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ABSTRACT

Energy-based models (EBMs) have established a distinct niche in generative
modeling through their architectural flexibility and expressive density estimation.
However, they have yet to achieve mainstream adoption due to their training chal-
lenges. In this paper, we propose training latent-variable EBMs that leverage self-
supervised representation learning to derive informative target latent variables.
This joint space optimization enables the energy function to capture both data
distribution and semantic manifold geometry. To avoid long-run MCMC sam-
pling, we introduce an auxiliary generator with specialized training designs for
effective energy-generator collaboration. Experiments show our approach signif-
icantly boosts the generation performance compared to current EBMs with fewer
MCMC steps and smaller networks. We also demonstrate the capabilities of our
model across multiple tasks, including out-of-distribution detection, conditional
sampling, and zero-shot image restoration.

1 INTRODUCTION

Generative models have achieved unprecedented rapid development in recent years. Energy-based
models (EBMs) (LeCun et al., 2006; Salakhutdinov et al., 2007; Du & Mordatch, 2019), as a class
of generative models, occupy a unique position among various generative frameworks due to their
huge potential in modeling complex data distributions. With a flexible energy function to directly
characterize the underlying probability distribution, EBM can be useful in various tasks such as
image and video synthesis (Xie et al., 2019; Zhao et al., 2020), image restoration (Xie et al., 2021a;
Gao et al., 2021), compositional generation (Du et al., 2020; 2023), and out-of-distribution (OOD)
detection (Yoon et al., 2023; 2021). However, it is notorious for hard training and long-run MCMC
sampling (Grathwohl et al., 2021; Nijkamp et al., 2020), leaving a noticeable gap with dominant
generative models.

Adversarial EBMs (Geng et al., 2021; 2024) and cooperative learning (Xie et al., 2020) incorporate
a generator to speed up sampling and improve generation quality. However, adversarial EBMs are
prone to suffering from mode collapse because of their minimax training strategy. Cooperative learn-
ing leads to biased generator learning, thereby limiting the potential for learning a robust EBM. Di-
vergence Triangle methods (Han et al., 2019; 2020) extend this co-training scheme to latent-variable
models. However, by enforcing exact alignment between the latent representation and the genera-
tor’s prior distribution, they restrict both generation quality and latent space flexibility, ultimately
weakening the energy function. CLEL (Lee et al., 2023) designs a new class of latent-variable EBMs
that model the joint distribution using a contrastive latent encoder. This architecture enables the en-
ergy function to benefit from the semantically informative latent representation, moving beyond the
conventional Gaussian posterior.

Inspired by CLEL and cooperative learning, we propose a collaborative training framework that
combines latent-informed EBMs (LIEBMs) with auxiliary generator initialization. For each train-
ing step, the energy function and generator are updated alternatively. When training LIEBM, the
defined energy distribution is optimized in a joint space, where the target latent variables are derived
through a pretrained self-supervised latent encoder. This design helps energy function understand
the geometry of the data manifold. Samples from the energy distribution are required for train-
ing as negative samples. We obtain these via generator-predicted initial samples, followed by brief
MCMC sampling. An augmentation technique is applied to negative samples to improve the en-
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ergy function’s discrimination of regions that are far away from the data distribution. Our generator
learns to approximate the long-run MCMC dynamics through a single-step transformation, thereby
enabling efficient short-run sampling that avoids the slow convergence of traditional MCMC ap-
proaches. We investigate several designs of generator learning and conduct a thorough comparison
among them. Our method enhances CLEL through dedicated collaborative training and isolates the
generative prior from semantic latent representation, thus avoiding the potential pitfalls of “posterior
collapse” (Geng et al., 2023).

Our main contributions are summarized as follows:

1. We introduce a collaborative training framework for a latent-informed EBM and an aux-
iliary generator. Our approach utilizes pretrained self-supervised representations as latent
variables, maintaining their independence from the generator’s prior. This architecture pro-
vides semantic guidance to the energy function while conserving full generative potential.

2. We implement several key design choices to enable effective collaborative training, includ-
ing a negative sample augmentation strategy and adaptive generator training paradigms.

3. Our method achieves superior sample quality with lightweight architectures, while exhibit-
ing versatile applicability across multiple downstream tasks, including OOD detection,
conditional sampling, and zero-shot image restoration.

2 PRELIMINARY

Latent-variable EBMs generalize standard EBMs by incorporating a latent variable to model a joint
distribution pθ(x, z):

pθ(x, z) =
exp (Eθ(x, z))

Zθ
, Zθ =

∫
exp (Eθ(x, z)) dxdz, (1)

where Zθ is the intractable normalizing constant called the partition function. Training latent-
variable EBMs primarily relies on maximizing the log-likelihood such that:

L(θ) := E(x,z)∼pdata(x,z) [log pθ(x, z)] = E(x,z)∼pdata(x,z) [Eθ(x, z)]− logZθ. (2)

Similar to standard EBMs, the gradient of the training objective can be written as:

∂L

∂θ
= E(x,z)∼pdata(x,z)

[
∂

∂θ
Eθ(x, z)

]
− E(x,z)∼pθ(x,z)

[
∂

∂θ
Eθ(x, z)

]
. (3)

It requires MCMC sampling from a joint distribution pθ(x, z), which can be challenging in complex
high-dimensional space (Xu et al., 2018). Alternatively, Eq.3 can be reformulated to require only
sampling from the marginal distribution pθ(x):

∂L

∂θ
= E(x,z)∼pdata(x,z)

[
∂

∂θ
Eθ(x, z)

]
− Ex∼pθ(x)

[
∂

∂θ
Eθ(x)

]
, (4)

where Eθ(x) = log
∫
exp (Eθ(x, z)) dz is an available energy function of marginal pθ(x). See

Appendix A.3 and A.4 for derivation and additional details about EBMs.

