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ABSTRACT

Large language models (LLMs) excel at complex tasks like question answering
and summarization, thanks to their ability to handle long-context inputs. How-
ever, deploying LLMs is costly, not only due to the high computational demands
of quadratic complexity of self-attention and auto-regressive generation, but also
because of the significant memory overhead required for storing the key-value
(KV) cache during inference. To reduce the memory cost, existing KV-cache
eviction strategies leverage the sparsity in attention to selectively store a subset of
tokens. While reducing the memory footprint, such approaches show a consider-
able drop in performance, especially in tasks that require long-context reasoning.
We identify that the drop in performance is linked to a reduction in the coverage of
unique tokens. Additionally, we theoretically show that reduced coverage limits
the mutual information between inputs and outputs, thereby impairing predictive
accuracy. To this end, we introduce K-VEC, a novel coverage-aware KV-cache
eviction strategy that prioritizes token coverage while evicting tokens in the cache.
K-VEC introduces a cross-head and a cross-layer coverage module to enhance to-
ken retention across attention heads and model layers, mitigating performance
degradation caused by low coverage. Evaluated on 16 LongBench subsets, K-
VEC exhibit up to 10.35 points improvement over the existing methods under the
same eviction rate and memory constraint. Comprehensive evaluations validate
the effectiveness of our approach and demonstrate its potential for efficient LLM
deployment in resource-constrained settings.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable performance in tasks such as ques-
tion answering, retrieval-augmented generation, summarization, and dialogue systems, largely due
to their ability to process and reason over long-context inputs. However, deploying LLMs remains
computationally expensive due to their auto-regressive generation and the quadratic complexity of
self-attention, which scales with input length. Additionally, the key-value (KV) cache, used to store
intermediate attention states and avoid recomputation during inference, imposes substantial memory
overhead. Its size grows with both sequence length and model depth, limiting scalability in resource-
constrained or real-time settings. To address this, recent works such as H2O (Zhang et al., 2024b),
PyramidKV (Zhang et al., 2024a), and SnapKV (Li et al., 2024) have proposed eviction strategies
that leverage attention sparsity to selectively store only a subset of the KV cache. Besides reduc-
ing the memory usage, the reduced sequence length also improves the computational cost during
inference.

While existing KV-cache eviction strategies (Li et al., 2024; Zhang et al., 2024b;a; Feng et al., 2024)
perform well at moderate eviction rates, their effectiveness diminishes at higher rates, particularly
for tasks requiring long-context reasoning. Our preliminary analysis, illustrated in Figure 1, reveals a
strong correlation between performance degradation and reduced coverage, where coverage denotes
the number of unique tokens retained in the KV cache (at least once, across the heads and layers).
We further provide a theoretical basis for these findings using an information bottleneck framework,
demonstrating that lower coverage limits the mutual information between input and output, thereby
degrading the model’s predictive performance.
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Figure 1: Correlation between re-
duced coverage and performance
degradation, indicating the im-
portance of coverage.

In this work, we propose K-VEC (KV Cache Eviction with Cover-
age), a coverage-aware KV cache eviction strategy designed to en-
hance the diversity of cached tokens. K-VEC addresses a key lim-
itation of existing methods: eviction scores across attention heads
and layers frequently overlap, resulting in the eviction of similar
tokens and a subsequent reduction in overall coverage. To counter
this, K-VEC introduces two novel components: cross-head cover-
age and cross-layer coverage. Specifically, the cross-head cover-
age module increases coverage by adjusting the attention span of a
few strategically selected heads to focus on diverse tokens. On the
other hand, the cross-layer coverage module improves coverage by
encouraging the selection of globally important tokens that are not
selected in earlier layers. Together, these components ensure that
the most important tokens are retained in the KV cache, enabling
the LLM to generate the desired response.

We evaluate K-VEC on the established protocol from prior works (Li et al., 2024; Feng et al., 2024)
and report results on 16 subsets of the LongBench dataset, covering single-document QA (Kočiskỳ
et al., 2018; Dasigi et al., 2021), multi-document QA (Yang et al., 2018; Ho et al., 2020; Trivedi et al.,
2022), summarization (Zhong et al., 2021; Fabbri et al., 2019), few-shot learning (Li & Roth, 2002;
Gliwa et al., 2019; Joshi et al., 2017), synthetic tasks, and code (Guo et al., 2023; Liu et al., 2023).
Evaluations are conducted across various KV cache budget sizes (128, 256, 512, and 1024 tokens).
K-VEC demonstrates significant improvements over existing methods, with particularly pronounced
gains at lower cache budgets (e.g., 128 tokens), showing up to 10.35 points improvement over the
existing methods under the same memory constraint. The average improvement on the 16 datasets is
1.61 points. We provide comprehensive ablation and sensitivity analysis to validate the effectiveness
of each proposed module. Overall, our contributions are as follows:

• We identify reduced token coverage as the primary cause of performance degradation in existing
KV cache eviction methods and provide a theoretical foundation for these empirical observa-
tions.

• We introduce K-VEC, a novel KV cache eviction strategy that enhances both head-wise and
layer-wise token coverage.

• Extensive experiments demonstrate that K-VEC outperforms existing KV cache eviction meth-
ods while maintaining comparable computational efficiency. To foster quick reproduction and
further development in this area, we will make the code publicly available upon acceptance.

