Wen et al., 2025) introduces plug-in diffusion expert
modules that decouple action generation from the core VLA backbone. However, the iterative denois-
ing steps inherent in diffusion models introduce substantial inference latency that poses challenges
for high-frequency VLA tasks requiring real-time responsiveness. Consequently, accelerating the
inference procedure of diffusion-based policies through techniques such as caching (Xu et al., 2025;
Song et al., 2025) is critical for deploying responsive VLA-driven agents (Chiang et al., 2024; Xiang
et al., 2025; Li et al., 2025).

A.3 LIMITATION

The primary limitation of our work arises when the base model’s accuracy on a given task is very low,
as our caching strategy may inadvertently amplify this inaccuracy. For example, on the Transportmh
benchmark, we observe a slight drop in performance. Another limitation is that due to equipment
constraints, we have not yet conducted real-world VLA experiments, we plan to address this in future.

A.4 PROOF FOR PROPOSITION 3.1

Assumption A.1.

1. Activation function ϕ is twice continuously differentiable with bounded second derivative

2. LayerNorm variance σ(X) ≥ σmin > 0 for all valid inputs X

3. Weight matrices satisfy ∥W1∥2 ≤ C1, ∥W2∥2 ≤ C2 for fixed constants C1, C2
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Proposition A.1. Under Assumption 1, for input error δ with ∥δ∥ ≤ ϵ, the FFN block output error
admits the first-order approximation:

FFN(X + δ)− FFN(X) = f(δ) +O(∥δ∥2) (15)

where the linear response operator f(δ) is given by:

f(δ) = W2 diag(ϕ
′(U))W1 (A−B) δ (16)

with U = W1LN(X) + b1 and operators:

A =
diag(γ) · (I − 1

d11
⊤)

σ(X)
(17)

B =
diag(γ) · (X − µ(X)1)(X − µ(X)1)⊤

dσ(X)3
(18)

Proof. We analyze the propagation of input error δ :

Let ∆X̃ = LN(X + δ)− LN(X). Define:

µ ≜ µ(X), σ ≜ σ(X)

µδ ≜ µ(δ), σ2
δ ≜ σ2(X + δ)

The mean of X + δ is given by:

∆µ = µ(X + δ)− µ =
1

d
1⊤δ = µδ (19)

The variance of X + δ is given by:

σ2
δ =

1

d
∥X + δ − (µ+ µδ)1∥2

= σ2 +
2

d
(X − µ1)⊤(δ − µδ1) +O(∥δ∥2) (20)

Taking square root and expanding:

∆σ =
(X − µ1)⊤δ

dσ
+O(∥δ∥2) (21)

For each dimension i:

∆X̃i = γ
(Xi + δi − µ− µδ

σ +∆σ
− Xi − µ

σ

)
≈ γ

(δi − µδ

σ
− (Xi − µ)

σ2
∆σ

)
(22)

Substituting ∆σ from Eq. equation 21 yields

∆X̃i = γ
(δi − µδ

σ
− (Xi − µ)

d σ3

d∑
k=1

(Xk − µ) δk

)
=

d∑
j=1

[γ(δij − 1
d )

σ
− γ (Xi − µ)(Xj − µ)

d σ3

]
δj . (23)
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Eq. 23 implies:

∆X̃ =
diag(γ) ·

(
I − 1

d11
⊤)

σ︸ ︷︷ ︸
A

δ − diag(γ) · (X − µ1)(X − µ1)⊤

d σ3︸ ︷︷ ︸
B

δ + O(∥δ∥2). (24)

The error propagates through the first linear layer:

∆U = W1∆X̃ = W1(A−B)δ +O(∥δ∥2) (25)

Using Taylor expansion of ϕ at U :

ϕ(U +∆U)− ϕ(U) = diag(ϕ′(U))∆U +O(∥∆U∥2)
= diag(ϕ′(U))W1(A−B)δ +O(∥δ∥2) (26)

Finally, projecting through W2:

f(δ) = W2 diag(ϕ
′(U))W1 (A−B) δ. (27)

The proof is complete.

A.5 MORE DETAILS ON THE BENCHMARK

A.5.1 DATASETS

Pusht-T. This dataset is based on the implicit behavioral cloning benchmark introduced by Florence
et al. (Florence et al., 2022), comprising human-collected demonstrations of T-shaped block pushing
with top-down RGB observations and 2D end-effector velocity control. Variation is added by random
initial conditions for T block and end-effector. The task requires exploiting complex and contact-rich
object dynamics to push the T block precisely, using point contacts. There are two variants: one with
RGB image observations and another with 9 2D keypoints obtained from the groundtruth pose of the
T block, both with proprioception for endeffector location (Chi et al., 2023).

Block Pushing. This dataset consists of scripted trajectories first presented in Behavior Transformers
by Shafiullah et al. (Shafiullah et al., 2022). This task tests the policy’s ability to model multimodal
action distributions by pushing two blocks into two squares in any order. The demonstration data is
generated by a scripted oracle with access to groundtruth state info (Chi et al., 2023).

Franka Kitchen. This dataset originates from the Relay Policy Learning framework proposed
by Gupta et al. (Gupta et al., 2019), featuring 566 VR tele-operated demonstrations of multi-step
manipulation tasks in a simulated kitchen using a 9-DoF Franka Panda arm. The goal is to execute
as many demonstrated tasks as possible, regardless of order, showcasing both short-horizon and
long-horizon multimodality (Chi et al., 2023).

RoboMimic. This dataset, introduced by Mandlekar et al. (Mandlekar et al., 2021), covers five
manipulation tasks. Each task includes a Proficient-Human (PH) teleoperated demonstration set, and
four of the tasks additionally offer Mixed-Human (MH) sets combining proficient and non-proficient
operators (9 variants in total). The PH data were recorded by a single operator via the RoboTurk
platform, whereas the MH sets were collected from six different operators using the same system.

Fig. 6 illustrates the five subtasks in the RoboMimic Image dataset. Below we describe each subtask.

• Can (Fig. 6a): The robot must grasp a cylinder-shaped object and placing it into a bin.
This subtask tests precise grasp planning and fingertip control under varying object poses
(Mandlekar et al., 2021).
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(a) (b) (c) (d) (e)

Figure 6: Visualizations of different tasks. (a) Can (b) Lift (c) Square (d) Transport (e) Tool hang.

• Lift (Fig. 6b): The manipulator picks up a heavier, irregularly shaped object (e.g. a small
box) and raises it to a designated height. It evaluates the policy’s ability to modulate grip
force and maintain stable trajectories (Mandlekar et al., 2021).

• Square (Fig. 6c): The agent must push or slide an object so that its center follows a square-
shaped path on the table. This challenges both straight-line control and precise cornering
maneuvers (Mandlekar et al., 2021).

• Transport (Fig. 6d): The agent must learn bimanual maneuvers to transfer a hammer from
a closed container on a shelf to the target bin on another shelf. It tests coordinated lifting
and translational motion under variable loads (Mandlekar et al., 2021).

• Tool Hang (Fig. 6e): The robot arm must learn high-precision manipulation behaviors to
assemble a frame by inserting a hook into a narrow base. This requires fine-tuned wrist
orientation and insertion accuracy (Mandlekar et al., 2021).

A.5.2 PRE-TRAINED CHECKPOINTS

We use the pre-trained checkpoints of diffusion policy transformer model provided by
Diffusion Policy (Chi et al., 2023), where checkpoints of image-based tasks are stored under link2

and those of multi-stage tasks are stored under link3. Following Diffusion Policy (Chi et al., 2023),
we evaluate the success rates of two types of checkpoints: The checkpoints that achieve the maximum
performance during training and those stored in the last 10 epochs. For robustness, these checkpoints
are collected in three training seeds.

