
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COVERAGE-DRIVEN KV CACHE EVICTION FOR EFFI-
CIENT AND IMPROVED INFERENCE OF LLM

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) excel at complex tasks like question answering
and summarization, thanks to their ability to handle long-context inputs. How-
ever, deploying LLMs is costly, not only due to the high computational demands
of quadratic complexity of self-attention and auto-regressive generation, but also
because of the significant memory overhead required for storing the key-value
(KV) cache during inference. To reduce the memory cost, existing KV-cache
eviction strategies leverage the sparsity in attention to selectively store a subset of
tokens. While reducing the memory footprint, such approaches show a consider-
able drop in performance, especially in tasks that require long-context reasoning.
We identify that the drop in performance is linked to a reduction in the coverage of
unique tokens. Additionally, we theoretically show that reduced coverage limits
the mutual information between inputs and outputs, thereby impairing predictive
accuracy. To this end, we introduce K-VEC, a novel coverage-aware KV-cache
eviction strategy that prioritizes token coverage while evicting tokens in the cache.
K-VEC introduces a cross-head and a cross-layer coverage module to enhance to-
ken retention across attention heads and model layers, mitigating performance
degradation caused by low coverage. Evaluated on 16 LongBench subsets, K-
VEC exhibit up to 10.35 points improvement over the existing methods under the
same eviction rate and memory constraint. Comprehensive evaluations validate
the effectiveness of our approach and demonstrate its potential for efficient LLM
deployment in resource-constrained settings.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable performance in tasks such as ques-
tion answering, retrieval-augmented generation, summarization, and dialogue systems, largely due
to their ability to process and reason over long-context inputs. However, deploying LLMs remains
computationally expensive due to their auto-regressive generation and the quadratic complexity of
self-attention, which scales with input length. Additionally, the key-value (KV) cache, used to store
intermediate attention states and avoid recomputation during inference, imposes substantial memory
overhead. Its size grows with both sequence length and model depth, limiting scalability in resource-
constrained or real-time settings. To address this, recent works such as H2O (Zhang et al., 2024b),
PyramidKV (Zhang et al., 2024a), and SnapKV (Li et al., 2024) have proposed eviction strategies
that leverage attention sparsity to selectively store only a subset of the KV cache. Besides reduc-
ing the memory usage, the reduced sequence length also improves the computational cost during
inference.

While existing KV-cache eviction strategies (Li et al., 2024; Zhang et al., 2024b;a; Feng et al., 2024)
perform well at moderate eviction rates, their effectiveness diminishes at higher rates, particularly
for tasks requiring long-context reasoning. Our preliminary analysis, illustrated in Figure 1, reveals a
strong correlation between performance degradation and reduced coverage, where coverage denotes
the number of unique tokens retained in the KV cache (at least once, across the heads and layers).
We further provide a theoretical basis for these findings using an information bottleneck framework,
demonstrating that lower coverage limits the mutual information between input and output, thereby
degrading the model’s predictive performance.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Correlation between re-
duced coverage and performance
degradation, indicating the im-
portance of coverage.

In this work, we propose K-VEC (KV Cache Eviction with Cover-
age), a coverage-aware KV cache eviction strategy designed to en-
hance the diversity of cached tokens. K-VEC addresses a key lim-
itation of existing methods: eviction scores across attention heads
and layers frequently overlap, resulting in the eviction of similar
tokens and a subsequent reduction in overall coverage. To counter
this, K-VEC introduces two novel components: cross-head cover-
age and cross-layer coverage. Specifically, the cross-head cover-
age module increases coverage by adjusting the attention span of a
few strategically selected heads to focus on diverse tokens. On the
other hand, the cross-layer coverage module improves coverage by
encouraging the selection of globally important tokens that are not
selected in earlier layers. Together, these components ensure that
the most important tokens are retained in the KV cache, enabling
the LLM to generate the desired response.

We evaluate K-VEC on the established protocol from prior works (Li et al., 2024; Feng et al., 2024)
and report results on 16 subsets of the LongBench dataset, covering single-document QA (Kočiskỳ
et al., 2018; Dasigi et al., 2021), multi-document QA (Yang et al., 2018; Ho et al., 2020; Trivedi et al.,
2022), summarization (Zhong et al., 2021; Fabbri et al., 2019), few-shot learning (Li & Roth, 2002;
Gliwa et al., 2019; Joshi et al., 2017), synthetic tasks, and code (Guo et al., 2023; Liu et al., 2023).
Evaluations are conducted across various KV cache budget sizes (128, 256, 512, and 1024 tokens).
K-VEC demonstrates significant improvements over existing methods, with particularly pronounced
gains at lower cache budgets (e.g., 128 tokens), showing up to 10.35 points improvement over the
existing methods under the same memory constraint. The average improvement on the 16 datasets is
1.61 points. We provide comprehensive ablation and sensitivity analysis to validate the effectiveness
of each proposed module. Overall, our contributions are as follows:

• We identify reduced token coverage as the primary cause of performance degradation in existing
KV cache eviction methods and provide a theoretical foundation for these empirical observa-
tions.

• We introduce K-VEC, a novel KV cache eviction strategy that enhances both head-wise and
layer-wise token coverage.

• Extensive experiments demonstrate that K-VEC outperforms existing KV cache eviction meth-
ods while maintaining comparable computational efficiency. To foster quick reproduction and
further development in this area, we will make the code publicly available upon acceptance.

