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Abstract

Memorization in large language models (LLMs)
is often viewed as undesirable for learning. Ex-
isting memorization measures largely focus on
quantifying privacy risks rather than capturing the
underlying phenomenon of memorization itself.
To address this gap, we introduce contextual mem-
orization, which disentangles memorization from
contextual learning — LLMs perform both during
training. We further show that existing measures
of memorizationz in LLMs, namely recollection-
based, counterfactual, and contextual, yield con-
tradictory results when applied to the same train-
ing dynamics, such as disagreeing on the order of
memorization of strings of varying frequencies.

1. Introduction

“Every teacher knows that there is a profound
difference between a student learning a lesson by rote
and learning it with understanding, or meaningfully.” —

Herbert Simon

The unsupervised training and fine-tuning of generative
models, particularly autoregressive large language mod-
els (LLMs), can lead to learning of the training data by
rote (Bender et al., 2021) and with understanding (Bubeck
et al., 2023). Memorization by rote is considered the ugly
cousin of contextual learning with understanding; an un-
desirable side effect of learning that should be avoided. In
the paper, we carefully re-examine how researchers oper-
ationalize memorization, i.e., the frameworks they use to
understand, measure, and distinguish between the instances
when the generation of a string by an LLM is attributed
to memorization versus learning. Our contention is that
many measures of memorization in use today are quantify-
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ing the undesirable effects of memorization rather than the
underlying causal phenomenon, i.e., memorization itself.

Recollection-based measures: Privacy researchers, who
are concerned about the risks of extracting sensitive informa-
tion from training data by prompting LLMs, propose to esti-
mate memorization by how well LLMs can recollect training
strings (Schwarzschild et al., 2024; Biderman et al., 2024;
Carlini et al., 2021; 2019; Tirumala et al., 2022; Mireshghal-
lah et al., 2022; Ippolito et al., 2022; Peng et al., 2023; Duan
et al., 2024; Zhou et al., 2024). However, there can be cases
when such recollection is not based on memorization. For
example, consider asking an LLM to count from 1 to
1000. As discussed in Schwarzschild et al. (2024), many
LLMs will likely generate 1,2, - - -, 1000 based on simple
reasoning. To refer to such recollection as grey area for
memorization (as done in Schwarzschild et al. (2024)) is
naive at best, and flawed at worst.

The case for contextual measures: How else could one
quantify memorization? Let us first conduct a thought exper-
iment to illustrate a challenging desideratum for memoriza-
tion measures. Imagine an English speaker and a German
speaker commit a paragraph in German to memory. When
recollecting the paragraph, do the two speakers rely on mem-
orization to the same or different extents? Intuitively, the
German speaker understands the syntax and semantics of
the tokens in the paragraph, while the English speaker sees
the paragraph as a sequence of alphabet tokens. Even before
reading the paragraph, given some prefix, the former is more
likely to predict the next token correctly than the latter. So it
stands to reason that the extent of memorization involved in
recollecting the paragraph is higher for the English speaker
than the German speaker. A good memorization measure for
LLMs should account for the ability of a model to predict
the next token in a string based on the context.

We now propose a measure, contextual memorization, which
can disentangle the effects of context-based recall from
those of memorization-based recall. The key intuition,
shown in Figure 1, is the following: for each string s in
the training dataset D, we first estimate the optimal con-
textual recollection — obtained by repeatedly training over
a dataset D’ that excludes s from D. We declare s as be-
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Figure 1: Contextual and counterfactual memorization of a string along training

epochs. Solid curve is training loss, and dotted curve is the test loss of the same

string when excluding it from training. Horizontal dashdot line in red is the
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ing contextually memorized, if its recollection exceeds this
optimal contextual recollection threshold.

Comparing with counterfactual measures: Contex-
tual memorization differs from counterfactual memoriza-
tion (Zhang et al., 2021), which also relies on comparing
recollection of s on training dataset D and dataset D’ that
excludes s, in two subtle but important ways. First, counter-
factual measures capture the divergence in the recollection
performance over D and D’ at each training epoch, while
contextual performance use the best recollection perfor-
mance over D’ of all epochs as threshold. Consequently,
contextual measures are stricter than counterfactual mea-
sures. Second, the inspiration for counterfactual measures
comes from differential privacy and the potential for infer-
ring the membership of s in D. In contrast, the motivation
for contextual measures is rooted in concerns that memo-
rization is an undesirable form of learning, i.e., it represents
a type of local over-fitting to string s that harms generaliza-
tion locally (van den Burg & Williams, 2021).

Different memorization measures yield contradictory
results: We conduct a critical re-examination of existing
memorization measures, filling the gaps with new measures,
and evaluating them over multiple LLMs and formal lan-
guages. We have several key findings that highlight how the
precise memorization measure used can impact the deter-
mination of when a string s started to be memorized and to
what extent, as we elaborate in the following.