A.6 ADDITIONAL EXPERIMENTS ON n

In this experiment, we aim to answer two questions: (1) how n influences the effectiveness of BUA
in mitigating update-induced error? (2) Does the effectiveness of n relate to S?

To answer question 1, we evaluate all tasks with n = 3 and cache number S = 10. As shown in
Table 2, when n = 3, the average success rates for the three task categories were 0.71, 0.77, and 0.97,
respectively, which are slightly lower than those for n = 5 (0.79, 0.77, 0.98) but still significantly
better than the Uniform baseline. Increasing n can further improve performance at the cost of higher
computational overhead. Therefore, we choose n = 5 as the default setting, as it achieves lossless
performance while maximizing acceleration.

To answer question 2, we investigate the relationship between the hyperparameter n (number of
selected upstream blocks) and S (cache number) in the context of the effectiveness of BUA in miti-
gating update-induced errors. The experimental results in Table 3 demonstrate that the effectiveness
of n is closely tied to S.

n plays a more important role in mitigating update-induced errors. For certain difficult tasks, such
as Tool hangph and Transportmh, the results for n = 3, S = 20 (e.g., 0.32/0.53 and 0.29/0.43,
respectively) are outperformed by n = 5, S = 10 (e.g., 0.49/0.55 and 0.30/0.46, respectively). This
indicates that an appropriately tuned n plays a dominant role in optimizing the effectiveness of BUA
for challenging tasks.

2https://diffusion-policy.cs.columbia.edu/data/experiments/image/
3https://diffusion-policy.cs.columbia.edu/data/experiments/low_dim/
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Notebly, the effectiveness of n depends on an appropriate S. for a fixed n = 3, increasing S from 5 to
20 significantly improves the average success rate across tasks with performance collapse, from 0.07
at S = 5 to 0.80 at S = 20, suggesting that a larger number of cache update steps helps to mitigate
update-induced errors. Thus, the interplay between n and S suggests that a balanced combination,
such as n = 5, S = 10, achieves robust performance across diverse tasks.

Table 2: Effect of the hyperparameter n on the mitigation of update-induced error across PH, MH
and multi-stage settings by BUA (S = 10).

Benchmark on Proficient Human (PH) demonstration data.

Method Success Rate ↑ AVG FLOPs Speed×
Lift Can Square Transport Tool Push–T

BAC(n=3) 1.00/1.00 0.93/0.96 0.83/0.91 0.81/0.79 0.03/0.07 0.59/0.60 0.71 2.39G 3.21
BAC(n=5) 1.00/1.00 0.94/0.97 0.82/0.89 0.77/0.82 0.49/0.55 0.59/0.62 0.79 2.66G 3.40

Benchmark on Mixed Human (MH) demonstration data.

Method Success Rate ↑ AVG FLOPs Speed×
Lift Can Square Transport

BAC(n=3) 0.97/0.99 0.93/0.97 0.79/0.77 0.21/0.53 0.77 2.48G 3.21
BAC(n=5) 0.99/0.98 0.95/0.97 0.77/0.79 0.30/0.46 0.77 2.64G 3.41

Benchmark on multi-stage tasks. For Block-Pushing, px is the frequency of pushing x blocks into the targets.
For Kitchen, px is the frequency of interacting with x or more objects (e.g., bottom burner).

Method Success Rate ↑ AVG FLOPs Speed×
BPp1 BPp2 Kitp1 Kitp2 Kitp3 Kitp4

BAC(n=3) 0.99/0.98 0.94/0.93 0.99/1.00 0.97/0.99 0.95/0.99 0.89/0.97 0.97 2.23G 3.38
BAC(n=5) 1.00/0.99 0.97/0.95 1.00/0.99 1.00/0.99 1.00/0.99 0.94/0.97 0.98 2.44G 3.60

Table 3: Benchmark Results across tasks that have performance collapse (Tool hangph, Transportmh,
Kitchen), all results set k = 3 and S ∈ {5, 7, 20}.

Method Success Rate ↑ AVG FLOPs Speed×
Toolph Transmh Kitp1 Kitp2 Kitp3 Kitp4

BAC (S=5) 0.00/0.00 0.26/0.50 0.04/0.07 0.00/0.00 0.00/0.00 0.00/0.00 0.07 1.49G 4.02
BAC (S=7) 0.00/0.01 0.19/0.32 0.82/0.93 0.64/0.79 0.55/0.70 0.33/0.52 0.49 1.90G 3.66
BAC (S=10) 0.03/0.07 0.21/0.53 0.99/1.00 0.97/0.99 0.95/0.99 0.89/0.97 0.72 2.43G 3.34
BAC (S=20) 0.32/0.53 0.29/0.43 1.00/1.00 1.00/1.00 1.00/1.00 0.99/0.97 0.80 4.16G 2.53

A.7 ADDITIONAL EXPERIMENTS ON DIFFERENT SIMILARITY METRICS

In this experiment, we evaluate the performance of BAC across all tasks using four similarity metrics:
Mean Squared Error (MSE), Lorm-1 distance (L1), Wasserstein-1 distance (Wa), and Cosine similarity
(Cosine), as presented in Table 4. BAC with metric Cosine achieves average success rates of 0.79,
0.77, and 0.98 for PH, MH, and multi-stage tasks, outperforming BAC with metric MSE (0.78, 0.70,
0.98), BAC with metric L1 (0.72, 0.67, 0.98) and BAC with metric Wa (0.70, 0.56, 0.81). BAC with
metric Cosine excels particularly in MH settings while matching MSE and L1 in multi-stage tasks.
BAC with metric Wa struggles with complex tasks (e.g., Kitp4: 0.39/0.67). All metrics exhibit similar
computational costs, with FLOPs ranging from 2.40G to 2.73G and speed from 3.07× to 3.42×.
Thus, BAC with metric Cosine and BAC with metric MSE demonstrate the most robust performance,
with Cosine preferred for noisy data and complex tasks.
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Table 4: Benchmark Results across Proficient Human (PH), Mixed Human (MH), and Multi-stage
Demonstrations (n = 5, S = 10) using MSE, L1 and Wa Metrics.

Benchmark on Proficient Human (PH) demonstration data.

Method Success Rate ↑ AVG FLOPs Speed×
Lift Can Square Transport Tool Push–T

BAC(MSE) 1.00/1.00 0.79/0.79 0.71/0.83 0.75/0.77 0.40/0.55 0.58/0.66 0.78 2.73G 3.21
BAC(L1) 1.00/1.00 0.89/0.95 0.74/0.85 0.71/0.73 0.19/0.33 0.56/0.65 0.72 2.60G 3.19
BAC(Wa) 1.00/1.00 0.37/0.75 0.79/0.87 0.80/0.79 0.37/0.50 0.52/0.61 0.70 2.73G 3.28
BAC(Cosine) 1.00/1.00 0.94/0.97 0.82/0.89 0.77/0.82 0.49/0.55 0.59/0.62 0.79 2.66G 3.40

Benchmark on Mixed Human (MH) demonstration data.

Method Success Rate ↑ AVG FLOPs Speed×
Lift Can Square Transport

BAC(MSE) 1.00/0.99 0.41/0.86 0.75/0.77 0.26/0.50 0.70 2.69G 3.21
BAC(L1) 0.97/1.00 0.44/0.87 0.71/0.74 0.23/0.43 0.67 2.63G 3.18
BAC(Wa) 0.98/0.99 0.83/0.90 0.09/0.05 0.19/0.45 0.56 2.71G 3.07
BAC(Cosine) 0.99/0.98 0.95/0.97 0.77/0.79 0.30/0.46 0.77 2.64G 3.41

Benchmark on multi-stage tasks. For Block-Pushing, px is the frequency of pushing x blocks into the targets.
For Kitchen, px is the frequency of interacting with x or more objects (e.g., bottom burner).

