
Published in Transactions on Machine Learning Research (10/2025)

Is Your LLM Secretly a World Model of the Internet?
Model-Based Planning for Web Agents

Yu Gu1∗, Kai Zhang1∗, Yuting Ning1∗, Boyuan Zheng1∗,
Boyu Gou1, Tianci Xue1, Cheng Chang2, Sanjari Srivastava2, Yanan Xie2, Peng Qi2,
Huan Sun1†, Yu Su1†

1 The Ohio State University 2 Orby AI
{gu.826, zhang.13253, sun.397, su.809}@osu.edu

Reviewed on OpenReview: https://openreview.net/forum?id=c6l7yA0HSq

Abstract

Language agents based on large language models (LLMs) have demonstrated great promise
in automating web-based tasks. Recent work has shown that incorporating advanced
planning algorithms, e.g., tree search, is advantageous over reactive planning for web agents.
However, unlike simulated sandbox environments, real-world environments such as the
web are rife with irreversible actions. This undermines the feasibility of backtracking, a
cornerstone of (tree) search. Overly relying on test-time search also hurts efficiency. We
advocate model-based planning for web agents that employs a world model to simulate
and deliberate over the outcome of each candidate action before committing to one. We
systematically explore this paradigm by: (1) Proposing a model-based planning framework,
WebDreamer, which employs LLMs to serve as both world models and value functions; (2)
Training specialized LLMs as world models with a scalable data synthesis pipeline. Empirical
results demonstrate that WebDreamer achieves substantial performance improvements
over reactive baselines. It is competitive, while being 4–5 times more efficient, with tree
search in sandbox environments (VisualWebArena) and also works effectively on real-world
websites (Online-Mind2Web and Mind2Web-Live). Furthermore, our trained world model,
Dreamer-7B, performs comparably to GPT-4o, highlighting the potential of specialized world
models for efficient and effective planning in complex web environments.1

1 Introduction

Planning (Mattar & Lengyel, 2022)—deciding on optimal action sequences to achieve goals—has been
fundamental to artificial intelligence since its inception. Research into generalist web agents capable of
planning and executing a sequence of actions to complete complex tasks across diverse websites has gained
significant interest (Deng et al., 2023; Zhou et al., 2024; Zheng et al., 2024; Koh et al., 2024a), partly due
to the web’s potential as a complex yet realistic environment for driving agent research and development.
However, applying existing planning algorithms (Yao et al., 2023a; Hao et al., 2023; Gu et al., 2023; Wang
et al., 2025; Feng et al., 2023; Brown et al., 2024, inter alia) to the online web environment presents formidable
challenges. Real-world environments such as the web are rife with state-changing and irreversible actions—for
example, a single website like Amazon.com can involve numerous such actions, including submitting an order,
creating an account, changing privacy settings, among many others—making backtracking, a cornerstone
of search-based planning (Koh et al., 2024b; Putta et al., 2024), highly challenging, if not infeasible. The
latency from excessive exploration in test-time search also hurts efficiency and compromises user experience.

∗Equal Contribution. See the contribution statement for details.
†Equal Advising.
1All code, models, and data are publicly available at https://github.com/OSU-NLP-Group/WebDreamer.

1

https://openreview.net/forum?id=c6l7yA0HSq
https://github.com/OSU-NLP-Group/WebDreamer

Published in Transactions on Machine Learning Research (10/2025)

(a) reactive (b) tree search with real interactions (c) model-based planning

Figure 1: Schematic illustration of different web agent strategies as a search problem, where each node
represents a webpage. (a) Reactive: The agent selects locally optimal actions without planning, often
leading to suboptimal results. (b) Tree search with real interactions: The agent explores multiple paths
via active website navigation, potentially allowing backtracking (dashed arrows). However, backtracking
is often infeasible due to irreversible actions. (c) Model-based planning: The agent simulates outcomes
(cloud-bordered nodes) before execution, reducing real interactions while maintaining effectiveness.

One promising solution to address these challenges is model-based planning (Pascanu et al., 2017; Moerland
et al., 2023), which equips agents with the ability to simulate action sequences within a world model—a
computational representation of environment dynamics. World models have achieved notable success (Ha
& Schmidhuber, 2018; Hafner et al., 2020; 2021) in traditional reinforcement learning (RL) tasks within
simulated environments like Atari games (Bellemare et al., 2013; Brockman et al., 2016), where environment
dynamics are well-defined and the action space is small and fixed, making world model training relatively
straightforward. However, building world models for web environments remains under-explored. In contrast
to the simulated environments, the Internet is open-ended and ever-evolving, with complex and diverse page
structures and a wide range of possible user interactions. This raises the question: How can we build effective
world models for the Internet?

We propose building world models for the Internet by leveraging large language models (LLMs) as the
foundation. Pretrained on web-scale data, LLMs have implicitly acquired both structural knowledge of
websites and common sense needed to predict the outcomes of proposed actions, potentially making them
well-suited to simulate transitions in complex web environments. To this end, we introduce WebDreamer, a
model-based planning framework that uses LLMs to simulate and score possible future states before executing
actions, thereby enabling informed decision-making, as illustrated in Figure 1. Building on this framework, we
further train a dedicated world model, Dreamer-7B, using over 3.1 million interaction instances synthesized
by our scalable data synthesis pipeline.

Empirical results demonstrate the effectiveness of our approach: WebDreamer, when powered by state-of-
the-art LLMs such as GPT-4o, achieves significant performance improvements over reactive baselines across
three benchmarks, covering both online and sandbox environments. It is also competitive with the tree
search method, while being 4–5 times more efficient on sandbox environment VisualWebArena, and performs
effectively on real-world websites (Online-Mind2Web and Mind2Web-Live), where tree search methods are
difficult to implement and deploy. Moreover, Dreamer-7B achieves performance comparable to GPT-4o on
two online benchmarks. In VisualWebArena, we can continue fine-tuning our Dreamer-7B with in-domain
data synthesized by our pipeline. With just 25K training instances, the resulting domain-specific world
models yield even stronger results, surpassing GPT-4o. These findings not only demonstrate the potential of
using LLMs for model-based planning, but also establish a practical foundation for building world models for
the open web through data synthesis, training, and evaluation.

2

Published in Transactions on Machine Learning Research (10/2025)

2 Related Work

2.1 Web Agents

Web agents (Su et al., 2024) powered by (multimodal) language models aim to automate web-based tasks,
with benchmarks evolving from MiniWoB++ (Shi et al., 2017; Liu et al., 2018) to WebShop (Yao et al.,
2022), Mind2Web (Deng et al., 2023), WebArena (Zhou et al., 2024; Koh et al., 2024a), which introduce
more realistic environments and visual challenges. Reactive Agents make decisions based on immediate
observations without simulation or search (Yao et al., 2023b). Enhancements include prompting proprietary
models (Zheng et al., 2024; He et al., 2024; Deng et al., 2023) and training models on HTML and webpage
screenshots (Lee et al., 2023; Gur et al., 2023; Furuta et al., 2023; Hong et al., 2024; Baechler et al., 2024).
Grounding improvements come from action-coordinate training (You et al., 2024; Cheng et al., 2024; Gou
et al., 2025), while human-annotated (Shaw et al., 2023; Hong et al., 2024; Deng et al., 2023; Lai et al.,
2024) and synthetic exploration trajectories (Furuta et al., 2023; Song et al., 2024; Patel et al., 2024; Pahuja
et al., 2025) further refine agent behavior. However, these agents struggle with multi-step decision-making
due to short-sightedness. Agents with Tree Search have been explored to enhance decision-making.
GPT-4V-based reward modeling (Pan et al., 2024a) and tree search algorithms (Koh et al., 2024b; Putta
et al., 2024; Zhang et al., 2024) enable multi-step planning, with variants such as best-first search (Koh et al.,
2024b) and Monte Carlo Tree Search (Putta et al., 2024; Zhang et al., 2024). Despite performance gains,
search methods significantly increase inference time, face challenges in backtracking on real-world websites,
and risk unsafe behaviors like submitting private information to incorrect or unintended web elements.

