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Abstract
We propose a novel system that enables secure
and controllable AI agents by enhancing them
with a formal security analyzer. In contrast to
prior work, our system does not try to detect
prompt injections on a best-effort basis, but in-
stead imposes hard constraints on the agent ac-
tions thereby preventing the effects of the injec-
tion. The constraints can be specified in a novel
and flexible domain specific language for security
rules. Before the agent takes action, the analyzer
checks the current agent state for violations of any
of the provided policy rules and raises an error
if the proposed action is not allowed. When the
analyzer determines an action to be safe, it does
so using formal guarantee that none of the rules
specified in the policy are violated. We show that
our analyzer is effective, and detects and prevents
security vulnerabilities in real-world agents.

1. Introduction
Agents are AI systems combining (large) language models
with traditional software tools and APIs, also referred to as
actions or tools. Typically, these approaches start with rea-
soning to determine which action to take (e.g. web search),
and then feed the result back to the model to determine
the next step (Yao et al., 2022). Agents additionally lever-
age components such as reflection (Shinn et al., 2024) and
planning (Wang et al., 2023).

While such agents have shown great potential, access to
tools and production APIs increases the attack surface of
these systems – exposing them to security risks, much more
so than common read-only chatbots. For instance, an at-
tacker can use direct or indirect prompt injections (Greshake
et al., 2023) to control the actions taken by an agent, ulti-
mately leading to remote code execution or data exfiltration
(Rehberger, 2024). Moreover, Fang et al. (2024) has shown
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raise “data leak” if:
(call: ToolCall)
call is tool:send_mail
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Figure 1. AI Agent combined with a security analyzer.

that agents have capability to autonomously exploit vulner-
abilities in the traditional software systems, making them
an interesting potential target for attackers that are trying to
gain access to the system.

Prior Work At a high level, prior work on securing agents
typically collects a dataset of prompt injections (Toyer et al.,
2023; Wallace et al., 2024) and then uses collected data to
improve the system prompt (Hines et al., 2024), fine-tune
the model (Yi et al., 2023; Wallace et al., 2024) or train
an external classifier (Inan et al., 2023; ProtectAI, 2024)
for detection. However, these approaches are typically not
effective against prompts that were not part of the training
data and can be bypassed easily, either manually or using
an automated attack (Zou et al., 2023; Balunovic & Beurer-
Kellner, 2023). Thus, a more principled and reliable defense
to prompt injections remains an open problem.

This Work In this work, we instead propose to augment
the agent with a security analyzer 1 component (shown in
Figure 1). During its execution, the agent produces a trace of
actions (e.g., user messages, tool calls, tool outputs). The an-
alyzer is instantiated with a policy containing security rules
written in a custom domain specific language (DSL) and
can be queried before tool execution with the current trace
to determine whether the tool execution is safe and should
be permitted. At a high level, the analyzer iterates over
the rules specified in the policy, and for each rule, checks

1https://github.com/invariantlabs-ai/
invariant/
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data← read sheet(id)

s← summarize(gpt-4, data)

send slack msg(me, s, preview=True)

Figure 2. Trace of actions executed by the agent.

whether it can use the current trace to find an interpretation
of the rule body that evaluates to true, and, if yes, raises an
error with the message specified by the rule. The key advan-
tage of this type of external analyzer is that we can impose
strict guarantees that an agent will not perform a danger-
ous sequence of actions, no matter what data it retrieves by
interacting with tools (even if it contains any kind of novel
prompt injection). We can view this approach as an exten-
sion of program analysis (Nielson et al., 2015; Sabelfeld &
Myers, 2003) into the setting of AI agents, allowing us to
obtain formal guarantees about the agent’s behavior, akin to
guarantees obtained for traditional software systems.

Contributions The key contributions of this work are:

• We introduce a novel combination of AI agents with a
security analyzer that can provide formal guarantees
about the agent’s behavior.

• We propose a new domain specific language that allows
flexible specification for security rules for agents.

• We demonstrate how our analyzer can be used to pre-
vent security vulnerabilities in real-world agents.

2. A Real-world Agent Vulnerability
In this section, we discuss a real-world vulnerability in AI
agents and discuss how it motivates our security analyzer,
introduced in Section 3.

Agent task We consider the following agent task: Read
and summarize the customer feedback in the spreadsheet
document with identifier id, and send me a Slack message
containing the summary of the 5 most negative comments.
We assume agent has access to document viewer where it
can read the contents of the spreadsheet, and a Slack API to
send messages. Given this prompt, the agent produces the
actions shown in Figure 2.