2 RELATED WORK

The substantial memory demands of storing KV caches during long-sequence inference pose signif-
icant challenges for LLMs, leading to high memory consumption and I/O latency (Wang & Chen,
2023). A prominent approach to mitigating this issue involves cache size reduction through evic-
tion, using various scoring functions to assess token importance. There are two broad groups of
eviction policies: sliding window eviction and top-k eviction. Sliding window methods, such as
StreamingLLM (Xiao et al., 2023), preserve the initial tokens and those within a fixed window, dis-
carding others (Beltagy et al., 2020; Han et al., 2024; Xiao et al., 2023). While straightforward,
this non-selective approach often degrades output quality in long-context scenarios. In contrast,
top-k eviction methods (Ge et al., 2023; Liu et al., 2024; Ren & Zhu, 2024; Zhang et al., 2024b;
Yang et al., 2024; Zhang et al., 2024a; Li et al., 2024) retain the k most important tokens based
on attention scores to maintain post-eviction performance. For example, FastGen (Ge et al., 2023)
combines retention of special tokens, punctuation, recent tokens, and top-k selections, adapting to
head-specific attention patterns. H2O (Zhang et al., 2024b) selects critical tokens using query states
across all positions. More advanced methods like SnapKV (Li et al., 2024) and Pyramid (Yang
et al., 2024; Zhang et al., 2024a) enhance efficiency by prioritizing query states within a local obser-
vation window. Additionally, Pyramid introduced a layer-wise adaptive budget allocation strategy.
Overall, most existing approaches allocate the cache budget uniformly across attention heads. More
recently, AdaKV introduced a head-wise adaptive budget allocation strategy that can be used as a
plug-and-play enhancement to improve the performance of existing methods. Nonetheless, all cur-
rent methods compute eviction scores independently across heads and layers, lacking any inherent

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 3: Coverage of tokens over input prompt for existing method. The existing method’s token coverage
skews heavily toward the end of the input, despite the correct answer appearing first in this example.

mechanism to encourage diverse token coverage. As a result, similar tokens are often evicted across
both heads and layers, leading to a reduction in overall coverage.

3 COVERAGE HYPOTHESIS FOR KV-CACHE EVICTION

In this section, we investigate the cause of coverage loss in existing KV-cache eviction methods, such
as SnapKV (Li et al., 2024). Specifically, we analyze the eviction scores used by SnapKV across
attention heads and layers. Figure 2 illustrates an example of these scores over the input tokens,
where tokens with lower scores are removed. As shown in the figure, there is a pronounced bias
toward the end of the input prompt, favouring the eviction of earlier tokens. This skewness results in
a disproportionate retention of tokens from the end of the prompt, a pattern that remains consistent
across heads and layers. Consequently, similar tokens, primarily from the end of the input prompt,
are retained across heads and layers, leading to a significant reduction in overall token coverage.

Token index Token index

At
te

nt
io

n
Sc

or
e

At
te

nt
io

n
Sc

or
e

H2O SnapKV

Figure 2: Attention pattern
in SnapKV is skewed to-
wards the end.

The impact of this phenomenon is illustrated in Figure 3, using an exam-
ple from a multiple-choice question-answering task with four options. In
the figure, darker colours indicate tokens attended to by a higher number
of layers (up to a maximum of 32), while uncoloured tokens are ignored
by all layers. Tokens that are attended by no layers represent a loss of in-
formation, which can degrade performance, especially when the tokens
contain important information regarding the query. In this example, the
correct answer (the first option) receives minimal attention, while the
model heavily focuses on the final few tokens of the prompt across all
layers, highlighting a strong recency bias in SnapKV’s eviction strategy.
This bias reduces coverage of critical tokens and contributes to perfor-
mance degradation in long-context tasks. In the next subsection, we pro-
vide a coverage hypothesis, a theoretical basis for the relation between coverage and performance.

We present an information-theoretic view of cache eviction in transformers, framing the cache repre-
sentation T as an information bottleneck between input X and output Y . Since eviction reduces the
number of unique tokens retained, the effective coverage C limits the mutual information I(X;Y)
and thus constrains predictive performance. Formally, if P denotes a performance metric (e.g.,
negative log-likelihood), then to achieve a target level P0, coverage must satisfy

C ≥ exp
(
1
αϕ

−1(P0)
)
. (1)

This highlights a fundamental trade-off: decreasing coverage directly reduces information flow,
explaining the empirical performance collapse observed under cache eviction. A detailed derivation
of these bounds is provided in the Appendix A.1.

4 KV CACHE EVICTION WITH COVERAGE

To maximize token coverage during KV cache eviction, we propose K-VEC (KV Cache Eviction
with Coverage), a strategy that operates on two levels: across attention heads and across transformer
layers, through our cross-head coverage and cross-layer coverage modules. Below, we detail our
proposed solution designed to increase the overall coverage of evicted tokens.

4.1 CROSS-HEAD COVERAGE

As discussed in the preliminaries, the eviction policy often selects overlapping tokens across heads,
resulting in reduced coverage across the heads of a layer. To this end, we introduce the cross-head

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

coverage module to expand the coverage across heads. Existing eviction policy (e.g., SnapKV)
typically computes token importance at a certain head of layer ℓ using a windowed attention score.
Specifically, with attention scores A ∈ RL×H×T×T (number of layers L, number of heads H ,
sequence length T), the eviction scores are computed over an observation window of length O as:

Pℓ,h,t =
1

O

T∑
q=T−O+1

Aℓ,h,q,t. (2)

This formulation captures the average attention over the most recent O (e.g., 16) tokens, which
serves as a proxy for estimating token importance in the eviction decision. Given a cache budget of
B tokens and P ∈ RH×T , each head h selects the top-B tokens

Th = {t | Pℓ,h,t among top B of {Pℓ,h,1, . . . , Pℓ,h,T }}, (3)

from the T input tokens. Subsequently, the key-value corresponding to Th tokens are stored in the
cache for subsequent decoding steps.

Our proposed cross-head coverage module utilizes the property that the important score is condi-
tioned on the observation window O, which can be leveraged to encourage the selection of more
diverse yet important tokens across heads. Specifically, by increasing the observation window to
O′ (O′ > O) for calculating the eviction score (using Eq. 2), we encourage the eviction score to
focus on a broader context. However, our goal is not only to maximize coverage but also to ensure
that the selected tokens are contextually important. To strike this balance, we selectively update the
priority scores for only a subset of δ heads. These heads are chosen based on how focused their
eviction score is. For example, a head with uniform scores over the tokens lacks focus and is less
effective for optimal performance. We use the standard deviation of eviction scores over the tokens
as an indication of focus:

σℓ,h = std(Pℓ,h,:, dim = 1), (4)
and select δ heads, Htop, with the lowest standard deviation. The use of standard deviation provides a
principled way to quantify how much a head differentiates among tokens. A low standard deviation
suggests that eviction scores are nearly uniform, meaning the head lacks a distinct focus and would
otherwise reduce to random sampling. In contrast, a higher standard deviation indicates that the
head assigns differentiated importance to tokens, reflecting a stronger focus. Finally, for the selected
heads, we recalculate the eviction score using expanded observation windows:

Pℓ,h,t =
1

O′

T∑
q=T−O′+1

Aℓ,h,q,t, for h ∈ Htop. (5)

This modified eviction scores encourage higher coverage compared to the original eviction score.
Next, we discuss our cross-layer coverage module that encourages coverage across the layers.