2.2 World Models

World models, central to model-based reinforcement learning (RL; Moerland et al. (2023); Sutton (1991)),
learn state transitions to improve sample efficiency (Ha & Schmidhuber, 2018) and support planning (Pascanu
et al., 2017; Schrittwieser et al., 2020). Unlike traditional world models in RL focusing on improving data
efficiency in the agent learning process, LLM-based world models emphasize decision-making over simulation
fidelity, leveraging broad world knowledge for planning (Hao et al., 2023; Kim et al., 2024). Our work extends
this line by exploring LLM-based world models in complex web environments. A concurrent work (Chae
et al., 2025) also explores augmenting web agents with LLM-simulated action outcomes. However, their
focus is on using small-scale data to train in-domain world models within sandbox environments, while ours
centers on using LLMs and training general world models for real-world websites via a scalable data synthesis
pipeline. Their sandbox in-domain settings are also discussed in Section 3. Moreover, we evaluate the world
model (see Appendix D) and use screenshots as the observation space.

3 WebDreamer: Model-Based Planning for Web Agents

3.1 Preliminary

Web agents tasked with automating activities in live websites face vast and complex search spaces. Formally,
each task, given an instruction I, can be formulated as a partially observable Markov decision process
(POMDP): (S, A, O, T, R, Ω), where S is the set of possible environment states, O is the set of observations
available to the agent, and A represents actions such as clicking elements, entering text, or navigating URLs.
T : S × A → S is the state transition function, while R is a binary reward indicating task completion. The
agent perceives only an observation o ∈ O, sampled from the observation function Ω(s, a).

Tree search-based planning with real interactions is costly and risks irreversible actions. Model-based planning
mitigates this by using a learned simulation function sim : O × A → (O × A)∗ which generates imagined
trajectories of observations and actions before execution. This enables online planning, where the agent
iteratively selects actions based on simulated future trajectories. A common approach is Model Predictive
Control (MPC; Garcia et al. (1989)), which simulates future states for each action over a finite horizon H,
evaluates them using a scoring function score, and executes the action with the highest score. This process
repeats after observing new states, allowing adaptive decision-making while avoiding unnecessary interactions.

3

Published in Transactions on Machine Learning Research (10/2025)

Please navigate to the 'Data Storage' category and purchase
the least expensive disk with 512GB of storage. The 'Office Products' category will

display three sub-categories: 'Office
Electronics', 'Office & School Supplies',
and 'Office Furniture & Lighting'.

Click ‘Office Products’

Click ‘Electronics’

Type ‘Disk’

The 'Electronics' category will display
three sub-categories: 'Computers &
Accessories', 'Accessories & Supplies',
and 'Car & Vehicle Electronics'.

The webpage will display search
results, including a list of products,
each of which includes the product
title, price, and an 'Add to Cart'
button.

The webpage will display 'Office
Electronics' sub-category results
with products, and the sub-menu
will show 'Printers&Accessories' and
other categories.

The webpage will display 'Computer
Accessories' sub-category results,
including 'Data Storage', 'Tablet
Accessories', and others.

The 'Electronics' category will display
three sub-categories: 'Computers &
Accessories', 'Accessories & Supplies',
and 'Car & Vehicle Electronics'.

Stage I: Simulation

Stage II: Execution

Click ’Office
Electronics’

Click ’Computer
& Accessories’

Click ’Electronics’

v = 0.8

v = 0.4

v = 0.1

Figure 2: Illustration of WebDreamer simulating outcomes for three candidate actions using GPT-4o: (1)
Click "Office Products", (2) Click "Electronics", and (3) Type "Disk" into textbox. Each dotted box shows an
LLM-generated state after a proposed action. Simulated trajectories are scored to identify the best action,
and the optimal action Click "Electronics" with the highest score (v = 0.8) is executed. This example shows a
two-step planning horizon. In practice, WebDreamer simulates multiple trajectories per action to capture
a wider range of possible outcomes, improving coverage and leading to better-informed decisions. Here we
only show one trajectory for each action and the final score for brevity.

3.2 Core Design

WebDreamer follows the planning through simulation paradigm introduced in Section 3.1. Figure 2
illustrates this process with three candidate actions, where WebDreamer simulates two-step trajectories for
each action, selects the trajectory with the highest score, and executes its corresponding initial action. At its
core, WebDreamer leverages LLMs as the simulation function (sim) and the scoring function (score).

Algorithm 1: WebDreamer
Input: Instruction I; initial observation o0
Output: Sequence of actions a0, a1, . . . , aT

t← 0;
while True do
At ← get_candidate(I, ot);
A′

t ← self_refine(I,At);
at = arg maxa∈A′

t
score(I, sim(I, ot, a));

ot+1 ← execute(at);
t← t + 1;
if termination_check() = True then

break;
end

end

Implementation for sim. Our implementation of sim
has two modules. (1) A state-change predictor approxi-
mates the environment transition function T by predict-
ing how the webpage changes after executing an action;
this module is instruction-agnostic. (2) An action pro-
poser then imagines a plausible next action conditioned
on the instruction I and the predicted state, enabling
long-horizon planning. By alternating between these two
steps, sim generates trajectories up to depth H, where
H is a configurable simulation horizon. Concretely, to
represent state changes we prompt an LLM (GPT-4o or
our self-trained world model) to produce a concise nat-
ural language description focused only on the effects of
the action (Figure 2, Stage I). The action proposer then
uses I and this predicted state to propose the next action
(Stage II). In Algorithm 1, we denote this instruction-conditioned rollout succinctly as sim(I, ot, a).

Implementation for score. After collecting a trajectory τi simulated from each candidate action ai using
sim, we further use an LLM as a scoring function for each simulation. Following Koh et al. (2024b), we

4

Published in Transactions on Machine Learning Research (10/2025)

prompt GPT-4o to score each simulated trajectory with a three-scale response—complete (1.0), on track
(0.5), or incorrect (0)—indicating its progress toward task completion. The final score for each action is
averaged over multiple simulated trajectories and scorings, then used to determine the optimal action to
execute (e.g., Click “Electronics”), as shown in Stage I of Figure 2.

In addition to sim and score, a prerequisite to planning is candidate action generation. We employ a two-stage
approach: first sampling top-k actions following Koh et al. (2024b), then using an LLM-based self_refine
module to filter out redundant or implausible candidates before simulation. The role of self_refine is
to remove unnecessary actions that would lead to near-duplicate or uninformative outcomes. For example,
when instructed to “search PlayStation 5 controller with Deadpool skin”, the top candidates may include
variants such as type("ps5 controller deadpool") and type("play station 5 controller deadpool
skin"), which differ in surface form but lead to nearly identical page states. Simulating all such variants
wastes compute without providing additional signal for planning. self_refine prompts an LLM to reason
over the action set and retain only a concise, diverse subset of candidates that are most likely to affect
the trajectory meaningfully. We show the pseudo code of WebDreamer’s overall design in Algorithm 1.
termination_check verifies if the model outputs a stop action, reaches max steps, or repeats an action over
3 times, also following the implementation by Koh et al. (2024b). Appendix B shows more details.

3.3 World Model Data Synthesis and Model Training

Step 1: Web Random Walking

Click ‘Office Products’

Type ‘iPhone 16 Case’

Click ‘Best Sellers in Outlet’

Step 2: Synthesis
Input

Input

When you click on the search bar after typing "iPhone
16 case," the Amazon webpage will transition from a
general homepage to a product search results page.
Here's what will happen:
1. Search Results Display: The main content area will
be populated with a list of iPhone 16 cases available
for purchase. Each listing will include an image of the
product, its name, price, customer ratings, and
options like "Add to Cart."
2. Navigation Filters: On the left side of the page,
you'll see various filters that allow you to narrow….

Here are two webpage screenshots from the website
{URL} before and after {Action}. Explain to the user
what changes will occur after the action, give
high-level and functional description in detail….

Response

Figure 3: Data synthesis pipeline. The pipeline consists of (1) Web Random Walking, where we autonomously
interact with web pages through actions like typing for search and clicking, and (2) Synthesis, where Qwen2-
VL-72B generates textual descriptions of state changes based on visual snapshots before and after actions.