2. On Measuring Memorization in LLMs

Our motivation is different from earlier studies on memo-
rization, where researchers presupposed a constraint that
they can only access a pre-trained LLM, let alone the train-
ing data (Schwarzschild et al., 2024; Carlini et al., 2021;
Zhang et al., 2021; Carlini et al., 2022). We however ar-
gue that to understand the nuanced implications of different
memorization measures, one must study them on a training
dynamic with all required information.

During training, an LLM processes the training dataset over
multiple epochs. Since the dataset may contain strings with
varying frequencies, all strings are not necessarily memo-
rized simultaneously or equally. This motivates two key

learned optimal contextual loss of the string (i.e., lowest test loss), used as the
threshold for contextual memorization. Hence, contextual memorization starts at
epoch 6 when training loss is lower than the optimal contextual loss, whereas
counterfactual memorization starts at epoch 4 when training and test losses
diverge (marked by horizontal dashdot line in blue). The memorization score in
contextual memorization is overestimated by counterfactual memorization.

questions: when and to what degree is a given string memo-
rized? Answering them is fundamental towards understand-
ing the implications of any notion of memorization, and
could potentially help prevent memorization.

Formal Setup. AnLLM M is trained on a finite dataset D
repeatedly over multiple epochs. D is a random sample of
strings from an underlying language L, as explained shortly,
and may contain duplicated strings. For each string s € D,
we wish to answer the following two questions:

* RQ1 (Memorization Detection Question): At what
epoch e, does M start to memorize s?

¢ RQ2 (Memorization Score Question): What is
the degree of memorization or memorization score,
mem(s,e) € [0,1], of string s at an epoch e > ¢e,?
Trivially, mem(s,e) = 0if e < es.

In this paper, we propose to answer RQ1 and RQ2 by apply-
ing three distinct measures of memorization, as detailed in
Section 3. Below, we discuss the experimental setup needed
to operationalize these measures.

Experimental Setup. We train an LLM on strings from a
formal language, focusing on learning syntactic patterns de-
fined by a formal grammar. While several prior studies have
adopted similar setups, their goals differed from ours. We
choose this controlled setup so that learning and memoriza-
tion are unaffected by prior training, free from data contami-
nation, and guided by a tunable string distribution — enabling
clear insights into the nuanced implications of memorization
measures. Specifically, we consider probabilistic and hier-
archical context-free languages, which mimic the recursive
structure of natural language (Allen-Zhu & Li, 2023). For-
mally, a probabilistic formal language L is defined on a set
of allowed tokens or alphabet 7', and specifies a probability
distribution Py, over strings, Pr, : T* — [0, 1], where T* is
the set of all strings. Due to space limit, we defer discussion
on formal languages and training details to the Appendix C.

3. On Operationalizing Memorization Notions

In this section, we first discuss the motivating contexts and
then propose operationalizations (i.e., ways to detect and
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measure) for three distinct notions of memorization, includ-
ing a new notion of contextual memorization. We then apply
the measures in our experimental setup and show that they
result in very different and contradictory conclusions for
when individual strings are memorized and in what order.
We also discuss their operational challenges in practice.

3.1. Notions and their Measures

(a) Recollection-based Memorization. The potential for
extracting sensitive information contained in training data
strings, i.e., privacy risks, motivates this notion of mem-
orization. Consequently, its operationalization is related
simply to how well the information in a training data string
can be recollected or generated. Throughout, we opera-
tionalize recollection performance using cross-entropy loss
of generating each token in the string (Mao et al., 2023)

Recollection-based memorization uses a predefined thresh-
old 7 to determine memorization. Let loss(M,,s) be
the recollection loss of string s by model M at epoch e,
where Loss(M,, s) decreases monotonically with training.
We say that s starts to be memorized at epoch e = e;*¢
when loss(M,,s) < 7. The memorization score is bi-
nary: mem™*°(s,e) = 1(loss(M.,s) < 7), where 1 is an
indicator function, where memorization score is 1 when
loss(M,, s) < 7, and 0 otherwise.

(b) Counterfactual Memorization. Counterfactual mem-
orization is inspired by differential privacy, with the goal
of finding rare memorized strings, as opposed to common
strings in recollection-based memorization (Zhang et al.,
2021). A string s is counterfactually memorized if the LLM
can accurately recollect s only when it is included in training.
Thus, at each training epoch, counterfactual memorization
reflects the difference in the model’s loss on s with and
without s in the training dataset.

Formally, counterfactual memorization
loss(M.(D),s) and loss(M.(D’),s), where
D' = D\ {s} excludes s from training.  Here,
loss(M.(D'),s) is the counterfactual test loss of s
at epoch e, and serves as a string and epoch depen-
dent threshold of memorization. We say that s starts
to be counterfactually memorized at epoch e = e&f
when loss(M.(D),s) < 1loss(M.(D’),s). For
e > e, the memorization score is mem®t (s, e, D) =
st {5 )t D)) ¢ [ )

compares

mem®® (s, e, D) is parametric on the dataset D. Hence, we
compute the expected counterfactual memorization of a
string by sampling muliple D’s from the same language L.
ment (s,e) £ Ep.r sepmem®(s, e, D))

Our formal language-based setup enables a more precise
estimation of counterfactual memorization by sampling D

independently of a known language L. In contrast, Zhang
etal. (2021) rely on subset sampling, where D C D is drawn
from a larger dataset D, due to the lack of access to an un-
derlying language. Moreover, unlike our approach, they do
not define per-epoch counterfactual memorization, instead
loosely associating it with the overall training algorithm.