3 METHOD

Conventional EBMs train the energy function solely in the data space, which poses challenges in
high-dimensional settings due to data sparsity and limited distributional information. To address
this, we propose a latent-variable EBM with structured latent constraints and generator-assisted
MCMC initialization. The energy function and generator are trained alternatively within each train-
ing step. Our formulation needs to solve three fundamental problems: defining a target joint dis-
tribution pdata(x, z) given only observed samples x, constructing a joint energy distribution pθ(x, z)
that captures data-latent coupling, and balancing collaborative training between the energy function
and generator.
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3.1 LATENT-INFORMED EBM TRAINING

Figure 1: t-SNE visualization of fϕ(x) trained on CIFAR-10: con-
ventional EBM with g (fϕ(x)) as energy function vs. our LIEBM.

Inspired by CLEL, we de-
fine a conditional latent
distribution by mapping ran-
domly augmented samples
to latent variables through
a latent encoder, i.e., sam-
pling pdata(z|x) through
h(v(x))/∥h(v(x))∥2, v ∼ V .
Unlike CLEL, our latent
encoder h is pretrained using
self-supervised representation
learning as a separate stage
before EBM training. We
observe in Fig.7 that the CLEL-style collaborative training approach leads to measurable degra-
dation in the encoder’s classification accuracy, which subsequently impairs EBM training. This
phenomenon may stem from our generator-initialized EBM samples inadequately covering the true
data manifold in the early stage of training, making their latent variables ineffective as negative
representations for diversity.

Considering modeling a joint energy distribution, we define our energy function by decomposing
the joint density into an implicit data distribution and an explicit latent posterior:

Eθ(x, z) = g (fϕ(x)) + log pϕ,ψ(z|x), (5)

Eθ(x) = log

∫
exp (Eθ(x, z)) dz = g (fϕ(x)) , (6)

where fϕ(x) is a neural network parameterized by ϕ, g maps fϕ(x) to a scalar value, which can
be a non-parametric function or a neural network. pϕ,ψ(z|x) is a probability density parameterized
by (ϕ, ψ), and θ = (ϕ, ψ). This formulation permits EBM training via Eq.4, requiring only that
pϕ,ψ(z|x) be an explicit density function.

Following CLEL, we define pϕ,ψ(z|x) on the unit sphere:

pϕ,ψ(z|x) =
exp (γ sim (gψ (fϕ(x)) , z))

Zγ
, z ∼ Sdz−1 (7)

where sim(u, v) = u⊤v/∥u∥2∥v∥2 is the cosine similarity. We adopt cosine similarity to model
pϕ,ψ(z|x), benefiting from two critical properties: (1) the normalizing constant Zγ is independent of
θ, which can be omitted during training; (2) the scale hyperparameter γ controls density magnitudes
for training stability.

Why not use the Gaussian distribution While the Gaussian distribution is the conventional
choice for modeling explicit posterior pϕ,ψ(z|x)(Han et al., 2019; Kan et al., 2022), we avoid
this approach due to sensitive variance effects on optimization balance between g (fϕ(x)) and
log pϕ,ψ(z|x). Instead, our formulation employs a spherical distribution where, by fixing the vari-
ance, the squared Euclidean distance ∥z1 − z2∥22 = 2− 2 sim(z1, z2) naturally induces a Gaussian-
like distribution on the unit sphere.

We optimize our energy function using Eq.4, which requires sampling negative samples from the
marginal pθ(x). To avoid long MCMC chains, we consider first generating initial samples through a
generator, i.e., x0 = G(m),m ∼ N (0, I), then refining them with a few MCMC steps from Eθ(x

t).
However, this strategy exhibits a practical limitation: the initial sample distribution progressively be-
comes closer to the data distribution during training, resulting in the energy function’s catastrophic
forgetting of low-density regions and earlier discovered modes. To mitigate this problem, we im-
plement a stochastic augmentation strategy for negative samples before MCMC sampling. Each
negative sample undergoes augmentation with Bernoulli probability p, where the augmented trans-
formation v ∼ V follows the same protocol as used for sampling from pdata(z|x). This augmentation
technique enables broader exploration of the energy landscape during training, facilitating diversity
of MCMC chains. Empirically, this augmentation technique enhances OOD detection for distant
outliers with minimal impact on generation quality.

3
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3.2 GENERATOR TRAINING

We introduce a generator to initialize MCMC chains via single-step forward propagation. This
generator is typically optimized through adversarial training or cooperative learning. We build on
cooperative learning as adversarial training would necessitate computationally challenging entropy
maximization of the generated distribution pg(x). Beyond cooperative learning, our framework
features a joint energy function and a semantic-aware latent encoder. These architectural advantages
allow us to investigate distinct generator training schemes through extensive empirical analysis.