Method Success Rate ↑ AVG FLOPs Speed×
BPp1 BPp2 Kitp1 Kitp2 Kitp3 Kitp4

BAC(MSE) 0.99/0.99 0.95/0.93 1.00/1.00 1.00/1.00 0.99/0.99 0.97/0.93 0.98 2.49G 3.39
BAC(L1) 0.99/0.99 0.94/0.94 1.00/1.00 1.00/1.00 1.00/1.00 0.93/0.95 0.98 2.40G 3.42
BAC(Wa) 0.99/1.00 0.95/0.95 0.83/0.95 0.66/0.90 0.55/0.85 0.39/0.67 0.81 2.61G 3.08
BAC(Cosine) 1.00/0.99 0.97/0.95 1.00/0.99 1.00/0.99 1.00/0.99 0.94/0.97 0.98 2.44G 3.60
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A.8 MORE DETAILS ON TEMPORAL SIMILARITIES

We compute cosine similarity between intermediate features of different timesteps to analyze temporal
similarity patterns, using the Squareph task as a case study. Fig. 7 provides more details on the
temporal similarity patterns of different decoder blocks. The observation that the feature similarity
between consecutive timesteps varies non-uniformly over time exists in all the decoder blocks. This
suggests the necessity of our ACS.
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(a) Feature similarities across timesteps in the first layer.

0 25 50 75
Timestep

0

20

40

60

80

Ti
m

es
te

p

0.2

0.4

0.6

0.8

1.0
Self Attention

0 25 50 75
Timestep

0

20

40

60

80

Ti
m

es
te

p

0.2

0.4

0.6

0.8

1.0
Cross Attention

0 25 50 75
Timestep

0

20

40

60

80
Ti

m
es

te
p

0.0

0.2

0.4

0.6

0.8

1.0
FFN

(b) Feature similarities across timesteps in the second layer.
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(c) Feature similarities across timesteps in the third layer.
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(d) Feature similarities across timesteps in the fourth layer.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 25 50 75
Timestep

0

20

40

60

80

Ti
m

es
te

p

0.2

0.4

0.6

0.8

1.0
Self Attention

0 25 50 75
Timestep

0

20

40

60

80

Ti
m

es
te

p

0.4

0.6

0.8

1.0
Cross Attention

0 25 50 75
Timestep

0

20

40

60

80

Ti
m

es
te

p

0.0

0.2

0.4

0.6

0.8

1.0
FFN

(e) Feature similarities across timesteps in the fifth layer.
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(f) Feature similarities across timesteps in the sixth layer.

0 25 50 75
Timestep

0

20

40

60

80

Ti
m

es
te

p

0.00

0.25

0.50

0.75

1.00
Self Attention

0 25 50 75
Timestep

0

20

40

60

80

Ti
m

es
te

p

0.2

0.4

0.6

0.8

1.0
Cross Attention

0 25 50 75
Timestep

0

20

40

60

80

Ti
m

es
te

p

0.5

0.0

0.5

1.0

FFN

(g) Feature similarities across timesteps in the seventh layer.
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(h) Feature similarities across timesteps in the eighth layer.

Figure 7: Feature similarities across timesteps for different blocks in each decoder layer.

To provide more details on the block-wise temporal similarity pattern, we compute cosine similarities
under different intervals of consecutive steps in timestep t and earlier timesteps t−k for various
values of k (1, 5, 10, 15, 20). As shown in Fig. 8, different blocks exhibit distinct temporal similarity
patterns. Some blocks maintain high similarity across long horizons, indicating few updates, while
others show rapid drops in similarity even at short intervals, suggesting more update steps. This
suggests the necessity of a block-wise schedule.
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(a) Similarity change curves, measured between timestep t and t−1.
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(b) Similarity change curves, measured between timestep t and t−5.
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(c) Similarity change curves, measured between timestep t and t−10.
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(d) Similarity change curves, measured between timestep t and t−15.
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(e) Similarity change curves, measured between timestep t and t−20.

Figure 8: Block-wise feature similarity between consecutive steps. Each subfigure shows the
similarity between features at timestep t and (t−k, where k = 1, 5, 10, 15, 20) for different blocks.
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A.9 MORE DETAILS ON THE HIGH EPISODE HOMOGENEITY WITHIN INDIVIDUAL TASKS

In this section, we present evidence for the high episode homogeneity of an embodied task by
highlighting the distinct similarity patterns in action generation tasks versus image generation tasks.

In action generation tasks, as shown in Fig. 9, we visualize the feature similarity matrices from the
same layer of Diffusion Policy, under the same task (Squareph), across two different scene demos
(demo id 11001 vs. demo id 20000). Despite changes in scene settings, the similarity matrices remain
strikingly consistent, suggesting a high degree of representational homogeneity across episodes.

In contrast, in image generation tasks, as shown in Fig. 10, we visualize the feature similarity matrices
from the same layer of DiT-XL/2 (Peebles & Xie, 2023), across two different classes in ImageNet
(class label 15:“robin, American robin, Turdus migratorius” vs. class label 800: “slot, one-armed
bandit”). The results from both the self-attention and MLP blocks reveal clear differences in feature
patterns.

While an image generation task shows obvious differences in feature patterns across different classes,
an action generation task shows almost no difference across different scene demos within the same
task. These observations support the efficiency of our method, specifically in embodied episodes.
Benefiting from the high episode homogeneity within individual tasks, our method can be run only
once for a given task before inference, incurring virtually no additional cost.

(a) Diffusion Policy demo 11001. (b) Diffusion Policy demo 20000.

(c) Diffusion Policy demo 11001. (d) Diffusion Policy demo 20000.

(e) Diffusion Policy demo 11001. (f) Diffusion Policy demo 20000.
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Figure 9: Feature similarities across timesteps in action generation tasks. We visualize similarity
matrices of different blocks in the third layer across different scene demos (e.g., demo id 11001 vs.
demo id 20000).
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(a) Diffusion Model class label 15. (b) Diffusion Model class label 800.

(c) Diffusion Model class label 15. (d) Diffusion Model class label 800.

Figure 10: Feature similarities across timesteps in image generation tasks. We visualize similarity
matrices of different blocks in the fourteenth layer across different classes (e.g., class label 15 vs.
class label 800).

A.10 MORE DETAILS FOR FIG.3
To support findings of the error surge phenomenon, we present comparisons of caching errors across
different FFN blocks using a block-wise schedule versus a unified schedule. As shown in Fig. 11, the
block-wise schedule leads to error surges in nearly all FFN blocks except the first one, in contrast to
the unified schedule. This observation further suggests that caching errors can propagate through
downstream FFN blocks.
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(a) Caching error in the first FFN block.
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(b) Caching error in the second FFN block.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Timestep

0

1

2

3

4

5

6

7

8

||∆|| Block-wise
Unifed
Update Step

(c) Caching error in the third FFN block.
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(d) Caching error in the fourth FFN block.
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(e) Caching error in the fifth FFN block.
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(f) Caching error in the sixth FFN block.
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(g) Caching error in the seventh FFN block.
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(h) Caching error in the eighth FFN block.

Figure 11: Caching error across different FFN blocks using a block-wise schedule versus a unified
one.

Fig. 12 presents block-wise heatmaps of caching error across all blocks throughout the diffusion
process, covering a diverse set of tasks and two demonstration settings: Proficient Human (PH) and
Mixed Human (MH). Each subfigure corresponds to a different task, with color intensity representing
the magnitude of caching error at each block and timestep, and white dots indicating cache update
steps.