While general-purpose LLMs such as GPT-4o have the potential to serve as world models, their cost and
latency may limit their feasibility for real-time planning. To explore a more deployable alternative, we also
aim to train a small world model that offers lower inference cost and easier adaptation to new domains.

As shown in Figure 3, we develop a scalable data synthesis pipeline that autonomously interacts with web
pages using lightweight heuristic guidance. The pipeline requires only a pool of seed URLs (sampled from the
October 2024 Common Crawl Index2) and can be run in parallel to scale to millions of interactions without
human supervision. At each step, the raw HTML is parsed to enumerate feasible actions, such as clicking
elements, hovering, typing into text boxes, or selecting options. To faithfully align these actions with the
visual modality (screenshot), we maintain a mapping between each HTML element and its corresponding
location on the rendered screenshot, ensuring that actions identified from the HTML can be accurately
represented in the visual action descriptions.

To better reflect real usage patterns, we sample actions with fixed probabilities that favor frequent interactions
like clicking, while still ensuring sufficient coverage of less common operations (e.g., selecting options).
Furthermore, to encourage causal dependencies across steps, we explicitly track HTML changes after each

2https://commoncrawl.org

5

Published in Transactions on Machine Learning Research (10/2025)

action and increase the probability of acting on newly revealed elements. For instance, after hovering over a
menu tab, the pipeline prioritizes clicking items in the newly expanded dropdown (with 70% probability), while
still allowing occasional actions on previously visible elements. For typing actions, we generate contextually
relevant queries using GPT-3.5-Turbo to ensure realistic search interactions.

Once an interaction is performed, we capture visual snapshots before and after the action. We then prompt
Qwen2-VL-72B (Wang et al., 2024) to generate textual descriptions detailing the changes in the webpage state
(Figure 3 Step 2), ensuring an accurate representation of how each action impacts the visual content. Each
training instance consists of the initial visual state, the action taken, and the generated textual description of
the state change. After data collection, we filter out failed interactions, automation-blocked content, and
potentially harmful data, resulting in a final dataset of over 3.1M interaction instances that capture rich
causal relationships between user actions and web state transitions.

As we empirically find horizon step H=1 to be the most effective and efficient configuration, we focus on
training the state transition function in sim, initializing it with Qwen2-VL-7B (Wang et al., 2024). The final
model, Dreamer-7B, is trained to predict the next state as a natural language description after performing an
action on the current state, using a next-token prediction objective. To efficiently monitor the progress of
self-trained world models without relying on costly downstream evaluations for every checkpoint, we construct
an intrinsic evaluation set for checkpoint selection, detailed in Appendix D. Appendix C provides additional
details on data synthesis and training.

4 Experiments

4.1 Setup

To properly test our planning framework’s real-world performance, we focus on three representative web
agent benchmarks, capturing the dynamic nature of web interactions: VisualWebArena (VWA; Koh
et al. (2024a)) is designed to evaluate multimodal agents in visually grounded tasks. It includes 233 tasks
verified by humans across three self-hosted websites: Classifieds, Shopping, and Reddit. The metric success
rate is calculated as the percentage of tasks successfully accomplished by the agent-generated trajectories.
Online-Mind2Web (Xue et al., 2025) is an online benchmark derived from Mind2Web (Deng et al., 2023),
including 300 updated or newly created high-quality tasks spanning 136 real-world websites. These tasks can
be categorized into easy, medium, and hard based on the number of steps required for completion. To reduce
cost, we use a subset of 100 tasks, randomly sampling 30 easy, 40 medium, and 30 hard tasks. The benchmark
employs an automatic evaluation pipeline to measure task success rate, achieving an 85% agreement with
human judgment. Mind2Web-Live (Pan et al., 2024b) consists of 104 tasks in 69 real-world websites refined
from Mind2Web (Deng et al., 2023). It defines and annotates critical intermediate steps as key nodes for
each task and considers a task successful only if all key nodes are completed.3 For all benchmarks, we use
screenshots as the observation space and add Set-of-Mark (Yang et al., 2023) in VWA for fair comparison with
the tree search baseline. In our experiments, we empirically set the planning horizon H to 1. A comprehensive
analysis of this parameter is presented in Section 5.1.

To demonstrate the effectiveness of our framework and trained world models, we primarily compare with two
baselines: a reactive agent and a tree search agent with real interactions.4 The reactive baseline uses GPT-4o
as the policy model. Given the task instruction, current observation, and action history, it predicts the next
action directly, without any simulation, search, or self-refinement. While the LLM may internally perform
chain-of-thought reasoning (Wei et al., 2022), the agent is reactive because it chooses only the immediate
next step without explicit lookahead planning. We adopt the official GPT-4o with Set-of-Mark (Yang et al.,
2023) implementation from the VWA codebase and adapt it for Online-Mind2Web and Mind2Web-Live. For
the tree search baseline (Koh et al., 2024b), we report results only on VWA, as performing real-interaction
tree search is infeasible on real-world websites in Online-Mind2Web or Mind2Web-Live. In VWA, Koh et al.
(2024b) restore previous states by resetting the sandbox environment and re-executing the corresponding

3We ensure no overlap between Online-Mind2Web and Mind2Web-Live for better task diversity.
4For brevity, we refer to tree search with real interactions simply as tree search in our experiments.

6

Published in Transactions on Machine Learning Research (10/2025)

action sequences, a mechanism unavailable on real websites. This makes tree search unsuitable beyond VWA,
whereas our WebDreamer readily applies to all benchmarks.

4.2 Main Results

Method World Model VisualWebArena Online-Mind2Web Mind2Web-Live

Reactive - 17.6 26.0 20.2
Tree Search - 26.2 - -

WebDreamer

GPT-4o 23.6 37.0 25.0
Qwen2-VL-7B 17.2 31.0 19.2
Qwen2-VL-72B 21.0 31.0 18.3

Dreamer-7B 21.9 35.0 24.0

Table 1: Success rate (%) on VisualWebArena (Koh et al., 2024a), Online-Mind2Web (Xue et al., 2025), and
Mind2Web-Live (Pan et al., 2024b). We implement all the baselines ourselves to avoid discrepancies due to
hardware and experimental settings in prior works.

Effectiveness. We present the overall performance results in Table 1. WebDreamer demonstrates
substantial improvements over the reactive agent on all benchmarks. Notably, on the VWA dataset, our
proposed method achieves a 34.1% relative performance gain and only trails behind tree search slightly. It
is important to note that tree search is not very practical on real-world websites, whereas WebDreamer
provides a more flexible and adaptive alternative. On Online-Mind2Web and Mind2Web-Live, WebDreamer
outperforms the reactive baseline by a relative gain of 42.3% and 23.8%, respectively. The strong results
show the effectiveness of WebDreamer across different real-world websites.

Secondly, training world models on our large-scale synthesized data proves to be effective. As shown in
Table 1, fine-tuning Qwen2-VL-7B into Dreamer-7B leads to a substantial 4.7% absolute improvement in
success rate on VisualWebArena, 4.0% on Online-Mind2Web, and 4.8% on Mind2Web-Live, outperforming
the vanilla Qwen2-VL-7B model and even Qwen2-VL-72B. Furthermore, Dreamer-7B achieves performance
comparable to GPT-4o on two online benchmarks, Online-Mind2Web and Mind2Web-Live, demonstrating
the feasibility of training world models for web-based decision-making.

Efficiency. Another key advantage of model-based planning is its efficiency compared with tree search
using actual explorations. Table 2 shows that tree search requires approximately 3 times more steps than the
reactive baseline, whereas our method maintains comparable number of action steps. Notably, compared to
reactive baselines, tree search introduces about 10 times greater latency (in wall clock time) due to additional
actions and backtracking, while the overhead from simulation in our approach is substantially lower, making
WebDreamer 4–5 times more efficient than the tree search baseline.

Steps Reactive Tree Search WebDreamer
Classifieds 3.4 9.9 4.1
Reddit 5.1 13.6 5.2
Shopping 4.5 11.4 4.5

(a) Number of action steps.

Seconds Reactive Tree Search WebDreamer
Classifieds 68.3 749.2 183.6
Reddit 83.5 972.1 233.7
Shopping 87.7 785.7 179.4

(b) Task completion wall clock time.