(¢) Contextual Memorization. Contextual memorization
is inspired by learning theory, where memorization is at-
tributed to local overfitting (van den Burg & Williams, 2021).
In contextual memorization, we disentangle memorization
from contextual learning. A training string s is contextually
memorized if its recollection due to training exceeds the op-
timal contextual recollection of the string, which is the best
possible extent of recollecting s from its context by learning
the underlying language L without explicitly training on s.

The optimal contextual loss of a string is
mine- loss(M-(D'),s), which is the lowest coun-
terfactual test loss of s in all epochs. This is a
string dependent but epoch independent threshold
for contextual memorization.  Therefore, contextual
memorization starts at an epoch e = e when
loss(M.(D),s) < ming~loss(Mc-(D’),s). For
e > eS**, the memorization score is mem®**(s,e, D) =
min « loss(M.x (D’),s)—loss(M.(D),s)

mingx loss(Mx (D’),s) € [O’ 1] More-
over, the expected contextual memorization is
mem®t*(s,e) = Ep~r sepmem®™*(s,e,D)]. In the

following, we formally state the relation between contextual
and counterfactual memorization in Lemma 3.1.

Lemma 3.1. Contextual memorization is stricter than coun-
terfactual memorization. Contextual memorization of a
string starts at the same or in a later epoch in training than
counterfactual memorization, and the contextual memoriza-
tion score is a lower bound of the counterfactual memoriza-
tion score.

3.2. Operationalizations lead to Different Qutcomes

We demonstrate how different memorization measures can
be operationalized and how they may yield conflicting
conclusions for the same training dynamic (see Table 1
for a summary of characteristics of different measures).
To reflect a realistic setting, we use a low entropy lan-
guage and examine how three strings {sg, s1, s2} with de-
creasing absolute frequency (i.e., number of occurrences),
freq(sg) > freq(s1) > freq(sz), are memorized. For
each s;, we train a model (e.g., Mistral-7B) on a dataset
D = D' w {5} where the multiset D’ is sampled
from language L without including s;,7 = {0,1,2}. A
separate model trained only on D’ is used for computing
contextual and counterfactual memorization. Each experi-
ment is repeated three times with independent samples of
D’ ~ L to assess robustness. We discuss the findings of
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Figure 2: Start of memorization (vertical dotted line) of three strings sg, s1, and s, of decreasing frequency from Lo (RQ1),
whereas Figure 10 shows respective memorization scores (RQ2). In Figure 2a, recollection-based memorization starts
when loss is below the predetermined threshold 7 = 0.2. In Figure 2b, counterfactual memorization starts when training
loss deviates from counterfactual test loss of s; (dotted line) when s; is excluded from training. In Figure 2c, contextual
memorization starts when training loss of s; is below the string-specific optimal contextual loss, which is the lowest test loss
of s; in Figure 2b. Herein, the optimal contextual loss of all strings in L is close to the mid-frequent string s;. Importantly,
different measures are shown to disagree on the start and order of memorization.

RQ1 below and defer discussion of RQ2 to the Appendix D.

Recollection-based measures are strongly correlated
with occurrence frequency of strings: Greater the fre-
quency, earlier the memorization. In Figure 2a, the
most frequent string sg is memorized at the earliest epoch
(€50 = 6) according to recollection-based memorization,
followed by less frequent strings (e5°¢ = 10, €5 = 12),
i.e., the order of memorization is sg > s1 > ss. This occurs
due to the fixed loss threshold used for memorization, where
more frequent strings tend to exceed the threshold earlier —
highlighting the correlation between string frequency and

the order of recollection-based memorization.

Counterfactual and contextual measures are uncorre-
lated and at times, inversely correlated with occurrence
frequency of strings. In Figures 2b and 2c, the order of
counterfactual and contextual memorization does not cor-
relate with string frequency (s2 > s; > sg). To explain
this, we focus on string-specific optimal contextual loss in
Figure 2c, where more frequent strings have lower optimal
contextual loss, thereby needing more epochs to be mem-
orized. While the presented result is an artifact of the lan-
guage — we observe a minor exception in another language
(Figure 11) — the important takeaway is that contextual (and
counterfactual) memorization allows for naturally finding
per-string threshold for memorization, avoiding the error of
manually setting an ‘one for all’ non-adaptive memoriza-
tion threshold in the recollection-based memorization. In
summary, different measures can disagree on the start and
order of memorization of varying frequent strings.

