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Schrödinger-Föllmer Diffusion

Max McGuinness MGM52@CAM.AC.UK

Eirik Fladmark EF454@CAM.AC.UK

Francisco Vargas FAV25@CAM.AC.UK

University of Cambridge

Abstract

We present an early investigation into the use of neural diffusion processes for global optimisation,
focusing on Zhang et al.’s Path Integral Sampler. One can use the Boltzmann distribution to formu-
late optimization as solving a Schrödinger bridge sampling problem, then apply Girsanov’s theorem
with a simple (single-point) prior to frame it in stochastic control terms, and compute the solution’s
integral terms via a neural approximation (a Fourier MLP). We provide theoretical bounds for this
optimiser, results on toy optimisation tasks, and a summary of the stochastic theory motivating the
model. Ultimately, we found the optimiser to display promising per-step performance at optimisa-
tion tasks between 2 and 1,247 dimensions, but struggle to explore higher-dimensional spaces when
faced with a 15.9k parameter model, indicating a need for work on adaptation in such environments.

1. Introduction

Motivation: Most tasks in machine learning can be characterised as high-dimensional non-convex
stochastic optimisation problems. Stochastic gradient descent (SGD) [22] is the archetypical ap-
proach in differentiable settings but neglects second-order gradient information. Many extensions
have been proposed to incorporate such information—such as Adam [11], Adagrad [7], and mo-
mentum [17, 25]. However, while effective in the early stages of training, these approaches struggle
to generalise as broadly as SGD [10], and their theoretical convergence properties remain poorly
understood for non-convex global minimisation [5, 14]. With diffusion models being shown to
be highly effective at sampling from high-dimensional structured distributions [19], and offering
promising theoretical guarantees [27, 30], this paper wishes to apply those benefits to optimisation.

Contributions We propose one of the first practical diffusion-based optimisers, the Path Integral
Optimiser (PIO): a neural Schrödinger-Föllmer diffusion process trained as a HyperNetwork. We
outline PIO in Section 3; derive theoretical guarantees for PIO as an optimiser in Section 4; perform
an empirical study comparing PIO and PIO-like models to popular optimisers at classic machine
learning tasks, in some cases matching or exceeding their performance, in Section 5; and conclude
with recommendations for future work in Section 6. We also publish our codebase.1

1. https://github.com/mgm52/Path-Integral-Optimiser
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2. Preliminary

2.1. The Schrödinger-Föllmer Proycess

The Schrödinger bridge problem is that of finding the most likely stochastic evolution from an initial
distribution Q into a target P while minimising KL-divergence to a Wiener process W . We use PWt

to mean the path measure of W at time t.

Definition T2.1 In stochastic control terms, the explicit dynamic Schrödinger bridge problem for
probability measures Q : Rn → R and P : Rn → R is that of finding the minimal drift µ for an
identity-variance Itô process X0 ∼ Q, X1 = X0 +

∫ 1
0 µtdt+

∫ 1
0 dWt to transform Q into P:

µ = argmin
µ

E
[
1

2

∫ 1

0
∥µt∥2dt+ log

PW1(X1)

P(X1)

]
.

When Q is a dirac distribution, one can solve this problem via Schrödinger-Föllmer diffusion [8, 9].

Definition T2.2 The Schrödinger-Föllmer process is an identity-variance diffusion process that
solves the dynamic Schrödinger-Föllmer problem from Dirac X0 ∼ δ0 = Q to arbitrary target
X1 ∼ P. Taking f : Rn → R to be the ratio f(x) = dP

dN(0,In)
(x):

X1 = X0 +

∫ 1

0

EZ∼N(0,In)[∇f(Xt +
√
1− tZ)]

EZ∼N(0,In)[f(Xt +
√
1− tZ) ]

dt+

∫ 1

0
dWt.