Table 2: Efficiency analysis on VWA. All methods here use GPT-4o for fair comparison.

7

Published in Transactions on Machine Learning Research (10/2025)

5 Discussions

5.1 Planning Framework

Ablation. We perform ablation studies on the simulation and self-refinement stages of WebDreamer
on the VWA shopping human subset, which is the largest subset verified by humans. We pay special
attention to the simulation stage, which is the core of model-based planning. One might argue that
the primary improvement stems from reranking candidate actions, irrespective of whether this ranking
relies on simulation. To test this idea, we conduct an experiment where we remove the simulation stage

15

20

25

30

35

Su
cc

es
s R

at
e

(%
)

21.1

22.8

29.8

27.2

Reactive
Reranking

WebDreamer
w/o Self-Refinement

Figure 4: Ablation study on the simulation stage
and self-refinement stage.

and instead ask the reward model (score) to directly eval-
uate each candidate action (Reranking). Additionally, we
remove the self-refinement step after the action proposal in
our framework to assess its impact (w/o Self-Refinement).

Upon closer examination, we find that this decline is
primarily due to the self-refinement module’s ability to
effectively filter out less relevant candidate actions when
the next optimal action is clear. In contrast, directly sim-
ulating all actions may introduce additional noise that
can negatively impact performance. As shown in Figure 4,
this modified reranking approach does lead to some im-
provement over the reactive baseline, but the gain is small
and still falls well behind WebDreamer. These results
confirm that the LLM-based world model simulation plays
a crucial role in the planning process. Furthermore, we
observe a decrease in performance when removing the
self-refinement stage.

Planning Horizon. As introduced in Section 3.2, WebDreamer supports configurable planning horizon
H (i.e., the simulation depth). To gain deeper insights into its effectiveness and current limitations, we
investigate how the planning horizon affects the final performance. Using GPT-4o as the world model, we
evaluate WebDreamer with planning horizons of 1, 2, and 3 on the same subset of Online-Mind2Web.

1 2 3
Planning Horizon

2526

30

35

40

Su
cc

es
s R

at
e

(%
) 37

32 32

Reactive Agent

Figure 5: Performance of WebDreamer with
GPT-4o and different planning horizons H on
Online-Mind2Web.

0.00 0.63 1.30 3.16
Synthetic Training Data (M)

15

20

25

30

35

40

Su
cc

es
s R

at
e

(%
)

Mind2Web-Live
Online-Mind2Web

Figure 6: Performance of WebDreamer with
Dreamer-7B w.r.t. different sizes of training data
on two online benchmarks.

As depicted in Figure 5, the performance consistently outperforms the reactive baseline across all horizon
settings. Nonetheless, when the planning horizon extends to 2 and 3 steps, the effectiveness begins to diminish.
Upon closer examination, this is primarily due to action proposal hallucinations within the simulation.
Specifically, the action proposal within simulation is biased toward generating seemingly relevant actions for
task completion, even when these actions are not available based on the predicted outcome. As a result, as the
planning horizon increases, the trajectories simulated from different actions become less distinguishable, as

8

Published in Transactions on Machine Learning Research (10/2025)

they all appear somewhat correct.5 Given the complexity of the web environment, simulating multiple steps
ahead is challenging due to error accumulation, which aligns with previous observations (Mendes & Ritter,
2025; Chae et al., 2025). However, achieving better performance with longer horizons is not a major goal of
this work; instead, we aim to show the feasibility and potential of using LLMs for model-based planning. We
leave this as a venue for future improvement.

5.2 Training World Models

Scaling Trend. We investigate the scaling trend by gradually increasing the size of our synthetic training
data, as shown in Figure 6. For Mind2Web-Live, performance steadily improves with larger training datasets,
though the rate of improvement tapers off at higher data scales, suggesting potential diminishing returns. In
contrast, Online-Mind2Web shows more consistent gains overall, following a slight performance drop with
small-scale training data. These observations suggest that further scaling may continue to yield performance
improvements. We omit scaling results on the sandbox environments in VWA and focus our analysis on the
other two online benchmarks, which more accurately reflect real-world environments and web agent tasks.

In-Domain Continual Training. For specific environments, we can synthesize domain-specific data for
world model training, enabling more specialized and contextually grounded simulations. In VWA (Koh
et al., 2024a), we employ our data synthesis pipeline introduced in Section 3.3 to synthesize 25K in-domain
interactions for each of the three environments: Classifieds, Reddit, and Shopping. To prevent test data
leakage, we filter out search actions containing queries that appear in test examples. The final in-domain
checkpoints are continually trained from the Dreamer-7B model, resulting in three separate world models,
each specialized for its respective environment.

Classifieds Reddits Shopping Total

Reactive 17.9 14.3 19.3 17.6
Tree Search (Koh et al., 2024a) 26.8 20.6 28.9 26.2

WebDreamer

GPT-4o 23.2 17.5 26.3 23.2
Qwen2-VL-7B 17.9 11.1 20.2 17.2
Qwen2-VL-72B 19.6 15.9 24.6 21.0
Dreamer-7B 21.4 15.9 25.4 21.9

+ In-Domain 25.0 15.9 26.3 23.2

Table 3: Success rate (%) of WebDreamer with various world models on VWA.

As shown in Table 3, continual training improves performance over the Dreamer-7B model and achieves results
comparable to or even better than GPT-4o in certain environments. The Classifieds and Shopping domains
benefit the most from in-domain adaptation, demonstrating that domain-specific fine-tuning successfully
refines model predictions to better reflect the specific environment dynamics. However, performance on Reddit
remains unchanged, likely due to its dense viewport and limited functional interactions. Unlike Classifieds
and Shopping, which have simpler visual organization, Reddit pages contain long, text-heavy content, making
it difficult for a world model to infer meaningful state changes beyond surface-level text visibility. In addition,
the limited perception abilities (Gou et al., 2025; Zhang et al., 2025) of 7B models in dense web viewports may
further constrain them to simulate fine-grained changes in text-heavy environments. These results underscore
the effectiveness of domain-specific adaptation while highlighting areas for further improvement in specific
web domains. Future work can explore representation techniques to better handle dense web layouts, further
expanding the applicability of world models across diverse real-world web environments.

Case Studies. We present an example to explore the differences between GPT-4o and Dreamer-7B as world
models. GPT-4o provides more detailed state change descriptions and considers multiple possible outcomes,
though some of these details are unimportant or irrelevant. For example, as shown in Figure 7, GPT-4o

5We observed a slight improvement from planning horizon 1 to 2 on VWA (Appendix E.1), but chose horizon 1 for our main
experiments as it performs comparably to horizon 2 while being significantly less costly.

9

Published in Transactions on Machine Learning Research (10/2025)

Click “Dosage”

A new page or section dedicated to 'Dosage Information' for Humira will
load. This section will likely include detailed information about the
recommended dosages for various conditions, administration methods,
and possibly warnings or precautions related to dosage. The page might
replace the current content or open in a new tab/window. The page's URL
will include terms related to Humira dosage information. Existing
elements like the search bar, navigation menu, and advertisements might
remain unchanged.

The webpage will display detailed dosage information for Humira,
including recommended dosages, administration instructions, and any
specific precautions or considerations for different patient populations.

GPT-4o

Dreamer-7B

Figure 7: An example comparing GPT-4o and Dreamer-7B as world models. General-purpose models such as
GPT-4o often provide detailed but sometimes noisy predictions, while our Dreamer-7B focuses on concise,
action-relevant outcomes.

successfully predicts the key state changes after clicking on “Dosage,” outlining the relevant information that
may appear on the new webpage. However, its prediction also includes unimportant details such as URL
and UI changes, which may introduce noise for the policy model. On the contrary, Dreamer-7B offers more
concise and action-oriented predictions, offering the most important information on the new webpage.

To further clarify the role of simulation in planning, we also present case studies with GPT-4o as a world
model, covering both positive and negative examples in Appendix F. They illustrate how simulation aids the
agent in exploring the environment, as well as how inaccuracies in simulation can lead to incorrect predictions.