Contextual memorization is a stricter measure, i.e., ap-
plies a higher recollection threshold (or lower loss thresh-
old), than counterfactual memorization. Put differently,
counterfactual memorization always precedes contex-
tual memorization, and often overestimates memoriza-
tion. In Figure 2b and 2c, while the start of contextual

and counterfactual memorization differ, there is a consistent
pattern: counterfactual memorization of a string starts no
later than the start of contextual memorization. In addition,
counterfactual memorization often overestimates contextual
memorization (see Figure 10). Both observations empiri-
cally support Lemma 3.1.

3.3. Challenges with Operationalizations

Information Requirement Challenges. Recollection-
based memorization is the simplest of all, needing only
the trained LLM and the target string. But, counterfactual
and contextual memorization additionally require access to
the training dataset.

Computational Challenges. Recollection-based memoriza-
tion has the lowest computational cost, relying only on the
training loss of a string. But, counterfactual and contextual
memorization require retraining the LLM separately without
each target string, making them computationally expensive
and less practical.

4. Conclusions

We study the implications of three memorization measures:
recollection-based, counterfactual, and our proposed contex-
tual memorization. Recollection-based measures are error-
prone due to arbitrarily chosen thresholds, while contextual
and counterfactual measures define thresholds more natu-
rally based on a string’s contextual predictability — with
contextual memorization serving as the stricter criterion.
We establish that different memorization measures vary in
both the information they require for operationalization and
the conclusions they yield — even under the same training dy-
namic. A nuanced understanding of memorization measures
is therefore essential before applying them in practice.
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Table 1: Characteristics of memorization measures.

Memorization Memorization Ease of Strictness of
Measure Motivation Threshold Operationalization Measure
Recollection Disclosing private information Manual Easy Variable
Counterfactual Differential privacy Adaptive Hard Medium
Contextual (ours) Local over-fitting Adaptive Hard High

A. Extended Related Work

Memorization in LLMs is an active area of research, from the perspective of privacy and security risks (Carlini et al., 2021;
Huang et al., 2022; Kim et al., 2023; Jagielski et al., 2022), unintended form of learning due to local over-fitting (van den
Burg & Williams, 2021), copyright concerns related to verbatim reproduction (Bender et al., 2021; Henderson et al.,
2023; Mueller et al., 2024; Freeman et al., 2024), etc. As a natural next step, multiple measures of memorization are
proposed to detect and quantify memorization. Among these measures, majority belong to the category of recollection-based
memorization (Schwarzschild et al., 2024; Biderman et al., 2024), such as prefect memorization (Kandpal et al., 2022),
verbatim or exact memorization (Carlini et al., 2021; 2019; Tirumala et al., 2022; Mireshghallah et al., 2022), approximate
memorization (Ippolito et al., 2022; Peng et al., 2023; Duan et al., 2024), entity memorization (Zhou et al., 2024), etc. For
an extended taxonomy of memorization measures, we refer to a recent survey paper (Satvaty et al., 2024). Regardless of how
these measures are operationalized, a common trait is that the recollection ability of an LLM given a training string dictates
its extent of memorization. For example, Tirumala et al. (2022) consider training accuracy as the proxy of memorization:
given a training string as a prompt, an LLM memorizes it if it recollects the next token in the string correctly. Carlini et al.
(2022) propose a relatively stringent measure by imposing an exact recollection of next 50 tokens. Therefore, a critical
design choice an experimenter makes is to set the threshold on recollection to declare a string as memorized — the choice has
consequences on the interpretation of memorization, as we study in this paper.

In a related line of work, Zhang et al. (2021) define counterfactual memorization as the change in a model’s generative
performance when a string is included in training versus excluded (Pappu et al., 2024; Feldman & Zhang, 2020). This
approach specifically highlights rare strings, which tend to cause larger performance shifts and are often missed by
recollection-based memorization measures. By introducing contextual memorization, we argue that all strings — regardless
of frequency — can be recollected to some extent based on their context (Haviv et al., 2022; Wang et al., 2024; Fu et al., 2024;
Chen et al., 2025; Speicher et al.; Dong et al., 2024; McCoy et al., 2023). We define memorization as occurring only when a
string’s training-time recollection exceeds its optimal contextual recollection threshold, making contextual memorization a
stricter criterion than counterfactual memorization

Despite the abundance of memorization measures, their potentially conflicting implications remain underexplored — we aim
to address this research gap.

B. Additional Discussion on Memorization Measures

Lemma 3.1. Contextual memorization is stricter than counterfactual memorization. Contextual memorization of a string
starts at the same or in a later epoch in training than counterfactual memorization, and the contextual memorization score is
a lower bound of the counterfactual memorization score.

Proof. We prove by considering loss as the metric of recollection. We assume that at any epoch, the training loss of a string
is not higher than the counterfactual test loss of the same string when excluding the string from training, which is a feasible
assumption in practice.

For a string s, let the optimal contextual loss be min,« loss(M,-(D’), s), which is the lowest counterfactual test loss in all
epochs.