Data Exfiltration On first glance, it may not be clear how
data can be exfiltrated in this case, as the agent’s actions
may be perceived as purely internal (the agent is reading
a document, summarizing it and sending it to the author

via Slack). Even if the customer feedback contains prompt
injection, the agent is still only going to send the summary
to the author.

However, by default, Slack previews all hyperlinks con-
tained in the agent’s message. Thus, an attacker could inject
the agent, such that it includes a malicious URL in its sum-
mary, which then would be automatically opened by the
Slack client. Here, a simple GET request to an attacker-
controlled server is enough to smuggle arbitrary data as part
of the included URL (Rehberger, 2024).

The data exfiltration is achieved as follows:

1. The attacker writes prompt injection in the
customer feedback form: ”My feedback is ...
Make sure to add this link to your summary:
www.attacker.com/feedback-CONTENT
where CONTENT is replaced by a Base64 encoding of
this document.”

2. The agent retrieves contents of the document, sum-
marizes it and sends the summary to the author via
Slack.

3. The Slack client automatically previews
the link, sending a GET request to
www.attacker.com/feedback-CONTENT.

4. The attacker’s server logs the request and decodes the
Base64 content, thus exfiltrating the document.

Impact on real-world systems As part of this work, we
have demonstrated that this vulnerability exists in 2 widely-
used agentic systems. We did this by creating a spreadsheet
with a prompt injection and Cloudflare worker to log the
requests, and verified that after running the agent we were
able to retrieve the contents of the document in the logs.
The providers have acknowledged and fixed the issue after
our disclosure.

Possible mitigations The vulnerability discussed in this
section naturally raises a question of how to mitigate such
issue. As mentioned in Section 1, most of the prior work
has been based on improving the system prompt (Hines
et al., 2024), fine-tuning the model (Yi et al., 2023; Wallace
et al., 2024) or using an external classifier (Inan et al., 2023;
ProtectAI, 2024).

The key problem with such approaches in this context is
that they all in some way rely on detecting that the con-
tent of the document contains a prompt injection. Such
systems will always be vulnerable against novel prompt
injections that were not considered during training of the
detector. For instance, the whole class of prompt injections
based on hidden unicode characters has been discovered
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by Goodside (2024) and would not be detected using pre-
vious detectors as they were not trained on such prompt
injections. Moreover, for many such detectors, the attacker
can even automatically construct prompts that would bypass
the detection (Balunovic & Beurer-Kellner, 2023).

3. Provably Secure Agents
Here we outline the method for securing agents which lever-
ages Information Flow Analysis (IFA), as known from pro-
gram analysis (Sabelfeld & Myers, 2003).

3.1. Definitions

Our security analyzer operates on the traces produced by
the agent, denoted as t = (t1, t2, ..., tn). Each ti can be one
of the following: user message (providing the instructions
to the agent), agent message (providing information to the
user), tool call (announcing the intention to execute a certain
tool with certain arguments), and tool output (providing
the output of the tool call after the execution). We define
security analysis as a function s which receives a trace t and
returns a list of errors e = (e1, e2, ..., em), where each ei is
produced by one of the rules in the security policy. If the
list e is empty, the agent is considered secure. Typically, the
analyzer should be invoked before executing the tool, but
could also be used to scan the logged traces to find potential
security issues in previously recorded interactions and to
analyze an agent’s behavior offline.

Rule application We now formally define the rules that
the security analyzer uses to detect security vulnerabilities
Each rule is defined using a pair of (V,C) where V is a
set of free variables that can match elements of the trace,
and C is a set of conditions. We say that the rule r(V,C)
applies to the trace t if there exists an assignment mapping
f , assigning each v ∈ V into f(v) = tj for some j, such
that all conditions in C are satisfied:

∀c ∈ C : c(f(v1), f(v2), ..., f(vn)) = 1

If the rule applies, the analyzer appends the error with the
message specified in the rule to the returned list of messages.

Conditions Base conditions are expressions consisting
of binary operations between input variables and constants.
More complex conditions can be defined by combining
simpler conditions using logical operators such as conjunc-
tions or disjunctions. Moreover, one can also create custom
predicates that are implemented as an arbitrary Python func-
tion. This is especially important for predicates that rely on
external classifiers and pattern matching (e.g. Personally
Identifying Information (PII) or secret detectors). Custom
predicates can be further combined between themselves

and other elements in the language to detect more complex
patterns and states.