2.2. Motivating a Neural Approximation

To overcome the drift’s expectation terms not having an analytic closed-form (except in specific
cases, like the target being a Gaussian mixture), Huang et al. [9] proposed a Monte-Carlo approach.
However, Zhang et al. [30] highlight that this approach is analogous to importance sampling2 of
target distribution X1 ∼ P with proposal distribution Zi ∼ N(0, In), which entails two major
drawbacks encompassing excessively high variance: the curse of dimensionality and the curse of
distribution alignment (required samples increases exponentially with KL divergence).

Tzen et al. [26] found that, as an alternative to Monte-Carlo estimation, one can use an MLP to
efficiently approximate the drift term to arbitrary accuracy, so long as the network can efficiently
approximate target density P. Intuitively, a well-formed neural network can increase in depth lin-
early to increase expressivity exponentially [18]. We note an additional advantage of the neural/meta
approach: no fixed time commitment. One can pause or extend the approximation network’s train-
ing at any point and then take a viable trajectory; by contrast, the Monte-Carlo method spends all
compute running one trajectory to exactly t = 1, no shorter or longer.

2.3. Path Integral Sampler

Zhang et al. [30] describe a complete implementation of neural-approximated discrete SFP in the
Path Integral Sampler (PIS). PIS learns neural parameters θ by simply re-using the drift goal in
Definition T2.1 as the loss in a standard gradient-based optimisation algorithm (e.g. Adam [11]).

2. To be specific, it may be more apt to compare the SF process to annealed importance sampling, which transforms an
initial distribution into a target distribution by interpolating the geometric average of the two distributions.
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Definition T2.3 The EM-discretised neural approximation to the Schrödinger-Föllmer process
makes use of neural drift term b̂θ : Rn× [0, 1] → Rn, such that b̂ is a feed-forward multilayer neural
net with parameters θ ∈ Rp, and is defined for T timesteps, with timesteps ti = i/T , as:

X1 = X0 +

T∑
i=0

b̂θ(Xti , ti)/T +

T∑
i=0

(Wti+1 −Wti).

Definition T2.4 The Path Integral Sampler approximates optimal parameters θ∗ to solve the ex-
plicit dynamic Schrodinger Bridge problem T2.1 using the loss function goal argminθ L(θ) ≈ θ∗,
with L : Rp → R defined as:

L(θ) = 1

2

∫ 1

0
∥b̂θ(Xt, t)∥2dt+ log

PW1(X1)

P(X1)
.

The assumption that target distribution P has an analytic form in the loss term characterises the
process as solving the uniform-density-to-P-density sampling problem, hence Zhang et al. referring
to it as a sampler. To enable unbiased sampling, Zhang et al. [30] perform importance sampling,
assigning each trajectory a weight measuring the alignment of its terminal state with P.

2.4. SFP For Optimisation

One can use a Boltzmann transformation to characterise optimisation as a sampling problem.

Definition T2.5 Given loss function V : Rn → R and scalar σ ∈ (0, 1], we define the Boltzmann
density P as

P(ϕ) =
exp(−V (ϕ)/σ)∫

Rn exp(−V (y)/σ)dy
.

For sufficiently small σ, sampling from P is equivalent to identifying the optimal parameters ϕ∗ ∈
argminϕ∈Rn V (ϕ) such that limσ→0 P(ϕ∗) = 1.

Because Schrödinger-Föllmer processes (T2.2) are scale-invariant with regard to the target distribution—
i.e. constant factors in f are cancelled out by the ∇f/f division in the drift term—one can ignore
the Boltzmann distribution’s integral denominator

∫
Rn exp(−V (y)/σ)dy and sample with the more

readily-computable formula P(ϕ) = exp(−V (ϕ)/σ).

To enable the drift term to appropriately match the scale dictated by σ, Dai et al. [4] rescaled the
process’s terms using σ and

√
σ: X1 = X0 +

∫ 1
0 σb̂θ(Xt, t)dt +

∫ 1
0

√
σdWt.3 Simulating the

process targeting a Carrillo function, they found the sampler to be successful at global optimisation,
surpassing the Langevin-dynamics sampling method. However, while Dai et al.’s results on the
Carrillo function are promising, there has not yet been an attempt to use an SFP for stochastic
optimisation, nor machine-learning optimisation, which presents scaling “curses” for the Monte-
Carlo approach as mentioned in Section 2.2.