2 RELATED WORK

The substantial memory demands of storing KV caches during long-sequence inference pose signif-
icant challenges for LLMs, leading to high memory consumption and I/O latency (Wang & Chen,
2023). A prominent approach to mitigating this issue involves cache size reduction through evic-
tion, using various scoring functions to assess token importance. There are two broad groups of
eviction policies: sliding window eviction and top-k eviction. Sliding window methods, such as
StreamingLLM (Xiao et al., 2023), preserve the initial tokens and those within a fixed window, dis-
carding others (Beltagy et al., 2020; Han et al., 2024; Xiao et al., 2023). While straightforward,
this non-selective approach often degrades output quality in long-context scenarios. In contrast,
top-k eviction methods (Ge et al., 2023; Liu et al., 2024; Ren & Zhu, 2024; Zhang et al., 2024b;
Yang et al., 2024; Zhang et al., 2024a; Li et al., 2024) retain the k most important tokens based
on attention scores to maintain post-eviction performance. For example, FastGen (Ge et al., 2023)
combines retention of special tokens, punctuation, recent tokens, and top-k selections, adapting to
head-specific attention patterns. H2O (Zhang et al., 2024b) selects critical tokens using query states
across all positions. More advanced methods like SnapKV (Li et al., 2024) and Pyramid (Yang
et al., 2024; Zhang et al., 2024a) enhance efficiency by prioritizing query states within a local obser-
vation window. Additionally, Pyramid introduced a layer-wise adaptive budget allocation strategy.
Overall, most existing approaches allocate the cache budget uniformly across attention heads. More
recently, AdaKV introduced a head-wise adaptive budget allocation strategy that can be used as a
plug-and-play enhancement to improve the performance of existing methods. Nonetheless, all cur-
rent methods compute eviction scores independently across heads and layers, lacking any inherent
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Figure 3: Coverage of tokens over input prompt for existing method. The existing method’s token coverage
skews heavily toward the end of the input, despite the correct answer appearing first in this example.

mechanism to encourage diverse token coverage. As a result, similar tokens are often evicted across
both heads and layers, leading to a reduction in overall coverage.

3 COVERAGE HYPOTHESIS FOR KV-CACHE EVICTION

In this section, we investigate the cause of coverage loss in existing KV-cache eviction methods, such
as SnapKV (Li et al., 2024). Specifically, we analyze the eviction scores used by SnapKV across
attention heads and layers. Figure 2 illustrates an example of these scores over the input tokens,
where tokens with lower scores are removed. As shown in the figure, there is a pronounced bias
toward the end of the input prompt, favouring the eviction of earlier tokens. This skewness results in
a disproportionate retention of tokens from the end of the prompt, a pattern that remains consistent
across heads and layers. Consequently, similar tokens, primarily from the end of the input prompt,
are retained across heads and layers, leading to a significant reduction in overall token coverage.
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Figure 2: Attention pattern
in SnapKV is skewed to-
wards the end.

The impact of this phenomenon is illustrated in Figure 3, using an exam-
ple from a multiple-choice question-answering task with four options. In
the figure, darker colours indicate tokens attended to by a higher number
of layers (up to a maximum of 32), while uncoloured tokens are ignored
by all layers. Tokens that are attended by no layers represent a loss of in-
formation, which can degrade performance, especially when the tokens
contain important information regarding the query. In this example, the
correct answer (the first option) receives minimal attention, while the
model heavily focuses on the final few tokens of the prompt across all
layers, highlighting a strong recency bias in SnapKV’s eviction strategy.
This bias reduces coverage of critical tokens and contributes to perfor-
mance degradation in long-context tasks. In the next subsection, we pro-
vide a coverage hypothesis, a theoretical basis for the relation between coverage and performance.

We present an information-theoretic view of cache eviction in transformers, framing the cache repre-
sentation T as an information bottleneck between input X and output Y . Since eviction reduces the
number of unique tokens retained, the effective coverage C limits the mutual information I(X;Y )
and thus constrains predictive performance. Formally, if P denotes a performance metric (e.g.,
negative log-likelihood), then to achieve a target level P0, coverage must satisfy

C ≥ exp
(
1
αϕ

−1(P0)
)
. (1)

This highlights a fundamental trade-off: decreasing coverage directly reduces information flow,
explaining the empirical performance collapse observed under cache eviction. A detailed derivation
of these bounds is provided in the Appendix A.1.

4 KV CACHE EVICTION WITH COVERAGE

To maximize token coverage during KV cache eviction, we propose K-VEC (KV Cache Eviction
with Coverage), a strategy that operates on two levels: across attention heads and across transformer
layers, through our cross-head coverage and cross-layer coverage modules. Below, we detail our
proposed solution designed to increase the overall coverage of evicted tokens.

4.1 CROSS-HEAD COVERAGE

As discussed in the preliminaries, the eviction policy often selects overlapping tokens across heads,
resulting in reduced coverage across the heads of a layer. To this end, we introduce the cross-head

3
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coverage module to expand the coverage across heads. Existing eviction policy (e.g., SnapKV)
typically computes token importance at a certain head of layer ℓ using a windowed attention score.
Specifically, with attention scores A ∈ RL×H×T×T (number of layers L, number of heads H ,
sequence length T ), the eviction scores are computed over an observation window of length O as:

Pℓ,h,t =
1

O

T∑
q=T−O+1

Aℓ,h,q,t. (2)

This formulation captures the average attention over the most recent O (e.g., 16) tokens, which
serves as a proxy for estimating token importance in the eviction decision. Given a cache budget of
B tokens and P ∈ RH×T , each head h selects the top-B tokens

Th = {t | Pℓ,h,t among top B of {Pℓ,h,1, . . . , Pℓ,h,T }}, (3)

from the T input tokens. Subsequently, the key-value corresponding to Th tokens are stored in the
cache for subsequent decoding steps.