3.2.1 ENERGY DISTRIBUTION MATCHING (EM)

Following cooperative learning, the generator can be optimized by minimizing the KL divergence
between two joint distributions, minKL (pθ(x,m)∥pg(x,m)), both distributions built from a Gaus-
sian prior p(m) and conditional p(x|m). Under the assumption that pg(x|m) follows a Gaussian
distribution, this objective simplifies to an MSE loss:

LG =
1

n

n∑
i=1

1

2τ2
∥∥G(mi)− xTi

∥∥2
2
, (8)

where i denotes ith number of a batch with size n. τ2 is the fixed variance of pg(x|m). xTi is the
refined samples by running T steps of MCMC from initial point x0i = G(m):

xt+1
i = xti +

δ2

2
∇xEθ(x

t
i) + δϵt, ϵt ∼ N (0, I) (9)

Eθ is the marginal energy defined in Eq.6. We empirically observe that this marginal energy MCMC
performs well across all evaluated datasets.

We also investigate MCMC refinement from the perspective of the joint energy function. We take
the basic idea of auxiliary variable MCMC (Brooks et al., 2011; Song & Ou, 2018) to sample in the
augmented space (x, z). To circumvent the computational burden of two Markov chains in both data
and latent spaces, we employ our latent encoder to perform a single MCMC procedure. Specifically,
we first sample initial x0i = G(m), followed by executing MCMC as described below:

xt+1
i = xti +

δ2

2
∇xEθ(x

t
i, h(x

t
i)) + δϵt, ϵt ∼ N (0, I) (10)

This approach is justified because pθ(z|x) is learned to match pdata(z|x) during EBM training, while
constraining x within the latent space reduces the search space and improves efficiency. We observe
that this joint energy refinement accelerates training in the early stage, but ultimately underperforms
marginal MCMC when dealing with multimodal distributions.

3.2.2 ENERGY AND REAL DISTRIBUTION MATCHING (ERM)

Dual-MCMC (Cui & Han, 2023) highlights that energy distribution matching may induce biased
generator learning because it solely aligns with the energy distribution without direct access to train-
ing data. Inspired by Dual-MCMC, also leveraging our latent encoder, we optimize the generator to
match both the energy and real data distribution, yielding a more informative initialization.

LG = ω1 KL(pθ(x,m)∥pg(x,m)) + ω2 KL(pdata(x, z)∥pg(x, z)), (11)
where ω1 and ω2 denote the importance weighting between two divergence components. The first
term is equal to Eq.8. For the second term, we define pg(x, z) as:

pg(x, z) =

∫
p(m)pg(x, z|m)dm, (12)

log pg(x, z|m) = log pg(x|m) + ρ sim(z, h(G(m))− logZρ. (13)
We define pg(x, z) in this way to facilitate both latent alignment and pixel-level fidelity. The second
term in Eq.11 can be optimized by the classic evidence lower bound (ELBO):

−Epdata(x,z)Eqα(m|x)

[
log pg(x, z|m)− qα(m|x)

p(m)

]
(14)

where qα denotes an inference model parameterized by α and jointly trained with the generator. This
method introduces an extra network, while increasing training complexity, this autoencoder-based
architecture would be necessary for applications such as image restoration.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Generative performance on CIFAR-10. “w/o MCMC” denotes direct sampling from the
generator without energy-based refinement via MCMC sampling.

Model NFE↓ FID↓ IS↑

Likelihood-based

PixelCNN (Oord et al., 2016) 1024 65.9 4.60
Glow (Kingma & Dhariwal, 2018) 1 48.9 3.92
VAE (Kingma & Welling, 2014) 1 115.8 3.8
NVAE (Vahdat & Kautz, 2020) 1 51.67 5.51

GAN-based

SN-GAN (Miyato et al., 2018) 1 21.7 8.22
BigGAN (Brock et al., 2019) 1 14.73 9.22
StyleGAN2 w/ ADA(Karras et al., 2020) 1 2.92 9.83
DDGAN (Xiao et al., 2022) 4 3.75 9.63
ACT (Kong et al., 2024) 1 6.0 9.15

Diffusion-based

NCSN-v2 (Song & Ermon, 2020) 1000 10.87 8.40
DDPM (Ho et al., 2020) 1000 3.17 9.46
NCSN++ (Song et al., 2021) 2000 2.20 9.89
EDM (Karras et al., 2022) 35 2.04 9.84
Flow Matching (Lipman et al., 2023) 142 6.35 –
Consistency Models (Song et al., 2023) 1 8.70 8.49

Model NFE↓ FID↓ IS↑

EBM-based

IGEBM (Du & Mordatch, 2019) 60 38.2 6.78
joint Triangle (Han et al., 2020) 1 30.10 7.17
CoopNets (Xie et al., 2020) 51 33.61 6.55
EBMBB (Geng et al., 2021) 1 28.63 7.45
VAEBM (Xiao et al., 2021) 16 12.19 8.43
DRL (Gao et al., 2021) 180 9.58 8.30
CoopFlow (Xie et al., 2022) 31 15.80 –
Hat EBM (Hill et al., 2022) 51 19.30 –
CLEL-Large (Lee et al., 2023) 1200 8.61 –
Dual-MCMC (Cui & Han, 2023) 31 9.26 8.55
DDAEBM (Geng et al., 2024) 4 4.82 8.86
CDRL (Zhu et al., 2024) 96 4.31 –
EC-VAE (Luo et al., 2024) 1 5.20 –