4.2 CROSS-LAYER COVERAGE

The cross-layer coverage module aims to reduce redundancy and increase the diversity of selected
tokens across the layers of the model. Let’s define the coverage score of a token t till layer l,
coverageℓ,t, as the number of layers where t has been selected (by at least one head), normalized by
the number of layers processed:

coverageℓ,t =
nt

l + 1
, (6)

where nt is the number of layers in which token t has been selected.

At layer ℓ, our goal is to prioritize the selection of tokens with lower coverage to increase the overall
coverage, while also considering two factors: (1) the global importance of each token, and (2)
prioritizing the high-important tokens for that specific layer.

To satisfy the first criterion, we compute the global importance Iℓ,t of each token as the maximum
attention score over all heads, averaged over a window of size O:

Iℓ,t =
1

O

T∑
q=T−O+1

max
h

Aℓ,h,q,t. (7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 K-VEC: Cross-Head and Cross-Layer Coverage Priority Adjustment

1: Input: Attention scores A ∈ RL×H×T×T , L is the total number of layer, H is the number of
heads, T is the sequence length, budget B, window size O, extended window O′, number of
heads δ, hyperparameter λ and β, current layer ℓ, coverage counters nt

2: Pℓ,h,t =
1
O

∑T
q=T−O+1 Aℓ,h,q,t ▷ Initial eviction scores from recent window

3: σℓ,h = std(Pℓ,h,:) ▷ Compute variability across tokens for each head
4: Htop ← δ heads with lowest σℓ,h ▷ Select most focused heads
5: for each head h ∈ Htop do
6: Pℓ,h,t =

1
O′

∑T
q=T−O′+1 Aℓ,h,q,t ▷ Recompute using a larger window

7: end for
8: Iℓ,t =

1
O

∑T
q=T−O+1 maxh Aℓ,h,q,t ▷ Max attention across heads

9: coverageℓ,t =
nt

ℓ+1 ▷ Estimate token coverage so far
10: focusℓ,t = Iℓ,t · (1− coverageℓ,t) ▷ Bias towards less attended tokens
11: focusℓ,h,t = expand(focusℓ,t) ▷ Broadcast focus across heads
12: P ′

ℓ,h,t = Pℓ,h,t + λ · focusℓ,h,t ▷ Adjust eviction scores with focus bias
13: Identify top-β ·B tokens in Pℓ,h,t ▷ Preserve important tokens
14: Set P ′

ℓ,h,t = 1.0 for preserved tokens ▷ Force high priority for preserved tokens
15: Return: P ′

ℓ,h,t ▷ Updated eviction scores

We then define a focus score that balances importance and novelty (low coverage) as:

focusℓ,t = Iℓ,t · (1− coverageℓ,t). (8)

The focus score is then broadcast to the head dimension as: focusℓ,h,t. The final priority score is
updated using this focus score:

P ′
ℓ,h,t = Pℓ,h,t + λ · focusℓ,h,t, (9)

where λ is a hyperparameter controlling the trade-off between original priority and cross-layer cov-
erage.

To ensure that the most critical tokens at the current layer are retained, we select the top K = β ·B
tokens per head based on the original priority Pℓ,h,t, where β is a hyper-parameter. For these top
tokens across the heads, we override their scores to ensure they are not evicted:

P ′
ℓ,h,t = 1.0, if t ∈ top-K. (10)

We present the whole K-VEC algorithm in Algorithm 1.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate K-VEC on 16 subsets of the LongBench dataset (Bai et al., 2023), a compre-
hensive benchmark for long-context tasks. These subsets span diverse domains, including single-
document question answering, multi-document question answering, summarization, few-shot learn-
ing, synthetic tasks, and code, with an average sequence length of 6,711 words. The datasets provide
a robust testbed for assessing K-VEC’s ability to maintain performance under varying KV cache
budgets. We use the official evaluation metrics for each subset.

Base Model. We use Llama-3.1-8B-Instruct (Grattafiori et al., 2024) as our base model — a widely
adopted open-source LLM known for its strong performance on long-context tasks. This model
employs Grouped Query Attention (GQA), which reduces the KV cache size to one-quarter of the
original compared to standard multi-head attention. Furthermore, as recent KV cache eviction meth-
ods have reported results on this encoder, we also adopt it to ensure a fair comparison.

Baselines. We compare K-VEC against SOTA KV cache eviction methods, such as SnapKV (Li
et al., 2024), PyramidKV (Zhang et al., 2024a), and AdaKV (Feng et al., 2024), which serve as foun-
dational baselines due to their focus on attention-based token selection. We include StreamingLLM

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Detailed results of Llama-3.1-8B-Instruct on LongBench.

Single-Doc. QA Multi-Doc. QA Summarization Few-shotLearning Synthetic Code

NrtvQA
Qasper
M

F-en
HotpotQA
2W

ikiM
QA

M
usique

GovReport
QM

Sum
M

ultiNews
TREC

TriviaQA
SAM

Sum
PCount

PRe

Lcc

RB-P

Ave.
Score

Full Cache 30.22 45.37 55.80 55.97 45.00 31.26 35.12 25.38 27.20 72.50 91.64 43.57 9.41 99.50 62.88 56.43 49.20
B=128