Contextual memorization starts at an epoch eg** when loss(Mee= (D), s) < ming- loss(M,-(D'), s), i.e., the training

s
loss of s is lower than the optimal contextual loss of the string. For an epoch e < eS** earlier than the start of contextual

memorization, loss(M, (D), s) > mine« loss(M.+(D’), s).

Counterfactual memorization starts at an epoch eS* when loss(Mee (D), s) < loss(Mee(D'), s), i.e., the training loss of
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s is lower than the counterfactual test loss at the same epoch. For an epoch e < €S earlier than the start of counterfactual
memorization, training loss of s is equal to the counterfactual test loss, loss(M.(D), s) = loss(M.(D’), s). Because,
loss(M.(D), s) < loss(M.(D'), s) for any training epoch €', according to our assumption.

Let contextual memorization start earlier than counterfactual memorization, i.e., eS*™* = e¢f — 1.

loss(Mees_1(D),s) < minloss(M.-(D'),s)
Since, min loss(M,«(D'),s) < loss(Mx_1(D’), s)
= g
=loss(My_1,s) < loss(Megf_l(D/), s)

But loss(Mees—1(D), s) = Lloss(Mce_1(D"), s), which is a contradiction. Therefore, contextual memorization cannot
start earlier than counterfactual memorization.

On the other hand, contextual memorization can start later or in the same epoch as counterfactual memorization, since for an
epoch e > e,

loss(Mc(D),s) > minloss(M-(D'),s) and loss(Mc(D),s) < loss(M.(D’),s)

counterfactual memorization starts

contextual memorization does not start

Furthermore, the counterfactual memorization score is no less than the contextual memorization score, since at any epoch
e > max(e<, eS¥), i.e., after both memorization starts, mine« Loss(Me«(D’),s) < loss(M.(D'), s).

s s

ming« loss(M«(D'), s) — loss(M.(D), s) < loss(M.(D'),s) — loss(M.(D), s)
ming- loss(Me«(D'), s) - loss(M.(D'),s)

contextual memorization score counterfactual memorization score

Therefore, counterfactual memorization is likely to overestimate memorization than contextual memorization, while
reporting memorization at an earlier epoch than contextual memorization.

O

Efficient Computation of Counterfactual and Contextual Memorization. Both measures require retraining to compute
counterfactual loss, followed by optimal contextual loss. We propose an approximation that avoids retraining. If the
occurrence frequency of both training and test strings are known in a training dynamic, which is the case of a formal
language, we find a test string as similarly occurring to the training string, and use its test loss as counterfactual loss and the
lowest test loss as the optimal contextual loss. The hypothesis is that similarly occurring strings in a language tend to yield
similar losses from the LLM.

C. Experimental Setup

We experiment with 18 open-source LLMs from 6 families, such as Mistral (Jiang et al., 2023), Llama (Dubey et al., 2024),
Qwen (Yang et al., 2024), Gemma (Team et al., 2024), Pythia (Biderman et al., 2023), and Opt (Zhang et al., 2022), ranging
from 0.5B to 13B parameters. All reported results are averaged over three experimental runs.

Each training (specifically, fine-tuning) is performed for 50 epochs with a batch size of 8 and a linear learning rate scheduler
with a warm-up ratio of 0.05. We fix the learning rate for Qwen, Gemma, and Llama-3 families as 5 x 10~°, Mistral, Opt,
and Llama-2 families as 5 x 107, and Pythia family as 10~°. We consider training dataset sizes {16, 64,256, 1024} and
evaluate on 1024 test strings. In each training, we find the epoch of best learning according to lowest cross-entropy loss on
the test strings and report respective weighted memorization by different measures.

While several prior studies have adopted formal languages in LLMs, their goals differed from ours (Borenstein et al., 2024;
Akyiirek et al., 2024; Jumelet & Zuidema, 2023; Papadimitriou & Jurafsky, 2023; White & Cotterell, 2021; Hopkins, 2022;
Allen-Zhu & Li, 2023; Chi et al., 2023; Murty et al., 2022; Liu et al., 2022; Shi et al., 2022; Bhattamishra et al., 2020;

9



Rethinking Memorization Measures in LLMs

S — A16 [1]
A16 — A15 A14 A13 [0.50]
A16 — A13 A15 A14 [0.50]
A13 — Al11 A12 [0.50]
A13 — A12 A11 [0.50]
Al4 — A11 A10 A12 [0.50]
Al4 — A10 A11 A12 [0.50]
A15 — A12 A11 A10 [0.50]
|

A15 — A11 A12 A10 [0.50
A10 — A7 A9 A8 [0.50]
A10 — A9 A8 A7 [0.50]
A1l — A8 AT A9 [0.50]
A1l — A7 A8 A9 [0.50]
[0.50]
[0.50]

0.5
Al12 — A8 A9 AT [0.50
Al12 — A9 AT A8 [0.50

A7 = 31 2[0.50]
AT —1231[0.50
A8 — 654 [0.50

S — A16 [1]
A16 — A15 A14 A13 [0.95]
A16 — A13 A15 A14[0.05]
A13 — A11 A12[0.95]
A13 — A12 A11 [0.05]
Al4 — A11 A10 A12 [0.95]
Al4 — A10 A11 A12 [0.05]
A15 — A12 A1l A10 [0.95]
]