These visualizations support our analysis of inter-block error propagation by consistently exhibiting
the following key phenomenon: in multiple tasks, blocks occasionally update at steps where their
upstream blocks with large caching errors have not yet been updated. This mismatch leads to sudden,
sharp increases in error (seen as abrupt darkening) in the downstream block, with no smooth transition.
Importantly, even after upstream blocks are later updated, the downstream surge in error remains,
indicating that the update failed to recover from the propagated upstream error.
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(a) Canmh (b) Canph (c) Liftmh

(d) Liftph (e) Push-Tph (f) Squaremh

(g) Squareph (h) Transportmh (i) Transportph
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(j) Tool hangph (k) Kitchen (l) Block Pushing

Figure 12: Caching error across all blocks throughout the diffusion process, with white dots indicating
update steps.

A.11 DETAILS ON UPDATE STEPS COMPUTED BY ACS

Our algorithm employs a two-stage paradigm where we apply ACS followed by BUA to determine
the optimal update steps for different blocks in the offline stage, and then accelerate Diffusion Policy
by updating and reusing the cached features based on the prepared update steps in the online stage.

In Tables 5,6,7,8,9,10,11,12,13,14,15 and 16, we report the update steps after employing ACS for all
blocks across all tasks at S = 10.
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Table 5: Update steps for Canph computed by ACS.

Block Steps

layers.0.SA 0, 2, 9, 18, 30, 49, 62, 69, 82, 91
layers.0.CA 0, 18, 33, 44, 57, 71, 80, 84, 89, 94
layers.0.FFN 0, 4, 10, 19, 31, 40, 53, 65, 79, 88
layers.1.SA 0, 4, 10, 21, 32, 44, 54, 65, 79, 88
layers.1.CA 0, 14, 25, 36, 48, 60, 73, 82, 87, 93
layers.1.FFN 0, 8, 16, 28, 38, 51, 60, 68, 80, 93
layers.2.SA 0, 4, 8, 13, 28, 38, 54, 68, 80, 90
layers.2.CA 0, 9, 18, 28, 38, 51, 67, 80, 86, 95
layers.2.FFN 0, 14, 27, 37, 51, 62, 71, 80, 85, 95
layers.3.SA 0, 19, 30, 40, 51, 62, 72, 82, 90, 98
layers.3.CA 0, 6, 14, 25, 37, 49, 62, 75, 90, 98
layers.3.FFN 0, 4, 14, 23, 37, 48, 60, 78, 89, 95
layers.4.SA 0, 13, 25, 37, 53, 66, 81, 90, 95, 98
layers.4.CA 0, 3, 9, 22, 39, 57, 80, 86, 94, 98
layers.4.FFN 0, 6, 18, 39, 62, 75, 80, 86, 93, 96
layers.5.SA 0, 6, 22, 42, 63, 80, 88, 93, 96, 98
layers.5.CA 0, 4, 11, 29, 43, 61, 81, 90, 95, 98
layers.5.FFN 0, 37, 60, 79, 88, 92, 94, 96, 98, 99
layers.6.SA 0, 37, 67, 83, 89, 92, 94, 96, 97, 98
layers.6.CA 0, 13, 28, 51, 74, 88, 93, 95, 96, 98
layers.6.FFN 0, 28, 62, 80, 89, 93, 95, 96, 97, 99
layers.7.SA 0, 29, 64, 79, 86, 93, 95, 96, 97, 98
layers.7.CA 0, 12, 26, 49, 68, 83, 89, 93, 95, 97
layers.7.FFN 0, 47, 69, 74, 77, 81, 86, 95, 97, 99

Table 6: Update steps for Liftph computed by ACS.

Block Steps

layers.0.SA 0, 1, 6, 51, 67, 76, 82, 87, 92, 95
layers.0.CA 0, 22, 44, 60, 70, 75, 80, 85, 93, 96
layers.0.FFN 0, 4, 8, 16, 27, 37, 49, 62, 74, 88
layers.1.SA 0, 4, 10, 19, 28, 37, 53, 65, 78, 88
layers.1.CA 0, 15, 26, 34, 39, 48, 60, 69, 78, 92
layers.1.FFN 0, 4, 10, 18, 28, 37, 54, 65, 79, 88
layers.2.SA 0, 2, 7, 19, 31, 40, 51, 63, 75, 87
layers.2.CA 0, 6, 22, 33, 39, 48, 68, 79, 90, 96
layers.2.FFN 0, 4, 10, 17, 27, 37, 51, 65, 78, 88
layers.3.SA 0, 6, 19, 40, 65, 74, 81, 86, 94, 98
layers.3.CA 0, 6, 15, 22, 38, 53, 66, 78, 88, 97
layers.3.FFN 0, 4, 14, 31, 49, 68, 79, 88, 93, 97
layers.4.SA 0, 6, 19, 40, 65, 75, 85, 92, 95, 98
layers.4.CA 0, 10, 21, 32, 44, 57, 70, 81, 90, 97
layers.4.FFN 0, 15, 37, 68, 79, 88, 93, 96, 98, 99
layers.5.SA 0, 19, 40, 65, 75, 81, 85, 89, 93, 96
layers.5.CA 0, 9, 18, 27, 37, 56, 62, 69, 76, 86
layers.5.FFN 0, 4, 15, 37, 48, 74, 88, 93, 96, 98
layers.6.SA 0, 7, 19, 40, 58, 67, 74, 84, 90, 96
layers.6.CA 0, 8, 15, 23, 34, 44, 54, 71, 87, 95
layers.6.FFN 0, 15, 31, 44, 57, 69, 79, 88, 93, 97
layers.7.SA 0, 7, 19, 39, 53, 67, 75, 84, 89, 96
layers.7.CA 0, 8, 14, 23, 35, 45, 57, 71, 81, 95
layers.7.FFN 0, 15, 29, 40, 54, 69, 79, 86, 91, 95
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Table 7: Update steps for Squareph computed by ACS.

Block Steps

layers.0.SA 0, 3, 9, 17, 30, 49, 62, 69, 80, 89
layers.0.CA 0, 10, 20, 32, 43, 53, 68, 77, 83, 91
layers.0.FFN 0, 4, 10, 21, 31, 40, 51, 62, 75, 84
layers.1.SA 0, 4, 10, 19, 28, 38, 51, 61, 75, 88
layers.1.CA 0, 8, 16, 29, 43, 59, 73, 80, 88, 93
layers.1.FFN 0, 8, 15, 23, 37, 51, 64, 75, 87, 93
layers.2.SA 0, 7, 16, 27, 37, 49, 60, 68, 78, 88
layers.2.CA 0, 10, 26, 40, 53, 63, 72, 81, 90, 97
layers.2.FFN 0, 7, 14, 31, 44, 57, 67, 79, 87, 93
layers.3.SA 0, 14, 24, 34, 44, 55, 66, 76, 84, 90
layers.3.CA 0, 6, 11, 25, 36, 48, 59, 69, 79, 91
layers.3.FFN 0, 4, 8, 15, 24, 37, 64, 76, 87, 95
layers.4.SA 0, 6, 13, 24, 38, 57, 76, 82, 88, 93
layers.4.CA 0, 4, 11, 21, 35, 56, 70, 84, 91, 97
layers.4.FFN 0, 4, 8, 14, 23, 36, 48, 69, 78, 90
layers.5.SA 0, 5, 11, 22, 37, 64, 78, 86, 93, 97
layers.5.CA 0, 5, 8, 12, 18, 25, 36, 52, 68, 89
layers.5.FFN 0, 4, 15, 24, 31, 44, 53, 64, 78, 93
layers.6.SA 0, 9, 30, 50, 69, 78, 87, 95, 97, 98
layers.6.CA 0, 2, 9, 16, 24, 34, 53, 71, 86, 97
layers.6.FFN 0, 44, 61, 74, 83, 90, 93, 95, 96, 98
layers.7.SA 0, 43, 65, 82, 88, 91, 93, 95, 96, 98
layers.7.CA 0, 7, 53, 69, 80, 87, 93, 95, 97, 98
layers.7.FFN 0, 10, 52, 78, 83, 87, 89, 91, 95, 97

A.12 DETAILS ON UPDATE STEPS COMPUTED BY BUA

In Tables 17,18,19,20,21,22,23,24,25,26,27 and 28, we report the steps added after employing BUA
across all tasks at S = 10 and k = 5.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 8: Update steps for Transportph computed by ACS.