SLM 22.24 20.87 31.72 44.02 37.55 24.54 18.76 21.09 18.48 40.50 84.41 38.82 8.00 99.50 57.02 47.29 38.43
Pyramid 25.70 24.69 47.74 52.87 40.57 27.23 20.02 22.38 19.74 44.50 88.81 40.30 7.22 99.50 57.25 49.90 41.78
SnapKV 25.54 24.45 48.03 53.31 40.75 28.19 20.13 22.36 19.55 45.50 89.20 40.62 6.97 99.50 58.45 49.90 42.03
Ada-Pyramid 27.07 25.61 49.30 53.02 41.29 27.83 20.70 23.18 20.38 51.50 90.76 40.62 6.92 99.00 59.30 50.88 42.96
Ada-SnapKV 24.90 24.41 49.95 53.15 41.73 28.55 20.54 23.21 20.28 50.50 89.49 40.71 7.45 99.00 58.74 52.40 42.81
K-VEC 25.96 35.96 50.40 54.79 47.14 28.75 22.35 23.47 21.88 52.89 90.35 41.25 7.85 99.50 59.35 51.25 44.57

B=256
SLM 22.71 23.79 31.80 43.43 36.55 25.55 21.29 20.68 20.67 46.00 87.11 40.82 7.20 99.50 59.89 49.19 39.76
Pyramid 25.53 33.15 51.44 55.03 42.42 28.62 22.57 23.37 22.33 56.50 91.19 41.28 6.97 99.50 60.36 51.18 44.47
SnapKV 26.02 32.49 51.62 54.40 42.77 28.94 22.83 23.54 22.55 53.50 91.10 40.95 7.48 99.50 60.67 53.39 44.48
Ada-Pyramid 25.12 35.06 52.28 54.66 41.89 28.76 23.14 23.36 22.67 63.00 90.72 41.21 7.75 99.50 61.47 53.09 45.23
Ada-SnapKV 26.11 33.39 51.44 54.94 42.15 29.54 23.01 23.85 22.88 63.50 91.57 40.94 8.00 99.50 61.95 54.33 45.44
K-VEC 26.33 40.38 53.53 57.39 47.14 31.24 24.35 23.94 22.95 62.74 91.89 41.95 8.05 99.50 60.87 54.90 46.70

B=512
SLM 25.51 25.78 34.19 45.01 35.91 24.93 23.61 21.26 23.57 57.50 87.86 41.44 6.98 96.50 60.85 51.02 41.37
Pyramid 28.71 39.89 52.86 54.00 44.20 31.22 24.74 23.73 24.28 66.00 91.07 41.42 8.39 99.50 61.99 53.44 46.59
SnapKV 29.22 40.01 53.15 54.47 43.63 31.32 25.04 23.77 24.19 64.00 92.05 41.57 8.01 99.50 63.21 55.05 46.76
Ada-Pyramid 28.04 40.63 53.03 54.71 43.39 30.26 25.35 24.12 24.61 69.00 91.79 42.55 7.95 99.50 62.28 54.49 46.98
Ada-SnapKV 29.07 40.16 52.44 53.90 43.05 31.10 25.75 24.39 24.85 69.00 92.34 42.05 7.98 99.50 63.43 55.32 47.15
K-VEC 30.04 42.81 56.07 57.90 47.39 31.39 26.24 24.86 24.92 67.47 91.62 42.67 8.45 99.50 62.90 55.68 48.12

B=1024
SLM 24.97 30.22 37.06 46.57 39.14 25.24 26.01 21.08 25.72 63.50 88.87 42.28 6.98 89.00 61.30 53.40 42.58
Pyramid 29.62 43.66 54.10 55.06 44.22 31.30 27.27 24.30 25.68 68.50 91.27 41.96 7.73 99.50 63.13 55.85 47.70
SnapKV 29.28 43.64 54.34 54.24 44.34 31.52 27.80 24.39 25.95 69.00 91.72 42.50 7.80 99.50 62.99 56.45 47.84
Ada-Pyramid 28.76 44.57 53.73 54.89 44.15 31.97 27.75 25.26 25.84 70.50 91.62 42.37 7.67 99.50 62.96 56.52 48.00
Ada-SnapKV 29.23 44.09 53.82 54.80 44.01 31.40 28.86 24.73 26.04 72.50 91.72 42.56 7.82 99.50 63.22 56.33 48.16
K-VEC 30.04 45.03 56.64 58.20 48.09 31.39 28.98 24.99 26.04 71.49 91.72 42.69 8.45 99.50 62.99 56.55 48.92

(SLM) (Xiao et al., 2023) as a representative sliding window eviction method for reference. Ad-
ditionally, we report the performance on the full KV cache without eviction. The results on the
existing methods are borrowed from the SnapKV (Li et al., 2024) and AdaKV (Feng et al., 2024)
papers, and follow their default evaluation settings to evaluate our method.

Implementation details. Our proposed K-VEC eviction policy is applied during the pre-fill phase
of each layer, following standard practices for KV cache eviction (Li et al., 2024). We evaluate
K-VEC across four KV cache budget sizes: 128, 256, 512, and 1024 tokens, reflecting a range of
memory constraints. For K-VEC’s cross-head coverage module, we select the top δ = 3 heads based
on the standard deviation of attention scores, with an extended observation window size of O′ = 32.
The cross-layer coverage module uses λ = 1.0 to balance token importance and coverage. All other
experimental details and parameters are adapted from the SnapKV. All experiments are conducted
on an NVIDIA A100 80GB GPU.

5.2 MAIN RESULTS

In Table 1, we present the performance of K-VEC on 16 subsets of LongBench (Bai et al., 2023) us-
ing Llama-3.1-8B-Instruct (Grattafiori et al., 2024) for cache sizes B = 128, 256, 512, 1024, where
lower cache sizes correspond to higher efficiency but may compromise performance. Table 1 shows
that performance for existing methods degrades at low cache sizes (e.g., B = 128), likely due
to suboptimal key-value (KV) cache eviction in existing methods, which discards critical tokens.
The drop in performance is more prominent in some of the more context-sensitive tasks, such as
Qasper (Dasigi et al., 2021) and TREC (Li & Roth, 2002), where the SOTA method shows 19.76
and 21.0 points drops, respectively.