6 Conclusion

In this paper, we systematically explore the use of LLMs as world models for model-based planning in web
environments. Our planning framework, WebDreamer, achieves substantial improvements over reactive
baselines across three benchmarks and offers a 4–5 times more efficient yet competitive alternative to tree
search, which is often impractical due to backtracking and efficiency constraints on real-world websites.
Beyond leveraging off-the-shelf proprietary LLMs as world models, we train Dreamer-7B on 3.1 million
web interaction examples synthesized through our scalable data generation pipeline, achieving performance
comparable to GPT-4o. Continual in-domain fine-tuning further allows Dreamer-7B to adapt to specific
environments, improving simulation quality and downstream performance, even surpassing GPT-4o. This
work lays the foundation for future research on model-based planning for efficient and effective decision-making
in web environments and establishes a path toward scaling world models to handle more general web tasks.
Overall, our results suggest that the answer to our title question is yes: LLMs can serve as effective world
models for web planning, though there remains significant room for improvement in multi-step simulation.

Ethical Considerations

Our work focuses on model-based planning for web agents by using and training world models on web
environments. Although the framework is developed for research purposes, we acknowledge potential risks if
misused. For example, automated web agents could be misused for spamming, excessive scraping, or other
harmful activities, and releasing interaction data without safeguards could raise concerns about privacy or
misuse. To mitigate these risks, we filter collected data to remove failed or harmful interactions, and no
personally identifiable information or explicit content is retained. Our contributions are intended solely
for academic research, and we caution against deploying our system in ways that compromise user privacy,
security, or website integrity. We strongly encourage responsible use of this research within appropriate
ethical and legal boundaries.

10

Published in Transactions on Machine Learning Research (10/2025)

References
Gilles Baechler, Srinivas Sunkara, Maria Wang, Fedir Zubach, Hassan Mansoor, Vincent Etter, Victor

Carbune, Jason Lin, Jindong Chen, and Abhanshu Sharma. Screenai: A vision-language model for UI and
infographics understanding. In IJCAI, 2024.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279, 2013.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. Openai gym. arXiv preprint, abs/1606.01540, 2016.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and Azalia
Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling. ArXiv preprint,
abs/2407.21787, 2024.

Hyungjoo Chae, Namyoung Kim, Kai Tzu iunn Ong, Minju Gwak, Gwanwoo Song, Jihoon Kim, Sunghwan
Kim, Dongha Lee, and Jinyoung Yeo. Web agents with world models: Learning and leveraging environment
dynamics in web navigation. In ICLR, 2025.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Li YanTao, Jianbing Zhang, and Zhiyong Wu. SeeClick:
Harnessing GUI grounding for advanced visual GUI agents. In ACL, 2024.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samual Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. In NeurIPS, 2023.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun
Wang. Alphazero-like tree-search can guide large language model decoding and training. ArXiv preprint,
abs/2309.17179, 2023.

Hiroki Furuta, Kuang-Huei Lee, Ofir Nachum, Yutaka Matsuo, Aleksandra Faust, Shixiang Shane Gu, and
Izzeddin Gur. Multimodal web navigation with instruction-finetuned foundation models. ArXiv preprint,
abs/2305.11854, 2023.

Carlos E Garcia, David M Prett, and Manfred Morari. Model predictive control: Theory and practice—a
survey. Automatica, 25(3):335–348, 1989.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and Yu Su.
Navigating the digital world as humans do: Universal visual grounding for GUI agents. In ICLR, 2025.

Yu Gu, Xiang Deng, and Yu Su. Don’t generate, discriminate: A proposal for grounding language models to
real-world environments. In ACL, 2023.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and Aleksandra
Faust. A real-world webagent with planning, long context understanding, and program synthesis. ArXiv
preprint, abs/2307.12856, 2023.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In NeurIPS, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In ICLR, 2020.

Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete
world models. In ICLR, 2021.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu. Reasoning with
language model is planning with world model. In EMNLP, 2023.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan, and Dong
Yu. WebVoyager: Building an end-to-end web agent with large multimodal models. In ACL, 2024.

11

Published in Transactions on Machine Learning Research (10/2025)

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang,
Yuxiao Dong, Ming Ding, and Jie Tang. Cogagent: A visual language model for gui agents. In CVPR,
2024.

Doyoung Kim, Jongwon Lee, Jinho Park, and Minjoon Seo. Cognitive map for language models: Optimal
planning via verbally representing the world model. ArXiv preprint, abs/2406.15275, 2024.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Lim, Po-Yu Huang, Graham Neubig, Shuyan
Zhou, Russ Salakhutdinov, and Daniel Fried. VisualWebArena: Evaluating multimodal agents on realistic
visual web tasks. In ACL, 2024a.

Jing Yu Koh, Stephen McAleer, Daniel Fried, and Ruslan Salakhutdinov. Tree search for language model
agents. ArXiv preprint, abs/2407.01476, 2024b.

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen Zhang,
Xiaohan Zhang, Yuxiao Dong, and Jie Tang. Autowebglm: A large language model-based web navigating
agent. In SIGKDD, 2024.

Kenton Lee, Mandar Joshi, Iulia Raluca Turc, Hexiang Hu, Fangyu Liu, Julian Martin Eisenschlos, Urvashi
Khandelwal, Peter Shaw, Ming-Wei Chang, and Kristina Toutanova. Pix2struct: Screenshot parsing as
pretraining for visual language understanding. In ICML, 2023.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement learning on
web interfaces using workflow-guided exploration. In ICLR, 2018.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Marcelo G Mattar and Máté Lengyel. Planning in the brain. Neuron, 110(6):914–934, 2022.

Ethan Mendes and Alan Ritter. Language models can self-improve at state-value estimation for better search.
arXiv preprint, abs/2503.02878, 2025.

Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. Model-based reinforcement
learning: A survey. Foundations and Trends® in Machine Learning, 16(1):1–118, 2023.

Vardaan Pahuja, Yadong Lu, Corby Rosset, Boyu Gou, Arindam Mitra, Spencer Whitehead, Yu Su, and
Ahmed Awadallah. Explorer: Scaling exploration-driven web trajectory synthesis for multimodal web
agents. arXiv preprint, abs/2502.11357, 2025.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous evaluation
and refinement of digital agents. In COLM, 2024a.

Yichen Pan, Dehan Kong, Sida Zhou, Cheng Cui, Yifei Leng, Bing Jiang, Hangyu Liu, Yanyi Shang, Shuyan
Zhou, Tongshuang Wu, and Zhengyang Wu. Webcanvas: Benchmarking web agents in online environments.
ArXiv preprint, abs/2406.12373, 2024b.

Razvan Pascanu, Yujia Li, Oriol Vinyals, Nicolas Heess, Lars Buesing, Sebastien Racanière, David Reichert,
Théophane Weber, Daan Wierstra, and Peter Battaglia. Learning model-based planning from scratch.
ArXiv preprint, abs/1707.06170, 2017.

Ajay Patel, Markus Hofmarcher, Claudiu Leoveanu-Condrei, Marius-Constantin Dinu, Chris Callison-Burch,
and Sepp Hochreiter. Large language models can self-improve at web agent tasks. ArXiv preprint,
abs/2405.20309, 2024.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and Rafael
Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents. ArXiv preprint,
abs/2408.07199, 2024.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt,
Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839):604–609, 2020.

12

Published in Transactions on Machine Learning Research (10/2025)

Peter Shaw, Mandar Joshi, James Cohan, Jonathan Berant, Panupong Pasupat, Hexiang Hu, Urvashi
Khandelwal, Kenton Lee, and Kristina Toutanova. From pixels to UI actions: Learning to follow instructions
via graphical user interfaces. In NeurIPS, 2023.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits: An
open-domain platform for web-based agents. In ICML, 2017.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error: Exploration-based
trajectory optimization of LLM agents. In ACL, 2024.

Yu Su, Diyi Yang, Shunyu Yao, and Tao Yu. Language agents: Foundations, prospects, and risks. In EMNLP:
Tutorial, 2024.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart Bulletin,
2(4):160–163, 1991.

Evan Z Wang, Federico Cassano, Catherine Wu, Yunfeng Bai, William Song, Vaskar Nath, Ziwen Han,
Sean M. Hendryx, Summer Yue, and Hugh Zhang. Planning in natural language improves LLM search for
code generation. In ICLR, 2025.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng Liu, Chang
Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint, abs/2409.12191, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In NeurIPS,
2022.