Block Steps

layers.0.SA 0, 2, 10, 24, 47, 58, 70, 76, 86, 94
layers.0.CA 0, 7, 15, 23, 34, 52, 65, 76, 86, 93
layers.0.FFN 0, 3, 10, 21, 31, 44, 56, 65, 76, 86
layers.1.SA 0, 2, 10, 19, 30, 41, 48, 54, 70, 98
layers.1.CA 0, 13, 21, 31, 48, 56, 65, 71, 76, 88
layers.1.FFN 0, 1, 3, 7, 19, 30, 43, 52, 75, 90
layers.2.SA 0, 3, 11, 18, 25, 35, 45, 72, 93, 97
layers.2.CA 0, 14, 24, 40, 52, 66, 75, 83, 88, 93
layers.2.FFN 0, 12, 34, 52, 62, 69, 74, 78, 84, 91
layers.3.SA 0, 17, 42, 68, 83, 91, 94, 95, 97, 99
layers.3.CA 0, 6, 13, 29, 45, 71, 77, 83, 91, 96
layers.3.FFN 0, 43, 74, 82, 83, 85, 87, 91, 95, 98
layers.4.SA 0, 16, 27, 43, 58, 82, 88, 93, 96, 99
layers.4.CA 0, 6, 13, 30, 49, 61, 82, 91, 96, 99
layers.4.FFN 0, 16, 34, 57, 78, 91, 92, 93, 94, 97
layers.5.SA 0, 13, 22, 34, 47, 59, 78, 91, 94, 97
layers.5.CA 0, 7, 24, 41, 52, 61, 82, 91, 95, 97
layers.5.FFN 0, 14, 29, 49, 63, 70, 88, 93, 95, 97
layers.6.SA 0, 14, 26, 41, 56, 75, 85, 93, 95, 97
layers.6.CA 0, 7, 22, 48, 54, 61, 82, 91, 94, 97
layers.6.FFN 0, 28, 49, 60, 67, 79, 88, 91, 96, 97
layers.7.SA 0, 15, 26, 40, 71, 78, 82, 95, 97, 99
layers.7.CA 0, 20, 51, 62, 68, 73, 82, 89, 98, 99
layers.7.FFN 0, 36, 62, 67, 75, 82, 85, 91, 95, 98

Table 9: Update steps for Tool hangph computed by ACS.

Block Steps

layers.0.SA 0, 4, 9, 17, 29, 44, 58, 70, 77, 91
layers.0.CA 0, 12, 22, 32, 44, 56, 68, 76, 84, 92
layers.0.FFN 0, 2, 5, 10, 18, 30, 40, 54, 72, 84
layers.1.SA 0, 2, 8, 15, 28, 40, 53, 66, 77, 89
layers.1.CA 0, 11, 20, 31, 43, 56, 68, 78, 84, 92
layers.1.FFN 0, 2, 6, 12, 24, 40, 50, 66, 77, 86
layers.2.SA 0, 1, 8, 24, 31, 40, 49, 71, 80, 91
layers.2.CA 0, 6, 13, 24, 40, 55, 67, 78, 86, 93
layers.2.FFN 0, 3, 10, 24, 31, 40, 49, 61, 71, 85
layers.3.SA 0, 9, 23, 31, 40, 49, 60, 71, 79, 88
layers.3.CA 0, 2, 12, 22, 31, 44, 54, 69, 77, 87
layers.3.FFN 0, 3, 10, 16, 24, 40, 63, 77, 84, 93
layers.4.SA 0, 3, 13, 24, 40, 61, 76, 83, 90, 97
layers.4.CA 0, 6, 14, 20, 32, 46, 62, 79, 88, 97
layers.4.FFN 0, 2, 5, 10, 23, 44, 66, 78, 84, 93
layers.5.SA 0, 3, 10, 18, 25, 39, 55, 76, 84, 97
layers.5.CA 0, 2, 7, 16, 27, 37, 55, 75, 82, 89
layers.5.FFN 0, 48, 71, 80, 85, 88, 91, 94, 96, 98
layers.6.SA 0, 54, 74, 83, 89, 92, 94, 95, 96, 98
layers.6.CA 0, 13, 27, 48, 66, 82, 90, 94, 96, 98
layers.6.FFN 0, 11, 40, 53, 71, 80, 91, 95, 97, 99
layers.7.SA 0, 24, 74, 82, 87, 90, 95, 96, 97, 98
layers.7.CA 0, 6, 43, 66, 81, 90, 94, 96, 97, 98
layers.7.FFN 0, 60, 74, 79, 81, 83, 87, 95, 97, 99
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Table 10: Update steps for Pusht-T computed by ACS.

Block Steps

layers.0.SA 0, 3, 7, 15, 22, 31, 45, 63, 74, 87
layers.0.CA 0, 7, 23, 30, 36, 45, 58, 78, 88, 95
layers.0.FFN 0, 2, 7, 17, 25, 32, 45, 62, 74, 87
layers.1.SA 0, 7, 22, 31, 39, 45, 54, 64, 75, 87
layers.1.CA 0, 13, 21, 31, 44, 54, 63, 75, 80, 89
layers.1.FFN 0, 3, 7, 17, 23, 33, 47, 59, 74, 87
layers.2.SA 0, 6, 25, 40, 55, 64, 75, 83, 89, 96
layers.2.CA 0, 7, 18, 25, 32, 40, 45, 51, 74, 91
layers.2.FFN 0, 7, 19, 31, 45, 54, 64, 74, 82, 90
layers.3.SA 0, 6, 26, 40, 54, 64, 72, 82, 89, 96
layers.3.CA 0, 11, 20, 25, 31, 42, 49, 59, 82, 93
layers.3.FFN 0, 7, 21, 31, 45, 54, 65, 74, 82, 90
layers.4.SA 0, 6, 32, 47, 59, 71, 81, 89, 94, 97
layers.4.CA 0, 10, 19, 27, 39, 49, 65, 81, 90, 95
layers.4.FFN 0, 6, 25, 39, 51, 65, 74, 85, 91, 96
layers.5.SA 0, 6, 31, 54, 74, 87, 91, 94, 96, 98
layers.5.CA 0, 14, 21, 38, 46, 51, 58, 66, 76, 86
layers.5.FFN 0, 7, 17, 23, 45, 68, 79, 85, 91, 96
layers.6.SA 0, 22, 54, 71, 81, 87, 91, 94, 96, 98
layers.6.CA 0, 5, 10, 21, 32, 44, 51, 59, 73, 92
layers.6.FFN 0, 7, 17, 23, 45, 64, 74, 84, 91, 96
layers.7.SA 0, 21, 52, 72, 82, 87, 90, 93, 95, 97
layers.7.CA 0, 14, 22, 39, 47, 53, 58, 79, 89, 96
layers.7.FFN 0, 7, 19, 31, 45, 66, 86, 91, 94, 97

Table 11: Update steps for Canmh computed by ACS.