In contrast, compared to existing methods, K-VEC demonstrates consistent improvements across all
tasks and cache sizes. The improvements are especially pronounced at lower cache sizes, with an
average performance gain of 1.61 points across the 16 LongBench subsets with the cache budget
of 128. For context-sensitive tasks, where existing methods show significant degradation, K-VEC’s
improvements are even more substantial. For instance, at B = 128, K-VEC achieves a 10.35%
improvement on Qasper (Dasigi et al., 2021), highlighting its ability to retain critical KV pairs.
Similarly, K-VEC outperforms existing SOTA at B = 256 by 1.26 points on average, and by up
to 5.32 points on individual tasks. A similar trend is observed for the other two settings. Overall,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

16
0

Token Index

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

La
ye

r (
0

to
 3

1)

0

1

2

3

4

5

6

7

8

(a) SnapKV

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

16
0

Token Index

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

La
ye

r (
0

to
 3

1)

0

1

2

3

4

5

6

7

8

(b) Ours

Figure 4: Visualization of token selection across layers for Ours in comparison to SnapKV.

K-VEC’s robust performance across diverse tasks and cache budgets validates its effectiveness for
efficient long-context processing.

5.3 DISCUSSION

5.3.1 KV-CACHE EVICTION PATTERN

In this section, we present a qualitative example comparing KV-Cache eviction in SnapKV with our
proposed solution. This comparison is visualized in Figure 4. The figure plots the tokens selected
after eviction across the layers for an input sequence of length 161. The heatmap values (ranging
from 0 to 8) represent the number of attention heads that retain each token. A value of at least 1
indicates that the token is attended to by at least one head in that layer; and any non-zero value in a
column implies that the token is retained by at least one layer in the model.

As evident in SnapKV, the eviction policy mostly retains tokens near the end of the sequence and ex-
hibits a clustering pattern in certain sections of the input. Additionally, for most tokens, the selection
pattern remains similar across layers, resulting in the appearance of a few prominent horizontal bars.
In contrast, the eviction pattern of E-VEC ensures broader coverage by selecting a more diverse set
of tokens across layers. While there is some overlap in the selection pattern between K-VEC and
SnapKV, due to the retention of some important tokens, the performance boost in our method arises
from its emphasis on coverage and the avoidance of repetitive selection across layers and heads. This
helps prevent the complete loss of a significant number of tokens, a limitation observed in existing
methods. More details on the individual impact of cross-layer and cross-head modules are discussed
in Appendix A.3.2.

5.4 NEEDLE-IN-A-HAYSTACK TEST

Table 2: Needle-in-
a-Haystack test

Method Avg. score

SnapKV 87.4
HeadKV 98.2
K-VEC 98.2

Needle-in-a-Haystack is a popular evaluation for testing whether large language
models can retrieve and reason over small, specific pieces of information hidden
within long contexts. We follow the evaluation protocol presented in HeadKV
and report the results in Table 2. As evident from this evaluation, K-VEC per-
forms better than SnapKV and is on par with HeadKV in this evaluation.

5.4.1 COVERAGE OF TOKENS

Table 3: Performance and coverage for
our method, in comparison to existing
method

Method Performance Coverage

SnapKV 40.01 86.6%
Ours 42.81 94.5%

In this section, we analyze the token coverage of our proposed
method in comparison to the existing approach. As shown
in Table 3, the overall coverage achieved by our method is
significantly higher than that of SnapKV. This improvement
in coverage also leads to a notable boost in performance.
Nonetheless, it is important to note that our coverage-aware
eviction strategy does not aim for full coverage, as many to-
kens inherently contain no relevant information for the given
context. Forcing full coverage in the cache will divert the budget from more important tokens, which
may lead to a drop in performance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.4.2 COMPUTATIONAL COMPLEXITY

Table 4: Comparison of computational com-
plexity

Tokens/sec
Method Memory Pre-fill Decode Total

SnapKV 0.1 GB 5672 40.16 20.37
Ours 0.1 GB 3440 40.97 18.55

In this section, we discuss the computational complex-
ity of our proposed method in comparison to SnapKV.
Table 4 presents the memory usage and processing time
during both the pre-fill and decoding stages of infer-
ence. As shown in the table, the memory required to
store the KV cache is the same as that of existing meth-
ods, since the total number of tokens stored by our ap-
proach matches that of prior solutions. Similarly, the
decoding speed of our method is equivalent to that of SnapKV. The only notable difference occurs
during the pre-fill stage, where our method is slightly slower due to the application of the cross-head
and cross-layer coverage strategy. However, since the pre-fill stage is a one-time operation at the
beginning of inference, the overall time complexity of our approach remains comparable to that of
existing methods. For outputs with long sequences (i.e., a large number of decoding steps), the
impact of the slightly slower pre-fill stage becomes negligible, making our method practically as
efficient as existing approaches.

Table 5: Comparison of inference time in sec-
onds: SnapKV/K-VEC

In/Out 100 200 300
500 2.52/2.54 5.03/5.03 7.48/7.47
1000 2.61/2.68 5.15/5.18 7.64/7.62
2000 2.84/3.04 5.33/5.48 7.86/7.89

Furthermore, a detailed analysis of inference time ver-
sus sequence length is presented in Table 5. Specif-
ically, we report the inference time for varying input
token lengths and generated output token lengths, and
compare the results with SnapKV. Here, the rows rep-
resent input token length, and columns represent de-
coded token length, and the values represent the infer-
ence time in seconds. As K-VEC takes slightly longer
during the prefill stage, it results in a marginally higher overall inference time when the number of
decoded tokens is small. However, as the LLM generates more tokens, the difference between
SnapKV and K-VEC diminishes. In modern LLM applications involving long-form reasoning,
where output sequences are typically much longer, the additional overhead introduced by K-VEC
becomes negligible. Nonetheless, we acknowledge the inference overhead as a limitation and dis-
cuss it in the Limitations section of the paper.

5.5 ABLATION STUDY

In this section, we present a detailed ablation and parameter sensitivity study on the proposed com-
ponents of K-VEC. The results of these experiments are summarized in Table 6. Below, we discuss
each experiment in detail.

Main ablation. Table 6a evaluates the effectiveness of K-VEC’s head and layer coverage mecha-
nisms. As shown in the results, removing head coverage reduces the score to 34.61, and removing
layer coverage further lowers it to 30.87. When both mechanisms are removed, performance drops
significantly to 25.54. In contrast, the full K-VEC configuration achieves the highest score of 35.96,
demonstrating that both head and layer coverage contribute substantially to overall performance.