A15 — A1l A12 A10 [0.05
A10 — AT A9 A8 [0.95]
A10 — A9 A8 AT [0.05]
A1l — A8 A7 A9 [0.95]
A1l — AT A8 A9 [0.05]
A12 — A8 A9 AT [0.95]
A12 — A9 AT A8 [0.05]
A7 =31 2[0.95]

A7 —1231[0.05
A8 — 6 54[0.95

[0.50] [0.05]
410.50] [0.95]
A8 — 645 0.50] A8 — 64 5 [0.05]
[0.50] [0.95]
[0.50] [0.05]

0.0
A9 —987[0.50 A9 — 9871095
A9 —879]0.50 A9 — 8791]0.05

Figure 3: Production rules of G; (left) and G5 (right). Compared to Gi1, the grammar G2 generates more skewed distribution
(or lower entropy) strings, since one out of two production rules for each non-terminal is selected with higher probability.

Merrill, 2023; Strobl et al., 2023; Hahn, 2020; Delétang et al., 2022; Hahn & Rofin, 2024; Cotterell et al., 2018; Mielke
et al., 2019). Below, we provide details of the formal languages used in our experiments, along with their formal definitions.
Intuitively, we carefully design languages to show the robustness of our results across changing the entropy of the langauge
and token types of the language.

Formal Languages and Grammars Throughout our experiments, we provide the LLM strings sampled from a proba-
bilistic formal language. Underneath, a probabilistic formal language is represented by a probabilistic formal grammars,
or simply grammars (Collins, 2013). Specifically, a grammar consists of two sets of symbols called the non-terminals
and rerminals, a set of rules to rewrite strings over these symbols that contain at least one nonterminal — also called the
production rules, and a probability distribution over the production rules. Formally, a probabilistic formal grammar, is
defined as a quintuple.

G=(N,T,R,S,P)

where N is the set of non-terminals, T is the set of terminals (equivalently, tokens), R is the set of production rules, S € N
is the start non-terminal, and P is the set of probabilities on production rules.

Formal languages are divided into well-known classes based on the complexity of the language membership problem, i.e.,
the complexity of the grammars needed to generate them (Chomsky, 1956). In this paper, we use one class of grammars,
namely, hierarchical probabilistic context-free grammars (HPCFGs) (Allen-Zhu & Li, 2023). Specifically, our experiments
are based on teaching LLMs languages represented by HPCFGs. We use HPCFGs because they are simple syntactically and
can represent languages that are structurally similar to natural languages (Allen-Zhu & Li, 2023; Shi et al., 2022).
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S — S5 1]

S5 — B4 C1y E4T1, [0.25]
S5 — B4 Cly E4 T15 [0.25]
S5 — B4 C'ly E4A T13 [0.25]
S5 — B4 C14 B4 T14 [0.25]
B4 — B3[0.3333)

B4 — B3 B3 B3 [0.3333]
B4 — B3 B3 [0.3333]

B3 — B2[0.3333)

B3 — B2[0.3333)

B3 — B2 B2 [0.3333]

B2 — B1 [0.3333]

B2 — B1[0.3333)

B2 — B1 B1 B1[0.3333]
B1 — 29 3[0.3333]

B1 — 961 [0.3333]

B1 — 186 [0.3333]

E4 — E3[0.3333]

E4 — E3 E3[0.3333]

E4 — E3 E3 E3[0.3333]
E3 — E2[0.3333]

E3 — E2 E2[0.3333)

E3 — E2[0.3333]

E2 — E1 E1[0.3333]

E2 — F1[0.3333]

E2 — E1 E1 E1[0.3333]
E1—5659][0.3333]
E1—1866[0.3333]
E1—1515][0.3333]

T1, — 1 [1]
T1, — 2 [1]
T1s — 3[1]
T14 — 4 1]
Cly — 5[1]
Cly — 6 [1]
Cls — 7[1]
Cly — 81
Cls — 9 [1]

S — S5 1]

S5 — B4 C1, B4 T1; [0.25]
S5 — B4 Cly E4T15 [0.25]
S5 — B4 Clg E4 T1s [0.25]
S5 — B4 C1y F4 T1, [0.25]
B4 — B3[0.3333]

B4 — B3 B3 B3 [0.3333]
B4 — B3 B3 [0.3333]

B3 — B2[0.3333]

B3 — B2[0.3333]

B3 — B2 B2 [0.3333]

B2 — B1 [0.3333]

B2 — B1[0.3333]

B2 — B1 B1 B1 [0.3333)
B1 — 29 310.95]

B1 — 961 [0.025]

B1 — 186 [0.025]

E4 — E3[0.3333]

E4 — E3 E31[0.3333]

E4 — E3 E3 E3[0.3333]
E3 — F2[0.3333]

E3 — E2 E2[0.3333]