Ours

LIEBM-EM w/o MCMC 1 4.96 9.82
LIEBM-EM 16 4.26 10.02
LIEBM-ERM w/o MCMC 1 6.16 9.41
LIEBM-ERM 16 4.96 9.64

4 EXPERIMENTS

We conduct comprehensive experiments to evaluate our proposed method under various scenarios,
including unconditional image generation, OOD detection, conditional sampling, and zero-shot im-
age restoration. For our pretrained latent encoder, we evaluate three normalized self-supervised
representation learning methods: SimCLR (Chen et al., 2020), BYOL (Grill et al., 2020), and W-
MSE (Ermolov et al., 2021). We select SimCLR1 since it achieves the best generation performance
on CIFAR-10. We adopt the same architecture as Dual-MCMC for our generator and inference
model. We use the energy function backbone from Dual-MCMC as our fϕ in Eθ(x, z), while our gψ
in pϕ,ψ(z|x) follows the projection head architecture of the latent encoder, with Batch Normaliza-
tion (Ioffe & Szegedy, 2015) removed. We apply Exponential Moving Average (EMA) with a decay
rate of 0.9999 to improve generation quality. We denote our model with EM generator training as
LIEBM-EM, and ERM as LIEBM-ERM. For the EM setting, MCMC with marginal energy (Eq.9)
outperforms joint energy matching (Eq.10), so we use Eq.9 for LIEBM-EM.

Table 2: Generative perfor-
mance on CelebA 64

Model FID ↓
SN-GAN (Miyato et al., 2018) 6.1
COCO-GAN (Lin et al., 2019) 4.0
NVAE (Vahdat & Kautz, 2020) 14.74
NCSNv2 (Song & Ermon, 2020) 26.86
DDPM (Ho et al., 2020) 3.93

EBM-based

DRL (Gao et al., 2021) 5.98
VAEBM (Xiao et al., 2021) 5.31
Dual MCMC (Cui & Han, 2023) 5.15
EC-VAE (Luo et al., 2024) 2.71

LIEBM-EM 3.44
LIEBM-ERM 2.97

Table 3: Generative perfor-
mance on CelebA-HQ 256.

Model FID ↓

GLOW (Kingma & Dhariwal, 2018) 68.93
NVAE (Vahdat & Kautz, 2020) 45.11
VQGAN (Esser et al., 2021) 10.2
DDGAN (Xiao et al., 2022) 7.64
Score SDE (Song et al., 2021) 7.23

EBM-based

VAEBM (Xiao et al., 2021) 20.38
Dual MCMC (Cui & Han, 2023) 15.89
CDRL (Zhu et al., 2024) 10.74
EC-VAE (Luo et al., 2024) 12.35

LIEBM-EM 10.08
LIEBM-ERM 8.76

Table 4: Generative perfor-
mance on ImageNet 32.

Model FID ↓

PixelCNN (Oord et al., 2016) 40.51
DDPM++ (Kim et al., 2021) 8.42
Flow Matching (Lipman et al., 2023) 5.02

EBM-based

CF-EBM (Zhao et al., 2020) 26.31
EBM-CD (Du et al., 2021) 32.48
CLEL-Large (Lee et al., 2023) 15.47
CDRL (Zhu et al., 2024) 9.35
EC-VAE (Luo et al., 2024) 5.76
EBMMI+diff (Geng et al., 2025) 6.57

LIEBM-EM 4.54
LIEBM-ERM 4.98

1We implement SimCLR using the official code of W-MSE: https://github.com/htdt/self-supervised
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4.1 UNCONDITIONAL IMAGE GENERATION
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Figure 2: Param count vs. FID on CIFAR-10.

We showcase our model’s capabilities in uncon-
ditional image generation on standard datasets
involving CIFAR-10 (Krizhevsky et al., 2009),
ImageNet 32 (Deng et al., 2009), CelebA
64 (Liu et al., 2015b), and CelebA-HQ 256 (Liu
et al., 2015a). For quantitative results, we adopt
the commonly used Fréchet inception distance
(FID) and Inception Score (IS) to evaluate sam-
ple fidelity and the number of function evalua-
tions (NFE) to evaluate sampling efficiency. We
show qualitative results in Fig.3 and quantita-
tive results in Tabs.1-4 2. Fig.2 shows FID vs.
network scale on CIFAR-10.

Our model achieves optimal results on most
datasets, with near-optimal performance on
CelebA 64 among EBMs. On CIFAR-10, our LIEBM-EM outperforms state-of-the-art CDRL, de-
spite CDRL having 5× the number of parameters and requiring 6× MCMC steps.

Our method achieves significant improvements over CLEL with much faster sampling, demon-
strating the effectiveness of our carefully designed collaborative training between the energy func-
tion and generator. Our model also outperforms Dual-MCMC and EC-VAE by a large margin on
most datasets with fewer network parameters and MCMC steps, validating that our latent-informed
scheme can further improve generation. Notably, for single-step generation, our model surpasses
strong diffusion baselines, including Consistency Model and its adversarial variant ACT. Moreover,
our model achieves competitive performance with advanced GANs and Diffusion Models while us-
ing 5-10× fewer parameters. Our model gets the best IS score on CIFAR-10 and is the first EBM to
beat Flow Matching on ImageNet 32.