Our proposed cross-head coverage module utilizes the property that the important score is condi-
tioned on the observation window O, which can be leveraged to encourage the selection of more
diverse yet important tokens across heads. Specifically, by increasing the observation window to
O′ (O′ > O) for calculating the eviction score (using Eq. 2), we encourage the eviction score to
focus on a broader context. However, our goal is not only to maximize coverage but also to ensure
that the selected tokens are contextually important. To strike this balance, we selectively update the
priority scores for only a subset of δ heads. These heads are chosen based on how focused their
eviction score is. For example, a head with uniform scores over the tokens lacks focus and is less
effective for optimal performance. We use the standard deviation of eviction scores over the tokens
as an indication of focus:

σℓ,h = std(Pℓ,h,:, dim = 1), (4)
and select δ heads, Htop, with the lowest standard deviation. The use of standard deviation provides a
principled way to quantify how much a head differentiates among tokens. A low standard deviation
suggests that eviction scores are nearly uniform, meaning the head lacks a distinct focus and would
otherwise reduce to random sampling. In contrast, a higher standard deviation indicates that the
head assigns differentiated importance to tokens, reflecting a stronger focus. Finally, for the selected
heads, we recalculate the eviction score using expanded observation windows:

Pℓ,h,t =
1

O′

T∑
q=T−O′+1

Aℓ,h,q,t, for h ∈ Htop. (5)

This modified eviction scores encourage higher coverage compared to the original eviction score.
Next, we discuss our cross-layer coverage module that encourages coverage across the layers.

4.2 CROSS-LAYER COVERAGE

The cross-layer coverage module aims to reduce redundancy and increase the diversity of selected
tokens across the layers of the model. Let’s define the coverage score of a token t till layer l,
coverageℓ,t, as the number of layers where t has been selected (by at least one head), normalized by
the number of layers processed:

coverageℓ,t =
nt

l + 1
, (6)

where nt is the number of layers in which token t has been selected.

At layer ℓ, our goal is to prioritize the selection of tokens with lower coverage to increase the overall
coverage, while also considering two factors: (1) the global importance of each token, and (2)
prioritizing the high-important tokens for that specific layer.

To satisfy the first criterion, we compute the global importance Iℓ,t of each token as the maximum
attention score over all heads, averaged over a window of size O:

Iℓ,t =
1

O

T∑
q=T−O+1

max
h

Aℓ,h,q,t. (7)
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Algorithm 1 K-VEC: Cross-Head and Cross-Layer Coverage Priority Adjustment

1: Input: Attention scores A ∈ RL×H×T×T , L is the total number of layer, H is the number of
heads, T is the sequence length, budget B, window size O, extended window O′, number of
heads δ, hyperparameter λ and β, current layer ℓ, coverage counters nt

2: Pℓ,h,t =
1
O

∑T
q=T−O+1 Aℓ,h,q,t ▷ Initial eviction scores from recent window

3: σℓ,h = std(Pℓ,h,:) ▷ Compute variability across tokens for each head
4: Htop ← δ heads with lowest σℓ,h ▷ Select most focused heads
5: for each head h ∈ Htop do
6: Pℓ,h,t =

1
O′

∑T
q=T−O′+1 Aℓ,h,q,t ▷ Recompute using a larger window

7: end for
8: Iℓ,t =

1
O

∑T
q=T−O+1 maxh Aℓ,h,q,t ▷ Max attention across heads

9: coverageℓ,t =
nt

ℓ+1 ▷ Estimate token coverage so far
10: focusℓ,t = Iℓ,t · (1− coverageℓ,t) ▷ Bias towards less attended tokens
11: focusℓ,h,t = expand(focusℓ,t) ▷ Broadcast focus across heads
12: P ′

ℓ,h,t = Pℓ,h,t + λ · focusℓ,h,t ▷ Adjust eviction scores with focus bias
13: Identify top-β ·B tokens in Pℓ,h,t ▷ Preserve important tokens
14: Set P ′

ℓ,h,t = 1.0 for preserved tokens ▷ Force high priority for preserved tokens
15: Return: P ′

ℓ,h,t ▷ Updated eviction scores

We then define a focus score that balances importance and novelty (low coverage) as:

focusℓ,t = Iℓ,t · (1− coverageℓ,t). (8)

The focus score is then broadcast to the head dimension as: focusℓ,h,t. The final priority score is
updated using this focus score:

P ′
ℓ,h,t = Pℓ,h,t + λ · focusℓ,h,t, (9)

where λ is a hyperparameter controlling the trade-off between original priority and cross-layer cov-
erage.

To ensure that the most critical tokens at the current layer are retained, we select the top K = β ·B
tokens per head based on the original priority Pℓ,h,t, where β is a hyper-parameter. For these top
tokens across the heads, we override their scores to ensure they are not evicted:

P ′
ℓ,h,t = 1.0, if t ∈ top-K. (10)

We present the whole K-VEC algorithm in Algorithm 1.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate K-VEC on 16 subsets of the LongBench dataset (Bai et al., 2023), a compre-
hensive benchmark for long-context tasks. These subsets span diverse domains, including single-
document question answering, multi-document question answering, summarization, few-shot learn-
ing, synthetic tasks, and code, with an average sequence length of 6,711 words. The datasets provide
a robust testbed for assessing K-VEC’s ability to maintain performance under varying KV cache
budgets. We use the official evaluation metrics for each subset.

