LATENT-INFORMED ENERGY-BASED MODELS WITH COLLABORATIVE GENERATOR TRAINING

Anonymous authorsPaper under double-blind review

ABSTRACT

Energy-based models (EBMs) have established a distinct niche in generative modeling through their architectural flexibility and expressive density estimation. However, they have yet to achieve mainstream adoption due to their training challenges. In this paper, we propose training latent-variable EBMs that leverage self-supervised representation learning to derive informative target latent variables. This joint space optimization enables the energy function to capture both data distribution and semantic manifold geometry. To avoid long-run MCMC sampling, we introduce an auxiliary generator with specialized training designs for effective energy-generator collaboration. Experiments show our approach significantly boosts the generation performance compared to current EBMs with fewer MCMC steps and smaller networks. We also demonstrate the capabilities of our model across multiple tasks, including out-of-distribution detection, conditional sampling, and zero-shot image restoration.

1 Introduction

Generative models have achieved unprecedented rapid development in recent years. Energy-based models (EBMs) (LeCun et al., 2006; Salakhutdinov et al., 2007; Du & Mordatch, 2019), as a class of generative models, occupy a unique position among various generative frameworks due to their huge potential in modeling complex data distributions. With a flexible energy function to directly characterize the underlying probability distribution, EBM can be useful in various tasks such as image and video synthesis (Xie et al., 2019; Zhao et al., 2020), image restoration (Xie et al., 2021a; Gao et al., 2021), compositional generation (Du et al., 2020; 2023), and out-of-distribution (OOD) detection (Yoon et al., 2023; 2021). However, it is notorious for hard training and long-run MCMC sampling (Grathwohl et al., 2021; Nijkamp et al., 2020), leaving a noticeable gap with dominant generative models.

Adversarial EBMs (Geng et al., 2021; 2024) and cooperative learning (Xie et al., 2020) incorporate a generator to speed up sampling and improve generation quality. However, adversarial EBMs are prone to suffering from mode collapse because of their minimax training strategy. Cooperative learning leads to biased generator learning, thereby limiting the potential for learning a robust EBM. Divergence Triangle methods (Han et al., 2019; 2020) extend this co-training scheme to latent-variable models. However, by enforcing exact alignment between the latent representation and the generator's prior distribution, they restrict both generation quality and latent space flexibility, ultimately weakening the energy function. CLEL (Lee et al., 2023) designs a new class of latent-variable EBMs that model the joint distribution using a contrastive latent encoder. This architecture enables the energy function to benefit from the semantically informative latent representation, moving beyond the conventional Gaussian posterior.

Inspired by CLEL and cooperative learning, we propose a collaborative training framework that combines latent-informed EBMs (LIEBMs) with auxiliary generator initialization. For each training step, the energy function and generator are updated alternatively. When training LIEBM, the defined energy distribution is optimized in a joint space, where the target latent variables are derived through a pretrained self-supervised latent encoder. This design helps energy function understand the geometry of the data manifold. Samples from the energy distribution are required for training as negative samples. We obtain these via generator-predicted initial samples, followed by brief MCMC sampling. An augmentation technique is applied to negative samples to improve the en-

ergy function's discrimination of regions that are far away from the data distribution. Our generator learns to approximate the long-run MCMC dynamics through a single-step transformation, thereby enabling efficient short-run sampling that avoids the slow convergence of traditional MCMC approaches. We investigate several designs of generator learning and conduct a thorough comparison among them. Our method enhances CLEL through dedicated collaborative training and isolates the generative prior from semantic latent representation, thus avoiding the potential pitfalls of "posterior collapse" (Geng et al., 2023).

Our main contributions are summarized as follows:

- We introduce a collaborative training framework for a latent-informed EBM and an auxiliary generator. Our approach utilizes pretrained self-supervised representations as latent variables, maintaining their independence from the generator's prior. This architecture provides semantic guidance to the energy function while conserving full generative potential.
- 2. We implement several key design choices to enable effective collaborative training, including a negative sample augmentation strategy and adaptive generator training paradigms.
- Our method achieves superior sample quality with lightweight architectures, while exhibiting versatile applicability across multiple downstream tasks, including OOD detection, conditional sampling, and zero-shot image restoration.

2 PRELIMINARY

Latent-variable EBMs generalize standard EBMs by incorporating a latent variable to model a joint distribution $p_{\theta}(x, z)$:

$$p_{\theta}(\mathbf{x}, \mathbf{z}) = \frac{\exp(E_{\theta}(\mathbf{x}, \mathbf{z}))}{Z_{\theta}}, \quad Z_{\theta} = \int \exp(E_{\theta}(\mathbf{x}, \mathbf{z})) \, d\mathbf{x} d\mathbf{z}, \tag{1}$$

where Z_{θ} is the intractable normalizing constant called the partition function. Training latent-variable EBMs primarily relies on maximizing the log-likelihood such that:

$$L(\theta) := \mathbb{E}_{(\mathbf{x}, \mathbf{z}) \sim p_{\text{data}}(\mathbf{x}, \mathbf{z})} \left[\log p_{\theta}(\mathbf{x}, \mathbf{z}) \right] = \mathbb{E}_{(\mathbf{x}, \mathbf{z}) \sim p_{\text{data}}(\mathbf{x}, \mathbf{z})} \left[E_{\theta}(\mathbf{x}, \mathbf{z}) \right] - \log Z_{\theta}. \tag{2}$$

Similar to standard EBMs, the gradient of the training objective can be written as:

$$\frac{\partial L}{\partial \theta} = \mathbb{E}_{(\mathbf{x}, \mathbf{z}) \sim p_{\text{data}}(\mathbf{x}, \mathbf{z})} \left[\frac{\partial}{\partial \theta} E_{\theta}(\mathbf{x}, \mathbf{z}) \right] - \mathbb{E}_{(\mathbf{x}, \mathbf{z}) \sim p_{\theta}(\mathbf{x}, \mathbf{z})} \left[\frac{\partial}{\partial \theta} E_{\theta}(\mathbf{x}, \mathbf{z}) \right]. \tag{3}$$

It requires MCMC sampling from a joint distribution $p_{\theta}(x, z)$, which can be challenging in complex high-dimensional space (Xu et al., 2018). Alternatively, Eq.3 can be reformulated to require only sampling from the marginal distribution $p_{\theta}(x)$:

$$\frac{\partial L}{\partial \theta} = \mathbb{E}_{(\mathbf{x}, \mathbf{z}) \sim p_{\text{data}}(\mathbf{x}, \mathbf{z})} \left[\frac{\partial}{\partial \theta} E_{\theta}(\mathbf{x}, \mathbf{z}) \right] - \mathbb{E}_{\mathbf{x} \sim p_{\theta}(\mathbf{x})} \left[\frac{\partial}{\partial \theta} E_{\theta}(\mathbf{x}) \right], \tag{4}$$

where $E_{\theta}(\mathbf{x}) = \log \int \exp(E_{\theta}(\mathbf{x}, \mathbf{z})) d\mathbf{z}$ is an available energy function of marginal $p_{\theta}(\mathbf{x})$. See Appendix A.3 and A.4 for derivation and additional details about EBMs.

3 Method

Conventional EBMs train the energy function solely in the data space, which poses challenges in high-dimensional settings due to data sparsity and limited distributional information. To address this, we propose a latent-variable EBM with structured latent constraints and generator-assisted MCMC initialization. The energy function and generator are trained alternatively within each training step. Our formulation needs to solve three fundamental problems: defining a target joint distribution $p_{\text{data}}(\mathbf{x},\mathbf{z})$ given only observed samples \mathbf{x} , constructing a joint energy distribution $p_{\theta}(\mathbf{x},\mathbf{z})$ that captures data-latent coupling, and balancing collaborative training between the energy function and generator.

3.1 LATENT-INFORMED EBM TRAINING

Inspired by CLEL, we define a conditional latent distribution by mapping randomly augmented samples to latent variables through a latent encoder, i.e., samthrough pling $p_{\text{data}}(\mathbf{z}|\mathbf{x})$ $h(v(\mathbf{x}))/\|h(v(\mathbf{x}))\|_2, v \sim \mathcal{V}.$ Unlike CLEL, our latent encoder h is pretrained using self-supervised representation learning as a separate stage before EBM training. We

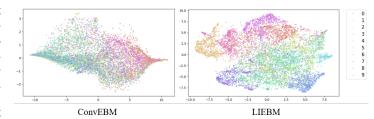


Figure 1: t-SNE visualization of $f_{\phi}(\mathbf{x})$ trained on CIFAR-10: conventional EBM with $g\left(f_{\phi}(\mathbf{x})\right)$ as energy function vs. our LIEBM.

observe in Fig.7 that the CLEL-style collaborative training approach leads to measurable degradation in the encoder's classification accuracy, which subsequently impairs EBM training. This phenomenon may stem from our generator-initialized EBM samples inadequately covering the true data manifold in the early stage of training, making their latent variables ineffective as negative representations for diversity.