Block Steps

layers.0.SA 0, 7, 16, 26, 41, 52, 62, 75, 83, 92
layers.0.CA 0, 14, 28, 43, 56, 70, 78, 80, 86, 93
layers.0.FFN 0, 4, 11, 19, 29, 43, 54, 70, 81, 90
layers.1.SA 0, 4, 10, 20, 29, 42, 54, 70, 81, 89
layers.1.CA 0, 13, 26, 42, 55, 68, 78, 84, 90, 95
layers.1.FFN 0, 5, 11, 19, 30, 43, 59, 69, 81, 92
layers.2.SA 0, 5, 13, 29, 43, 59, 70, 78, 85, 92
layers.2.CA 0, 9, 17, 26, 39, 54, 67, 77, 86, 96
layers.2.FFN 0, 3, 11, 18, 24, 33, 43, 60, 80, 92
layers.3.SA 0, 12, 25, 38, 49, 59, 69, 80, 86, 96
layers.3.CA 0, 8, 16, 25, 37, 52, 63, 71, 87, 96
layers.3.FFN 0, 3, 11, 19, 28, 43, 57, 80, 88, 96
layers.4.SA 0, 9, 19, 30, 45, 63, 80, 87, 95, 98
layers.4.CA 0, 3, 6, 13, 23, 38, 52, 63, 71, 84
layers.4.FFN 0, 2, 11, 38, 62, 78, 85, 92, 97, 99
layers.5.SA 0, 11, 34, 60, 80, 87, 92, 95, 97, 98
layers.5.CA 0, 6, 19, 31, 44, 57, 74, 89, 95, 97
layers.5.FFN 0, 54, 69, 81, 88, 91, 93, 95, 97, 99
layers.6.SA 0, 60, 80, 89, 92, 94, 95, 96, 97, 98
layers.6.CA 0, 6, 24, 46, 70, 89, 93, 95, 96, 98
layers.6.FFN 0, 43, 59, 79, 87, 91, 94, 96, 97, 98
layers.7.SA 0, 24, 59, 72, 81, 88, 91, 94, 96, 98
layers.7.CA 0, 6, 28, 54, 69, 83, 90, 95, 97, 98
layers.7.FFN 0, 60, 70, 73, 76, 80, 86, 95, 97, 99
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Table 12: Update steps for Liftmh computed by ACS.

Block Steps

layers.0.SA 0, 3, 8, 21, 33, 49, 62, 69, 81, 91
layers.0.CA 0, 14, 24, 36, 49, 60, 71, 80, 87, 94
layers.0.FFN 0, 4, 8, 16, 28, 37, 53, 65, 79, 88
layers.1.SA 0, 4, 8, 16, 27, 38, 51, 62, 79, 87
layers.1.CA 0, 7, 16, 29, 41, 54, 67, 79, 88, 96
layers.1.FFN 0, 4, 8, 14, 30, 38, 52, 65, 79, 88
layers.2.SA 0, 4, 7, 12, 25, 33, 43, 60, 78, 90
layers.2.CA 0, 9, 19, 30, 40, 49, 58, 69, 80, 90
layers.2.FFN 0, 15, 23, 32, 43, 60, 68, 83, 93, 98
layers.3.SA 0, 19, 34, 44, 54, 64, 78, 86, 94, 98
layers.3.CA 0, 5, 12, 20, 28, 36, 47, 64, 76, 96
layers.3.FFN 0, 4, 22, 40, 54, 68, 78, 83, 90, 96
layers.4.SA 0, 5, 18, 32, 45, 62, 79, 89, 96, 99
layers.4.CA 0, 5, 14, 25, 36, 47, 61, 79, 88, 95
layers.4.FFN 0, 13, 40, 57, 68, 79, 89, 93, 96, 98
layers.5.SA 0, 32, 56, 72, 83, 90, 94, 96, 98, 99
layers.5.CA 0, 14, 31, 50, 66, 79, 87, 91, 95, 98
layers.5.FFN 0, 33, 60, 75, 85, 90, 93, 95, 97, 99
layers.6.SA 0, 34, 65, 80, 87, 91, 93, 95, 96, 98
layers.6.CA 0, 9, 22, 38, 57, 78, 89, 93, 95, 97
layers.6.FFN 0, 27, 51, 65, 81, 89, 92, 94, 96, 98
layers.7.SA 0, 15, 32, 63, 80, 87, 93, 95, 96, 98
layers.7.CA 0, 4, 21, 39, 55, 70, 84, 92, 95, 97
layers.7.FFN 0, 43, 63, 68, 71, 75, 82, 92, 96, 98

Table 13: Update steps for Squaremh computed by ACS.

Block Steps

layers.0.SA 0, 1, 3, 9, 18, 31, 51, 61, 76, 85
layers.0.CA 0, 13, 26, 41, 54, 66, 77, 81, 86, 92
layers.0.FFN 0, 3, 8, 18, 29, 40, 53, 66, 77, 88
layers.1.SA 0, 1, 6, 12, 24, 31, 50, 66, 77, 87
layers.1.CA 0, 7, 19, 34, 47, 58, 68, 78, 86, 92
layers.1.FFN 0, 1, 7, 15, 24, 40, 50, 66, 77, 89
layers.2.SA 0, 9, 24, 32, 49, 61, 71, 77, 84, 91
layers.2.CA 0, 8, 21, 33, 46, 60, 72, 82, 90, 96
layers.2.FFN 0, 3, 9, 23, 34, 44, 58, 66, 78, 93
layers.3.SA 0, 9, 23, 33, 44, 55, 68, 78, 84, 96
layers.3.CA 0, 8, 15, 24, 34, 47, 61, 77, 90, 96
layers.3.FFN 0, 3, 10, 24, 44, 68, 78, 86, 92, 97
layers.4.SA 0, 4, 14, 25, 41, 62, 78, 84, 92, 96
layers.4.CA 0, 9, 15, 23, 34, 54, 76, 88, 93, 96
layers.4.FFN 0, 3, 9, 20, 49, 69, 78, 84, 91, 97
layers.5.SA 0, 12, 28, 48, 77, 85, 91, 94, 96, 98
layers.5.CA 0, 6, 15, 26, 35, 56, 74, 89, 95, 97
layers.5.FFN 0, 41, 76, 82, 86, 89, 91, 95, 97, 99
layers.6.SA 0, 77, 87, 91, 93, 94, 95, 97, 98, 99
layers.6.CA 0, 12, 23, 58, 84, 90, 93, 95, 97, 98
layers.6.FFN 0, 6, 28, 58, 85, 93, 95, 96, 97, 98
layers.7.SA 0, 20, 55, 73, 84, 90, 93, 96, 97, 98
layers.7.CA 0, 3, 13, 30, 46, 83, 91, 94, 96, 98
layers.7.FFN 0, 21, 58, 72, 77, 81, 85, 92, 95, 98
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Table 14: Update steps for Transportmh computed by ACS.