2.5. Alternative Processes

While this paper focuses on PIS as an archetype, it can be seen as part of a greater framework
of methods that solve the Schrödinger Bridge problem and can thus be applied to optimisation—
with varying theoretical guarantees. Notable alternatives include Langevin dynamics of the form

3. This rescaling is not justified in the paper; it appears that Dai et al. may have been motivated by the rescaling that is
necessary for Langevin dynamics, though we are not certain that the same is necessary for SFP.
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dXT = −∇1
2∇ log f(Xt, t)dt + dWt for target density f , which tend to require a far longer

mixing time than SFP [4]; and denoising diffusion with a time-reversal dYt = −βT−t(Yt +
2σ2∇ log pT−t(Yt))dt + σ

√
2βT−tdWt from Y0 ∼ Napprox(0, σ

2), which may be more numeri-
cally stable than SFP, but with additional approximation error due to starting from a gaussian [28].

Sampling-based optimization methods that don’t require loss gradient information (PIO uses dL/dθ)
include simulated annealing (adjusts prior with decreasing temperature) [12], the cross-entropy
method (adjusts prior distribution towards N-lowest-loss samples) [23], and model predictive path
integral control (MPPI) (each trajectory step executes control on a system, e.g. driving) [24].

3. Path Integral Optimiser

Path Integral Optimiser

Boltzmann
Transformation

PIS-NN
Neural Drift

Figure 1: The Path Integral Optimiser is a neural-approximated Schrödinger-Föllmer process (T2.3) which
minimises a loss function V by learning to generate samples from its Boltzmann distribution (green). The
drift term is computed by a Fourier MLP (red), and the process as a whole is simulated with Euler-Maruyama
discretisation (blue). With correct parameterisation of θ, σ, and T , this architecture is capable of global
optimisation as proven in this paper’s corollary (T4.7).

To perform practical optimisation via a Schrödinger-Föllmer process, alleviating the scaling issues
of Dai et al.’s Monte-Carlo optimiser (Section 2.4), we adapt Xiao et al.’s Path Integral Sampler [30]
architecture to sample from the Boltzmann transformation of a parameters-to-loss function. We refer
to this complete model as a Path Integral Optimiser (PIO). Each training step involves computing
at least one full trajectory, then Adam-updating PIO’s approximation network according to PIS loss
(T2.4). At validation, we run multiple trajectories and take the argmin validation loss. An unusual
advantage of PIO as an optimizer is that, once trained, we effectively get an ensemble of variants
for “free” by computing new stochastic trajectories.

Architecturally, PIO uses the PIS-NN approach put forward by Zhang et al. [30], in which a single
time-conditioned feed-forward network NNθ(Xt, t) approximates the entire drift. Alternatively,
PIO-Grad uses the PIS-Grad formulation, which may be less impractical for general machine learn-
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ing optimisation due to the cost of re-computing target score ∇ logP at each timestep as guidance.
To assist PIO at optimisation, we decrease the Boltzmann parameter σ in lockstep with learning
rate, matching higher-variance loss landscapes with finer-grained parameter updates.

4. Theoretical Guarantees

We derive a core theorem for the usability of discretised neural-approximated Schrödinger-Föllmer-
like processes (T2.3) such as PIO for global optimisation, by building on the theoretical results of
several SFP papers [4, 26, 27]. These bounds are also relevant to denoising diffusion optimizers
(2.5), which one may call Föllmer-like due to satisfying the same expressiveness bounds and having
a drift term that can be similarly expressed in terms of a semigroup (the semigroup being defined
by score) [21].

To improve interpretability, we provide more informal corollaries in the Remarks section. Full
derivations can be found in the appendix.