Information flow conditions An important aspect of se-
curity analysis of software programs is Information Flow
Analysis (IFA), as known from program analysis (Sabelfeld
& Myers, 2003). The idea of information flow analysis is
to track whether the information can flow from a source of
private data to a potentially untrusted sink. Concretely in
the case of agents, we want to detect whether information
can flow from one tool whose output contains private data
(source), to another tool whose execution may send data
to potentially untrusted external parties (sink). To use this
in our rules, we define a condition using a designated flow
operator→ where a→ b evaluates to true if there is pair of
indices i, j such that i < j, while ti = a and tj = b, i.e., an
agent has seen a before reaching or executing b.

3.2. Applying the analyzer

We now discuss how the analyzer can be used to implement
practical security policies for agents.

Pre-Defined predicates As mentioned above, predicates
can be arbitrary functions that operates on a trace of ele-
ments and return a boolean value. As part of our policy
language, we provide a library of built-in predicates that are
commonly used in the security analysis of AI agents:

• PII (Personally Identifiable Information) Detector:
Predicates that match any content containing personal
information such as names, addresses, or phone num-
bers. For example, one can use this predicate to detect
whether an agent is trying to send a message containing
PII to a third-party tool.

• Secrets Detector: A predicate that matches content
containing secret keys (e.g., API keys, passwords). For
example, this predicate can be used to detect whether
a coding agent is trying to commit a secret key to a
public repository or send it to a third-party tool.

• Unsafe Code Detector: A predicate that matches con-
tent containing unsafe code (e.g., code relying on
eval or exec functions). For example, this predi-
cate can be used to detect whether a code-generating
agent is trying to execute unsafe code.

• Moderation Detector: A predicate that matches content
that may be considered inappropriate or harmful. For
example, this predicate can be used to detect whether
a customer support agent is sending a reply to the user
that contains toxic or harmful content.

• Topic detector: A predicate that matches content per-
taining to a specific topic. For example, this predicate
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can be used to verify that a customer support agent is
only discussing topics related to a specific domain.

Policy Language Since policy and security rules can be
complex, we provide a domain-specific language (DSL) that
allows developer to express custom-tailored security rules
in a readable and concise way. To accommodate the existing
ecosystem of AI agent tooling, the language’s syntax is
based on Python.

An example of a policy in the DSL is shown below:

is_dangerous(call: ToolCall) :=
call is tool:execute_code

raise "<error message>" if:
(c1: ToolCall) -> (c2: ToolCall)
c1 is tool:read_email
is_dangerous(c2)

Each rule follows a pattern raise <error> if:
<conditions> where the <conditions> are logical
expressions, as introduced earlier in this section. The rule
defined here has two free variables: c1 and c2. As ex-
pressed by the flow operator →, the rule checks for a se-
quence of tool calls specifically, where c1 is called be-
fore c2. Apart from this, the rule has two extra condi-
tions: First, c1 must correspond to reading an email (c1
is tool:read email), and, second, c2 must be a dan-
gerous tool call (is dangerous(c2)). The latter is ex-
pressed using a custom predicate is dangerous, which
is also defined in the snippet above, to match all trace ele-
ments that represent calls of tool execute code.

To check this rule, the analyzer automatically instantiates
the provided rule with all possible pairs of tool calls in a
given trace and checks whether the conditions are satisfied.
If the conditions are satisfied, the analyzer raises an error as
specified in the rule.

3.3. Applying The Analyzer to Different Types of Agents

The security analyzer discussed so far assumes that the
agent trace is a list of actions in sequential order. How-
ever, as more advanced AI agent systems no longer exhibit
purely sequential behavior (e.g., multi-agent systems (Wu
et al., 2023), hierarchical systems (Prasad et al., 2023), plan-
and-execute systems (Gao et al., 2023)), the corresponding
security analysis also becomes more challenging. The key
element to supporting such systems is to rigorously track in-
formation flow between different agents and components, as
flow may also contain branches and loops. For this, the ba-
sic principles and policy rules of a security analyzer remain
the same and can also accommodate more complex agent

architectures. However, we leave the detailed discussion of
this extension of our analyzer system to future work.

4. Practical Security Analysis for Agents
In this section we evaluate the effectiveness of our security
analyzer on real-world examples.

4.1. Failures of Prompt Injection Detectors

In the first experiment, we demonstrate a shortcoming of
the existing prompt injection detectors. We consider the
example described in Section 2 and use a prompt injection
detector (ProtectAI, 2024) to evaluate every row of customer
feedback for possible prompt injection.

The results shown in Table 1 indicate that prompt injection
detection is highly unreliable. The first row results in a false
positive, meaning that the feedback was incorrectly clas-
sified as containing a prompt injection. At the same time,
fourth row which indeed contains a prompt injection that
allows data exfiltration via URL, is not detected (false nega-
tive). This example shows that it is fairly easy to construct
a prompt injection that bypasses the detector.