Considering modeling a joint energy distribution, we define our energy function by decomposing the joint density into an implicit data distribution and an explicit latent posterior:

$$E_{\theta}(\mathbf{x}, \mathbf{z}) = g\left(f_{\phi}(\mathbf{x})\right) + \log p_{\phi, \psi}(\mathbf{z}|\mathbf{x}),\tag{5}$$

$$E_{\theta}(\mathbf{x}) = \log \int \exp\left(E_{\theta}(\mathbf{x}, \mathbf{z})\right) d\mathbf{z} = g\left(f_{\phi}(\mathbf{x})\right), \tag{6}$$

where $f_{\phi}(\mathbf{x})$ is a neural network parameterized by ϕ , g maps $f_{\phi}(\mathbf{x})$ to a scalar value, which can be a non-parametric function or a neural network. $p_{\phi,\psi}(\mathbf{z}|\mathbf{x})$ is a probability density parameterized by (ϕ,ψ) , and $\theta=(\phi,\psi)$. This formulation permits EBM training via Eq.4, requiring only that $p_{\phi,\psi}(\mathbf{z}|\mathbf{x})$ be an explicit density function.

Following CLEL, we define $p_{\phi,\psi}(\mathbf{z}|\mathbf{x})$ on the unit sphere:

$$p_{\phi,\psi}(\mathbf{z}|\mathbf{x}) = \frac{\exp\left(\gamma \sin\left(g_{\psi}\left(f_{\phi}(\mathbf{x})\right), \mathbf{z}\right)\right)}{Z_{\gamma}}, \quad \mathbf{z} \sim \mathbb{S}^{d_{\mathbf{z}} - 1}$$
(7)

where $\sin(\mathbf{u}, \mathbf{v}) = \mathbf{u}^{\top} \mathbf{v} / \|\mathbf{u}\|_{2} \|\mathbf{v}\|_{2}$ is the cosine similarity. We adopt cosine similarity to model $p_{\phi,\psi}(\mathbf{z}|\mathbf{x})$, benefiting from two critical properties: (1) the normalizing constant Z_{γ} is independent of θ , which can be omitted during training; (2) the scale hyperparameter γ controls density magnitudes for training stability.

Why not use the Gaussian distribution While the Gaussian distribution is the conventional choice for modeling explicit posterior $p_{\phi,\psi}(\mathbf{z}|\mathbf{x})$ (Han et al., 2019; Kan et al., 2022), we avoid this approach due to sensitive variance effects on optimization balance between $g(f_{\phi}(\mathbf{x}))$ and $\log p_{\phi,\psi}(\mathbf{z}|\mathbf{x})$. Instead, our formulation employs a spherical distribution where, by fixing the variance, the squared Euclidean distance $\|\mathbf{z}_1 - \mathbf{z}_2\|_2^2 = 2 - 2\sin(\mathbf{z}_1, \mathbf{z}_2)$ naturally induces a Gaussian-like distribution on the unit sphere.

We optimize our energy function using Eq.4, which requires sampling negative samples from the marginal $p_{\theta}(\mathbf{x})$. To avoid long MCMC chains, we consider first generating initial samples through a generator, i.e., $\mathbf{x}^0 = G(\mathbf{m})$, $\mathbf{m} \sim \mathcal{N}(0,I)$, then refining them with a few MCMC steps from $E_{\theta}(\mathbf{x}^t)$. However, this strategy exhibits a practical limitation: the initial sample distribution progressively becomes closer to the data distribution during training, resulting in the energy function's catastrophic forgetting of low-density regions and earlier discovered modes. To mitigate this problem, we implement a **stochastic augmentation strategy** for negative samples before MCMC sampling. Each negative sample undergoes augmentation with Bernoulli probability p, where the augmented transformation $\mathbf{v} \sim \mathcal{V}$ follows the same protocol as used for sampling from $p_{\text{data}}(\mathbf{z}|\mathbf{x})$. This augmentation technique enables broader exploration of the energy landscape during training, facilitating diversity of MCMC chains. Empirically, this augmentation technique enhances OOD detection for distant outliers with minimal impact on generation quality.

3.2 Generator training

We introduce a generator to initialize MCMC chains via single-step forward propagation. This generator is typically optimized through adversarial training or cooperative learning. We build on cooperative learning as adversarial training would necessitate computationally challenging entropy maximization of the generated distribution $p_g(\mathbf{x})$. Beyond cooperative learning, our framework features a joint energy function and a semantic-aware latent encoder. These architectural advantages allow us to investigate distinct generator training schemes through extensive empirical analysis.

3.2.1 ENERGY DISTRIBUTION MATCHING (EM)

Following cooperative learning, the generator can be optimized by minimizing the KL divergence between two joint distributions, $\min \mathrm{KL}\left(p_{\theta}(\mathbf{x},\mathbf{m}) \| p_g(\mathbf{x},\mathbf{m})\right)$, both distributions built from a Gaussian prior $p(\mathbf{m})$ and conditional $p(\mathbf{x}|\mathbf{m})$. Under the assumption that $p_g(\mathbf{x}|\mathbf{m})$ follows a Gaussian distribution, this objective simplifies to an MSE loss:

$$L_G = \frac{1}{n} \sum_{i=1}^n \frac{1}{2\tau^2} \|G(\mathbf{m}_i) - x_i^T\|_2^2,$$
 (8)

where i denotes i^{th} number of a batch with size n. τ^2 is the fixed variance of $p_g(\mathbf{x}|\mathbf{m})$. x_i^T is the refined samples by running T steps of MCMC from initial point $\mathbf{x}_i^0 = G(\mathbf{m})$:

$$\mathbf{x}_{i}^{t+1} = \mathbf{x}_{i}^{t} + \frac{\delta^{2}}{2} \nabla_{\mathbf{x}} E_{\theta}(\mathbf{x}_{i}^{t}) + \delta \epsilon^{t}, \quad \epsilon^{t} \sim \mathcal{N}(0, I)$$
(9)

 E_{θ} is the marginal energy defined in Eq.6. We empirically observe that this marginal energy MCMC performs well across all evaluated datasets.

We also investigate MCMC refinement from the perspective of the joint energy function. We take the basic idea of auxiliary variable MCMC (Brooks et al., 2011; Song & Ou, 2018) to sample in the augmented space (x, z). To circumvent the computational burden of two Markov chains in both data and latent spaces, we employ our latent encoder to perform a single MCMC procedure. Specifically, we first sample initial $x_i^0 = G(m)$, followed by executing MCMC as described below:

$$\mathbf{x}_{i}^{t+1} = \mathbf{x}_{i}^{t} + \frac{\delta^{2}}{2} \nabla_{\mathbf{x}} E_{\theta}(\mathbf{x}_{i}^{t}, h(\mathbf{x}_{i}^{t})) + \delta \epsilon^{t}, \quad \epsilon^{t} \sim \mathcal{N}(0, I)$$
(10)

This approach is justified because $p_{\theta}(\mathbf{z}|\mathbf{x})$ is learned to match $p_{\text{data}}(\mathbf{z}|\mathbf{x})$ during EBM training, while constraining \mathbf{x} within the latent space reduces the search space and improves efficiency. We observe that this joint energy refinement accelerates training in the early stage, but ultimately underperforms marginal MCMC when dealing with multimodal distributions.