(a) CIFAR-10 (b) ImageNet 32 (c) CelebA 64

(d) CelebA-HQ 256

Figure 3: Samples generated by LIEBM with MCMC refinement. Select models based on FID:
LIEBM-EM for CIFAR-10/ImageNet-32; LIEBM-ERM for CelebA-64/CelebA-HQ-256.

2Since baselines for ImageNet 32, CelebA 64, and CelebA-HQ 256 are less established than CIFAR-10, we
compare using FID and commonly reported baselines.
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4.2 OUT-OF-DISTRIBUTION DETECTION

We evaluate our model’s density modeling through OOD detection on CIFAR-10 and ImageNet 32,
using their unseen test sets as inliers and other datasets as outliers. We use the standard AUROC
metric with a joint energy score inspired by CLEL:

s(x) := g (fθ(x)) + γ sim (gψ (fϕ(x)) , h(x)) . (15)

Results are shown in Tabs.5 and 6. We observe that the joint energy score improves OOD detection
on most datasets (with only slight degradation on SVHN), demonstrating enhanced robustness to
diverse OOD samples through joint space modeling. On CIFAR-10, our model consistently performs
at the top tier among EBMs and matches specialized OOD methods. Notably, our model shows
significant improvement on CIFAR-100, which is challenging due to the similarity between CIFAR-
100 and CIFAR-10. We reproduce Dual-MCMC and hat-EBM using their energy outputs as AUROC
decision values. Our model exhibits strong performance on the challenging SVHN and Constant
datasets for ImageNet 32, where likelihood-based methods such as VAE, GLOW, and PixelCNN
typically fail at outlier detection.

Table 5: AUROC with CIFAR-10 as in-
distribution.

Method SVHN Constant CIFAR-100 CelebA

PixelCNN++ (Salimans et al., 2017) 0.32 0.71 0.63 –
GLOW (Kingma & Dhariwal, 2018) 0.24 – 0.55 0.57
NVAE (Vahdat & Kautz, 2020) 0.44 0.65 0.49 0.68
JEM (Duvenaud et al., 2020) 0.67 – 0.67 0.75
DRL (Gao et al., 2021) 0.88 0.99 0.44 0.64
hatEBM (Hill et al., 2022) 0.75 0.36 0.63 0.62
CLEL (Lee et al., 2023) 0.98 – 0.72 0.77
Dual-MCMC(Cui & Han, 2023) 0.62 0.32 0.54 0.59

Specialized OOD methods

OOD EBM (Liu et al., 2020) 0.91 – 0.87 0.78
MPDR-S (Yoon et al., 2023) 0.99 0.9996 0.56 0.73

LIEBM-EM
(
fθ(x)

)
0.96 0.67 0.66 0.68

LIEBM-EM 0.95 0.97 0.82 0.77
LIEBM-ERM

(
fθ(x)

)
0.94 0.76 0.68 0.58

LIEBM-ERM 0.95 0.96 0.82 0.75

Table 6: AUROC with ImageNet 32 as in-
distribution.

(
fθ(x)

)
means fθ(x) serves as the

decision function.

Method SVHN Constant FMNIST CelebA

DAE (Vincent et al., 2008) 0.10 0.07 0.991 0.43
VAE (Kingma & Welling, 2014) 0.13 0.03 0.95 0.55
WAE (Tolstikhin et al., 2018) 0.08 0.07 0.991 0.36
PixelCNN++ (Salimans et al., 2017) 0.03 0.00 0.004 0.24
GLOW (Kingma & Dhariwal, 2018) 0.17 0.41 0.86 0.48

Specialized OOD methods

NAE (Yoon et al., 2021) 0.985 0.97 0.994 0.95

LIEBM-EM
(
fθ(x)

)
0.99 0.97 0.40 0.48

LIEBM-EM 0.984 0.99 0.896 0.52
LIEBM-ERM

(
fθ(x)

)
0.99 0.93 0.35 0.45

LIEBM-ERM 0.985 0.99 0.868 0.54

4.3 CONDITIONAL SAMPLING

We also investigate conditional sampling with our latent representation as labels. Unlike CLEL,
we employ a generator as an initializer, which offers faster sampling but requires the generator to
produce high-quality initial samples. Therefore, similar to the ERM setting, we train an inference
model to form an autoencoder with the generator under our EM framework, enabling us to obtain
reconstructions from the input for initialization. We train our inference model using a variant of
ELBO loss in the latent space to ensure detailed clarity and sharpness while preserving semantic
similarity (See Appendix A.5 for more results). Specifically, we use Eq.14 to train our inference
model, but omitting the pixel-level reconstruction term log pg(x|m). We split our generation into
two components G(m) + Y . Following CLEL, we obtain the class representation zc for each class
c, defined as the normalized average of latent representation across all images in class c. We draw
an initialization xc as initial G(m) by averaging all augmented images from each class. Then we
iteratively optimize Y and m by performing MCMC sampling fromEθ(G(m)+Y, zc) and using the
inference model conditioned on G(m)+Y , respectively. From Fig.4 we can see that the EM setting
is able to generate diverse samples with clear details for each class, whereas the ERM setting, while
capable of generating some feature elements of the given class, fails to produce identifiable subjects.
This is caused by the ELBO component in ERM training, which provides pixel-level reconstruction
but produces blurry, low-sharpness results.