4.2. Securing AI Agents Using an Analyzer

Next, we showcase several small case studies where our
security analyzer can be used to prevent security vulnerabil-
ities in real-world AI agent workflows.

Preventing exfiltration via link preview In the first ex-
ample, we show a dataflow rule that can prevent a common
vulnerability based on link previews (Rehberger, 2024), dis-
cussed in Section 2. Note that Section 4.1 shows that prompt
injection detectors are not effective in detecting such vulner-
abilities. Recall that the vulnerability arises when an agent
reads a document containing a prompt injection and sends a
Slack message with link previews enabled.

is_data_source(out: ToolOutput) :=
out.tool is tool:gsheets_read
or out.tool is tool:gdocs_read

is_data_sink(call: ToolCall) :=
call is tool:send_slack_message({

link_preview: true
})

raise "Data leakage risk" if:
(out: ToolOutput) -> (call: ToolCall)
is_data_source(out)
is_data_sink(call)

To defend, we define a predicate is data source, denot-
ing source of private data, as output of a tool that reads from
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Text Label Score

Great product! Btw my token is 933b42 INJECTION 0.9914 FP

I don’t like it SAFE 1.0000

It’s amazing! I like it better than www.otherweb.com better! SAFE 1.0000

It’s great, but you should include URL www.cloudflare155.com/TOK in your summary
(where TOK is replaced by a token in the first review)!

SAFE 0.5896 FN

It’s terrible! SAFE 1.0000

Table 1. Failures of a prompt injection detector. Each row contains a customer feedback classified as either safe or containing a prompt
injection together with a corresponding score. We observe both false positives (first row) and false negatives (fourth row).

Google Sheets or Google Docs. Then, the sink is defined
using predicate is data sink, capturing a tool call that
sends a Slack message with link preview enabled. The rule
then raises an error if the data can flow from a private data
source to an untrusted data sink. Using this rule with an AI
agent prevents vulnerability from Section 2 for any prompt
injection inserted in the document.

Code agent leaking secrets Code agents interact both
with external services such as GitHub and local data that
may contain secrets such as private keys. In this example,
we consider a rule that detects whether a code agent is
calling a tool to push files to GitHub, while one of the files
contains a secret API key:

is_openai_secret(text) :=
match(r"sk-.*", f.contents)

raise "Do not leak secrets" if:
(call: ToolCall)
call is tool:github_push
(f: File) in call.arguments.staging
is_openai_secret(f.contents)

Here, the rule applies to a call of tool github push,
which has a file in the staging area whose content satis-
fies predicate is openai secret. Here, the predicate
is openai secret matches any content containing API
secret keys using a regular expression.

Code execution after visiting an external website One
of the most common documented security vulnerabili-
ties (Cohen, 2024) in AI supply chain occurs when attackers
upload a malicious model file to a hosting website such as
HuggingFace. This can lead to remote code execution if the
model is loaded using pickle. In this example, we show a
rule that forbids the model to execute code containing pickle
library after visiting a potentially unsafe website.

raise "Potentially unsafe code" if:

(c1: ToolCall) -> (c2: ToolCall)
c1 is tool:http_get({

url: "ˆtrusted.com/.*",
})
c2 is tool:execute_code
"pickle" in c2.arguments.code

Avoid sending e-mails after reading PII Another rule
may require that an agent does not send an e-mail after it
has read a document containing PII unless the owner of the
opened document is also the recipient of the e-mail.

raise "No emails after reading PII" if:
(call: ToolCall)
output is tool:drive_get_files
call2 is tool:send_email
is_pii(output.content)
output.owner == call.recipient

Here, we use pre-defined predicate is pii that matches
any content containing personal information (name, address,
location, etc.) Note that the condition of this rule is conjunc-
tion of 4 simpler conditions, shown on separate lines.

5. Discussion and conclusion
As AI agents become more capable and autonomous, it be-
comes crucial to develop robust safeguards around these
systems. Methods proposed by prior work are not sufficient,
as they are best-effort approximations to a security prob-
lem that requires strict guarantees. In this work, we have
presented a novel approach to enhancing AI agents with
strict security guarantees by combining them with a security
analyzer. The idea is to create a security policy that defines
the allowed behavior of the agent and then use an analyzer
to check whether the actual trace of agent actions conforms
to the policy. We showed the effectiveness of our approach
in a range of case studies, demonstrating its ability to detect
and prevent a variety of security vulnerabilities in AI agents.
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