Block Steps

layers.0.SA 0, 2, 7, 18, 30, 43, 58, 70, 80, 91
layers.0.CA 0, 3, 5, 10, 24, 35, 62, 79, 93, 97
layers.0.FFN 0, 1, 7, 18, 29, 51, 61, 71, 81, 93
layers.1.SA 0, 4, 13, 25, 38, 51, 62, 76, 85, 93
layers.1.CA 0, 6, 17, 29, 41, 53, 63, 76, 89, 95
layers.1.FFN 0, 7, 18, 29, 40, 52, 62, 74, 86, 94
layers.2.SA 0, 5, 18, 28, 46, 58, 70, 78, 90, 96
layers.2.CA 0, 2, 10, 24, 37, 49, 59, 68, 77, 90
layers.2.FFN 0, 3, 10, 24, 41, 52, 63, 78, 88, 95
layers.3.SA 0, 5, 18, 29, 42, 58, 71, 80, 90, 94
layers.3.CA 0, 5, 13, 22, 32, 44, 53, 64, 77, 91
layers.3.FFN 0, 1, 6, 18, 30, 41, 52, 63, 78, 91
layers.4.SA 0, 3, 10, 18, 30, 41, 55, 74, 81, 93
layers.4.CA 0, 5, 13, 23, 31, 41, 53, 68, 78, 93
layers.4.FFN 0, 1, 7, 18, 30, 41, 52, 68, 80, 91
layers.5.SA 0, 1, 3, 10, 19, 31, 41, 54, 76, 91
layers.5.CA 0, 6, 15, 25, 31, 36, 42, 52, 63, 78
layers.5.FFN 0, 5, 19, 42, 66, 88, 92, 96, 98, 99
layers.6.SA 0, 1, 8, 20, 41, 63, 75, 87, 97, 99
layers.6.CA 0, 17, 36, 56, 77, 88, 93, 96, 98, 99
layers.6.FFN 0, 1, 3, 10, 47, 63, 76, 90, 97, 98
layers.7.SA 0, 1, 10, 46, 86, 90, 92, 94, 96, 98
layers.7.CA 0, 1, 3, 10, 18, 42, 52, 75, 84, 97
layers.7.FFN 0, 3, 10, 17, 35, 46, 63, 76, 90, 97

Table 15: Update steps for Block Pushing computed by ACS.

Block Steps

layers.0.SA 0, 1, 2, 4, 14, 25, 32, 40, 62, 74
layers.0.CA 0, 3, 13, 26, 41, 57, 73, 83, 91, 97
layers.0.FFN 0, 1, 3, 7, 13, 18, 26, 59, 74, 82
layers.1.SA 0, 1, 7, 13, 18, 25, 40, 59, 74, 90
layers.1.CA 0, 4, 12, 26, 42, 58, 72, 83, 92, 97
layers.1.FFN 0, 3, 7, 16, 26, 40, 59, 76, 83, 92
layers.2.SA 0, 3, 7, 16, 25, 40, 57, 74, 83, 96
layers.2.CA 0, 4, 7, 12, 19, 32, 48, 66, 84, 95
layers.2.FFN 0, 3, 7, 17, 26, 40, 59, 74, 86, 96
layers.3.SA 0, 5, 13, 26, 41, 52, 70, 81, 86, 96
layers.3.CA 0, 3, 6, 9, 10, 12, 22, 56, 81, 98
layers.3.FFN 0, 5, 10, 18, 26, 52, 71, 83, 92, 97
layers.4.SA 0, 4, 9, 16, 26, 41, 53, 71, 83, 95
layers.4.CA 0, 3, 9, 16, 25, 36, 51, 68, 82, 93
layers.4.FFN 0, 7, 16, 30, 41, 53, 70, 83, 92, 97
layers.5.SA 0, 5, 13, 25, 40, 53, 71, 83, 92, 97
layers.5.CA 0, 5, 11, 20, 28, 42, 53, 71, 81, 90
layers.5.FFN 0, 5, 15, 27, 46, 58, 71, 83, 92, 97
layers.6.SA 0, 11, 25, 38, 53, 70, 81, 88, 93, 97
layers.6.CA 0, 3, 6, 10, 27, 42, 64, 75, 84, 93
layers.6.FFN 0, 17, 38, 53, 64, 74, 83, 89, 93, 97
layers.7.SA 0, 25, 51, 66, 75, 81, 86, 90, 93, 97
layers.7.CA 0, 7, 14, 26, 49, 71, 83, 91, 95, 97
layers.7.FFN 0, 16, 40, 64, 76, 83, 89, 93, 96, 98
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Table 16: Update steps for Kitchen computed by ACS.

Block Steps

layers.0.SA 0, 2, 5, 10, 19, 29, 43, 54, 70, 83
layers.0.CA 0, 1, 6, 18, 29, 41, 54, 68, 85, 95
layers.0.FFN 0, 3, 7, 14, 25, 38, 46, 59, 70, 84
layers.1.SA 0, 4, 10, 19, 28, 40, 49, 59, 75, 87
layers.1.CA 0, 1, 4, 8, 11, 19, 30, 40, 49, 61
layers.1.FFN 0, 5, 10, 18, 29, 43, 54, 68, 78, 91
layers.2.SA 0, 4, 10, 19, 30, 41, 54, 72, 84, 92
layers.2.CA 0, 2, 5, 8, 13, 19, 30, 41, 54, 70
layers.2.FFN 0, 1, 5, 10, 18, 27, 41, 55, 70, 87
layers.3.SA 0, 1, 7, 18, 29, 41, 55, 68, 82, 92
layers.3.CA 0, 3, 6, 10, 13, 19, 31, 41, 55, 73
layers.3.FFN 0, 2, 5, 8, 11, 18, 27, 41, 59, 79
layers.4.SA 0, 4, 10, 18, 31, 41, 59, 72, 84, 92
layers.4.CA 0, 1, 7, 15, 27, 38, 49, 59, 70, 82
layers.4.FFN 0, 2, 5, 11, 18, 27, 41, 54, 70, 88
layers.5.SA 0, 3, 8, 15, 25, 37, 46, 61, 78, 91
layers.5.CA 0, 3, 13, 22, 32, 43, 54, 65, 76, 92
layers.5.FFN 0, 1, 5, 11, 18, 27, 43, 57, 72, 88
layers.6.SA 0, 12, 28, 41, 52, 62, 72, 84, 92, 98
layers.6.CA 0, 1, 6, 13, 21, 28, 40, 54, 69, 92
layers.6.FFN 0, 1, 5, 18, 29, 47, 59, 92, 96, 98
layers.7.SA 0, 2, 41, 62, 80, 89, 93, 95, 97, 98
layers.7.CA 0, 7, 16, 40, 53, 60, 76, 88, 92, 98
layers.7.FFN 0, 1, 6, 11, 25, 38, 60, 68, 88, 95

Table 17: Update steps added for Canph after BUA.

Block Added Steps

layers.0.FFN 6, 8, 14, 16, 18, 23, 27, 28, 37, 38, 39, 47, 48,
51, 60, 62, 68, 69, 71, 74, 75, 77, 78, 80, 81,
85, 86, 89, 92, 93, 94, 95, 96, 97, 98, 99

layers.5.FFN 28, 47, 62, 69, 74, 77, 80, 81, 86, 89, 93, 95,
97

layers.6.SA 28, 47, 62, 69, 74, 77
layers.6.FFN 47, 69, 74, 77, 81, 86

Table 18: Update steps added for Liftph after BUA.

Block Added Steps

layers.0.FFN 10, 14, 15, 17, 18, 28, 29, 31, 40, 44, 48, 51,
54, 57, 65, 68, 69, 78, 79, 86, 91, 93, 95, 96,
97, 98, 99

layers.1.SA 14, 15, 17, 18, 27, 29, 31, 40, 44, 48, 49, 51,
54, 57, 68, 69, 74, 79, 86, 91, 93, 95, 96, 97,
98, 99

layers.1.FFN 14, 15, 17, 27, 29, 31, 40, 44, 48, 49, 51, 57,
68, 69, 74, 78, 86, 91, 93, 95, 96, 97, 98, 99

layers.2.FFN 14, 15, 29, 31, 40, 44, 48, 49, 54, 57, 68, 69,
74, 79, 86, 91, 93, 95, 96, 97, 98, 99

layers.3.FFN 15, 29, 37, 40, 44, 48, 54, 57, 69, 74, 86, 91,
95, 96, 98, 99
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Table 19: Update steps added for Squareph after BUA.