Theorem T4.6 Suppose assumptions AA.1 - AA.4 hold. Then, for each ϵ ∈ (0, τ), σ ∈ (0, 1), ϵ̂ ∈
(0, 16L2/c2), T ∈ Z+, there exist constants Cτ,ϵ,n and CL′ (depending on τ, ϵ, n and L′ respec-
tively) such that

P
Ŷ1
(V (X1) > τ) ≤ Cτ,ϵ,n exp

(
−τ − ϵ

σ

)
+

√
2ϵ̂+

√
4L′2(CL′/T + 1/T 2),

for Schrödinger Föllmer process Ŷ EM-discretised with step size 1/T , whose neural drift b̂θ(x, t) =
v̂(x,

√
1− t) is L′-Lipschitz in both parameters.

4.0.1. REMARKS

Theorem T4.6 may be more intuitively phrased as the probability of discrete neural SFP Ŷ being a
τ -global minimiser of function V :

P
Ŷ1
(V (X1) < τ) ≥ 1−

(
Cτ,ϵ,n exp

(
−τ − ϵ

σ

)
+
√
2ϵ̂+

√
4L′2(CL′/T + 1/T 2)

)
.

We can trivially see that Theorem T4.6 enables global optimisation by considering the fact that, by
Dai et al.’s theorem, there exists a neural SFP drift for every ϵ̂ > 0; that by Tzen et al.’s assumptions,
we can set σ ∈ (0, 1] arbitrarily; and that by EM-discretisation, we can set 1/T ∈ (0, 1] arbitrarily.

Therefore, the three parameters can tend to 0 to reach a global optimiser:

lim
σ,ϵ̂,1/T→0

[
Cτ,ϵ,n exp

(
−τ − ϵ

σ

)
+
√
2ϵ̂+

√
4L′2(CL′/T + 1/T 2)

]
= lim

σ→0
Cτ,ϵ,n exp

(
−τ − ϵ

σ

)
+ lim

ϵ̂→0

√
2ϵ̂+ lim

1/T→0

√
4L′2(CL′/T + 1/T 2)

→ 0 + 0 + 0.

Additionally, as a more informal result from Theorem T4.6, we present the following corollary:

Corollary T4.7 By Theorem T4.6, ∀0 < δ ≪ 1, with probability at least 1 −
√
δ, Ŷ1 is a τ -global

minimiser of V , i.e., V (Ŷ1) ≤ τ + inf V (x), if for the scaling factor σ, neural error ϵ̂, and number
of iterations T , we have:

O
(

τ − ϵ

ln (1/δ)

)
≥ σ ∧ O (δ) ≥ ϵ̂ ∧ O(L′/

√
δ) ≤ T.
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5. Experimental Results

Sweep Seed Optimiser Carrillo [2] Moons [1] MNIST [13]
Runs/Steps Runs/Steps (|θ| = 2) (|θ| = 41) (|θ| ≈ 15.9k)

32/32 10*/100

Adagrad [7] 0.549 ± 0.153 0.184 ± 0.036 0.425 ± 0.031
Adam [11] 0.597 ± 0.536 0.057 ± 0.047 0.476 ± 0.030
SGD [22] 0.491 ± 0.125 0.356 ± 0.019 0.427 ± 0.034

PIO 1.458 ± 0.882 0.129 ± 0.121 2.464 ± 0.026

64/64 10*/100

Adagrad [7] 0.647 ± 0.448 0.193 ± 0.038 0.347 ± 0.020
Adam [11] 0.498 ± 0.000 0.022 ± 0.010 0.346 ± 0.020
SGD [22] 0.553 ± 0.149 0.428 ± 0.026 0.385 ± 0.011

PIO 0.404 ± 0.417 0.032 ± 0.049 2.424 ± 0.045

Table 1: Min test loss V (x) across optimisers on mini-batch training. Bold indicates best-in-column; italics second-
best. The 64/64 runs make use of an annealing routine that drops both LR and PIO’s σ parameter by 50% on plateaus.
*5 runs for MNIST, 10 otherwise.