Tianci Xue, Weijian Qi, Tianneng Shi, Chan Hee Song, Boyu Gou, Dawn Song, Huan Sun, and Yu Su. An
illusion of progress? assessing the current state of web agents. In COLM, 2025.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark prompting
unleashes extraordinary visual grounding in gpt-4v. ArXiv preprint, abs/2310.11441, 2023.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable real-world
web interaction with grounded language agents. In NeurIPS, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree
of thoughts: Deliberate problem solving with large language models. In NeurIPS, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan Cao. React:
Synergizing reasoning and acting in language models. In ICLR, 2023b.

Keen You, Haotian Zhang, Eldon Schoop, Floris Weers, Amanda Swearngin, Jeffrey Nichols, Yinfei Yang,
and Zhe Gan. Ferret-ui: Grounded mobile UI understanding with multimodal llms. In ECCV, 2024.

Kai Zhang, Jianwei Yang, Jeevana Priya Inala, Chandan Singh, Jianfeng Gao, Yu Su, and Chenglong Wang.
Towards understanding graphical perception in large multimodal models. arXiv preprint, abs/2503.10857,
2025.

Yao Zhang, Zijian Ma, Yunpu Ma, Zhen Han, Yu Wu, and Volker Tresp. Webpilot: A versatile and autonomous
multi-agent system for web task execution with strategic exploration. ArXiv preprint, abs/2408.15978,
2024.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist web agent, if
grounded. In ICML, 2024.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue Ou,
Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic web environment for
building autonomous agents. In ICLR, 2024.

13

Published in Transactions on Machine Learning Research (10/2025)

Overview

The appendix includes the following sections:

• Section A: Author Contribution Statement.

• Section B: Implementation Details of WebDreamer.

• Section C: Implementation Details of Data Synthesis and World Model Training.

• Section D: Intrinsic Evaluation of World Models.

• Section E: More Discussions.

• Section F: Case Studies.

A Contribution Statement

Yu Gu conceived the project with Yu Su and developed the planning framework WebDreamer. He
implemented the core codebase, led the design and execution of key experiments including ablation studies,
and wrote the initial manuscript draft. He also led the public release of the resources.

Kai Zhang led the data synthesis and world model training efforts, including the training of Dreamer-7B
and domain-specific variants. He conducted experiments on VisualWebArena and played a major role in
editing and polishing the manuscript to its final form.

Yuting Ning led the development of the intrinsic evaluation suite and conducted experiments on Online-
Mind2Web and Mind2Web-Live. She also contributed significantly to the final manuscript refinement.

Boyuan Zheng contributed to the development of the planning framework, the data synthesis pipeline, and
the in-domain world model training. He also provided valuable insights into the experimental design.

Orby AI team (Cheng Chang, Sanjari Srivastava, Yanan Xie, and Peng Qi) provided large-scale compute
resources and data crawling support, which were essential for scaling up the data synthesis and training
pipeline. Peng Qi and Yanan Xie also provided constructive feedback throughput the project.

Yu Su and Huan Sun steered the main directions throughout the project, led discussions on the planning
framework and experiments, and provided funding support. Yu Su conceived the project with Yu Gu.

All authors reviewed the manuscript and provided feedback.

B Prompts for Four Stages in WebDreamer

B.1 Action Proposal

Action Proposal

You are an autonomous intelligent agent tasked with navigating a web browser. You will be given web-based
tasks. These tasks will be accomplished through the use of specific actions you can issue.
Here’s the information you’ll have: {Web Information}
The user’s objective: {Task Objective} This is the task you’re trying to complete.
The current web page screenshot: {Web Page Screenshot Image} This is a screenshot of the webpage, with
each interactable element assigned a unique numerical id. Each bounding box and its respective id shares the
same color.
The observation, which lists the IDs of all interactable elements on the current web page with their text content
if any, in the format [id][tagType][text content]. tagType is the type of the element, such as button,
link, or textbox. text content is the text content of the element. For example, [1234][button][‘Add to
Cart’] means that there is a button with id 1234 and text content ‘Add to Cart’ on the current web page.
[][StaticText][text] means that the element is of some text that is not interactable.

14

Published in Transactions on Machine Learning Research (10/2025)

The current web page’s URL: {Web URL} This is the page you’re currently navigating.
The open tabs: {Previous Tabs} These are the tabs you have open.
The previous action: {Previous Action} This is the action you just performed. It may be helpful to track
your progress.
The actions you can perform fall into several categories:
Page Operation Actions:

- click [id]: This action clicks on an element with a specific id on the webpage.
- type [id] [content]: Use this to type the content into the field with id. By default, the Enter key is

pressed after typing unless press_enter_after is set to 0, i.e., type [id] [content] [0].
- hover [id]: Hover over an element with id.
- press [key_comb]: Simulates the pressing of a key combination on the keyboard (e.g., Ctrl+V)
- scroll [down] or scroll [up]: Scroll the page up or down.

Tab Management Actions:
- new_tab: Open a new, empty browser tab.
- tab_focus [tab_index]: Switch the browser’s focus to a specific tab using its index.
- close_tab: Close the currently active tab.

URL Navigation Actions:
- goto [url]: Navigate to a specific URL.
- go_back: Navigate to the previously viewed page.
- go_forward: Navigate to the next page (if a previous go_back action was performed).

Completion Action:
- stop [answer]: Issue this action when you believe the task is complete. If the objective is to find a

text-based answer, provide the answer in the bracket.

Homepage:
If you want to visit other websites, check out the homepage at http://homepage.com. It has a list of websites
you can visit. http://homepage.com/password.html lists all the account name and password for the websites.
You can use them to log in to the websites.

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.
3. You should follow the examples to reason step by step and then issue the next action.
4. Generate the action in the correct format. Start with a “In summary, the next action I will perform is”

phrase, followed by action. For example, In summary, the next action I will perform is click [1234].
5. Issue stop action when you think you have achieved the objective. Don’t generate anything after stop.

B.2 Self-Refinement

Self-Refinement

You are assisting a web navigation agent to help a human user navigate a website to complete a task. Given
the user’s intent, the action history, and the current state of the webpage, the agent has proposed a set of
candidate actions to take at the current step.

Your role is not to determine a best action for the agent at this step, but to filter out the actions that are very
likely not relevant or helpful for the agent to accomplish the task.

Please select all actions that you think that could possibly lead the agent to accomplish the task. It’s important
to note that to accomplish a task, the agent will execute a sequence of actions. So the action to take at this
step does not have to immediately lead to the completion of the task. You should select any action that
could be relevant for the agent to take in the current state of the webpage. Try to be as thoughtful and
comprehensive as you can! Don’t miss any possible action. If there is one action that is clearly the best, and
all other actions are clearly not very relevant, you can only select one action. Please do this sparely, since
some actions may be helpful in a longer horizon.

15

Published in Transactions on Machine Learning Research (10/2025)

An action should be included as long as it could be relevant to the task, even if it may not be the most direct
action to take at this step!! Some relevant actions might seem indirect at the first glance, but could be helpful
in a longer horizon. Please also include those actions.

Please at least select one action.

IMPORTANT
Format your response into two lines as shown below:

Thoughts: <your thoughts and reasoning process>. You must explicitly evaluate each action one by one
and imagine whether it could be relevant to the task following the format: action:... rationale:...

Selected actions: id0;id1;aid2;... (please return the index of the action in the candidate actions list,
starting from 0. Don’t output the action description itself. Separate the indices with semicolons. Do not add
spaces or any other characters after the semicolons.)

Action History: {last_actions_str}

Current URL: {current_url}

The images corresponding to the user intent are shown in the FIRST {len(intent_images)} images (before
the User Intent).

The last {len(screenshots)} snapshots of the agent’s trajectory are shown in the LAST {len(screenshots)}
images. The LAST IMAGE represents the current state of the webpage.