Base Model. We use Llama-3.1-8B-Instruct (Grattafiori et al., 2024) as our base model — a widely
adopted open-source LLM known for its strong performance on long-context tasks. This model
employs Grouped Query Attention (GQA), which reduces the KV cache size to one-quarter of the
original compared to standard multi-head attention. Furthermore, as recent KV cache eviction meth-
ods have reported results on this encoder, we also adopt it to ensure a fair comparison.

Baselines. We compare K-VEC against SOTA KV cache eviction methods, such as SnapKV (Li
et al., 2024), PyramidKV (Zhang et al., 2024a), and AdaKV (Feng et al., 2024), which serve as foun-
dational baselines due to their focus on attention-based token selection. We include StreamingLLM

5
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Table 1: Detailed results of Llama-3.1-8B-Instruct on LongBench.

Single-Doc. QA Multi-Doc. QA Summarization Few-shotLearning Synthetic Code

NrtvQA
Qasper
M

F-en
HotpotQA
2W

ikiM
QA

M
usique

GovReport
QM

Sum
M

ultiNews
TREC

TriviaQA
SAM

Sum
PCount

PRe

Lcc

RB-P

Ave.
Score

Full Cache 30.22 45.37 55.80 55.97 45.00 31.26 35.12 25.38 27.20 72.50 91.64 43.57 9.41 99.50 62.88 56.43 49.20
B=128

SLM 22.24 20.87 31.72 44.02 37.55 24.54 18.76 21.09 18.48 40.50 84.41 38.82 8.00 99.50 57.02 47.29 38.43
Pyramid 25.70 24.69 47.74 52.87 40.57 27.23 20.02 22.38 19.74 44.50 88.81 40.30 7.22 99.50 57.25 49.90 41.78
SnapKV 25.54 24.45 48.03 53.31 40.75 28.19 20.13 22.36 19.55 45.50 89.20 40.62 6.97 99.50 58.45 49.90 42.03
Ada-Pyramid 27.07 25.61 49.30 53.02 41.29 27.83 20.70 23.18 20.38 51.50 90.76 40.62 6.92 99.00 59.30 50.88 42.96
Ada-SnapKV 24.90 24.41 49.95 53.15 41.73 28.55 20.54 23.21 20.28 50.50 89.49 40.71 7.45 99.00 58.74 52.40 42.81
K-VEC 25.96 35.96 50.40 54.79 47.14 28.75 22.35 23.47 21.88 52.89 90.35 41.25 7.85 99.50 59.35 51.25 44.57

B=256
SLM 22.71 23.79 31.80 43.43 36.55 25.55 21.29 20.68 20.67 46.00 87.11 40.82 7.20 99.50 59.89 49.19 39.76
Pyramid 25.53 33.15 51.44 55.03 42.42 28.62 22.57 23.37 22.33 56.50 91.19 41.28 6.97 99.50 60.36 51.18 44.47
SnapKV 26.02 32.49 51.62 54.40 42.77 28.94 22.83 23.54 22.55 53.50 91.10 40.95 7.48 99.50 60.67 53.39 44.48
Ada-Pyramid 25.12 35.06 52.28 54.66 41.89 28.76 23.14 23.36 22.67 63.00 90.72 41.21 7.75 99.50 61.47 53.09 45.23
Ada-SnapKV 26.11 33.39 51.44 54.94 42.15 29.54 23.01 23.85 22.88 63.50 91.57 40.94 8.00 99.50 61.95 54.33 45.44
K-VEC 26.33 40.38 53.53 57.39 47.14 31.24 24.35 23.94 22.95 62.74 91.89 41.95 8.05 99.50 60.87 54.90 46.70

B=512
SLM 25.51 25.78 34.19 45.01 35.91 24.93 23.61 21.26 23.57 57.50 87.86 41.44 6.98 96.50 60.85 51.02 41.37
Pyramid 28.71 39.89 52.86 54.00 44.20 31.22 24.74 23.73 24.28 66.00 91.07 41.42 8.39 99.50 61.99 53.44 46.59
SnapKV 29.22 40.01 53.15 54.47 43.63 31.32 25.04 23.77 24.19 64.00 92.05 41.57 8.01 99.50 63.21 55.05 46.76
Ada-Pyramid 28.04 40.63 53.03 54.71 43.39 30.26 25.35 24.12 24.61 69.00 91.79 42.55 7.95 99.50 62.28 54.49 46.98
Ada-SnapKV 29.07 40.16 52.44 53.90 43.05 31.10 25.75 24.39 24.85 69.00 92.34 42.05 7.98 99.50 63.43 55.32 47.15
K-VEC 30.04 42.81 56.07 57.90 47.39 31.39 26.24 24.86 24.92 67.47 91.62 42.67 8.45 99.50 62.90 55.68 48.12