Observation window size. Table 6b examines the impact of the observation window size (O′),
which defines the token span used to assess the importance of entries in the KV cache. The optimal
performance, with a score of 35.96, is achieved at O′ = 32. Smaller window sizes (O′ = 20 with
a score of 31.58 and O′ = 24 with a score of 33.24) likely miss important contextual information,
resulting in suboptimal eviction decisions. Conversely, a larger window (O′ = 48, score 34.56) may
include irrelevant tokens, introducing noise. Thus, an observation window of O′ = 32 offers the
best balance between context coverage and precision.

Layer-wise coverage weight. Table 6c analyzes the layer-wise coverage weight (λ), which balances
importance-based eviction and coverage diversity across layers. The best score of 35.96 is obtained
with λ = 1.0. Lower weights (λ = 0.1, score 33.53) undervalue coverage, which may reduce
diversity. Higher weights (λ = 2.0, score 34.32) slightly degrade performance by over-prioritizing
coverage at the expense of importance-based eviction.

Important token retention ratio. Table 6d investigates the effect of the layer-wise retention ratio
of important tokens, β, which determines the fraction of tokens retained based on the original evic-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: Ablation and sensitivity analysis of different components and hyperparameters in K-VEC on Long-
Bench (Llama-3.1-8B-Instruct, B = 256).

(a) Main Ablation

Configuration Score

Full K-VEC 35.96
w/o Head Coverage 34.61
w/o Layer Coverage 30.87
w/o Both Coverages 25.54

(b) Observation Window Size

O′ Score

20 31.58
24 33.24
32 35.96
48 34.56

(c) Layer-wise Cov. Weight

λ Score

0.1 33.53
0.5 35.40
1.0 35.96
2.0 34.32

(d) Layer-wise Retention Ratio

β (%) Score

10 34.98
25 35.96
50 35.39
75 35.74

(e) Number of Adjusted Heads

δ Score

1 34.26
2 35.35
3 35.96
4 35.38

(f) Head Selection Criteria

Criteria Score

Entropy 34.17
SD 35.96

tion score alone. The highest performance score of 35.96 is achieved with a 25% retention ratio.
A lower ratio (10%, score 34.98) retains too few tokens based on importance and puts excessive
focus on coverage. While higher ratios (50%, score 35.39; 75%, score 35.74) reduce the selec-
tion of coverage-driven tokens. The 25% ratio offers an optimal balance between coverage and the
preservation of important tokens.

Number of adjusted heads. Table 6e explores the impact of the number of adjusted attention
heads (δ), where K-VEC applies the cross-head coverage strategy. The highest score of 35.96 is
achieved with δ = 3. Lower values (δ = 1, score 34.26; δ = 2, score 35.35) provide insufficient
coverage, while higher values may alter the contribution of important heads, leading to suboptimal
performance. The peak at δ = 3 reflects a balanced trade-off between coverage and the preservation
of token importance.

Head Selection Criteria. In Table 6f, we explore different criteria for selecting the head to enforce
coverage. Specifically, we explore entropy and standard deviation as the selection criteria. As
shown, the standard deviation serves as a better indication of less focused heads, and enforcing
head-wise coverage.

6 CONCLUSION

In this work, we propose K-VEC, a coverage-aware KV-cache eviction strategy that addresses the
memory and scalability challenges of deploying large language models in long-context applica-
tions. By introducing cross-head and cross-layer coverage modules, K-VEC ensures the retention of
critical tokens, significantly improving performance over existing methods, particularly at low cache
budgets. Our evaluations on the LongBench dataset demonstrate K-VEC’s superiority across diverse
tasks, with up to 10.35 points gains at a 128-token budget. Ablation and sensitivity analyses further
confirm the robustness and effectiveness of our proposed modules. K-VEC offers a practical solu-
tion for efficient LLM inference, enabling scalable deployment in real-time and resource-constrained
environments.

Limitations. As discussed in the computational complexity analysis, one limitation of our proposed
solution is a slight increase in compute cost during the pre-fill stage. However, this overhead di-
minishes for long-generation tasks, as the decoding speed remains comparable to existing methods.
In modern LLM applications involving long-form reasoning, where output sequences are typically
much longer, the additional overhead introduced by K-VEC becomes negligible. Additionally, while
our approach improves coverage, it does not achieve full coverage. Nonetheless, full coverage is not
necessarily beneficial, as some tokens may not contribute meaningful information in the context of
the query. Future work could explore strategies to further increase coverage and investigate integra-
tion with other optimization techniques to enhance the overall efficiency of LLMs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023. URL https://arxiv.org/
abs/2308.14508.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020. URL https://arxiv.org/abs/2004.05150.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A Smith, and Matt Gardner. A dataset
of information-seeking questions and answers anchored in research papers. arXiv preprint
arXiv:2105.03011, 2021. URL https://arxiv.org/abs/2105.03011.

Alexander R Fabbri, Irene Li, Tianwei She, Suyi Li, and Dragomir R Radev. Multi-news: A large-
scale multi-document summarization dataset and abstractive hierarchical model. arXiv preprint
arXiv:1906.01749, 2019. URL https://arxiv.org/abs/1906.01749.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Ada-kv: Optimizing kv cache evic-
tion by adaptive budget allocation for efficient llm inference. arXiv preprint arXiv:2407.11550,
2024.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801,
2023. URL https://arxiv.org/abs/2310.01801.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. Samsum corpus: A human-
annotated dialogue dataset for abstractive summarization. arXiv preprint arXiv:1911.12237,
2019. URL https://arxiv.org/abs/1911.12237.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, et al. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Julian McAuley. Longcoder: A long-range pre-
trained language model for code completion. arXiv preprint arXiv:2306.14893, 2023. URL
https://arxiv.org/abs/2306.14893.