Proposed Action: {action_descriptions}

B.3 World Model

World Model (state transition function)

You are an agent that predicts the effect of an action on a webpage. You will be given a screenshot of a
webpage, a sequence of actions and state changes applied to the initial screenshot, and an operation to perform
on the webpage. You are required to predict the new changes that will occur on the webpage after the
operation is performed, such as the appearance of new elements, the disappearance of existing elements, or
changes in the content of existing elements. The operation type and the element to operate will be provided in
the prompt. Directly output State changes:... and don’t output anything else. Try to be as comprehensive
and detailed as possible.

Based on the initial screenshot and the changes to the webpage, please predict the changes after action:

B.4 Reward Model

Reward Model (score)

You are an expert in evaluating the performance of a web navigation agent. The agent is designed to help a
human user navigate a website to complete a task. Given the user’s intent, the agent’s action history, the
current state of the webpage, your goal is to decide **whether the simulated steps by the agent indicate
a successful execution of the user intent**. In particular, if the predicted state (i.e., the current state
represented by the last image plus all the predicted changes so far) corresponds to a successful final state. If it
is a failure but it looks like the simulated steps are on the right track towards success, you should also output
as such. Note that, in the simulated steps, all the state changes are predicted by the agent’s world model, and
they may not actually be faithful to the real website interactions (e.g., some proposed actions may not be
available in a realistic website). You should also account for this in your evaluation (e.g., if the predicted state
changes are not reasonable then it’s probably a failure).

16

Published in Transactions on Machine Learning Research (10/2025)

IMPORTANT

Format your response into two lines as shown below:

Thoughts: <your thoughts and reasoning process>

Status: “success” or “failure”

On the right track to success: “yes” or “no”

C Data Synthesis and World Model Training

C.1 Data Synthesis Prompt

Prompt Templates

Here is the web screenshot <image_token>. Please describe what you would see after performing {action}
on {element_description}.

Here is the web page you are looking at <image_token>. Please describe what you would see after doing
{action} on {element_description}.

Here is the web page you are currently at <image_token>. Describe what you will see after {action}ing
{element_description}.

Here is the current web page <image_token>. Briefly describe what you will see after {action}ing
{element_description}.

Below is the current screenshot <image_token>. Briefly describe what you will see after {action}ing
{element_description}.

Below is the current screenshot <image_token>. Describe what you will see after {action}ing
{element_description}.

Below is the current screenshot <image_token>. Please describe what you would see after a {action} on
{element_description}.

Table C.1: Prompt templates used to generate language descriptions of state transitions.

In practice, we first draw a red bounding box around the target element to precisely localize it for Qwen2-
VL-72B. Next, we prompt Qwen2-VL-72B to separately describe the element using a referring expression and
to describe the resulting state change. Finally, we combine the referring expression and the state change
description to construct the training instance, using one of the templates randomly selected from Table C.1.
We list the prompt used to synthesize natural language descriptions of the next state below.

Despite the fact that our training data includes only a few prompt templates and natural images, experiments
in Section 4 have shown that the model generalizes well to unseen instruction or prompts used in benchmarks
like Online-Mind2Web (Xue et al., 2025) and Mind2Web-Live (Pan et al., 2024b) and to images with
Set-of-Mark (Yang et al., 2023) in VisualWebArena (Koh et al., 2024a).

17

Published in Transactions on Machine Learning Research (10/2025)

Data Synthesis

Here are two webpage screenshots from the website {URL} before and after {Action} on the element within
the red bounding box.

Element Description: Please describe the element within the bounding box to ensure user can locate
this element in the webpage image only using this description (only element description, not bounding box).
So DO NOT say something like the element within the bounding box, DO NOT SAY anything about red
bounding box.
Instead, describe the element with referral expression like the button showing the text ‘Make Appointment’ or
the ‘Search’ in the search bar.
Starts with lower case and make sure the description is a noun like the element that is a category link labeled
‘Massage’ located in the sidebar on the left side of the page.

Change Description: Explain to the user what changes will occur on the webpage after they click on
the described element. Do not say too many trivial details. Instead, give high-level and functional description
in detail after the action. Focus solely on describing the changes that will happen, not the element.

C.2 Training Data Statistics

Number Percentage

Unique URLs 1,247,960 -

Action
- Click 2,653,704 84.0
- Hover 241,234 7.6
- Type 217,692 6.9
- Select 47,617 1.5

Total 3,160,247 100

Table C.2: Training data distribution.

As described in Section 3.3, we develop a scalable pipeline to synthesize large-scale interaction data by
randomly exploring web pages across a wide range of domains. This process results in over 3.1 million
interaction instances spanning 1.2 million unique URLs, as summarized in Table C.2. We focus on four
primary interaction types: click, hover, type, and select, which collectively reflect the core user intents on
modern web interfaces. Clicks dominate the dataset (84%), consistent with their central role in triggering state
transitions on the web. Although our data synthesis pipeline initially included scroll actions, we empirically
found that they contributed little to downstream performance and thus excluded them from the final training
set.

Importantly, the interactions in our dataset are not restricted to initial steps but span various stages within
multi-step trajectories. Figure C.1 shows the distribution of actions by their position in the interaction
sequence. The average position is 4.4, and a substantial portion of actions occur deeper in the trajectory.
This distribution allows the world model to learn more informative web dynamics and have the potential to
enable long-term planning.

C.3 World Model Training

All world models are fine-tuned using the Qwen2-VL-7B-Instruct (Wang et al., 2024) backbone. To align
with future state prediction, we format training examples using structured prompts, such as: “Here is the
web screenshot. Please describe what you would see after performing {action} on {element}." All experiments
are conducted on 64 H100 GPUs with 80GB memory each. The final Dreamer-7B model is trained for up
to 2 epochs over the full training dataset described above. We evaluate models every 1000 steps using an
intrinsic evaluation metric (described later) to ensure fair and consistent model selection across settings. We
use the DecoupledAdamW (Loshchilov & Hutter, 2019) optimizer with a learning rate of 1e-6, β1 = 0.9, and

18

Published in Transactions on Machine Learning Research (10/2025)

1 2 3 4 5 6 7 8 9 10 11
Action Position in Trajectory

0

100

200

300

400

500

Co
un

t (
k)

Average Position: 4.4

2

4

6

8

10

12

14
16

Pe
rc

en
ta

ge
 o

f T
ot

al

Figure C.1: Distribution of the step at which actions occur within multi-step trajectories. The actions used
for training span across different depths, not being limited to initial steps.

β2 = 0.95. The learning rate follows a cosine decay schedule with 1000 warmup steps, decaying to 10% of the
base LR. We use a global batch size of 192 and enable mixed-precision training.

For the three domain-specific world models (Classifieds, Reddit, and Shopping), we continue training from
the Dreamer-7B checkpoint for one epoch using the respective in-domain datasets. These models follow the
same training setup, except with a reduced learning rate of 5e-7 and a shorter warmup of 100 steps to ensure
stable adaptation on smaller datasets.

D Intrinsic Evaluation of World Models

While downstream evaluation with real-world web tasks can provide valuable insights for the model-based
planning framework, it involves many other factors (e.g., the policy model) that may influence performance
other than world models. Therefore, to rigorously evaluate world models only, we construct an intrinsic
evaluation that provides a more controlled and independent assessment while maintaining alignment with the
downstream evaluation setting. When training our world models, we use this intrinsic evaluation for model
development and checkpoint selection.

D.1 Dataset Construction

We first sample tasks from Mind2Web (Deng et al., 2023) and manually annotate the trajectories that can
complete the tasks as ground truths. Then, we generate deviation trajectories at different states in the ground
truth trajectories and assess whether the world model can help distinguish the correct actions from incorrect
actions at each state. Specifically, for each state on the ground truth trajectory, we use the ranking model in
MindAct (Deng et al., 2023) to select top-5 candidate elements from the webpage that align best with the
task intention and current state, excluding the ground truth one. These deviation actions are then extended
into full trajectories using a web agent (i.e., SeeAct (Zheng et al., 2024)), automatically evaluated with an
LLM-as-a-judge method (Pan et al., 2024a). Since multiple paths may lead to task completion, we filter out
deviation actions on successful trajectories to alleviate false negative issue and only retain those in failed

19

Published in Transactions on Machine Learning Research (10/2025)

trajectories as negative actions. Using this pipeline, we construct an intrinsic evaluation dataset of 44 tasks,
141 states with deviations, and 279 deviation actions.