Block Added Steps

layers.0.FFN 7, 8, 14, 15, 23, 24, 36, 37, 44, 48, 52, 53, 57,
61, 64, 67, 69, 74, 76, 78, 79, 83, 87, 89, 90,
91, 93, 95, 96, 97, 98

layers.6.FFN 10, 52, 78, 87, 89, 91, 97
layers.7.SA 10, 52, 78, 83, 87, 89, 97
layers.7.CA 10, 52, 78, 83, 89, 91

Table 20: Update steps added for Transportph after BUA.

Block Added Steps

layers.0.FFN 1, 7, 12, 14, 16, 19, 28, 29, 30, 34, 36, 43, 49,
52, 57, 60, 62, 63, 67, 69, 70, 74, 75, 78, 79,
82, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 95,
96, 97, 98

layers.3.SA 14, 16, 28, 29, 34, 36, 43, 49, 57, 60, 62, 63,
67, 70, 74, 75, 78, 79, 82, 85, 87, 88, 92, 93,
96, 98

layers.3.CA 14, 16, 28, 34, 36, 43, 49, 57, 60, 62, 63, 67,
70, 74, 75, 78, 79, 82, 85, 87, 88, 92, 93, 94,
95, 97, 98

layers.3.FFN 14, 16, 28, 29, 34, 36, 49, 57, 60, 62, 63, 67,
70, 75, 78, 79, 88, 92, 93, 94, 96, 97

layers.4.FFN 14, 28, 29, 36, 49, 60, 62, 63, 67, 70, 75, 79,
82, 85, 88, 95, 96, 98

Table 21: Update steps added for Toolph after BUA.

Block Added Steps

layers.0.FFN 3, 6, 11, 12, 16, 23, 24, 31, 44, 48, 49, 50, 53,
60, 61, 63, 66, 71, 74, 77, 78, 79, 80, 81, 83,
85, 86, 87, 88, 91, 93, 94, 95, 96, 97, 98, 99

layers.1.FFN 3, 6, 11, 12, 16, 23, 24, 31, 44, 48, 49, 50, 53,
60, 61, 63, 66, 71, 74, 77, 78, 79, 80, 81, 83,
85, 86, 87, 88, 91, 93, 94, 95, 96, 97, 98, 99

layers.5.FFN 11, 40, 53, 60, 74, 79, 81, 83, 87, 95, 97, 99
layers.6.SA 11, 40, 53, 60, 71, 79, 80, 81, 87, 91, 97, 99
layers.6.CA 11, 40, 53, 60, 71, 74, 79, 80, 81, 83, 87, 91,

95, 97, 99

Table 22: Update steps added for Pusht-T after BUA.

Block Added Steps

layers.0.FFN 3, 6, 19, 21, 23, 31, 33, 39, 47, 51, 54, 59, 64,
65, 66, 68, 79, 82, 84, 85, 86, 90, 91, 94, 96,
97

layers.4.FFN 7, 17, 19, 23, 31, 45, 64, 66, 68, 79, 84, 86,
94, 97

layers.5.FFN 19, 31, 64, 66, 74, 84, 86, 94, 97
layers.6.FFN 19, 31, 66, 86, 94, 97
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Table 23: Update steps added for Canmh after BUA.

Block Added Steps

layers.0.FFN 2, 3, 5, 18, 24, 28, 30, 33, 38, 57, 59, 60, 62,
69, 73, 76, 78, 79, 80, 85, 86, 87, 88, 91, 92,
93, 94, 95, 96, 97, 98, 99

layers.5.FFN 43, 59, 60, 70, 73, 76, 79, 80, 86, 87, 94, 96,
98

layers.6.SA 43, 59, 70, 73, 76, 79, 86, 87, 91, 99
layers.6.FFN 60, 70, 73, 76, 80, 86, 95, 99

Table 24: Update steps added for Liftmh after BUA.

Block Added Steps

layers.0.FFN 13, 14, 15, 22, 23, 27, 30, 32, 33, 38, 40, 43,
51, 52, 54, 57, 60, 63, 68, 71, 75, 78, 81, 82,
83, 85, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99

layers.5.SA 27, 33, 43, 51, 60, 63, 65, 68, 71, 75, 81, 82,
85, 89, 92, 93, 95, 97

layers.5.CA 27, 33, 43, 51, 60, 63, 65, 68, 71, 75, 81, 82,
85, 89, 90, 92, 93, 94, 96, 97, 99

layers.5.FFN 27, 43, 51, 63, 65, 68, 71, 81, 82, 89, 92, 94,
96, 98

Table 25: Update steps added for Squaremh after BUA.

Block Added Steps

layers.0.FFN 1, 6, 7, 9, 10, 15, 20, 21, 23, 24, 28, 34, 41,
44, 49, 50, 58, 68, 69, 72, 76, 78, 81, 82, 84,
85, 86, 89, 91, 92, 93, 95, 96, 97, 98, 99

layers.5.FFN 6, 21, 28, 58, 72, 77, 81, 85, 92, 93, 96, 98
layers.6.SA 6, 21, 28, 58, 72, 81, 85, 92, 96
layers.6.CA 6, 21, 28, 72, 77, 81, 85, 92, 96

Table 26: Update steps added for Transportmh after BUA.

Block Added Steps

layers.0.SA 1, 3, 5, 6, 10, 17, 19, 24, 29, 35, 40, 41, 42,
46, 47, 51, 52, 61, 62, 63, 66, 68, 71, 74, 76,
78, 81, 86, 88, 90, 92, 93, 94, 95, 96, 97, 98,
99

layers.0.FFN 3, 5, 6, 10, 17, 19, 24, 30, 35, 40, 41, 42, 46,
47, 52, 62, 63, 66, 68, 74, 76, 78, 80, 86, 88,
90, 91, 92, 94, 95, 96, 97, 98, 99

layers.1.FFN 1, 3, 5, 6, 10, 17, 19, 24, 30, 35, 41, 42, 46,
47, 63, 66, 68, 76, 78, 80, 88, 90, 91, 92, 95,
96, 97, 98, 99

layers.5.FFN 1, 3, 10, 17, 35, 46, 47, 63, 76, 90, 97
layers.6.FFN 17, 35, 46

Table 27: Update steps added for Block Pushing after BUA.

Block Added Steps

layers.0.FFN 5, 10, 15, 16, 17, 27, 30, 38, 40, 41, 46, 52,
53, 58, 64, 70, 71, 76, 83, 86, 89, 92, 93, 96,
97, 98

layers.6.FFN 16, 40, 76, 96, 98
layers.7.SA 16, 40, 64, 76, 83, 89, 96, 98
layers.7.CA 16, 40, 64, 76, 89, 93, 96, 98
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Table 28: Update steps added for Kitchen after BUA.

Block Added Steps

layers.0.SA 1, 3, 6, 7, 8, 11, 14, 18, 25, 27, 38, 41, 46, 47,
55, 57, 59, 60, 68, 72, 78, 79, 84, 87, 88, 91,
92, 95, 96, 98

layers.0.FFN 1, 2, 5, 6, 8, 10, 11, 18, 27, 29, 41, 43, 47, 54,
55, 57, 60, 68, 72, 78, 79, 87, 88, 91, 92, 95,
96, 98

layers.5.FFN 6, 25, 29, 38, 47, 59, 60, 68, 92, 95, 96, 98
layers.6.FFN 6, 11, 25, 38, 60, 68, 88, 95
layers.7.SA 1, 6, 11, 25, 38, 60, 68, 88
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