As a work-in-progress result, in Table 2, we find PIO-Grad to provide more competitive per-step
performance at the cost of compute (of around 10× that of PIO for Circles vs Moons). We also
compare to DDO, a denoising diffusion sampler [28] (2.5) driven by a PIS-Grad-like network.4

Sweep Seed Optimiser Circles [1] Breast Cancer [6] Covertype [6]
Runs/Steps Runs/Steps (|θ| = 64) (|θ| = 171) (|θ| = 1, 247)

6/300* 1/300*

Adam [11] 0.998 0.954 0.772
AdamW [15] 0.998 0.966 0.766

Noisy-SGD [16] 0.997 0.941 0.684
SGD [22] 0.997 0.970 0.769

SGLD [29] 0.934 0.965 0.656

3/300* 1/300* DDO-Grad 0.999 0.951 0.801
PIO-Grad 0.998 0.944 0.813

Table 2: Test accuracy % across optimisers on full-batch training. Bold indicates best-in-column; italics second-best.
*150 steps for Covertype, 300 otherwise.

6. Conclusions

Despite the benefits of being able to stochastically generate alternate parameterisations, the applica-
tion of diffusion models to ML-optimization has had little attention in literature. We address this by
introducing the Path Integral Optimiser (PIO), an application of the Path Integral Sampler to optimi-
sation by use of the Boltzmann transformation. We derive theoretical guarantees for such discretized
neural Schrödinger-Föllmer processes at the task of optimization, showing that—for example—the
parameter σ should decrease logarithmically with δ to achieve P(global optimisation) over 1−

√
δ.

In empirically evaluating PIO, we match or exceeds classical optimizers in tasks up to 1.5k parame-
ters in size, but the implementation struggles to scale when given an 15.9k-parameter MLP MNIST
optimisation problem. Future work should focus on improving scalability by considering larger
drift-approximation networks, ensembling PIO’s trajectories, pre-training to a known distribution,
and better-parallelising the training routine to make PIS-Grad more performant.

4. Results from an independent implementation to Table 1, using a different codebase and experimental setup.
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Appendix A. Proof of Main Theorem T4.6

A.1. General Approach

We can build up our result by considering several Schrödinger-Föllmer processes:

• X: A continuous analytic SFP (T2.2).

• X̂: A continuous neural SFP (T2.3 but with integrals instead of EM-discretisation).

• Ŷ : A discrete neural SFP (T2.3).

To evaluate Ŷ ’s proficiency at global optimisation for a given loss function V , the aim is to find a
tight upper bound on the probability of V (Ŷ1) > τ . In other words, to find the probability of our
optimiser finding a solution with loss worse than τ .

Using the pushforward measure P
Ŷ1

, one can write this as5

P
Ŷ1
(V (X1) > τ).

To consider Ŷ a global optimiser, it should be possible to reduce this probabiliy to near-0 for any τ
with correct choice of neural drift parameters θ as used in Definition T2.3.

A.2. Assumptions

To make use of the results of prior authors, we will first conglomerate their assumptions. To begin,
to ensure that the SDE for X admits a unique and strong solution, Dai et al. [4] assume:

Assumption AA.1 V (x) is twice continuous differentiable on Rn and V (x) = ∥x∥22/2 outside a
ball BR, where BR denotes the ball centred at origin with radius R > 0.

Additionally, Tzen et al. [26] make several assumptions to ensure that the ratio f used in the analytic
SFP definition T2.2 can be efficiently approximated by a neural net:

Assumption AA.2 For the analytic SFP definition (T2.2), f is differentiable, f and ∇f are L-
Lipschitz, and there exists a minima c ∈ (0, 1] such that f ≥ c everywhere.