D.2 Evaluation Metrics

For evaluation, we use world models to simulate possible future states for each action and score them using
the same scoring function in the planning framework. We then compute three types of metrics: (1) pair-wise
accuracy: For each pair consisting of a ground-truth action and a deviation action within the same state, if
the ground-truth action receives a score greater than or equal to the deviation action, it is counted as correct;
otherwise, it is incorrect. Pair-wise accuracy is the proportion of correct pairs across the whole dataset. (2)
state-level accuracy: Evaluates whether the world model consistently ranks the ground-truth action above
all deviations within a given state. A state is considered correct only if the ground-truth action has a score
greater than or equal to all its corresponding deviation actions. (3) task-level accuracy: Assesses the
correctness of an entire task by ensuring that the world model helps correctly select ground-truth action
in every state within the task. A task is considered correct only if all its states are correct according to
state-level accuracy criteria. We use state-level accuracy as the primary metric to select the best checkpoint,
which closely aligns with the downstream task forms.

D.3 Results

World Model Pair-wise Accuracy State-level Accuracy Task-level Accuracy

GPT-4o-mini 85.30 78.01 47.73
GPT-4o 87.10 80.85 52.27

Qwen2-VL-7B 86.38 80.85 50.00
Qwen2-VL-72B 87.10 80.14 47.73

Dreamer-7B 88.53 82.98 52.27

Table D.1: Results (%) of various world models on the intrinsic evaluation set.

Table D.1 shows the results of the intrinsic evaluation. Our fine-tuned 7B model achieves comparable
performance on task-level accuracy with GPT-4o and even outperforms GPT-4o in terms of pair-wise and
state-level accuracy. The scaling trend of training world models can also be observed in intrinsic evaluation
as shown in Figure D.1.

For all world models we have evaluated on both intrinsic evaluation and Mind2Web-Live (Pan et al., 2024b),
the Pearson correlation coefficient between task-level accuracy and task success rate is 0.8455, indicating a
strong correlation between intrinsic evaluation and downstream performance. We hope our intrinsic evaluation
can serve as a useful tool for advancing web world model development.

E More Discussions

E.1 State Representation and Planning Horizon

In addition to the state change description used in our primary experiments, we explore alternative approaches
where GPT-4o predicts either the HTML code or the accessibility tree of the resulting webpage within
the simulation. For each of these state representations, we evaluate planning horizons of 1, 2, and 3 steps
on VWA benchmark. As depicted in Figure E.1, all three state representations significantly outperform
the reactive baseline. However, their effectiveness diminishes as the planning horizon extends to 3 steps,
indicating a common limitation in long-horizon simulation across these approaches. Notably, the state change
representation exhibits the most pronounced performance degradation as planning horizons extend. This
decline is particularly severe with a planning horizon of 3, where performance falls below that of the reactive
baseline. This vulnerability stems from its implicit specification of available interactive elements on the
current webpage, requiring the model to infer these elements by applying changes to the initial state. In
contrast, HTML and accessibility tree representations provide explicit element information. Consequently,

20

Published in Transactions on Machine Learning Research (10/2025)

0.00 0.63 1.30 3.16
Synthetic Training Data (M)

15
20
25
30
35
40
45
50
55

Su
cc

es
s R

at
e

(%
)

Mind2Web-Live
Online-Mind2Web

Intrinsic Evaluation

15
20
25
30
35
40
45
50
55

Ta
sk

-le
ve

l A
cc

ur
ac

y
(%

)

Figure D.1: Performance on two downstream benchmarks and intrinsic evaluation w.r.t. different sizes of
training data.

1 2 3
Planning Horizon

20

22

24

26

28

30

Su
cc

es
s R

at
e

(%
)

Reactive Agent

State Change
Accessibility Tree
HTML

Figure E.1: Performance of WebDreamer on the human-verified shopping subset of the VWA dataset,
varying both the state representation within simulations and the planning horizon. Planning with long
horizon with simulation remains challenging, regardless of the state representation employed.

the state change approach is more susceptible to hallucination during extended simulations. Despite this
limitation, the state change approach remains a viable choice given the current capabilities of LLMs. It
matches the performance of HTML and accessibility tree representations for planning horizons less than 3
while consuming fewer output tokens.

21

Published in Transactions on Machine Learning Research (10/2025)

F Case Studies

F.1 Error Caused by Imperfect World Model Simulation

An error case caused by imperfect world model simulation is shown in Figure F.1.

Find me a printer of the same brand as the product in this
picture. It needs to be white and have at least 11 reviews
with an average rating greater than 4.

The webpage will update to display items 25-36 of 1272 for the current
category or search criteria. The product images, names, prices, and other
related details will change to reflect this next set of items. The pagination
at the bottom of the page will indicate that the user is now on the third
page of items, with Page 3 likely highlighted or noted in some way. The
products and their details from items 13-24 will be replaced by the
information for items 25-36.

Click ‘Next Page’

Anew set of search results for 'HP printer' will appear, displaying the next
items starting from item 13 and onwards. The pagination number and the
item count at the top of the search results may update accordingly. The
"Recently Ordered" and "Compare Products" sections, if static, may move
out of view, while new sections might come into view. The footer section
of the page may also shift into view if scrolling reaches the bottom.

The listing for the "HP Business Inkjet 2800 Wide Format Printer
(C8174A#A2L)" will be removed from the webpage. This includes the
removal of its image, price ($37.64), rating stars, number of reviews (12),
and "Add to Cart" button positioned at the bottom right of the screen
(elements 63 through 68). The remaining products would shift
accordingly to fill the gallery space.

v = 0.5

v = 0.4

v = 0.1

After scrolling down the footer section becomes visible, displaying links
for Privacy and Cookie Policy, Search Terms, Advanced Search, Orders
and Returns, and Contact Us, along with a subscription box for email
updates. No new products appear on the page after scrolling.

Scroll
Down

Stop

v = 0.2

Correction

Figure F.1: An error case caused by imperfect world model simulation.

F.2 Positive Case Benefiting from World Model Simulation

A positive case where the simulation leads to correct action prediction is shown in Figure F.2.

22

Published in Transactions on Machine Learning Research (10/2025)

What are the two types of birds on the front of that colorful
shirt?

The page will navigate to a detailed product page for the "Mens Flowers
Casual Aloha Hawaiian Shirt Summer Short Sleeve Beach T-Shirt Regular
Fit Button Down Dress Shirts." This new page will likely contain
additional information about the product including more detailed
specifications, customer reviews, larger images, sizing options, and
possibly a larger "Add to Cart" button. Other elements from the current
category view like the grid of products will be replaced with the detailed
view of this specific product.

Click

Hovering over will likely result in the following changes:

1. A tooltip or additional information popup might appear near or over
the shirt's image or element. This popup could include more details such
as the price, size options, availability, and possibly a zoomed-in view of
the shirt.
2. The image of the shirt might change, possibly showing a different angle
or a model wearing the shirt, providing more context on how it looks
when worn.
3. The "Add to Cart" button or rating might change appearance,
potentially becoming highlighted to draw more attention.

Parrots and palm trees will be returned as the answer.

v = 0.75

v = 0.25

v = 0.05
Hover

Stop

Hover

Figure F.2: A positive case where the simulation leads to correct action prediction.

23

	Introduction
	Related Work
	Web Agents
	World Models

	WebDreamer: Model-Based Planning for Web Agents
	Preliminary
	Core Design
	World Model Data Synthesis and Model Training

	Experiments
	Setup
	Main Results

	Discussions
	Planning Framework
	Training World Models

	Conclusion
	Contribution Statement
	Prompts for Four Stages in WebDreamer
	Action Proposal
	Self-Refinement
	World Model
	Reward Model

	Data Synthesis and World Model Training
	Data Synthesis Prompt
	Training Data Statistics
	World Model Training

	Intrinsic Evaluation of World Models
	Dataset Construction
	Evaluation Metrics
	Results

	More Discussions
	State Representation and Planning Horizon

	Case Studies
	Error Caused by Imperfect World Model Simulation
	Positive Case Benefiting from World Model Simulation