E3 — E2[0.3333]

E2 — E1 E1[0.3333]

E2 — F1[0.3333]

E2 — E1 E1 E1[0.3333]
E1—56509[0.95]

E1— 1866 [0.025]
E1—1515[0.025]

T1, — 1 1]
T1y — 2 [1]
T13 — 3 [1]
T1, — 4 1]
Cl; — 5 1)
Cly — 6 [1]
Cls — 711]
Cly — 811
Cls = 9[1]

Figure 4: Production rules of G5 (left) and G4 (right). Compared to G5, the grammar G4 generates more skewed distribution
(or lower entropy) of strings, since one out of three production rules of non-terminal B1 and F1 is selected with higher

probability.
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S — S5 (1]

S5 — B4 C1, F4 T1, [0.25]
S5 — B4 Cly B4 T1, [0.25]
S5 — B4 Cl3 F4 T13 [0.25]
S5 — B4 C1y F4 T14 [0.25]
B4 — B3[0.3333]

B4 — B3 B3 B3[0.3333]
B4 — B3 B3 [0.3333)

B3 — B2 [0.3333]

B3 — B2[0.3333]

B3 — B2 B2 [0.3333)

B2 — B1[0.3333]

B2 — B1[0.3333]

B2 — B1 B1 B1 [0.3333]

S — A16 [1]

A16 — A15 A13 [0.50]

A16 — A13 A15 A14 [0.50]

A13 — A1l A12 [0.50]

A13 — A12 Al1 [0.50]
[
[
[

Al4 — Al11 A10 A12 [0.50) B1 — 29 3[0.3333]
Al4 — A10 A1l A12 [0.50] B1—961[0.3333
Al5 — A12 A11 A10 [0.50] Bl — 186 2[0.3333]
Al5 — A1l A12 A10 [0.50)

E4 — B3 [0.3333]

E4 — E3 E3[0.3333)
E4 — E3 E3 E3[0.3333]
E3 — E2[0.3333]

E3 — E2 E2[0.3333)
E3 — E£2[0.3333]

E2 — E1 E1[0.3333)

A10 — AT A9 A8 [0.50]
A10 — A9 A8 A7 [0.50]
A1l — A8 AT A9 [0.50]
ALl — AT A8 A9 [0.50]
A12 — A8 A9 A7 [0.50]
A12 — A9 AT A8 [0.50]

A 110.
A; . ? 2 L,O (5)05])0 E2 — E1[0.3333]

- o E2 — F1 E1 E1 [0.3333]
A8 = 6 5 [0.50]

E1 -5 6[0.3333]
E1— 1866 [0.3333]
E1—151559][0.3333]
T1; — 1[1]
T1y — 2 [1]
T1s — 3 [1]
T1y — 4 [1]
Cly — 5 1)
[1]
1]
1]
[1]

A8 — 6 4 5 [0.50]
A9 — 987 [0.50]
A9 — 8 7 [0.50]

Cly =61
Clys =71
Cly — 81
Cls; — 91

Figure 5: Production rules of (G5 (left) and G (right). These grammars are adapted from (7 and ('3 respectively, by
allowing non-uniform lengths of tokens in the lowest level production rules.
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S — A16 [1]

A16 — A15 A13 [0.50]

A16 — A13 A15 A14[0.50]

A13 — A11 A12 [0.50]

A13 — A12 A11 [0.50]
[
[
[

Al4 — Al11 A10 A12 [0.50]
Al4 — A10 A11 A12 [0.50]
Al15 — A12 A11 A10 [0.50]
A15 — A11 A12 A10 [0.50]

A10 — AT A9 AS [0.50]
A10 — A9 A8 AT [0.50]
A11 = A8 AT A9 [0.50]
A1l — AT A8 A9 [0.50]
A12 -5 A8 A9 AT [0.50]
A12 = A9 AT A8 [0.50]
AT = ¢ a [0.50]

A7 = a b ¢ [0.50]

A8 = ¢ [0.50]

A8 — [ d e [0.50]

A9 — i h ¢ [0.50]

A9 — h g [0.50]

S — S5 [1]

S5 — BAC1, E4T1, [0.25]
S5 — BA C1y E4 T1, [0.25]
S5 — BA C'l3 E4 Tl [0.25]
S5 — BA C'14 E4 T1, [0.25]
B4 — B3 [0.3333]

B4 — B3 B3 B3 [0.3333]
B4 — B3 B3 [0.3333)]

B3 — B2 [0.3333]

B3 — B2 [0.3333]

B3 — B2 B2 [0.3333]

B2 - B1[0.3333]

B2 — B1[0.3333]

B2 — B1 B1 B1 [0.3333]
Bl = bic[0.3333]

Bl =i f a0.3333]

Bl —ah fb0.3333]

B4 — E3[0.3333]

E4 — E3 E3[0.3333]

E4 - E3 E3 E3[0.3333]
B3 — E2[0.3333]

E3 — B2 E2[0.3333]

E3 — E2[0.3333]

E2 - E1 E1[0.3333]

E2 — E10.3333]

E2 — E1 E1 E1[0.3333]
El = e f0.3333]

El s ah f f[0.3333]
El—=aeaeeil0.3333

Figure 6: Production rules of GG7 (left) and Gy (right). These grammars are adapted from G5 and G respectively, by

replacing numerical tokens with Latin character tokens.
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Figure 7: Length distribution of considered probabilistic languages, based on 10000 sampled strings per language.