Assumption AA.3 For any R > 0 and ϵ̂ > 0, there exists a feedforward neural net f̂ with size
polynomial in (1/ϵ̂, n, L,R), such that

sup
x∈Bn(R)

|f(x)− f̂(x)| ≤ ϵ̂ and sup
x∈Bn(R)

∥∇f(x)−∇f̂(x)∥ ≤ ϵ̂.

Assumption AA.4 For neural SFP X̂ , the drift b̂θ(x, t) = v̂(x,
√
1− t) is determined by a neural

net v̂ : Rn×[0, 1] → Rn with size polynomial in (1/ϵ̂, n, L, c, 1/c), such that the activation function
of each neuron is an element of the set {S, S′,ReLU}, where S is the sigmoid function.

It is worth noting that none of our assumptions require V to be convex within the ball BR; thus the
global optimisation problem remains challenging.

5. Note that this takes advantage of the fact that V (X1) and V (Ŷ1) have the same event space, thus V (X1) > τ is the
same event as V (Ŷ1) > τ .
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A.3. Proof of Main Theorem T4.6

We can phrase our optimisation probability in terms of its distance from the continuous neural SFP
terminal distribution X̂1:

P
Ŷ1
(V (X1) > τ) = P

X̂1
(V (X1) > τ) + P

Ŷ1
(V (X1) > τ)− P

X̂1
(V (X1) > τ)

≤ P
X̂1

(V (X1) > τ) + |P
Ŷ1
(V (X1) > τ)− P

X̂1
(V (X1) > τ)|. (1)

Next, consider the total variation norm as given in Definition TA.8.

Definition TA.8 For probability measures P and Q in measurable space (Ω,F), the total variation
norm is defined as 2× the upper bound on the distance between P and Q:

∥P −Q∥TV = 2 sup
A∈F

|P (A)−Q(A)|.

Naturally, as the total variation norm is an upper bound, we have |P (A) − Q(A)| = |Q(A) −
P (A)| ≤ ∥Q − P∥TV for all events A ∈ F . Considering (V (X1) > τ) as an event in the event
space of the probability measures for X̂1 and Ŷ1, we can apply the bound to Equation 1, giving us:

P
X̂1

(V (X1) > τ) + |P
Ŷ1
(V (X1) > τ)− P

X̂1
(V (X1) > τ)|

≤ P
X̂1

(V (X1) > τ) + ∥P
X̂1

− P
Ŷ1
∥TV . (2)

We can then move from the neural approximation X̂ to the analytic process X using the same trick:

P
X̂1

(V (X1) > τ) + ∥P
X̂1

− P
Ŷ1
∥TV

≤ PX1(V (X1) > τ) + ∥PX1 − P
X̂1

∥TV + ∥P
X̂1

− P
Ŷ1
∥TV . (3)

Next, we can obtain a KL divergence representation by applying Pinsker’s inequality, which I define
in TA.9.

Definition TA.9 For probability measures P and Q, Pinsker’s inequality states that

∥P −Q∥TV ≤
√

2DKL(P ∥ Q).

Thus, by Pinsker’s inequality, we have:

PX1(V (X1) > τ) + ∥PX1 − P
X̂1

∥TV + ∥P
X̂1

− P
Ŷ1
∥TV

≤ PX1(V (X1) > τ) +
√

2DKL(PX1 ∥ P
X̂1

) +
√

2DKL(PX̂1
∥ P

Ŷ1
). (4)

To continue, we will take assumptions AA.1 - AA.4 and apply three results from prior authors:

• Dai et al. [4] (Analytic optimisation bound 3.5):
PX1(V (X1) > τ) ≤ Cτ,ϵ,n exp

(
− τ−ϵ

σ

)
under assumption AA.1.

• Tzen et al. [26] (Neural approximation bound 3.1):
DKL(PX1 ∥ P

X̂1
) ≤ ϵ̂ under assumptions AA.2 - AA.4.

11
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• Vargas et al. [27] (EM-Discretisation bound A6):
DKL(PX̂1

∥ P
Ŷ1
) ≤ 2L′2(CL′/T + 1/T 2) under assumptions AA.2 - AA.4.