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-
infinite: Zero-shot extreme length generalization for large language models, 2024. URL https:
//arxiv.org/abs/2308.16137.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-
hop QA dataset for comprehensive evaluation of reasoning steps. In Proceedings of the 28th
International Conference on Computational Linguistics, pp. 6609–6625, Barcelona, Spain (On-
line), dec 2020. International Committee on Computational Linguistics. doi: 10.18653/v1/2020.
coling-main.580. URL https://aclanthology.org/2020.coling-main.580.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1601–1611,
2017.

Tomáš Kočiskỳ, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor Melis,
and Edward Grefenstette. The narrativeqa reading comprehension challenge. Transactions of the
Association for Computational Linguistics, 6:317–328, 2018.

Xin Li and Dan Roth. Learning question classifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics, 2002.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. Advances in Neural Information Processing Systems, 37:22947–22970, 2024.

10

https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2105.03011
https://arxiv.org/abs/1906.01749
https://arxiv.org/abs/2310.01801
https://arxiv.org/abs/1911.12237
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2306.14893
https://arxiv.org/abs/2308.16137
https://arxiv.org/abs/2308.16137
https://aclanthology.org/2020.coling-main.580

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems. arXiv preprint arXiv:2306.03091, 2023. URL https://arxiv.
org/abs/2306.03091.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36, 2024.

Siyu Ren and Kenny Q Zhu. On the efficacy of eviction policy for key-value constrained generative
language model inference. arXiv preprint arXiv:2402.06262, 2024. URL https://arxiv.
org/abs/2402.06262.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539–554, 2022.

Kefei Wang and Feng Chen. Catalyst: Optimizing cache management for large in-memory key-value
systems. Proceedings of the VLDB Endowment, 16(13):4339–4352, 2023.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023. URL https:
//arxiv.org/abs/2309.17453.

Dongjie Yang, Xiaodong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramidinfer: Pyra-
mid kv cache compression for high-throughput llm inference. In Findings of the Association
for Computational Linguistics ACL 2024, pp. 3258–3270, Bangkok, Thailand and virtual meet-
ing, aug 2024. Association for Computational Linguistics. URL https://aclanthology.
org/2024.findings-acl.195.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question an-
swering. arXiv preprint arXiv:1809.09600, 2018. URL https://arxiv.org/abs/1809.
09600.

Yichi Zhang, Bofei Gao, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao Chang, Junjie
Hu, Wen Xiao, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal informa-
tion funneling. arXiv preprint arXiv:2406.02069, 2024a. URL https://arxiv.org/abs/
2406.02069.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36, 2024b.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia Mutuma, Rahul Jha, Ahmed Hassan Awadal-
lah, Asli Celikyilmaz, Yang Liu, Xipeng Qiu, et al. Qmsum: A new benchmark for query-
based multi-domain meeting summarization. arXiv preprint arXiv:2104.05938, 2021. URL
https://arxiv.org/abs/2104.05938.

11

https://arxiv.org/abs/2306.03091
https://arxiv.org/abs/2306.03091
https://arxiv.org/abs/2402.06262
https://arxiv.org/abs/2402.06262
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2309.17453
https://aclanthology.org/2024.findings-acl.195
https://aclanthology.org/2024.findings-acl.195
https://arxiv.org/abs/1809.09600
https://arxiv.org/abs/1809.09600
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2104.05938

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 COVERAGE HYPOTHESIS

Let X denote an input sequence and Y the corresponding output sequence. A transformer model
computes hidden representations at each layer via attention mechanisms operating on keys K and
values V . Given a cache, storing processed tokens, T = {t1, t2, . . . , tN}, where N is the total
number of tokens selected across all attention heads and layers, we define coverage C as:

C = |{unique tokens in T }|,

with Teff denoting the effective token set after eviction, where |Teff| = C.

Let I(X;Y) represent the mutual information between input and output. We analyze how cache
coverage constrains this quantity through the lens of information bottleneck theory.

The Information Bottleneck via Cache Eviction. The transformer’s intermediate representation
T mediates information flow through the cache. By the Data Processing Inequality (DPI):

I(X;Y) ≤ I(T ;Y). (11)

If X → T → Y forms a Markov chain, T ’s capacity fundamentally limits prediction performance.

Bounding I(T ;X) via Coverage. Assuming each unique token provides at most R bits of infor-
mation:

I(T ;X) ≤ R · C. (12)

In practice, however, large vocabularies often contain redundancy, where additional unique tokens
yield diminishing information gains. To capture this effect, we introduce a tighter logarithmic bound:

I(T ;X) ≤ α logC, α > 0. (13)

Relating Mutual Information to Performance. Let P be a performance metric (e.g., negative
log-likelihood) with:

P ≥ ϕ(I(X;Y)), (14)

where ϕ(·) is monotonically decreasing. Combining with DPI:

P ≥ ϕ (min{I(T ;X), I(T ;Y)}) (15)
≥ ϕ(α logC). (16)

To achieve target performance P0, coverage must satisfy:

C ≥ exp

(
1

α
ϕ−1(P0)

)
. (17)

This bound relies on the assumption that the token contributions are additive (no contextual depen-
dencies), and all tokens as equally informative, though some may carry more task-relevant signal.
Our goal is to establish the relationship between the coverage and performance drop, rather than to
quantify the exact decline or relate it to the specific importance of individual tokens. This assump-
tion allows for a concise and transparent theoretical derivation aligned with our objective. Under this
assumption, the analysis reveals an irreducible trade-off: a drop in coverage during eviction (C ↓)
forces I(X;Y) ↓, explaining the empirical performance collapse.

A.2 EXPERIMENTS AND RESULTS

A.2.1 COMPARISON TO EXISTING METHODS

In this section, we provide additional evaluations and comparisons to existing methods. Specifically,
we compare K-VEC with HeadKV and GemFilter in Tables S1 and S2. We omit these results
from the main results table since HeadKV and GemFilter did not report results on all datasets in
LongBench. As evident from the results, K-VEC outperforms both HeadKV and GemFilter across
the datasets, as well as on average.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table S1: Detailed results of Llama-3.1-8B-Instruct on LongBench and its comparison to HeadKV.