B=1024
SLM 24.97 30.22 37.06 46.57 39.14 25.24 26.01 21.08 25.72 63.50 88.87 42.28 6.98 89.00 61.30 53.40 42.58
Pyramid 29.62 43.66 54.10 55.06 44.22 31.30 27.27 24.30 25.68 68.50 91.27 41.96 7.73 99.50 63.13 55.85 47.70
SnapKV 29.28 43.64 54.34 54.24 44.34 31.52 27.80 24.39 25.95 69.00 91.72 42.50 7.80 99.50 62.99 56.45 47.84
Ada-Pyramid 28.76 44.57 53.73 54.89 44.15 31.97 27.75 25.26 25.84 70.50 91.62 42.37 7.67 99.50 62.96 56.52 48.00
Ada-SnapKV 29.23 44.09 53.82 54.80 44.01 31.40 28.86 24.73 26.04 72.50 91.72 42.56 7.82 99.50 63.22 56.33 48.16
K-VEC 30.04 45.03 56.64 58.20 48.09 31.39 28.98 24.99 26.04 71.49 91.72 42.69 8.45 99.50 62.99 56.55 48.92

(SLM) (Xiao et al., 2023) as a representative sliding window eviction method for reference. Ad-
ditionally, we report the performance on the full KV cache without eviction. The results on the
existing methods are borrowed from the SnapKV (Li et al., 2024) and AdaKV (Feng et al., 2024)
papers, and follow their default evaluation settings to evaluate our method.

Implementation details. Our proposed K-VEC eviction policy is applied during the pre-fill phase
of each layer, following standard practices for KV cache eviction (Li et al., 2024). We evaluate
K-VEC across four KV cache budget sizes: 128, 256, 512, and 1024 tokens, reflecting a range of
memory constraints. For K-VEC’s cross-head coverage module, we select the top δ = 3 heads based
on the standard deviation of attention scores, with an extended observation window size of O′ = 32.
The cross-layer coverage module uses λ = 1.0 to balance token importance and coverage. All other
experimental details and parameters are adapted from the SnapKV. All experiments are conducted
on an NVIDIA A100 80GB GPU.

5.2 MAIN RESULTS

In Table 1, we present the performance of K-VEC on 16 subsets of LongBench (Bai et al., 2023) us-
ing Llama-3.1-8B-Instruct (Grattafiori et al., 2024) for cache sizes B = 128, 256, 512, 1024, where
lower cache sizes correspond to higher efficiency but may compromise performance. Table 1 shows
that performance for existing methods degrades at low cache sizes (e.g., B = 128), likely due
to suboptimal key-value (KV) cache eviction in existing methods, which discards critical tokens.
The drop in performance is more prominent in some of the more context-sensitive tasks, such as
Qasper (Dasigi et al., 2021) and TREC (Li & Roth, 2002), where the SOTA method shows 19.76
and 21.0 points drops, respectively.

In contrast, compared to existing methods, K-VEC demonstrates consistent improvements across all
tasks and cache sizes. The improvements are especially pronounced at lower cache sizes, with an
average performance gain of 1.61 points across the 16 LongBench subsets with the cache budget
of 128. For context-sensitive tasks, where existing methods show significant degradation, K-VEC’s
improvements are even more substantial. For instance, at B = 128, K-VEC achieves a 10.35%
improvement on Qasper (Dasigi et al., 2021), highlighting its ability to retain critical KV pairs.
Similarly, K-VEC outperforms existing SOTA at B = 256 by 1.26 points on average, and by up
to 5.32 points on individual tasks. A similar trend is observed for the other two settings. Overall,
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(b) Ours

Figure 4: Visualization of token selection across layers for Ours in comparison to SnapKV.

K-VEC’s robust performance across diverse tasks and cache budgets validates its effectiveness for
efficient long-context processing.

5.3 DISCUSSION

5.3.1 KV-CACHE EVICTION PATTERN

In this section, we present a qualitative example comparing KV-Cache eviction in SnapKV with our
proposed solution. This comparison is visualized in Figure 4. The figure plots the tokens selected
after eviction across the layers for an input sequence of length 161. The heatmap values (ranging
from 0 to 8) represent the number of attention heads that retain each token. A value of at least 1
indicates that the token is attended to by at least one head in that layer; and any non-zero value in a
column implies that the token is retained by at least one layer in the model.

As evident in SnapKV, the eviction policy mostly retains tokens near the end of the sequence and ex-
hibits a clustering pattern in certain sections of the input. Additionally, for most tokens, the selection
pattern remains similar across layers, resulting in the appearance of a few prominent horizontal bars.
In contrast, the eviction pattern of E-VEC ensures broader coverage by selecting a more diverse set
of tokens across layers. While there is some overlap in the selection pattern between K-VEC and
SnapKV, due to the retention of some important tokens, the performance boost in our method arises
from its emphasis on coverage and the avoidance of repetitive selection across layers and heads. This
helps prevent the complete loss of a significant number of tokens, a limitation observed in existing
methods. More details on the individual impact of cross-layer and cross-head modules are discussed
in Appendix A.3.2.

5.4 NEEDLE-IN-A-HAYSTACK TEST

Table 2: Needle-in-
a-Haystack test

Method Avg. score

SnapKV 87.4
HeadKV 98.2
K-VEC 98.2

Needle-in-a-Haystack is a popular evaluation for testing whether large language
models can retrieve and reason over small, specific pieces of information hidden
within long contexts. We follow the evaluation protocol presented in HeadKV
and report the results in Table 2. As evident from this evaluation, K-VEC per-
forms better than SnapKV and is on par with HeadKV in this evaluation.