Inserting these into Equation 4, we obtain:

PX1(V (X1) > τ) +
√

2DKL(PX1 ∥ P
X̂1

) +
√

2DKL(PX̂1
∥ P

Ŷ1
)

≤ Cτ,ϵ,n exp

(
−τ − ϵ

σ

)
+
√
2ϵ̂+

√
4L′2(CL′/T + 1/T 2). (5)

In summary, we have obtained a bound for Ŷ as an optimiser, proving Theorem T4.6:

P
Ŷ1
(V (X1) > τ) ≤ Cτ,ϵ,n exp

(
−τ − ϵ

σ

)
+

√
2ϵ̂+

√
4L′2(CL′/T + 1/T 2). (6)

Appendix B. Proof of Main Corollary T4.7

We can examine the terms of our core result T4.6 in isolation to derive bounds on parameter σ,
neural error ϵ̂ and step count K for optimisation accuracy. In particular, suppose we wish to achieve
τ -global minimisation with probability at least 1−

√
δ for arbitrary δ, meaning

P
X̂1

(V (X1) > τ) ≤ Cτ,ϵ,n exp

(
−τ − ϵ

σ

)
+
√
2ϵ̂+

√
4L′2(CL′/T + 1/T 2) ≤

√
δ. (7)

We can achieve this by dividing
√
δ into three parts using constants C1 + C2 + C3 = 1, such that

our bound in Equation 7 is equivalent to solving the system:

Cτ,ϵ,n exp

(
−τ − ϵ

σ

)
≤ C1

√
δ ∧

√
2ϵ̂ ≤ C2

√
δ ∧

√
4L′2(CL′/T + 1/T 2) ≤ C3

√
δ.

I will now address each part individually; careful inequality handling can lead each term to a big-O
bound, proving Corollary T4.7:

1. Firstly, manipulating the σ
bound (corresponding to the gap
between sampling and optimisa-
tion via Definition T2.5):

2. Secondly, manipulating the ϵ̂
bound (corresponding to the gap
between the analytical SFP and its
neural approximation):

3. Finally, manipulating the
T bound (corresponding to the
gap between continuous and EM-
discretised neural SFP):

Cτ,ϵ,n exp

(
−τ − ϵ

σ

)
≤ C1

√
δ

ln

(
C1

Cτ,ϵ,n

√
δ

)
≥ −τ − ϵ

σ

1

2
ln

(
C2
1

C2
τ,ϵ,n

δ

)
σ ≥ −(τ − ϵ)

− 2(τ − ϵ)

ln
(

C2
1

C2
τ,ϵ,n

δ
) ≥ σ

O
(

τ − ϵ

ln (1/δ)

)
≥ σ.

√
2ϵ̂ ≤ C2

√
δ

ϵ̂ ≤ C2
2δ/2

O (δ) ≥ ϵ̂.

√
4L′2(CL′/T + 1/T 2) ≤ C3

√
δ

(4L′2)(CL′/T + 1/T 2) ≤ C2
3δ

(4L′2)(TCL′ + 1) ≤ T 2C2
3δ

(4L′2)(CL′ + 1) ≤ T 2C2
3δ

(CL′ + 1)(4L′2)

C2
3δ

≤ T 2

O(L′/
√
δ) ≤ T.
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Appendix C. Evaluation Details

In evaluating PIO, we wish to account for the fact that a practical application of the optimiser would
involve some degree of hyperparameter tuning; we also account for inherent stochasticity in both
the diffusion model and dataset by re-running the optimisation over multiple seeds; and evaluate the
optimiser at multiple tasks to assess generalisation.

C.1. Hyperparameter Sweeps

Optimisers are considerably challenging to compare fairly—in 2020, Choi et al. found that minor
alterations to hyperparameter search space can reverse classic optimisation results, emphasising
that hyperparameter relationships should not be neglected [3]. For example, they found a tendency
for researchers to underestimate Adam’s performance by not including its full breadth of parameters
in a sweep.