4.4 IMAGE RESTORATION

We also present the application of our method in zero-shot image restoration tasks, including col-
orization and 8× super-resolution. We conduct experiments on CelebA-HQ 256 with ERM setting,
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Figure 4: Conditional generated sample on
CIFAR-10.

Figure 5: Qualitative results of zero-shot im-
age restoration on CelebA-HQ 256.

since we need pixel-level restoration. Following Luo et al. (2024); Wang et al. (2023), we also use a
linear operator A to get the degraded image y = Ax and utilize its pseudo-inverse A† to derive the
initial estimate x̂ = A†y. We obtain initial m0 using our inference model with input x̂. Inspired by
Luo et al. (2024), we use the following joint function to refine m using MCMC sampling:

pg,θ(A
†y,m) ∝ exp

(
Eθ

(
G(m), h

(
G(m)

)))
p(m)p

(
A†y | A†AG(m)

)
(16)

After refining m, we update Y using MCMC sampling with G(m) fixed:

pg,θ(A
†y, Y ) ∝ exp

(
Eθ

(
G(m) + Y, h

(
G(m) + Y

)))
p
(
A†y | A†A

(
G(m) + Y

))
(17)

We employ x̃ = G(m) + Y as our restoration solution. The qualitative results are shown in Fig.5
and the corresponding PSNR and SSIM metrics are reported in Tab.7. We can observe that with the
help of joint energy distribution, our model can successfully restore those images with high quality
and consistency after refinement on m and Y .

4.5 ABLATION STUDY

Table 7: Quantitative results of zero-shot image
restoration on CelebA-HQ 256.

Model Colorization 8× SR
PSNR↑ / SSIM↑ PSNR↑ / SSIM↑

G(m0) 20.64 / 0.66 22.62 / 0.67
G(m) 22.02 / 0.70 24.16 / 0.70
G(m) + Y 25.25 / 0.94 24.55 / 0.71

Fig.6 tracks FID scores during training for the
ablation study on CIFAR-10. Tab.8 shows
their corresponding OOD performance. It can
be seen that traditional EBM training without
latent variables can not converge, no matter
how the generator training is designed. Train-
ing with a pretrained latent encoder improves
both generation performance and OOD robust-
ness while yielding a better latent encoder with
enhanced semantic separability, as shown in
Fig.7. Augmentation technique can improve OOD results on Constant Dataset with negligible gen-
eration degradation. Generator training with Eq.10 for MCMC refinement (EJM) can get better
results for the first stage, but finally slightly worse than EM setting (Eq.9). In particular, EJM tends
to collapse towards the end of training on ImageNet 32. Hence, we recommend employing the EM
setting. Combining Tabs.1-4, we can see that our EM setting achieves better performance than ERM
on multi-class datasets such as CIFAR-10 and ImageNet, while for few-modal datasets like CelebA
and CelebA-HQ, ERM performs better.

Adaptability to various self-supervised representation learning methods. Our framework the-
oretically can be applied to any normalized self-supervised representation learning (SSRL) method.
To verify our model’s adaptability, we choose two other classic normalized SSRL methods, BYOL

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) w/o MCMC (b) w/ MCMC

Figure 6: FID with different settings on CIFAR-10. “w/o MCMC” means direct sampling from the
generator without MCMC refinement.

(a) CLEL (b) simCLR w/o pretrain (c) simCLR

Figure 7: t-SNE visualization of latent representation on CIFAR-10 test set. Accuracies of a linear
classifier (Top-1 & Top-5) and a 5-nearest neighbors classifier are shown above each subfigure.

Table 8: AUROC under different settings with
CIFAR-10 as in-distribution.

Method SVHN Constant CIFAR-100 CelebA

EM w/o pretrain 0.97 0.997 0.75 0.71
EM w/o Aug 0.95 0.88 0.82 0.76

EM 0.95 0.97 0.82 0.77
EJM 0.95 0.94 0.81 0.73
ERM 0.95 0.96 0.82 0.75

Table 9: Performance with different normalized
SSRL methods.

Method FID AUROC
SVHN Constant FMNIST CelebA

BYOL 5.23 0.96 0.98 0.85 0.81
W-MSE 5.16 0.93 0.99 0.83 0.77
SimCLR 4.26 0.95 0.97 0.82 0.77

and W-MSE, to pretrain our latent encoder. Tab.9 reports FID and AUROC metrics for different
SSRL methods, confirming that our LIEBM scales well to various SSRL methods.

5 CONCLUSION

In this paper, we propose LIEBM, a collaborative training scheme that jointly learns a latent-variable
EBM and its generator initializer. We leverage pretrained self-supervised representations as our
target latent variables to guide the energy function in capturing the semantic structure of the data
manifold. Our model narrows the gap between EBMs and mainstream generative models while
retaining the benefits of lightweight architectures. It also excels in various downstream tasks, such as
OOD detection, conditional sampling, and zero-shot image restoration. Additionally, our framework
could be extended to multi-modal large models by treating the joint space as a multi-modal space
and replacing SSRL methods with advanced modal-alignment techniques such as CLIP and ALBEF.
We hope our work brings to light the profound potential of EBMs as mainstream generative models
and stimulate active research in this area.
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A APPENDIX

A.1 LLM USAGE

We employ large language models (LLMs) to assist with language polishing and grammar improve-
ment throughout the paper. For the Related Work section, we leverage LLMs to help synthesize
brief summaries of related research publications. We also use LLMs to help generate some simple
experiment code and LaTeX formatting code for figures and tables. We have verified and validated
all contents made by LLMs and take full responsibility for our submission.