3.2.2 ENERGY AND REAL DISTRIBUTION MATCHING (ERM)

Dual-MCMC (Cui & Han, 2023) highlights that energy distribution matching may induce biased generator learning because it solely aligns with the energy distribution without direct access to training data. Inspired by Dual-MCMC, also leveraging our latent encoder, we optimize the generator to match both the energy and real data distribution, yielding a more informative initialization.

$$L_G = \omega_1 \operatorname{KL}(p_{\theta}(\mathbf{x}, \mathbf{m}) \| p_g(\mathbf{x}, \mathbf{m})) + \omega_2 \operatorname{KL}(p_{\text{data}}(\mathbf{x}, \mathbf{z}) \| p_g(\mathbf{x}, \mathbf{z})), \tag{11}$$

where ω_1 and ω_2 denote the importance weighting between two divergence components. The first term is equal to Eq.8. For the second term, we define $p_q(\mathbf{x}, \mathbf{z})$ as:

$$p_g(\mathbf{x}, \mathbf{z}) = \int p(\mathbf{m}) p_g(\mathbf{x}, \mathbf{z} | \mathbf{m}) d\mathbf{m}, \tag{12}$$

$$\log p_g(\mathbf{x}, \mathbf{z}|\mathbf{m}) = \log p_g(\mathbf{x}|\mathbf{m}) + \rho \sin(\mathbf{z}, h(G(\mathbf{m}))) - \log Z_\rho. \tag{13}$$

We define $p_g(\mathbf{x}, \mathbf{z})$ in this way to facilitate both latent alignment and pixel-level fidelity. The second term in Eq.11 can be optimized by the classic evidence lower bound (ELBO):

$$-\mathbb{E}_{p_{\text{data}}(\mathbf{x}, \mathbf{z})} \mathbb{E}_{q_{\alpha}(\mathbf{m}|\mathbf{x})} \left[\log p_{g}(\mathbf{x}, \mathbf{z}|\mathbf{m}) - \frac{q_{\alpha}(\mathbf{m}|\mathbf{x})}{p(\mathbf{m})} \right]$$
(14)

where q_{α} denotes an inference model parameterized by α and jointly trained with the generator. This method introduces an extra network, while increasing training complexity, this autoencoder-based architecture would be necessary for applications such as image restoration.

Table 1: Generative performance on CIFAR-10. "w/o MCMC" denotes direct sampling from the generator without energy-based refinement via MCMC sampling.

Model	$\textbf{NFE}{\downarrow}$	$\textbf{FID}{\downarrow}$	IS↑	Model	$\textbf{NFE}{\downarrow}$	$\textbf{FID}{\downarrow}$	IS↑
Likelihood-based				EBM-based			
PixelCNN (Oord et al., 2016)	1024	65.9	4.60	IGEBM (Du & Mordatch, 2019)	60	38.2	6.78
Glow (Kingma & Dhariwal, 2018)	1	48.9	3.92	joint Triangle (Han et al., 2020)	1	30.10	7.17
VAE (Kingma & Welling, 2014)	1	115.8	3.8	CoopNets (Xie et al., 2020)	51	33.61	6.55
NVAE (Vahdat & Kautz, 2020)	1	51.67	5.51	EBMBB (Geng et al., 2021)	1	28.63	7.45
GAN-based				VAEBM (Xiao et al., 2021)	16	12.19	8.43
GAIV-baseu				DRL (Gao et al., 2021)	180	9.58	8.30
SN-GAN (Miyato et al., 2018)	1	21.7	8.22	CoopFlow (Xie et al., 2022)	31	15.80	_
BigGAN (Brock et al., 2019)	1	14.73	9.22	Hat EBM (Hill et al., 2022)	51	19.30	_
StyleGAN2 w/ ADA(Karras et al., 2020)	1	2.92	9.83	CLEL-Large (Lee et al., 2023)	1200	8.61	_
DDGAN (Xiao et al., 2022)	4	3.75	9.63	Dual-MCMC (Cui & Han, 2023)	31	9.26	8.55
ACT (Kong et al., 2024)	1	6.0	9.15	DDAEBM (Geng et al., 2024)	4	4.82	8.86
Diffusion-based				CDRL (Zhu et al., 2024)	96	4.31	-
				EC-VAE (Luo et al., 2024)	1	5.20	-
NCSN-v2 (Song & Ermon, 2020)	1000	10.87	8.40	Ours			
DDPM (Ho et al., 2020)	1000	3.17	9.46	Ours			
NCSN++ (Song et al., 2021)	2000	2.20	9.89	LIEBM-EM w/o MCMC	1	4.96	9.82
EDM (Karras et al., 2022)	35	2.04	9.84	LIEBM-EM	16	4.26	10.02
Flow Matching (Lipman et al., 2023)	142	6.35	_	LIEBM-ERM w/o MCMC	1	6.16	9.41
Consistency Models (Song et al., 2023)	1	8.70	8.49	LIEBM-ERM	16	4.96	9.64

EXPERIMENTS

We conduct comprehensive experiments to evaluate our proposed method under various scenarios, including unconditional image generation, OOD detection, conditional sampling, and zero-shot image restoration. For our pretrained latent encoder, we evaluate three normalized self-supervised representation learning methods: SimCLR (Chen et al., 2020), BYOL (Grill et al., 2020), and W-MSE (Ermolov et al., 2021). We select SimCLR¹ since it achieves the best generation performance on CIFAR-10. We adopt the same architecture as Dual-MCMC for our generator and inference model. We use the energy function backbone from Dual-MCMC as our f_{ϕ} in $E_{\theta}(\mathbf{x}, \mathbf{z})$, while our g_{ψ} in $p_{\phi,\psi}(\mathbf{z}|\mathbf{x})$ follows the projection head architecture of the latent encoder, with Batch Normalization (Ioffe & Szegedy, 2015) removed. We apply Exponential Moving Average (EMA) with a decay rate of 0.9999 to improve generation quality. We denote our model with EM generator training as LIEBM-EM, and ERM as LIEBM-ERM. For the EM setting, MCMC with marginal energy (Eq.9) outperforms joint energy matching (Eq.10), so we use Eq.9 for LIEBM-EM.

Table 2: Generative perfor- Table 3: Generative perfor- Table 4: Generative performance on CelebA 64

mance on CelebA-HQ 256.

mance on ImageNet 32.

Model	$\textbf{FID} \downarrow$
SN-GAN (Miyato et al., 2018)	6.1
COCO-GAN (Lin et al., 2019)	4.0
NVAE (Vahdat & Kautz, 2020)	14.74
NCSNv2 (Song & Ermon, 2020)	26.86
DDPM (Ho et al., 2020)	3.93
EBM-based	
DRL (Gao et al., 2021)	5.98
VAEBM (Xiao et al., 2021)	5.31
Dual MCMC (Cui & Han, 2023)	5.15
EC-VAE (Luo et al., 2024)	2.71
LIEBM-EM	3.44
LIEBM-ERM	2.97

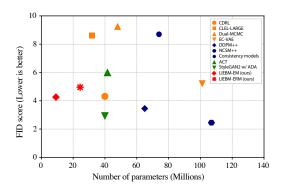
Model	FID ↓
GLOW (Kingma & Dhariwal, 2018)	68.93
NVAE (Vahdat & Kautz, 2020)	45.11
VQGAN (Esser et al., 2021)	10.2
DDGAN (Xiao et al., 2022)	7.64
Score SDE (Song et al., 2021)	7.23
EBM-based	
VAEBM (Xiao et al., 2021)	20.38
Dual MCMC (Cui & Han, 2023)	15.89
CDRL (Zhu et al., 2024)	10.74
EC-VAE (Luo et al., 2024)	12.35
LIEBM-EM	10.08
LIEBM-ERM	8.76

Model	FID ↓
PixelCNN (Oord et al., 2016)	40.51
DDPM++ (Kim et al., 2021)	8.42
Flow Matching (Lipman et al., 2023)	5.02
EBM-based	
CF-EBM (Zhao et al., 2020)	26.31
EBM-CD (Du et al., 2021)	32.48
CLEL-Large (Lee et al., 2023)	15.47
CDRL (Zhu et al., 2024)	9.35
EC-VAE (Luo et al., 2024)	5.76
$EBM_{\rm MI+diff}$ (Geng et al., 2025)	6.57
LIEBM-EM	4.54
LIEBM-ERM	4.98

¹We implement SimCLR using the official code of W-MSE: https://github.com/htdt/self-supervised

4.1 Unconditional image generation

We showcase our model's capabilities in unconditional image generation on standard datasets involving CIFAR-10 (Krizhevsky et al., 2009), ImageNet 32 (Deng et al., 2009), CelebA 64 (Liu et al., 2015b), and CelebA-HQ 256 (Liu et al., 2015a). For quantitative results, we adopt the commonly used Fréchet inception distance (FID) and Inception Score (IS) to evaluate sample fidelity and the number of function evaluations (NFE) to evaluate sampling efficiency. We show qualitative results in Fig.3 and quantitative results in Tabs.1-4 ². Fig.2 shows FID vs. network scale on CIFAR-10.



Our model achieves optimal results on most datasets, with near-optimal performance on

Figure 2: Param count vs. FID on CIFAR-10.

CelebA 64 among EBMs. On CIFAR-10, our LIEBM-EM outperforms state-of-the-art CDRL, despite CDRL having $5 \times$ the number of parameters and requiring $6 \times$ MCMC steps.