To address this, we consider two distinct sweeps, each performed using the BayesOpt Bayesian
optimisation algorithm included in Meta’s Nevergrad library [20]. Firstly, Narrow ×32, a 32-run
sweep with each run lasting 32 training steps. Secondly, Wide ×64: a 64-run sweep, each run
lasting 64 training steps and making use of an LR-scheduling algorithm that drops LR by 50% on
plateaus, and scales PIO’s σ parameter to match.

• Narrow ×32: a 32-run sweep, each run lasting 32 training steps, over the following
hyperparameters:

– PIO: lr, grad clip val, batch size, sigma.
– Others: lr, grad clip val, batch size.

• Wide ×64: a 64-run sweep, each run lasting 64 training steps and making use of
an LR-scheduling algorithm that drops LR by 50% on plateaus, and scales PIO’s σ
parameter to match. This is performed over the following hyperparameters:

– PIO: lr, grad clip val, batch size, batch laps, sigma,
num layers, K.

– Adam: lr, grad clip val, batch size, batch laps, beta 1,
beta 2.

– Others: lr, grad clip val, batch size, batch laps.

The idea with Wide ×64 is that we aim to fully exploit each optimiser by including a wide variety
of parameters. The unusual batch laps parameter entails re-using the same mini-batch over
multiple consecutive training steps, which may improve numerical stability. Figure ?? exemplifies
parameters for the Narrow ×32 sweep.
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Appendix D. Relevant concepts

D.1. Boltzmann transformation and σ reduction

The following graphics are provided to give a visual representation of how the Boltzman trans-
formation changes a univariate optimisation target (2), into a Boltzman distribution (3), and how
reducing our optimisation parameter σ makes these distributions significantly sharper (4).

V1(x) V2(x) V3(x)

Figure 2: Univariate optimisation target functions.

e
−V1(x)

1 e
−V2(x)

1 e
−V3(x)

1

Figure 3: Univariate optimisation target functions following the Boltzman transformation with σ = 1.

e
−V1(x)

0.1 e
−V2(x)

0.1 e
−V3(x)

0.1

Figure 4: Univariate optimisation target functions following the Boltzman transformation with σ = 0.1.
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Appendix E. Further Results
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Figure 5: The Carrillo point found by the
best PIO run in its ×32 hyperparameter
sweep; the optimiser appears stuck in a local
minima.

PIO labelling attempt (BCE 0.149)
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Figure 6: On the left: PIO’s final attempt at the Moons labelling
task after ×32 sweeping, with ground truth marked with a small dot
in the center of each circle. On the right: a histogram of PIO’s labels
compared to the ground truth, demonstrating room for improvement.
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Figure 7: The MNIST labels predicted by PIO’s best run
in its ×32 hyperparameter sweep; every label is the same,
implying that the optimiser is stuck in a very early local
minima.
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FeedForwardNN: values of 41 parameters
(|max|=16.0, |min|=0.16)

Linear(in=2, out=10) (weight)

Linear(in=2, out=10) (bias)

Linear(in=10, out=1) (weight)

Linear(in=10, out=1) (bias)

Figure 8: The parameters ϕ found by
PIO for the Moons problem. All biases
are negative, which may imply underutil-
isation.

Figure 9 demonstrates the training loss for the best-found configurations, averaged over a number
of runs, reduced for MNIST due to its computational cost.
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Figure 9: Training loss V (x) for various optimisers, tuned with a Narrow ×32 hyperparameter
sweep of 32 runs. Confidence intervals are computed by re-running the best-found configuration
across multiple seeds.
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Figure 10: Training loss V (x) for various optimisers, tuned with a Wide ×64 hyperparameter
sweep of 64 runs, at learning three different task environments. Confidence intervals are com-
puted by re-running the best-found configuration across multiple seeds. Notably, PIO still fails
to learn the MNIST task.
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