5.4.1 COVERAGE OF TOKENS

Table 3: Performance and coverage for
our method, in comparison to existing
method

Method Performance Coverage

SnapKV 40.01 86.6%
Ours 42.81 94.5%

In this section, we analyze the token coverage of our proposed
method in comparison to the existing approach. As shown
in Table 3, the overall coverage achieved by our method is
significantly higher than that of SnapKV. This improvement
in coverage also leads to a notable boost in performance.
Nonetheless, it is important to note that our coverage-aware
eviction strategy does not aim for full coverage, as many to-
kens inherently contain no relevant information for the given
context. Forcing full coverage in the cache will divert the budget from more important tokens, which
may lead to a drop in performance.
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5.4.2 COMPUTATIONAL COMPLEXITY

Table 4: Comparison of computational com-
plexity

Tokens/sec
Method Memory Pre-fill Decode Total

SnapKV 0.1 GB 5672 40.16 20.37
Ours 0.1 GB 3440 40.97 18.55

In this section, we discuss the computational complex-
ity of our proposed method in comparison to SnapKV.
Table 4 presents the memory usage and processing time
during both the pre-fill and decoding stages of infer-
ence. As shown in the table, the memory required to
store the KV cache is the same as that of existing meth-
ods, since the total number of tokens stored by our ap-
proach matches that of prior solutions. Similarly, the
decoding speed of our method is equivalent to that of SnapKV. The only notable difference occurs
during the pre-fill stage, where our method is slightly slower due to the application of the cross-head
and cross-layer coverage strategy. However, since the pre-fill stage is a one-time operation at the
beginning of inference, the overall time complexity of our approach remains comparable to that of
existing methods. For outputs with long sequences (i.e., a large number of decoding steps), the
impact of the slightly slower pre-fill stage becomes negligible, making our method practically as
efficient as existing approaches.

Table 5: Comparison of inference time in sec-
onds: SnapKV/K-VEC

In/Out 100 200 300
500 2.52/2.54 5.03/5.03 7.48/7.47
1000 2.61/2.68 5.15/5.18 7.64/7.62
2000 2.84/3.04 5.33/5.48 7.86/7.89

Furthermore, a detailed analysis of inference time ver-
sus sequence length is presented in Table 5. Specif-
ically, we report the inference time for varying input
token lengths and generated output token lengths, and
compare the results with SnapKV. Here, the rows rep-
resent input token length, and columns represent de-
coded token length, and the values represent the infer-
ence time in seconds. As K-VEC takes slightly longer
during the prefill stage, it results in a marginally higher overall inference time when the number of
decoded tokens is small. However, as the LLM generates more tokens, the difference between
SnapKV and K-VEC diminishes. In modern LLM applications involving long-form reasoning,
where output sequences are typically much longer, the additional overhead introduced by K-VEC
becomes negligible. Nonetheless, we acknowledge the inference overhead as a limitation and dis-
cuss it in the Limitations section of the paper.

5.5 ABLATION STUDY

In this section, we present a detailed ablation and parameter sensitivity study on the proposed com-
ponents of K-VEC. The results of these experiments are summarized in Table 6. Below, we discuss
each experiment in detail.

Main ablation. Table 6a evaluates the effectiveness of K-VEC’s head and layer coverage mecha-
nisms. As shown in the results, removing head coverage reduces the score to 34.61, and removing
layer coverage further lowers it to 30.87. When both mechanisms are removed, performance drops
significantly to 25.54. In contrast, the full K-VEC configuration achieves the highest score of 35.96,
demonstrating that both head and layer coverage contribute substantially to overall performance.

Observation window size. Table 6b examines the impact of the observation window size (O′),
which defines the token span used to assess the importance of entries in the KV cache. The optimal
performance, with a score of 35.96, is achieved at O′ = 32. Smaller window sizes (O′ = 20 with
a score of 31.58 and O′ = 24 with a score of 33.24) likely miss important contextual information,
resulting in suboptimal eviction decisions. Conversely, a larger window (O′ = 48, score 34.56) may
include irrelevant tokens, introducing noise. Thus, an observation window of O′ = 32 offers the
best balance between context coverage and precision.

Layer-wise coverage weight. Table 6c analyzes the layer-wise coverage weight (λ), which balances
importance-based eviction and coverage diversity across layers. The best score of 35.96 is obtained
with λ = 1.0. Lower weights (λ = 0.1, score 33.53) undervalue coverage, which may reduce
diversity. Higher weights (λ = 2.0, score 34.32) slightly degrade performance by over-prioritizing
coverage at the expense of importance-based eviction.

Important token retention ratio. Table 6d investigates the effect of the layer-wise retention ratio
of important tokens, β, which determines the fraction of tokens retained based on the original evic-
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Table 6: Ablation and sensitivity analysis of different components and hyperparameters in K-VEC on Long-
Bench (Llama-3.1-8B-Instruct, B = 256).

(a) Main Ablation

Configuration Score

Full K-VEC 35.96
w/o Head Coverage 34.61
w/o Layer Coverage 30.87
w/o Both Coverages 25.54

(b) Observation Window Size

O′ Score

20 31.58
24 33.24
32 35.96
48 34.56

(c) Layer-wise Cov. Weight

λ Score

0.1 33.53
0.5 35.40
1.0 35.96
2.0 34.32

(d) Layer-wise Retention Ratio

β (%) Score

10 34.98
25 35.96
50 35.39
75 35.74

(e) Number of Adjusted Heads

δ Score

1 34.26
2 35.35
3 35.96
4 35.38

(f) Head Selection Criteria

Criteria Score

Entropy 34.17
SD 35.96

tion score alone. The highest performance score of 35.96 is achieved with a 25% retention ratio.
A lower ratio (10%, score 34.98) retains too few tokens based on importance and puts excessive
focus on coverage. While higher ratios (50%, score 35.39; 75%, score 35.74) reduce the selec-
tion of coverage-driven tokens. The 25% ratio offers an optimal balance between coverage and the
preservation of important tokens.