Our method achieves significant improvements over CLEL with much faster sampling, demonstrating the effectiveness of our carefully designed collaborative training between the energy function and generator. Our model also outperforms Dual-MCMC and EC-VAE by a large margin on most datasets with fewer network parameters and MCMC steps, validating that our latent-informed scheme can further improve generation. Notably, for single-step generation, our model surpasses strong diffusion baselines, including Consistency Model and its adversarial variant ACT. Moreover, our model achieves competitive performance with advanced GANs and Diffusion Models while using 5-10× fewer parameters. Our model gets the best IS score on CIFAR-10 and is the first EBM to beat Flow Matching on ImageNet 32.

Figure 3: Samples generated by LIEBM with MCMC refinement. Select models based on FID: LIEBM-EM for CIFAR-10/ImageNet-32; LIEBM-ERM for CelebA-64/CelebA-HQ-256.

²Since baselines for ImageNet 32, CelebA 64, and CelebA-HQ 256 are less established than CIFAR-10, we compare using FID and commonly reported baselines.

4.2 Out-of-distribution detection

We evaluate our model's density modeling through OOD detection on CIFAR-10 and ImageNet 32, using their unseen test sets as inliers and other datasets as outliers. We use the standard AUROC metric with a joint energy score inspired by CLEL:

$$s(\mathbf{x}) := g\left(f_{\theta}(\mathbf{x})\right) + \gamma \sin\left(g_{\psi}\left(f_{\phi}(\mathbf{x})\right), h(\mathbf{x})\right). \tag{15}$$

Results are shown in Tabs.5 and 6. We observe that the joint energy score improves OOD detection on most datasets (with only slight degradation on SVHN), demonstrating enhanced robustness to diverse OOD samples through joint space modeling. On CIFAR-10, our model consistently performs at the top tier among EBMs and matches specialized OOD methods. Notably, our model shows significant improvement on CIFAR-100, which is challenging due to the similarity between CIFAR-100 and CIFAR-10. We reproduce Dual-MCMC and hat-EBM using their energy outputs as AUROC decision values. Our model exhibits strong performance on the challenging SVHN and Constant datasets for ImageNet 32, where likelihood-based methods such as VAE, GLOW, and PixelCNN typically fail at outlier detection.

Table 5: AUROC with CIFAR-10 as indistribution.

Method	SVHN	Constant	CIFAR-100	CelebA
PixelCNN++ (Salimans et al., 2017)	0.32	0.71	0.63	_
GLOW (Kingma & Dhariwal, 2018)	0.24	_	0.55	0.57
NVAE (Vahdat & Kautz, 2020)	0.44	0.65	0.49	0.68
JEM (Duvenaud et al., 2020)	0.67	-	0.67	0.75
DRL (Gao et al., 2021)	0.88	0.99	0.44	0.64
hatEBM (Hill et al., 2022)	0.75	0.36	0.63	0.62
CLEL (Lee et al., 2023)	0.98	-	0.72	0.77
Dual-MCMC(Cui & Han, 2023)	0.62	0.32	0.54	0.59
Specialized OOD methods				
OOD EBM (Liu et al., 2020)	0.91	-	0.87	0.78
MPDR-S (Yoon et al., 2023)	0.99	0.9996	0.56	0.73
LIEBM-EM $(f_{\theta}(x))$	0.96	0.67	0.66	0.68
LIEBM-EM	0.95	0.97	0.82	0.77
LIEBM-ERM $(f_{\theta}(x))$	0.94	0.76	0.68	0.58
LIEBM-ERM	0.95	0.96	0.82	0.75

Table 6: AUROC with ImageNet 32 as indistribution. $(f_{\theta}(\mathbf{x}))$ means $f_{\theta}(\mathbf{x})$ serves as the decision function.

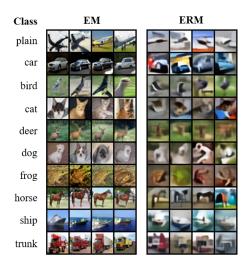
Method	SVHN	Constant	FMNIST	CelebA
DAE (Vincent et al., 2008)	0.10	0.07	0.991	0.43
VAE (Kingma & Welling, 2014)	0.13	0.03	0.95	0.55
WAE (Tolstikhin et al., 2018)	0.08	0.07	0.991	0.36
PixelCNN++ (Salimans et al., 2017)	0.03	0.00	0.004	0.24
GLOW (Kingma & Dhariwal, 2018)	0.17	0.41	0.86	0.48
Specialized OOD methods				
NAE (Yoon et al., 2021)	0.985	0.97	0.994	0.95
LIEBM-EM $(f_{\theta}(x))$	0.99	0.97	0.40	0.48
LIEBM-EM	0.984	0.99	0.896	0.52
LIEBM-ERM $(f_{\theta}(x))$	0.99	0.93	0.35	0.45
LIEBM-ERM	0.985	0.99	0.868	0.54

4.3 CONDITIONAL SAMPLING

We also investigate conditional sampling with our latent representation as labels. Unlike CLEL, we employ a generator as an initializer, which offers faster sampling but requires the generator to produce high-quality initial samples. Therefore, similar to the ERM setting, we train an inference model to form an autoencoder with the generator under our EM framework, enabling us to obtain reconstructions from the input for initialization. We train our inference model using a variant of ELBO loss in the latent space to ensure detailed clarity and sharpness while preserving semantic similarity (See Appendix A.5 for more results). Specifically, we use Eq.14 to train our inference model, but omitting the pixel-level reconstruction term $\log p_q(\mathbf{x}|\mathbf{m})$. We split our generation into two components G(m) + Y. Following CLEL, we obtain the class representation $\overline{z_c}$ for each class c, defined as the normalized average of latent representation across all images in class c. We draw an initialization $\overline{\mathbf{x}}_{\mathbf{c}}$ as initial $G(\mathbf{m})$ by averaging all augmented images from each class. Then we iteratively optimize Y and m by performing MCMC sampling from $E_{\theta}(G(m)+Y,\overline{z_c})$ and using the inference model conditioned on G(m) + Y, respectively. From Fig.4 we can see that the EM setting is able to generate diverse samples with clear details for each class, whereas the ERM setting, while capable of generating some feature elements of the given class, fails to produce identifiable subjects. This is caused by the ELBO component in ERM training, which provides pixel-level reconstruction but produces blurry, low-sharpness results.

4.4 IMAGE RESTORATION

We also present the application of our method in zero-shot image restoration tasks, including colorization and 8× super-resolution. We conduct experiments on CelebA-HQ 256 with ERM setting,



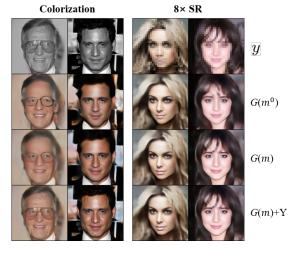


Figure 4: Conditional generated sample on CIFAR-10.

Figure 5: Qualitative results of zero-shot image restoration on CelebA-HQ 256.

since we need pixel-level restoration. Following Luo et al. (2024); Wang et al. (2023), we also use a linear operator A to get the degraded image $y = \mathbf{A}\mathbf{x}$ and utilize its pseudo-inverse \mathbf{A}^{\dagger} to derive the initial estimate $\hat{\mathbf{x}} = \mathbf{A}^{\dagger}y$. We obtain initial \mathbf{m}^0 using our inference model with input $\hat{\mathbf{x}}$. Inspired by Luo et al. (2024), we use the following joint function to refine \mathbf{m} using MCMC sampling:

$$p_{q,\theta}(\mathbf{A}^{\dagger}y, \mathbf{m}) \propto \exp\left(E_{\theta}(G(\mathbf{m}), h(G(\mathbf{m})))\right) p(\mathbf{m}) p\left(\mathbf{A}^{\dagger}y \mid \mathbf{A}^{\dagger}\mathbf{A}G(\mathbf{m})\right)$$
 (16)

After refining m, we update Y using MCMC sampling with G(m) fixed:

$$p_{g,\theta}(\mathbf{A}^{\dagger}y,Y) \propto \exp\left(E_{\theta}(G(\mathbf{m}) + Y, h(G(\mathbf{m}) + Y))\right) p\left(\mathbf{A}^{\dagger}y \mid \mathbf{A}^{\dagger}\mathbf{A}(G(\mathbf{m}) + Y)\right)$$
 (17)

We employ $\tilde{\mathbf{x}} = G(\mathbf{m}) + Y$ as our restoration solution. The qualitative results are shown in Fig.5 and the corresponding PSNR and SSIM metrics are reported in Tab.7. We can observe that with the help of joint energy distribution, our model can successfully restore those images with high quality and consistency after refinement on \mathbf{m} and Y.