A.2 RELATED WORK

Energy-based models (EBMs) represent a powerful class of generative models that offer explicit
unnormalized density estimation and architectural flexibility. Traditional EBM training relies on
maximum likelihood estimation (MLE) with Markov Chain Monte Carlo (MCMC) sampling, par-
ticularly Langevin dynamics. However, noise-initialized Langevin dynamics often suffer from slow
convergence and computational inefficiency (Song & Kingma, 2021). Several techniques have been
proposed to alleviate the expensive MCMC, such as Persistent Contrastive Divergence (PCD) (Tiele-
man, 2008), adding a replay buffer (Du & Mordatch, 2019), short-run MCMC (Nijkamp et al., 2019),
et.al. Nevertheless, these approaches remain inefficient as they still require hundreds to thousands of
MCMC steps. Cooperative learning methods (Xie et al., 2020; 2021b; 2022; Hill et al., 2022) intro-
duce a generator as a fast initializer learned to amortize long-run MCMC. Adversarial EBMs (Ku-
mar et al., 2019; Geng et al., 2021; Grathwohl et al., 2021; Wan et al., 2025) form a minimax game
between the energy function and the introduced generator to enable MCMC-free training. Some ad-
vances link connections between EBMs and other generative models to benefit from their strengths,
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such as VAE (Xiao et al., 2021; Luo et al., 2024), flow-based models (Nijkamp et al., 2022; Gao
et al., 2020), and diffusion-based models (Gao et al., 2021; Zhu et al., 2024; Geng et al., 2024).

Latent-variable EBMs define an energy function to characterize the joint density over data and latent
variables. CLEL (Lee et al., 2023) leverages contrastive representation learning to learn meaning-
ful latent structures that subsequently guide the EBM training. CEBM (Wu et al., 2021) decom-
poses the joint density into an intractable data distribution and a tractable latent posterior, providing
VAE-like functionality while preserving EBM interpretability and density estimation. Divergence
Triangle (Han et al., 2019; 2020) and Dual-MCMC (Cui & Han, 2023) build a unified framework
that employs divergence triangle formulations to seamlessly integrate energy function, generator,
and inference model through minimizing KL divergences between joint distributions. We focus on
collaborative learning between the generator and latent-variable EBM, decoupling the latent distri-
bution from the generator’s prior to retain informative latent representations.

A.3 PRELIMINARY OF EBMS

Let X be the data space and pdata(x) be true data distribution. An EBM defines a probability distri-
bution through an energy function Eθ : X → R parameterized by θ,

pθ(x) =
exp (Eθ(x))

Zθ
, Zθ =

∫
exp (Eθ(x)) dx, (18)

where Zθ is the intractable normalizing constant. EBMs primarily rely on maximizing the log-
likelihood for training such that:

L(θ) := Ex∼pdata(x) [log pθ(x)] = Ex∼pdata(x) [Eθ(x)]− logZθ. (19)
The gradient of L(θ) can be derived as:

∂L

∂θ
= Ex∼pdata(x)

[
∂

∂θ
Eθ(x)

]
− Ex∼pθ(x)

[
∂

∂θ
Eθ(x)

]
. (20)

Eq.20 requires MCMC sampling from energy distribution pθ(x), which can be achieved by Langevin
dynamics (Welling & Teh, 2011):

xt+1 = xt +
δ2

2
∇xEθ(x

t) + δϵt, (21)

where t indexes the time step, δ is the step size, and ϵ ∼ N (0, I). For small enough ϵ and large
enough t, the distribution of xt weakly converges to the energy distribution pθ(x) regardless of the
initial distribution of x0 (Raginsky et al., 2017; Xu et al., 2018).

A.4 DERIVATION OF EQ.4

From Eq.3, we have
∂L

∂θ
= E(x,z)∼pdata(x,z)

[
∂

∂θ
Eθ(x, z)

]
− E(x,z)∼pθ(x,z)

[
∂

∂θ
Eθ(x, z)

]
(22)

Since Eθ(x) = log
∫
exp (Eθ(x, z)) dz, then pθ(x) =

∫
pθ(x, z)dz = exp(Eθ(x))

Zθ
, thus Eθ(x) is an

available energy function of marginal pθ(x). We can obtain:

pθ(x, z) =
exp (Eθ(x, z))

Zθ
=

exp(Eθ(x))

Zθ
pθ(z|x)

Eθ(x, z) = Eθ(x) + log pθ(z|x) (23)
Substituting Eq.23 into the second term of Eq.22 yields:

E(x,z)∼pθ(x,z)

[
∂

∂θ
Eθ(x, z)

]
= Ex∼pθ(x)

[
∂

∂θ
Eθ(x)

]
+ Ex∼pθ(x,z)

[
∂

∂θ
log pθ(z|x)

]
= Ex∼pθ(x)

[
∂

∂θ
Eθ(x)

] (24)

The second equality follows from:

Ex∼pθ(x,z)

[
∂

∂θ
log pθ(z|x)

]
= Ex∼pθ(x)

[∫
∂

∂θ
pθ(z|x)dz

]
= 0 (25)

Plugging Eq.24 in Eq.22, we can get Eq.4.
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A.5 INFERENCE MODEL FOR EM SETTING