Number of adjusted heads. Table 6e explores the impact of the number of adjusted attention
heads (δ), where K-VEC applies the cross-head coverage strategy. The highest score of 35.96 is
achieved with δ = 3. Lower values (δ = 1, score 34.26; δ = 2, score 35.35) provide insufficient
coverage, while higher values may alter the contribution of important heads, leading to suboptimal
performance. The peak at δ = 3 reflects a balanced trade-off between coverage and the preservation
of token importance.

Head Selection Criteria. In Table 6f, we explore different criteria for selecting the head to enforce
coverage. Specifically, we explore entropy and standard deviation as the selection criteria. As
shown, the standard deviation serves as a better indication of less focused heads, and enforcing
head-wise coverage.

6 CONCLUSION

In this work, we propose K-VEC, a coverage-aware KV-cache eviction strategy that addresses the
memory and scalability challenges of deploying large language models in long-context applica-
tions. By introducing cross-head and cross-layer coverage modules, K-VEC ensures the retention of
critical tokens, significantly improving performance over existing methods, particularly at low cache
budgets. Our evaluations on the LongBench dataset demonstrate K-VEC’s superiority across diverse
tasks, with up to 10.35 points gains at a 128-token budget. Ablation and sensitivity analyses further
confirm the robustness and effectiveness of our proposed modules. K-VEC offers a practical solu-
tion for efficient LLM inference, enabling scalable deployment in real-time and resource-constrained
environments.

Limitations. As discussed in the computational complexity analysis, one limitation of our proposed
solution is a slight increase in compute cost during the pre-fill stage. However, this overhead di-
minishes for long-generation tasks, as the decoding speed remains comparable to existing methods.
In modern LLM applications involving long-form reasoning, where output sequences are typically
much longer, the additional overhead introduced by K-VEC becomes negligible. Additionally, while
our approach improves coverage, it does not achieve full coverage. Nonetheless, full coverage is not
necessarily beneficial, as some tokens may not contribute meaningful information in the context of
the query. Future work could explore strategies to further increase coverage and investigate integra-
tion with other optimization techniques to enhance the overall efficiency of LLMs.
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A APPENDIX

A.1 COVERAGE HYPOTHESIS

Let X denote an input sequence and Y the corresponding output sequence. A transformer model
computes hidden representations at each layer via attention mechanisms operating on keys K and
values V . Given a cache, storing processed tokens, T = {t1, t2, . . . , tN}, where N is the total
number of tokens selected across all attention heads and layers, we define coverage C as:

C = |{unique tokens in T }|,

with Teff denoting the effective token set after eviction, where |Teff| = C.

Let I(X;Y ) represent the mutual information between input and output. We analyze how cache
coverage constrains this quantity through the lens of information bottleneck theory.

The Information Bottleneck via Cache Eviction. The transformer’s intermediate representation
T mediates information flow through the cache. By the Data Processing Inequality (DPI):

I(X;Y ) ≤ I(T ;Y ). (11)

If X → T → Y forms a Markov chain, T ’s capacity fundamentally limits prediction performance.

Bounding I(T ;X) via Coverage. Assuming each unique token provides at most R bits of infor-
mation:

I(T ;X) ≤ R · C. (12)

In practice, however, large vocabularies often contain redundancy, where additional unique tokens
yield diminishing information gains. To capture this effect, we introduce a tighter logarithmic bound:

I(T ;X) ≤ α logC, α > 0. (13)

Relating Mutual Information to Performance. Let P be a performance metric (e.g., negative
log-likelihood) with:

P ≥ ϕ(I(X;Y )), (14)

where ϕ(·) is monotonically decreasing. Combining with DPI:

P ≥ ϕ (min{I(T ;X), I(T ;Y )}) (15)
≥ ϕ(α logC). (16)

To achieve target performance P0, coverage must satisfy:

C ≥ exp

(
1

α
ϕ−1(P0)

)
. (17)

This bound relies on the assumption that the token contributions are additive (no contextual depen-
dencies), and all tokens as equally informative, though some may carry more task-relevant signal.
Our goal is to establish the relationship between the coverage and performance drop, rather than to
quantify the exact decline or relate it to the specific importance of individual tokens. This assump-
tion allows for a concise and transparent theoretical derivation aligned with our objective. Under this
assumption, the analysis reveals an irreducible trade-off: a drop in coverage during eviction (C ↓)
forces I(X;Y ) ↓, explaining the empirical performance collapse.

A.2 EXPERIMENTS AND RESULTS

A.2.1 COMPARISON TO EXISTING METHODS

In this section, we provide additional evaluations and comparisons to existing methods. Specifically,
we compare K-VEC with HeadKV and GemFilter in Tables S1 and S2. We omit these results
from the main results table since HeadKV and GemFilter did not report results on all datasets in
LongBench. As evident from the results, K-VEC outperforms both HeadKV and GemFilter across
the datasets, as well as on average.
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Table S1: Detailed results of Llama-3.1-8B-Instruct on LongBench and its comparison to HeadKV.