4.5 ABLATION STUDY

Fig.6 tracks FID scores during training for the ablation study on CIFAR-10. Tab.8 shows their corresponding OOD performance. It can be seen that traditional EBM training without latent variables can not converge, no matter how the generator training is designed. Training with a pretrained latent encoder improves both generation performance and OOD robustness while yielding a better latent encoder with enhanced semantic separability, as shown in

Table 7: Quantitative results of zero-shot image restoration on CelebA-HQ 256.

Model	Colorization PSNR↑ / SSIM↑	8× SR PSNR↑ / SSIM↑
$G(m^0)$	20.64 / 0.66	22.62 / 0.67
G(m)	22.02 / 0.70	24.16 / 0.70
G(m) + Y	25.25 / 0.94	24.55 / 0.71

Fig.7. Augmentation technique can improve OOD results on Constant Dataset with negligible generation degradation. Generator training with Eq.10 for MCMC refinement (EJM) can get better results for the first stage, but finally slightly worse than EM setting (Eq.9). In particular, EJM tends to collapse towards the end of training on ImageNet 32. Hence, we recommend employing the EM setting. Combining Tabs.1-4, we can see that our EM setting achieves better performance than ERM on multi-class datasets such as CIFAR-10 and ImageNet, while for few-modal datasets like CelebA and CelebA-HQ, ERM performs better.

Adaptability to various self-supervised representation learning methods. Our framework theoretically can be applied to any normalized self-supervised representation learning (SSRL) method. To verify our model's adaptability, we choose two other classic normalized SSRL methods, BYOL

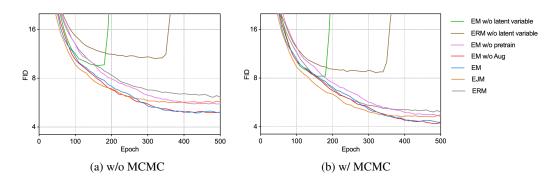


Figure 6: FID with different settings on CIFAR-10. "w/o MCMC" means direct sampling from the generator without MCMC refinement.

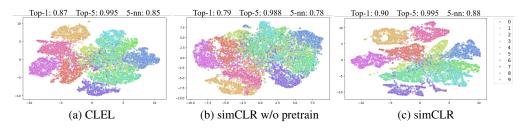


Figure 7: t-SNE visualization of latent representation on CIFAR-10 test set. Accuracies of a linear classifier (Top-1 & Top-5) and a 5-nearest neighbors classifier are shown above each subfigure.

Table 8: AUROC under different settings with CIFAR-10 as in-distribution.

Method	SVHN	Constant	CIFAR-100	CelebA
EM w/o pretrain	0.97	0.997	0.75	0.71
EM w/o Aug	0.95	0.88	0.82	0.76
EM	0.95	0.97	0.82	0.77
EJM	0.95	0.94	0.81	0.73
ERM	0.95	0.96	0.82	0.75

Table 9: Performance with different normalized SSRL methods.

Mathad	EID			ROC	
Method	FID	SVHN	Constant	FMNIST	CelebA
BYOL	5.23	0.96	0.98	0.85	0.81
W-MSE	5.16	0.93	0.99	0.83	0.77
SimCLR	4.26	0.95	0.97	0.82	0.77

and W-MSE, to pretrain our latent encoder. Tab.9 reports FID and AUROC metrics for different SSRL methods, confirming that our LIEBM scales well to various SSRL methods.

5 CONCLUSION

In this paper, we propose LIEBM, a collaborative training scheme that jointly learns a latent-variable EBM and its generator initializer. We leverage pretrained self-supervised representations as our target latent variables to guide the energy function in capturing the semantic structure of the data manifold. Our model narrows the gap between EBMs and mainstream generative models while retaining the benefits of lightweight architectures. It also excels in various downstream tasks, such as OOD detection, conditional sampling, and zero-shot image restoration. Additionally, our framework could be extended to multi-modal large models by treating the joint space as a multi-modal space and replacing SSRL methods with advanced modal-alignment techniques such as CLIP and ALBEF. We hope our work brings to light the profound potential of EBMs as mainstream generative models and stimulate active research in this area.

REFERENCES

- Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural image synthesis. *International Conference on Learning Representations*, 2019.
- Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. *Handbook of markov chain monte carlo*. CRC press, 2011.
- Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. *International conference on machine learning*, pp. 1597–1607, 2020.
- Jiali Cui and Tian Han. Learning energy-based model via dual-mcmc teaching. *Advances in Neural Information Processing Systems*, 36:28861–28872, 2023.
- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*, pp. 248–255. IEEE, 2009. doi: 10.1109/CVPR.2009.5206848.
- Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based models. *Advances in neural information processing systems*, 32, 2019.
- Yilun Du, Shuang Li, and Igor Mordatch. Compositional visual generation with energy based models. *Advances in Neural Information Processing Systems*, 33:6637–6647, 2020.
- Yilun Du, Shuang Li, Joshua Tenenbaum, and Igor Mordatch. Improved contrastive divergence training of energy based models. *International Conference on Machine Learning*, 2021.
- Yilun Du, Conor Durkan, Robin Strudel, Joshua B Tenenbaum, Sander Dieleman, Rob Fergus, Jascha Sohl-Dickstein, Arnaud Doucet, and Will Sussman Grathwohl. Reduce, reuse, recycle: Compositional generation with energy-based diffusion models and mcmc. *International conference on machine learning*, pp. 8489–8510, 2023.
- Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martin Arjovsky, Olivier Mastropietro, and Aaron Courville. Adversarially learned inference. *International Conference on Learning Representations*, Jun 2016.
- David Duvenaud, Jackson Wang, Jorn Jacobsen, Kevin Swersky, Mohammad Norouzi, and Will Grathwohl. Your classifier is secretly an energy based model and you should treat it like one. *International Conference on Learning Representations*, 4, 2020.
- Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto, and Nicu Sebe. Whitening for self-supervised representation learning. *International conference on machine learning*, pp. 3015–3024, 2021.
- Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image synthesis. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2021. doi: 10.1109/cvpr46437.2021.01268. URL http://dx.doi.org/10.1109/cvpr46437.2021.01268.
- Ruiqi Gao, Erik Nijkamp, Diederik P Kingma, Zhen Xu, Andrew M Dai, and Ying Nian Wu. Flow contrastive estimation of energy-based models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7518–7528, 2020.
- Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P Kingma. Learning energy-based models by diffusion recovery likelihood. *International Conference on Learning Representations*, 2021.
- Cong Geng, Jia Wang, Zhiyong Gao, Jes Frellsen, and Søren Hauberg. Bounds all around: training energy-based models with bidirectional bounds. *Advances in neural information processing systems*, 34:19808–19821, 2021.
 - Cong Geng, Jia Wang, Li Chen, and Zhiyong Gao. Solving the reconstruction-generation trade-off: Generative model with implicit embedding learning. *Neurocomputing*, 549:126428, 2023.

- Cong Geng, Tian Han, Peng-Tao Jiang, Hao Zhang, Jinwei Chen, Søren Hauberg, and Bo Li. Improving adversarial energy-based model via diffusion process. *International Conference on Machine Learning*, 2024.
 - Cong Geng, Jia Wang, Zhiyong Gao, Jes Frellsen, and Søren Hauberg. Exploring bidirectional bounds for minimax-training of energy-based models. *International Journal of Computer Vision*, May 2025. doi: 10.1007/s11263-025-02460-0.
 - Will Sussman Grathwohl, Jacob Jin Kelly, Milad Hashemi, Mohammad Norouzi, Kevin Swersky, and David Duvenaud. No MCMC for me: Amortized sampling for fast and stable training of energy-based models. *International Conference on Learning Representations*, 2021.
 - Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your own latent-a new approach to self-supervised learning. *Advances in neural information processing systems*, 33:21271–21284, 2020.
 - Tian Han, Erik Nijkamp, Xiaolin Fang, Mitch Hill, Song-Chun Zhu, and Ying Nian Wu. Divergence triangle for joint training of generator model, energy-based model, and inferential model. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8670–8679, 2019.
 - Tian Han, Erik Nijkamp, Linqi Zhou, Bo Pang, Song-Chun Zhu, and Ying Nian Wu. Joint training of variational auto-encoder and latent energy-based model. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 7978–7987, 2020.
 - Mitch Hill, Erik Nijkamp, Jonathan Mitchell, Bo Pang, and Song-Chun Zhu. Learning probabilistic models from generator latent spaces with hat ebm. *Advances in neural information processing systems*, 35:928–940, 2022.
 - Geoffrey E. Hinton, Peter Dayan, Brendan J. Frey, and Radford M. Neal. The "wake-sleep" algorithm for unsupervised neural networks. *Science*, pp. 1158–1161, May 1995. doi: 10.1126/science.7761831. URL http://dx.doi.org/10.1126/science.7761831.
 - Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in Neural Information Processing Systems*, 33:6840–6851, 2020.
 - Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. *International Conference on Machine Learning*, pp. 448–456, 2015.
 - Ge Kan, Jinhu Lü, Tian Wang, Baochang Zhang, Aichun Zhu, Lei Huang, Guodong Guo, and Hichem Snoussi. Bi-level doubly variational learning for energy-based latent variable models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 18460–18469, 2022.
 - Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training generative adversarial networks with limited data. *Advances in Neural Information Processing Systems*, 33:12104–12114, 2020.
 - Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based generative models. *Advances in neural information processing systems*, 35:26565–26577, 2022.
 - Dongjun Kim, Seungjae Shin, Kyungwoo Song, Wanmo Kang, and Il-Chul Moon. Soft truncation: A universal training technique of score-based diffusion model for high precision score estimation. *International Conference on Machine Learning*, Jun 2021.
 - Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *International Conference on Learning Representations*, 2014.
 - Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. *Advances in Neural Information Processing Systems*, 31, 2018.