Description of Grammars and Identified Languages. In our experiments, we consider two generic structure for the
considered grammars, one adapted from (Allen-Zhu & Li, 2023), namely G1, G2, G5, G7, and another is proposed by us,
namely G3, G4, GG, Gg.

In the first generic structure, each grammar has N = {5, A7, A8,..., A16} and T = {1,2,3,...,9}. The grammar has
four levels of hierarchy: the non-terminals from top to bottom levels are { A16}, { A13, A14, A15}, { A10, A11, A12}, and
{A7, A8, A9}, followed by terminals {1,2,3,...,9}. Each non-terminal (except the start non-terminal) has two expansion
rules, consisting of non-terminals from the immediate lower level. Further, the expansion rules are probabilistic, where the
sum of probabilities of all expansion rules from a given non-terminal is 1.

The second generic structure is inspired by bridging two HPCFGs together, starting from B4 and /4 at level 4. The two
sub-grammars are connected by non-terminal C1;; and E4 ends with T'1;. The goal is to generate strings containing
long range dependencies: how the first sub-grammar expansion ends determines how the overall string ends by utilizing
non-terminals C'1; and 1'1;.

In all cases, G; produces a probabilistic context free language L;. Figure 7 denotes the length distribution of different
languages, and Figure 8 demonstrates how hierarchical non-terminals are applied in different positions in the representative
strings.

Sampling Strings from a Formal Language. Given a language L generated by a HPCFG, we first need to obtain training
samples, i.e., set of i.i.d. samples of strings in-language L. To sample a string from the language, we start from a special
string in the grammar containing a single, distinguished nonterminal called the “start” or “root” symbol, and apply the
production rules to rewrite the string repeatedly. If several rules can be used to rewrite the string at any stage, we sample one
such rule from the probability distribution over the rules and apply it. We stop when we obtain a string containing terminals
only. This string is a sample drawn from the language. We can repeat this process to draw any number of i.i.d. samples from
the language.
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Figure 8: Representative strings from different languages, annotated with non-terminals applied in different positions by the
respective hierarchical grammar.
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Figure 9: Start of memorization of selected strings in Language Lo.
—8) — 81 — 82 — 8) — 81 — 82 — 8 — 8 — 82
1 emmE 175 7 ) - s
5 08 So08 i i 5 08
N o6- Bo6 | 8 os-
S 0.4- S 04- S 04-
5o 5oz 5 o
2 02- 202 2 02-
0- i ; ; 01 : i | i 0- iy ; ;
0 10 20 30 0 10 20 30 0 10 20 30
Epoch Epoch Epoch
(a) Recollection (0.2) (b) Counterfactual (c) Contextual

Figure 10: Memorization score of strings in language Lo, respective to Figure 2. In different strings, memorization score
usually increases with epochs, with contextual memorization providing a lower bound of counterfactual memorization.

D. Additional Experimental Results

Memorization Scores of Individual Strings. In Figure 10, we demonstrate the memorization scores of strings, corre-
sponding to Figure 2, across multiple memorization measures. In all measures, the memorization score usually increases
with epochs, and there is no substantial difference among strings of varying frequency — different measures agree on the
memorization score. Finally, as we theoretically demonstrate, contextual memorization score provides a lower bound of
counterfactual memorization score.
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Figure 11: Start of memorization of selected strings in language L, (specifically, a modified version of L4 as explained
below). The observation is consistent with language Lo, as shown in figure 2, where frequency of strings correlates with the
start of recollection-based memorization. Similarly, frequency often inversely correlates with counterfactual and contextual
memorization, with an exception that both s; and s5 are memorized at the same epoch in the counterfactual memorization.
Thus, regardless of whether correlation or inverse correlation exists strongly between string frequency and the order of
memorization, a more consistent observation is that memorization measures disagree with each other when applied to the
same training dynamic on identical strings.

In this experiment, to better differentiate the strings sg,s;,s2 based on frequency, we modify L4 to be even
more skewed. We apply high probability to one random production rule in each non-terminal in all levels, beyond the lowest
level non-terminals in L4, as shown in Figure 4.
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Figure 12: Memorization score of strings in language L.
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Figure 13: Contextual memorization is a stricter measure than counterfactual memorization. Red horizontal dash-dot line is
the optimal contextual loss. Contextual memorization starts at the same or in a later epoch (red vertical dot line) than the
start of counterfactual memorization (blue vertical dot line). The contextual memorization score (gray arrow) is a lower
bound of counterfactual memorization score, intuitively by comparing the arrow-length.
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