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Maŕıa A. Fernández-Seara2,3 mfseara@unav.es

Arantxa Villanueva1,2,5 avilla@unavarra.es
5 Institute of Smart Cities (ISC), Health Research Institute of Navarra, 31006, Pamplona, Spain.

Abstract

Coronary artery disease (CAD) is a leading cause of cardiovascular morbidity and mor-
tality worldwide. Assessing myocardial perfusion is important to detect potential areas of
ischemia in patients with suspected CAD. Arterial spin labeling (ASL) allows non-invasive
quantification of myocardial perfusion using arterial blood as endogenous tracer. Segmen-
tation of the left ventricular myocardium is critical in the post-processing for ASL images,
but it is challenging due to low signal-to-noise ratio (SNR). This study introduces an auto-
matic myocardium segmentation pipeline including uncertainty awareness, employing Mask
R-CNN with dropout layers to capture model uncertainty. Our dataset consists of flow-
sensitive alternating inversion recovery (FAIR) ASL images from 16 patients with suspected
CAD. Our approach achieves robust segmentation results, with similarity coefficient of 75%
and 0.3% misclassification rate. We obtain an 80% correlation with real perfusion values.
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1. Introduction

CAD refers to the obstruction of the coronary arteries, the vessels responsible for delivering
oxygenated blood to the heart. Early detection of CAD involves assessing myocardial
perfusion using magnetic resonance imaging (MRI). ASL is a non-invasive MRI method
that enables the quantification of myocardial blood flow (MBF) and involves obtaining two
distinct images: one where the magnetization of water protons in the blood is inverted (label,
L) and another where magnetization of blood perfusing the myocardium is not inverted
(control, C) (Detre et al., 1994). These images are then subtracted to generate perfusion-
weighted images, where the differences in contrast within the myocardium are directly
proportional to MBF. Given the relatively low perfusion signal, multiple acquisitions are
necessary to enhance the SNR. Thus, the segmentation of the left ventricular myocardium
is an essential component of the post-processing workflow, as it enables the assessment of
global perfusion measurements (Cerqueira et al., 2002). In this work, MBF is estimated
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using the following equation derived from Buxton’s general kinetic model (Buxton et al.,
1998):

MBF (ml/g/min) =
λ · (C − L)

2 ·B · TI · e−TI
T1

(1)

where C − L denotes the average myocardium ASL signal difference. Outliers are dis-
carded if the mean value is 2 standard deviation (SD) away from the global mean. λ refers
to the blood/tissue water partition coefficient (1 mL/g), B represents the mean intensity
(a.u.) of the myocardium in the baseline image, TI stands for the inversion time (1000
ms), and T1 is the relaxation time of blood at 1.5 Tesla (1434 ms). Aim. We propose
the following pipeline for myocardium segmentation in FAIR-ASL: 1) to implement Mask
R-CNN for the automatic segmentation of myocardium, 2) to apply and enable dropout
layers in training and inference, respectively, to study the uncertainty of model, 3) to au-
tomatically estimate the MBF based on predicted segmentation masks. Our work presents
advantages over semi-automated myocardial segmentation methods (Aramend́ıa-Vidaurreta
et al., 2021) and shows results similar to those reported in the literature (Do et al., 2020).

2. Materials and Methods

Dataset consists of FAIR rest-stress cardiac ASL images from a previously published study
(Aramend́ıa-Vidaurreta et al., 2021) with 16 patients with suspected CAD in which seg-
mentation masks were available and are used as ground truth (GT) in this work. Images
were acquired in a mid-ventricular short axis slice of the myocardium, with matrix size of
128 x 104. A baseline image B without presaturation and inversion pulses was acquired to
allow MBF quantification. 26 stress and 48 rest scans were acquired per patient.

Architecture. Mask R-CNN operates as a three-stage object detection system: a region
proposal network (RPN), a region-based convolutional neural network (RCNN), and a se-
mantic segmentation model (He et al., 2018).

Preprocessing. Intensity-windowing (15%) is used for contrast enhancing in training and
inference stages. The model is trained on 838 images, validated on 236, and tested on 148,
belonging to 11, 3, and 2 subjects, respectively.

Training. We select the Resnet101 as the backbone of Mask R-CNN and feature pyramid
network (FPN) to improve the quality of feature maps used for both bounding box regression
and mask prediction. We implement a dropout layer at the end of each block of the backbone
and after the activation layer of the FPN. The model is trained for 200 epochs using a
supervised gradient descent optimizer and learning rate of 10−3. During training, data
augmentation (rotations and translations) is applied to image/mask pairs which are resized
to dimensions of 128 x 128 using zero-padding. We use Python 3.7 and TensorFlow on GPU
NVIDIA GeForce RTX 3060 for model training and testing. Training takes ≈ 240 min.

Inference. As stated in (Gal and Ghahramani, 2016), dropout has been shown to serve as
a Bayesian approximation, offering model uncertainty through Monte Carlo (MC) dropout
during testing. In (Do et al., 2020), an MC dropout U-Net was used for segmentation
of myocardium in ASL and assessed model uncertainty. In this work, dropout layers are
enabled during inference, and we sample multiple predictions for each image by repeating
the forward passes for the same input image and model n = 100 times. Because of the
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inherent randomness in MC dropout, predictions undergo slight variations, allowing us to
sample the distribution of model outputs. Each forward pass takes 0.05 seconds/image.
The mean and SD of n = 100 predicted masks are used to generate the final predicted
segmentation and the pixel-by-pixel uncertainty map for each test image.

Evaluation. We evaluate the performance of our segmentation approach considering vari-
ous metrics such as true positive (sensitivity) and negative rates (specificity), spatial overlap
(dice coefficient, DSC), and misclassification rate (false positive rate, FPR). Furthermore,
we utilize Pearson’s correlation coefficient to assess the correlation between MBF values
computed with the GT masks and those derived from predicted myocardium masks. Fi-
nally, qualitative evaluation is made on uncertainty maps (see Figure 1).

3. Results and discussion

The results of the study indicate that the median values ± SD for FPR, sensitivity, and
specificity were 0.003 ± 0.000, 0.798 ± 0.034, and 0.994 ± 0.001, respectively, while the
median value for the DSC was 0.748 ± 0.036. These findings suggest a high specificity and
sensitivity of the method, with a low false positive rate. We paid particular attention to
low FPR values to mitigate the impact of partial volume, thereby preventing the interfer-
ence of signals originating from ventricular blood pools and/or epicardial fat (Do et al.,
2020). Moreover, the low SD values of all the scores indicate robustness and stability in the
model’s performance. The concordance correlation coefficient was 0.810 between MBF mea-
sured using the automatic segmentation mask with that measured using GT segmentation
masks. Figure 1 depicts segmentation examples on C and L images alongside with corre-
sponding uncertainty maps, that indicate increased uncertainty along the outer boundaries
of the myocardium mask. Further investigation may be warranted to explore the variability
observed in the DSC, which could potentially affect its reliability in certain applications.
Additionally, assessing the performance of the method across different datasets or condi-
tions could provide valuable insights into its robustness and generalizability. In general, our
model demonstrates efficient automatic myocardium segmentation.

Figure 1: Examples of GT and automatic myocardium segmentation masks. Uncertainty
maps (on the right) represent the uncertainty levels (%) associated with each
segmentation across n = 100 forward passes in the inference stage.
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