- Fei Kong, Jinhao Duan, Lichao Sun, Hao Cheng, Renjing Xu, Hengtao Shen, Xiaofeng Zhu, Xiaoshuang Shi, and Kaidi Xu. Act-diffusion: Efficient adversarial consistency training for one-step diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8890–8899, 2024.
 - Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
 - Rithesh Kumar, Sherjil Ozair, Anirudh Goyal, Aaron Courville, and Yoshua Bengio. Maximum entropy generators for energy-based models. *arXiv preprint arXiv:1901.08508*, 2019.
 - Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, Fujie Huang, et al. A tutorial on energy-based learning. *Predicting structured data*, 1(0), 2006.
 - Hankook Lee, Jongheon Jeong, Sejun Park, and Jinwoo Shin. Guiding energy-based models via contrastive latent variables. *International Conference on Learning Representations*, 2023.
 - Chunyuan Li, Hao Liu, Changyou Chen, Yunchen Pu, Liqun Chen, Ricardo Henao, and Lawrence Carin. Alice: Towards understanding adversarial learning for joint distribution matching. *Neural Information Processing Systems*, Sep 2017.
 - Chieh Hubert Lin, Chia-Che Chang, Yu-Sheng Chen, Da-Cheng Juan, Wei Wei, and Hwann-Tzong Chen. Coco-gan: Generation by parts via conditional coordinating. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 4512–4521, 2019.
 - Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for generative modeling. *International Conference on Learning Representations*, 2023.
 - Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detection. *Advances in neural information processing systems*, 33:21464–21475, 2020.
 - Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In 2015 IEEE International Conference on Computer Vision (ICCV), Dec 2015a. doi: 10.1109/iccv.2015.425. URL http://dx.doi.org/10.1109/iccv.2015.425.
 - Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In *International Conference on Computer Vision*, pp. 3730–3738, 2015b.
 - Yihong Luo, Siya Qiu, Xingjian Tao, Yujun Cai, and Jing Tang. Energy-calibrated vae with test time free lunch. In *European Conference on Computer Vision*, pp. 326–344. Springer, 2024.
 - Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for generative adversarial networks. *International Conference on Learning Representations*, 2018.
 - Erik Nijkamp, Mitch Hill, Song-Chun Zhu, and Ying Wu. Learning non-convergent non-persistent short-run mcmc toward energy-based model. *Neural Information Processing Systems*, Jan 2019.
 - Erik Nijkamp, Mitch Hill, Tian Han, Song-Chun Zhu, and Ying Nian Wu. On the anatomy of mcmc-based maximum likelihood learning of energy-based models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pp. 5272–5280, 2020.
 - Erik Nijkamp, Ruiqi Gao, Pavel Sountsov, Srinivas Vasudevan, Bo Pang, Song-Chun Zhu, and Ying Nian Wu. Mcmc should mix: Learning energy-based model with neural transport latent space mcmc. *International Conference on Learning Representations*, 2022.
 - Aaronvanden Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks. *International Conference on Machine Learning*, Jan 2016.
 - Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via stochastic gradient langevin dynamics: a nonasymptotic analysis. In *Conference on Learning Theory*, pp. 1674–1703. PMLR, 2017.

- Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted boltzmann machines for collaborative filtering. *Proceedings of the 24th international conference on Machine learning*, Jun 2007. doi: 10.1145/1273496.1273596. URL http://dx.doi.org/10.1145/1273496. 1273596.
 - Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. Pixelcnn++: Improving the pixelcnn with discretized logistic mixture likelihood and other modifications. *International Conference on Learning Representations*, 2017.
 - Yang Song and Stefano Ermon. Improved techniques for training score-based generative models. *Advances in Neural Information Processing Systems*, 33:12438–12448, 2020.
 - Yang Song and Diederik P Kingma. How to train your energy-based models. *arXiv preprint* arXiv:2101.03288, 2021.
 - Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. *International Conference on Learning Representations*, 2021.
 - Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. *International Conference on Machine Learning*, 2023.
 - Yunfu Song and Zhijian Ou. Generative modeling by inclusive neural random fields with applications in image generation and anomaly detection. *arXiv* preprint arXiv:1806.00271, 2018.
 - Tijmen Tieleman. Training restricted boltzmann machines using approximations to the likelihood gradient. *International Conference on Machine Learning*, Jan 2008.
 - Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. Wasserstein autoencoders. *International Conference on Learning Representations*, 2018.
 - Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. *Advances in Neural Information Processing Systems*, 33:19667–19679, 2020.
 - Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and composing robust features with denoising autoencoders. *International Conference on Machine Learning*, Jan 2008. doi: 10.1145/1390156.1390294. URL http://dx.doi.org/10.1145/1390156.1390294.
 - Ben Wan, Cong Geng, Tianyi Zheng, and Jia Wang. Ebm-wgf: Training energy-based models with wasserstein gradient flow. *Neural Networks*, 187:107300, 2025.
 - Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising diffusion null-space model. *International Conference on Learning Representations*, 2023.
 - Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. *International Conference on Machine Learning*, pp. 681–688, 2011.
 - Hao Wu, Babak Esmaeili, Michael Wick, Jean-Baptiste Tristan, and Jan-Willem Van De Meent. Conjugate energy-based models. *International Conference on Machine Learning*, pp. 11228–11239, 2021.
 - Zhisheng Xiao, Karsten Kreis, Jan Kautz, and Arash Vahdat. Vaebm: A symbiosis between variational autoencoders and energy-based models. *International Conference on Learning Representations*, 2021.
 - Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with denoising diffusion gans. *International Conference on Learning Representations*, 2022.
 - Jianwen Xie, Song-Chun Zhu, and Ying Nian Wu. Learning energy-based spatial-temporal generative convnets for dynamic patterns. *IEEE transactions on pattern analysis and machine intelligence*, 43(2):516–531, 2019.

Jianwen Xie, Yang Lu, Ruiqi Gao, Song-Chun Zhu, and Ying Nian Wu. Cooperative training of descriptor and generator networks. *IEEE transactions on pattern analysis and machine intelligence*, 42(1):27–45, 2020.

- Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, and Ying Nian Wu. Cooperative training of fast thinking initializer and slow thinking solver for conditional learning. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(8):3957–3973, 2021a.
- Jianwen Xie, Zilong Zheng, and Ping Li. Learning energy-based model with variational autoencoder as amortized sampler. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp. 10441–10451, 2021b.
- Jianwen Xie, Yaxuan Zhu, Jun Li, and Ping Li. A tale of two flows: Cooperative learning of langevin flow and normalizing flow toward energy-based model. *International Conference on Learning Representations*, 2022.
- Pan Xu, Jinghui Chen, Difan Zou, and Quanquan Gu. Global convergence of langevin dynamics based algorithms for nonconvex optimization. *Advances in Neural Information Processing Systems*, 31, 2018.
- Sangwoong Yoon, Yung-Kyun Noh, and Frank Park. Autoencoding under normalization constraints. *International Conference on Machine Learning*, pp. 12087–12097, 2021.
- Sangwoong Yoon, Young-Uk Jin, Yung-Kyun Noh, and Frank Park. Energy-based models for anomaly detection: A manifold diffusion recovery approach. *Advances in Neural Information Processing Systems*, 36:49445–49466, 2023.
- Yang Zhao, Jianwen Xie, and Ping Li. Learning energy-based generative models via coarse-to-fine expanding and sampling. *International Conference on Learning Representations*, 2020.
- Yaxuan Zhu, Jianwen Xie, Yingnian Wu, and Ruiqi Gao. Learning energy-based models by cooperative diffusion recovery likelihood. *International Conference on Learning Representations*, 2024.