We train an inference model for the EM setting using the following loss:

−Epdata(x,z)Eqα(m|x)

[
log pg(z|m)− qα(m|x)

p(m)

]
, (26)

where pg(z|m) = ρ sim(z, h(G(m)) by definition in Eq.13. The loss essentially minimizes the KL
divergence between two conditional distributions: KL (pdata(z|x)∥pg(z|x)). This approach ensures
feature preservation in the latent space rather than enforcing pixel-level reconstruction. Fig.8 com-
pares reconstruction results using Eq.26 versus the traditional ELBO loss in VAEs. The traditional
ELBO fails to produce clear, semantically meaningful images with recognizable objects. Our train-
ing loss achieves high-quality reconstructions that preserve semantic properties of the input, such as
object class, color, and visual style, without enforcing exact image reproduction. This indicates that
our latent representation supports flexible instance generation.

(a) Real (b) Reconstrucion using Eq.26 (c) Reconstruction using ELBO

Figure 8: Reconstruction with different training losses.

A.6 RECONSTRUCTION OF LIEBM-ERM

While our autoencoder-style ERM scheme is designed primarily for initialization, we additionally
demonstrate its image reconstruction capabilities in Figs.9 and 10. Following the test setting in Han
et al. (2019), we also compare our approach with other models that also incorporate an inferential
mechanism, where performance is quantitatively measured by per-pixel mean square error (MSE).
As shown in Tab.10, our model achieves the best performance on CIFAR-10, outperforming Dual-
MCMC even with Langevin refinement. On CelebA 64, our model achieves comparable results to
Dual-MCMC but without requiring additional Langevin dynamics.

Table 10: Reconstruction evaluation using MSE on CIFAR-10 and CelebA 64. Inf+L=10 denotes
using 10-step Langevin dynamics initialized by the inference model.

Methods CIFAR-10 CelebA-64

WS (Hinton et al., 1995) 0.058 0.152
VAE (Kingma & Welling, 2014) 0.037 0.039
ALI (Dumoulin et al., 2016) 0.311 0.519
ALICE (Li et al., 2017) 0.034 0.046

Divergence Triangle (Han et al., 2019) 0.028 0.030
Dual-MCMC (Inf) (Cui & Han, 2023) 0.049 0.022
Dual-MCMC (Inf+L=10) (Cui & Han, 2023) 0.024 0.013
LIEBM-ERM (Inf) 0.019 0.014
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(a) Real (b) Reconstrucion

Figure 9: Reconstruction of LIEBM-ERM on CIFAR-10.

(a) Real (b) Reconstrucion

Figure 10: Reconstruction of LIEBM-ERM on CelebA 64.

A.7 HYPERPARAMETER SETTINGS

We specify the hyperparameters used for our training on each dataset in Tab.11. We adopt two
forms of function g in Eq.5 for different datasets. For CIFAR-10 and ImageNet 32, we define
g (fϕ(x)) =

−∥fϕ(x)∥2
2

2 , while for CelebA 64 and CelebA-HQ 256, we define g to be a learnable
linear function, which is trained along with Eθ(x, z). The output dimension of fϕ(x) is 512.

A.8 ADDITIONAL RESULTS

We provide more qualitative visual results for both EM and ERM settings in Figs.11-14.
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Table 11: Hyperparameters for each dataset.

CIFAR-10 ImageNet 32 CelebA 64 CelebA-HQ 256

Eθ learning rate / Adam β1, β2 1e-4 / (0.0, 0.999) 1e-4 / (0.0, 0.999) 1e-4 / (0.0, 0.9) 1e-4 / (0.0, 0.9)
G learning rate / Adam β1, β2 2e-4 / (0.0, 0.9) 2e-4 / (0.0, 0.9) 3e-4 / (0.0, 0.9) 3e-4 / (0.0, 0.9)
qα learning rate / Adam β1, β2 2e-4 / (0.0, 0.9) 2e-4 / (0.0, 0.9) 1e-4 / (0.0, 0.9) 1e-4 / (0.0, 0.9)
EMA decay rate 0.9999 0.9999 0.9999 0.9999
γ for training 0.01 0.01 0.01 0.01
γ for OOD 0.1 0.1 0.1 1
batch size 256 256 256 128
MCMC steps 15 15 15 15
MCMC step size δ2 25 25 0.1 0.1
ω1 / ω2 in Eq.11 1 / 0.1 1 / 0.1 70 / 1 70 / 1
ρ in Eq.13 1 1 1 50
training epochs 500 100 300 300
data range [0, 1] [-1, 1] [-1, 1] [-1, 1]
latent dimension 128 128 128 256
Eθ, G hidden channels 256 512 1024 1024
qα hidden channels 128 128 128 64
G params 4.3M 16.0M 12.2M 34.3M
Eθ params 4.9M 17.6M 20.7M 40.7M
qα params 15.2M 15.2M 15.2M 8.1M

(a) EM (b) ERM

Figure 11: Samples generated by LIEBM with MCMC refinement on CIFAR-10.
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(a) EM (b) ERM

Figure 12: Samples generated by LIEBM with MCMC refinement on ImageNet 32.

(a) EM

(b) ERM

Figure 13: Samples generated by LIEBM with MCMC refinement on CelebA 64.
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(a) EM

(b) ERM

Figure 14: Samples generated by LIEBM with MCMC refinement on CelebA-HQ 256.
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