Single-Doc. QA Multi-Doc. QA
NrtvQA Qasper MF-en Hot. 2Wiki Musi. Ave. Score

Full Cache 30.22 45.37 55.80 55.97 45.00 31.26 49.20
B=128

SnapKV 22.11 15.79 31.01 41.12 29.20 19.35 26.43
HeadKV-R 23.49 25.39 38.15 42.45 32.84 19.95 30.38
HeadKV-R2 21.80 29.19 41.89 43.73 35.01 20.40 32.00
K-VEC 24.01 34.18 42.13 44.24 39.15 21.99 34.28

B=1024
SnapKV 25.76 27.50 38.38 43.40 34.81 20.07 31.65
HeadKV-R2 21.80 29.19 41.89 43.73 35.01 20.40 32.00
HeadKV-R2 24.66 30.82 39.56 43.97 36.47 22.24 32.95
K-VEC 24.75 41.77 42.99 45.75 40.24 22.45 36.33

Table S2: Detailed results of Llama-3.1-8B-Instruct on LongBench with cache size of 1024.

NrtvQA Qasper MF-en Hot. 2Wiki Musi. GovR. QM. Mult. TREC Tri. SAM. PC. PRe Ave.
SLM 24.97 30.22 37.06 46.57 39.14 25.24 26.01 21.08 25.72 63.50 88.87 42.28 6.98 89.00 40.47
Pyramid 29.62 43.66 54.10 55.06 44.22 31.30 27.27 24.30 25.68 68.50 91.27 41.96 7.73 99.50 46.01
SnapKV 29.28 43.64 54.34 54.24 44.34 31.52 27.80 24.39 25.95 69.00 91.72 42.50 7.80 99.50 46.14
Ada-Pyramid 28.76 44.57 53.73 54.89 44.15 31.97 27.75 25.26 25.84 70.50 91.62 42.37 7.67 99.50 46.33
Ada-SnapKV 29.23 44.09 53.82 54.80 44.01 31.40 28.86 24.73 26.04 72.50 91.72 42.56 7.82 99.50 46.51
GemFilter 20.71 11.00 29.28 19.12 17.01 13.01 30.37 21.75 25.17 63.00 90.70 42.50 7.15 92.22 34.50
K-VEC 30.04 45.03 56.64 58.20 48.09 31.39 28.98 24.99 26.04 71.49 91.72 42.69 8.45 99.50 47.38

Table S3: Detailed results of Qwen2.5-7B-Instruct on LongBench.

Single-Doc. QA Multi-Doc. QA Summarization Few-shotLearning Synthetic Code

NrtvQA
Qasper
M

F-en
HotpotQA
2W

ikiM
QA

M
usique

GovReport
QM

Sum
M

ultiNews
TREC

TriviaQA
SAM

Sum
PCount

PRe

Lcc

RB-P

Ave.
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B=128
SnapKV 20.42 30.71 40.36 50.46 38.47 23.71 20.69 20.68 17.88 50.11 83.45 38.12 2.11 85.0 10.78 9.38 33.89
K-VEC 23.45 34.15 39.45 51.83 40.34 26.54 22.28 23.38 18.90 49.23 85.44 41.23 2.89 84.50 11.83 10.23 35.35

B=1024
SnapKV 23.88 38.59 46.43 55.12 42.3 27.57 27.09 23.1 24.56 53.45 84.87 39.82 2.11 84.5 10.43 8.67 37.03
K-VEC 24.55 40.02 47.23 55.98 41.49 29.22 28.63 23.79 24.78 55.73 85.99 42.57 3.01 84.91 12.19 10.95 38.19

A.2.2 PERFORMANCE ON ADDITIONAL BACKBONE

In this section, we present additional results for the Qwen2.5-7B-Instruct model and its performance
compared to SnapKV on two cache sizes: 128 and 1024. The results, detailed in Table S3, show
that K-VEC demonstrates a similar performance improvement trend as seen with the Llama-3.1-8B-
Instruct model. On average, K-VEC provides considerable improvement across both cache sizes.

A.3 DISCUSSION

A.3.1 COVERAGE ANALYSIS OF EXISTING METHODS

Table S4: Coverage analysis

Method 0.25 0.5 0.75 0.9

Pyramid -3.5% -4.6% -8.6% -20.1%
SnapKV -2.5% -3.9% -8.5% 19.2%
Ada-SnapKV -2.1% -3.1% -7.9% -16.5%
K-VEC -1.1% -2.5% -4.5% -8.6%

To better understand the coverage issue and to further
motivate the problem, in Table S4, we present the drop
in coverage for different existing methods at different
eviction rates. As shown in the table, all existing meth-
ods suffer a significant drop in coverage, which—as
discussed in the main paper—correlates with a decline
in performance. In contrast, our proposed solution
demonstrates a considerably smaller drop in coverage.

A.3.2 EVICTION PATTERN

In this section, we analyze the token coverage of our proposed method in comparison to existing
approaches. In the main paper, we compared SnapKV with K-VEC. Here, we further investigate
the characteristics of the two modules in K-VEC with respect to token coverage. As we observe
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Figure S1: Visualization of token selection across layers for cross-layer coverage, cross-head coverage and
final K-VEC in comparison to SnapKV.

from Figure S1, using only the cross-layer coverage module promotes diversity among the selected
tokens, as the prominent horizontal bars seen in SnapKV are no longer present. However, this
leads to redundancy across heads, indicated by dark dots showing that all heads select the same
tokens. In contrast, applying only the cross-head coverage module diversifies token selection across
heads, as seen from the broader spread of selected tokens, though visible bars remain due to similar
tokens being selected across layers. By combining both strategies in K-VEC, we achieve diversity
of selected tokens across both heads and layers. We will include the new figure and this discussion
in the revised paper.
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