A APPENDIX

A.1 LLM USAGE

We employ large language models (LLMs) to assist with language polishing and grammar improvement throughout the paper. For the Related Work section, we leverage LLMs to help synthesize brief summaries of related research publications. We also use LLMs to help generate some simple experiment code and LaTeX formatting code for figures and tables. We have verified and validated all contents made by LLMs and take full responsibility for our submission.

A.2 RELATED WORK

Energy-based models (EBMs) represent a powerful class of generative models that offer explicit unnormalized density estimation and architectural flexibility. Traditional EBM training relies on maximum likelihood estimation (MLE) with Markov Chain Monte Carlo (MCMC) sampling, particularly Langevin dynamics. However, noise-initialized Langevin dynamics often suffer from slow convergence and computational inefficiency (Song & Kingma, 2021). Several techniques have been proposed to alleviate the expensive MCMC, such as Persistent Contrastive Divergence (PCD) (Tieleman, 2008), adding a replay buffer (Du & Mordatch, 2019), short-run MCMC (Nijkamp et al., 2019), et.al. Nevertheless, these approaches remain inefficient as they still require hundreds to thousands of MCMC steps. Cooperative learning methods (Xie et al., 2020; 2021b; 2022; Hill et al., 2022) introduce a generator as a fast initializer learned to amortize long-run MCMC. Adversarial EBMs (Kumar et al., 2019; Geng et al., 2021; Grathwohl et al., 2021; Wan et al., 2025) form a minimax game between the energy function and the introduced generator to enable MCMC-free training. Some advances link connections between EBMs and other generative models to benefit from their strengths,

such as VAE (Xiao et al., 2021; Luo et al., 2024), flow-based models (Nijkamp et al., 2022; Gao et al., 2020), and diffusion-based models (Gao et al., 2021; Zhu et al., 2024; Geng et al., 2024).

Latent-variable EBMs define an energy function to characterize the joint density over data and latent variables. CLEL (Lee et al., 2023) leverages contrastive representation learning to learn meaning-ful latent structures that subsequently guide the EBM training. CEBM (Wu et al., 2021) decomposes the joint density into an intractable data distribution and a tractable latent posterior, providing VAE-like functionality while preserving EBM interpretability and density estimation. Divergence Triangle (Han et al., 2019; 2020) and Dual-MCMC (Cui & Han, 2023) build a unified framework that employs divergence triangle formulations to seamlessly integrate energy function, generator, and inference model through minimizing KL divergences between joint distributions. We focus on collaborative learning between the generator and latent-variable EBM, decoupling the latent distribution from the generator's prior to retain informative latent representations.

A.3 PRELIMINARY OF EBMS

Let \mathcal{X} be the data space and $p_{\text{data}}(\mathbf{x})$ be true data distribution. An EBM defines a probability distribution through an energy function $E_{\theta}: \mathcal{X} \to \mathbb{R}$ parameterized by θ ,

$$p_{\theta}(\mathbf{x}) = \frac{\exp(E_{\theta}(\mathbf{x}))}{Z_{\theta}}, \quad Z_{\theta} = \int \exp(E_{\theta}(\mathbf{x})) d\mathbf{x},$$
 (18)

where Z_{θ} is the intractable normalizing constant. EBMs primarily rely on maximizing the log-likelihood for training such that:

$$L(\theta) := \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}) \right] = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x})} \left[E_{\theta}(\mathbf{x}) \right] - \log Z_{\theta}. \tag{19}$$

The gradient of $L(\theta)$ can be derived as:

$$\frac{\partial L}{\partial \theta} = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x})} \left[\frac{\partial}{\partial \theta} E_{\theta}(\mathbf{x}) \right] - \mathbb{E}_{\mathbf{x} \sim p_{\theta}(\mathbf{x})} \left[\frac{\partial}{\partial \theta} E_{\theta}(\mathbf{x}) \right]. \tag{20}$$

Eq.20 requires MCMC sampling from energy distribution $p_{\theta}(x)$, which can be achieved by Langevin dynamics (Welling & Teh, 2011):

$$\mathbf{x}^{t+1} = \mathbf{x}^t + \frac{\delta^2}{2} \nabla_{\mathbf{x}} E_{\theta}(\mathbf{x}^t) + \delta \epsilon^t, \tag{21}$$

where t indexes the time step, δ is the step size, and $\epsilon \sim \mathcal{N}(0, I)$. For small enough ϵ and large enough t, the distribution of \mathbf{x}^t weakly converges to the energy distribution $p_{\theta}(\mathbf{x})$ regardless of the initial distribution of \mathbf{x}^0 (Raginsky et al., 2017; Xu et al., 2018).

A.4 DERIVATION OF EQ.4

From Eq.3, we have

$$\frac{\partial L}{\partial \theta} = \mathbb{E}_{(\mathbf{x}, \mathbf{z}) \sim p_{\text{data}}(\mathbf{x}, \mathbf{z})} \left[\frac{\partial}{\partial \theta} E_{\theta}(\mathbf{x}, \mathbf{z}) \right] - \mathbb{E}_{(\mathbf{x}, \mathbf{z}) \sim p_{\theta}(\mathbf{x}, \mathbf{z})} \left[\frac{\partial}{\partial \theta} E_{\theta}(\mathbf{x}, \mathbf{z}) \right]$$
(22)

Since $E_{\theta}(\mathbf{x}) = \log \int \exp(E_{\theta}(\mathbf{x}, \mathbf{z})) d\mathbf{z}$, then $p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}, \mathbf{z}) d\mathbf{z} = \frac{\exp(E_{\theta}(\mathbf{x}))}{Z_{\theta}}$, thus $E_{\theta}(\mathbf{x})$ is an available energy function of marginal $p_{\theta}(\mathbf{x})$. We can obtain:

$$p_{\theta}(\mathbf{x}, \mathbf{z}) = \frac{\exp(E_{\theta}(\mathbf{x}, \mathbf{z}))}{Z_{\theta}} = \frac{\exp(E_{\theta}(\mathbf{x}))}{Z_{\theta}} p_{\theta}(\mathbf{z}|\mathbf{x})$$
$$E_{\theta}(\mathbf{x}, \mathbf{z}) = E_{\theta}(\mathbf{x}) + \log p_{\theta}(\mathbf{z}|\mathbf{x})$$
(23)

Substituting Eq.23 into the second term of Eq.22 yields:

$$\mathbb{E}_{(\mathbf{x},\mathbf{z})\sim p_{\theta}(\mathbf{x},\mathbf{z})} \left[\frac{\partial}{\partial \theta} E_{\theta}(\mathbf{x},\mathbf{z}) \right] = \mathbb{E}_{\mathbf{x}\sim p_{\theta}(\mathbf{x})} \left[\frac{\partial}{\partial \theta} E_{\theta}(\mathbf{x}) \right] + \mathbb{E}_{\mathbf{x}\sim p_{\theta}(\mathbf{x},\mathbf{z})} \left[\frac{\partial}{\partial \theta} \log p_{\theta}(\mathbf{z}|\mathbf{x}) \right]$$

$$= \mathbb{E}_{\mathbf{x}\sim p_{\theta}(\mathbf{x})} \left[\frac{\partial}{\partial \theta} E_{\theta}(\mathbf{x}) \right]$$
(24)

The second equality follows from:

$$\mathbb{E}_{\mathbf{x} \sim p_{\theta}(\mathbf{x}, \mathbf{z})} \left[\frac{\partial}{\partial \theta} \log p_{\theta}(\mathbf{z} | \mathbf{x}) \right] = \mathbb{E}_{\mathbf{x} \sim p_{\theta}(\mathbf{x})} \left[\int \frac{\partial}{\partial \theta} p_{\theta}(\mathbf{z} | \mathbf{x}) d\mathbf{z} \right] = 0$$
 (25)

Plugging Eq.24 in Eq.22, we can get Eq.4.

A.5 INFERENCE MODEL FOR EM SETTING

We train an inference model for the EM setting using the following loss:

$$-\mathbb{E}_{p_{\text{data}}(\mathbf{x}, \mathbf{z})} \mathbb{E}_{q_{\alpha}(\mathbf{m}|\mathbf{x})} \left[\log p_{g}(\mathbf{z}|\mathbf{m}) - \frac{q_{\alpha}(\mathbf{m}|\mathbf{x})}{p(\mathbf{m})} \right], \tag{26}$$

where $p_g(\mathbf{z}|\mathbf{m}) = \rho \sin(\mathbf{z}, h(G(\mathbf{m}))$ by definition in Eq.13. The loss essentially minimizes the KL divergence between two conditional distributions: $\mathrm{KL}\left(p_{\mathrm{data}}(\mathbf{z}|\mathbf{x})\|p_g(\mathbf{z}|\mathbf{x})\right)$. This approach ensures feature preservation in the latent space rather than enforcing pixel-level reconstruction. Fig.8 compares reconstruction results using Eq.26 versus the traditional ELBO loss in VAEs. The traditional ELBO fails to produce clear, semantically meaningful images with recognizable objects. Our training loss achieves high-quality reconstructions that preserve semantic properties of the input, such as object class, color, and visual style, without enforcing exact image reproduction. This indicates that our latent representation supports flexible instance generation.