Single-Doc. QA Multi-Doc. QA
NrtvQA Qasper MF-en Hot. 2Wiki Musi. Ave. Score

Full Cache 30.22 45.37 55.80 55.97 45.00 31.26 49.20
B=128

SnapKV 22.11 15.79 31.01 41.12 29.20 19.35 26.43
HeadKV-R 23.49 25.39 38.15 42.45 32.84 19.95 30.38
HeadKV-R2 21.80 29.19 41.89 43.73 35.01 20.40 32.00
K-VEC 24.01 34.18 42.13 44.24 39.15 21.99 34.28

B=1024
SnapKV 25.76 27.50 38.38 43.40 34.81 20.07 31.65
HeadKV-R2 21.80 29.19 41.89 43.73 35.01 20.40 32.00
HeadKV-R2 24.66 30.82 39.56 43.97 36.47 22.24 32.95
K-VEC 24.75 41.77 42.99 45.75 40.24 22.45 36.33

Table S2: Detailed results of Llama-3.1-8B-Instruct on LongBench with cache size of 1024.

NrtvQA Qasper MF-en Hot. 2Wiki Musi. GovR. QM. Mult. TREC Tri. SAM. PC. PRe Ave.
SLM 24.97 30.22 37.06 46.57 39.14 25.24 26.01 21.08 25.72 63.50 88.87 42.28 6.98 89.00 40.47
Pyramid 29.62 43.66 54.10 55.06 44.22 31.30 27.27 24.30 25.68 68.50 91.27 41.96 7.73 99.50 46.01
SnapKV 29.28 43.64 54.34 54.24 44.34 31.52 27.80 24.39 25.95 69.00 91.72 42.50 7.80 99.50 46.14
Ada-Pyramid 28.76 44.57 53.73 54.89 44.15 31.97 27.75 25.26 25.84 70.50 91.62 42.37 7.67 99.50 46.33
Ada-SnapKV 29.23 44.09 53.82 54.80 44.01 31.40 28.86 24.73 26.04 72.50 91.72 42.56 7.82 99.50 46.51
GemFilter 20.71 11.00 29.28 19.12 17.01 13.01 30.37 21.75 25.17 63.00 90.70 42.50 7.15 92.22 34.50
K-VEC 30.04 45.03 56.64 58.20 48.09 31.39 28.98 24.99 26.04 71.49 91.72 42.69 8.45 99.50 47.38

Table S3: Detailed results of Qwen2.5-7B-Instruct on LongBench.

Single-Doc. QA Multi-Doc. QA Summarization Few-shotLearning Synthetic Code

NrtvQA
Qasper
M

F-en
HotpotQA
2W

ikiM
QA

M
usique

GovReport
QM

Sum
M

ultiNews
TREC

TriviaQA
SAM

Sum
PCount

PRe

Lcc

RB-P

Ave.
Score

B=128
SnapKV 20.42 30.71 40.36 50.46 38.47 23.71 20.69 20.68 17.88 50.11 83.45 38.12 2.11 85.0 10.78 9.38 33.89
K-VEC 23.45 34.15 39.45 51.83 40.34 26.54 22.28 23.38 18.90 49.23 85.44 41.23 2.89 84.50 11.83 10.23 35.35

B=1024
SnapKV 23.88 38.59 46.43 55.12 42.3 27.57 27.09 23.1 24.56 53.45 84.87 39.82 2.11 84.5 10.43 8.67 37.03
K-VEC 24.55 40.02 47.23 55.98 41.49 29.22 28.63 23.79 24.78 55.73 85.99 42.57 3.01 84.91 12.19 10.95 38.19

A.2.2 PERFORMANCE ON ADDITIONAL BACKBONE

In this section, we present additional results for the Qwen2.5-7B-Instruct model and its performance
compared to SnapKV on two cache sizes: 128 and 1024. The results, detailed in Table S3, show
that K-VEC demonstrates a similar performance improvement trend as seen with the Llama-3.1-8B-
Instruct model. On average, K-VEC provides considerable improvement across both cache sizes.

A.3 DISCUSSION

A.3.1 COVERAGE ANALYSIS OF EXISTING METHODS

Table S4: Coverage analysis

Method 0.25 0.5 0.75 0.9

Pyramid -3.5% -4.6% -8.6% -20.1%
SnapKV -2.5% -3.9% -8.5% 19.2%
Ada-SnapKV -2.1% -3.1% -7.9% -16.5%
K-VEC -1.1% -2.5% -4.5% -8.6%

To better understand the coverage issue and to further
motivate the problem, in Table S4, we present the drop
in coverage for different existing methods at different
eviction rates. As shown in the table, all existing meth-
ods suffer a significant drop in coverage, which—as
discussed in the main paper—correlates with a decline
in performance. In contrast, our proposed solution
demonstrates a considerably smaller drop in coverage.

A.3.2 EVICTION PATTERN

In this section, we analyze the token coverage of our proposed method in comparison to existing
approaches. In the main paper, we compared SnapKV with K-VEC. Here, we further investigate
the characteristics of the two modules in K-VEC with respect to token coverage. As we observe

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure S1: Visualization of token selection across layers for cross-layer coverage, cross-head coverage and
final K-VEC in comparison to SnapKV.

from Figure S1, using only the cross-layer coverage module promotes diversity among the selected
tokens, as the prominent horizontal bars seen in SnapKV are no longer present. However, this
leads to redundancy across heads, indicated by dark dots showing that all heads select the same
tokens. In contrast, applying only the cross-head coverage module diversifies token selection across
heads, as seen from the broader spread of selected tokens, though visible bars remain due to similar
tokens being selected across layers. By combining both strategies in K-VEC, we achieve diversity
of selected tokens across both heads and layers. We will include the new figure and this discussion
in the revised paper.

14

	Introduction
	Related Work
	Coverage Hypothesis for KV-Cache Eviction
	KV Cache Eviction with Coverage
	Cross-Head Coverage
	Cross-Layer Coverage

	Experiments
	Experimental setup
	Main Results
	Discussion
	KV-Cache eviction pattern

	Needle-in-a-Haystack test
	Coverage of tokens
	Computational Complexity

	Ablation Study

	Conclusion
	Appendix
	Coverage Hypothesis
	Experiments and results
	Comparison to existing methods
	Performance on additional backbone

	Discussion
	Coverage analysis of existing methods
	Eviction pattern