Figure 8: Reconstruction with different training losses.

A.6 RECONSTRUCTION OF LIEBM-ERM

While our autoencoder-style ERM scheme is designed primarily for initialization, we additionally demonstrate its image reconstruction capabilities in Figs.9 and 10. Following the test setting in Han et al. (2019), we also compare our approach with other models that also incorporate an inferential mechanism, where performance is quantitatively measured by per-pixel mean square error (MSE). As shown in Tab.10, our model achieves the best performance on CIFAR-10, outperforming Dual-MCMC even with Langevin refinement. On CelebA 64, our model achieves comparable results to Dual-MCMC but without requiring additional Langevin dynamics.

Table 10: Reconstruction evaluation using MSE on CIFAR-10 and CelebA 64. Inf+L=10 denotes using 10-step Langevin dynamics initialized by the inference model.

Methods	CIFAR-10	CelebA-64
WS (Hinton et al., 1995)	0.058	0.152
VAE (Kingma & Welling, 2014)	0.037	0.039
ALI (Dumoulin et al., 2016)	0.311	0.519
ALICE (Li et al., 2017)	0.034	0.046
Divergence Triangle (Han et al., 2019)	0.028	0.030
Dual-MCMC (Inf) (Cui & Han, 2023)	0.049	0.022
Dual-MCMC (Inf+L=10) (Cui & Han, 2023)	0.024	0.013
LIEBM-ERM (Inf)	0.019	0.014

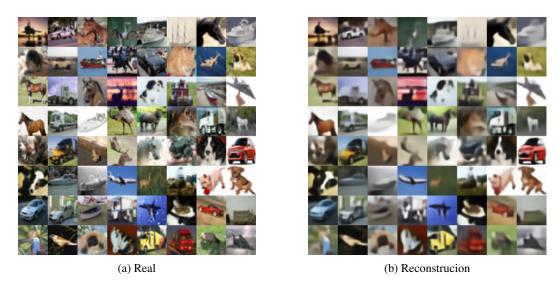


Figure 9: Reconstruction of LIEBM-ERM on CIFAR-10.

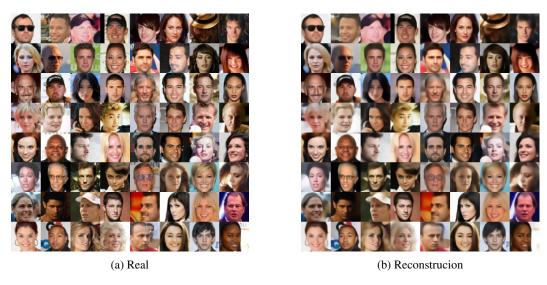


Figure 10: Reconstruction of LIEBM-ERM on CelebA 64.

A.7 Hyperparameter settings

We specify the hyperparameters used for our training on each dataset in Tab.11. We adopt two forms of function g in Eq.5 for different datasets. For CIFAR-10 and ImageNet 32, we define $g\left(f_{\phi}(\mathbf{x})\right) = \frac{-\|f_{\phi}(\mathbf{x})\|_{2}^{2}}{2}$, while for CelebA 64 and CelebA-HQ 256, we define g to be a learnable linear function, which is trained along with $E_{\theta}(\mathbf{x},\mathbf{z})$. The output dimension of $f_{\phi}(\mathbf{x})$ is 512.

A.8 ADDITIONAL RESULTS

We provide more qualitative visual results for both EM and ERM settings in Figs.11-14.

Table 11: Hyperparameters for each dataset.

	CIFAR-10	ImageNet 32	CelebA 64	CelebA-HQ 256
E_{θ} learning rate / Adam β_1, β_2	1e-4 / (0.0, 0.999)	1e-4 / (0.0, 0.999)	1e-4 / (0.0, 0.9)	1e-4 / (0.0, 0.9)
G learning rate / Adam β_1, β_2	2e-4 / (0.0, 0.9)	2e-4 / (0.0, 0.9)	3e-4 / (0.0, 0.9)	3e-4/(0.0, 0.9)
q_{α} learning rate / Adam β_1, β_2	2e-4/(0.0, 0.9)	2e-4/(0.0, 0.9)	1e-4/(0.0, 0.9)	1e-4/(0.0, 0.9)
EMA decay rate	0.9999	0.9999	0.9999	0.9999
γ for training	0.01	0.01	0.01	0.01
γ for OOD	0.1	0.1	0.1	1
batch size	256	256	256	128
MCMC steps	15	15	15	15
MCMC step size δ^2	25	25	0.1	0.1
ω_1 / ω_2 in Eq.11	1 / 0.1	1 / 0.1	70 / 1	70 / 1
ρ in Eq.13	1	1	1	50
training epochs	500	100	300	300
data range	[0, 1]	[-1, 1]	[-1, 1]	[-1, 1]
latent dimension	128	128	128	256
E_{θ}, G hidden channels	256	512	1024	1024
q_{α} hidden channels	128	128	128	64
\overline{G} params	4.3M	16.0M	12.2M	34.3M
E_{θ} params	4.9M	17.6M	20.7M	40.7M
q_{α} params	15.2M	15.2M	15.2M	8.1M

(a) EM (b) ERM

Figure 11: Samples generated by LIEBM with MCMC refinement on CIFAR-10.

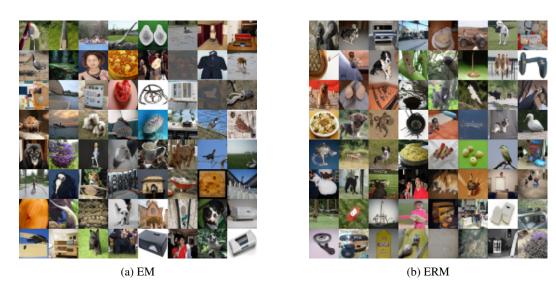


Figure 12: Samples generated by LIEBM with MCMC refinement on ImageNet 32.

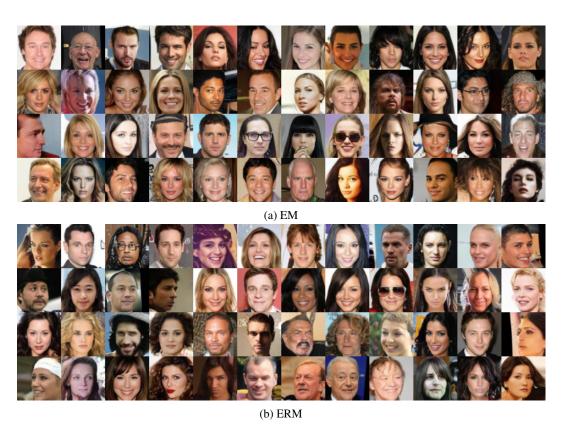
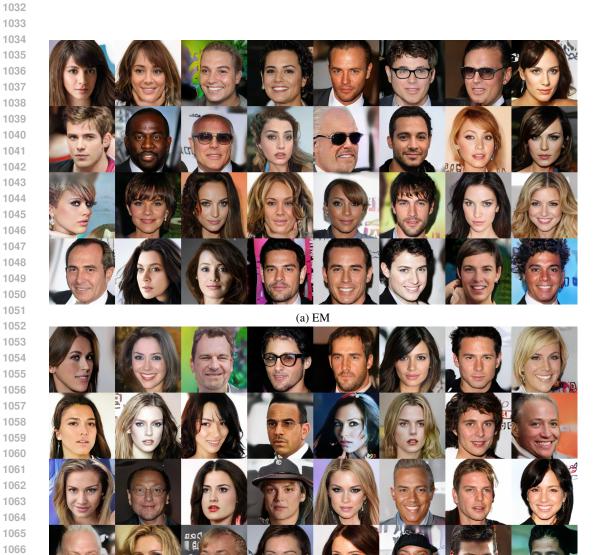


Figure 13: Samples generated by LIEBM with MCMC refinement on CelebA 64.



(b) ERM
Figure 14: Samples generated by LIEBM with MCMC refinement on CelebA-HQ 256.