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Abstract

We consider the hybrid reinforcement learning
setting where the agent has access to both of-
fline data and online interactive access. While
RL research typically assumes offline data con-
tains complete action, reward and transition infor-
mation, datasets with only state information (also
known as observation-only datasets) are more gen-
eral, abundant and practical. This motivates our
study of the hybrid RL with observation-only of-
fline dataset framework. While the task of com-
peting with the best policy “covered” by the of-
fline data can be solved if a reset model of the en-
vironment is provided (i.e., one that can be reset to
any state), we show evidence of hardness of com-
peting when only given the weaker trace model
(i.e., one can only reset to the initial states and
must produce full traces through the environment),
without further assumption of admissibility of the
offline data. Under the admissibility assumptions–
that the offline data could actually be produced
by the policy class we consider– we propose the
first algorithm in the trace model setting that prov-
ably matches the performance of algorithms that
leverage a reset model. We also perform proof-of-
concept experiments that suggest the effectiveness
of our algorithm in practice.

1. Introduction
Recently, explosive growth in the availability of offline
data for interactive decision making problems (Dasari et al.,
2019; Qin et al., 2022; Mathieu et al., 2023; Padalkar et al.,
2023), combined with an ability to interact with the en-
vironment for feedback, led to the advancement of hy-
brid Reinforcement Learning (hybrid RL) (Ross & Bagnell,
2012; Song et al., 2022). This setup blends the exploratory
strengths of offline data with the ability to adapt the data
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distribution using online interaction with the environment.
Previously, RL research has tended to focus on either purely
offline or online regimes, each with its inherent challenges.
Offline learning, while benefiting from the exploration and
potential expert “advice” implicit in a large offline dataset,
often suffers from instability due to distribution shifts (Wang
et al., 2021). Online RL benefits from feedback from the
environment but at the cost of increased complexity, both
statistically and computationally (Du et al., 2020; Kane
et al., 2022), due to the requirement of global exploration.
Hybrid RL benefits from the synergy of combining both data
sources. Earlier studies in this domain have predominantly
utilized canonical offline datasets (Levine et al., 2020), with
extensive information of state, action, reward, and subse-
quent state. This comprehensive data approach has proven
beneficial, highlighting the statistical and computational su-
periority of hybrid RL (Song et al., 2022; Hu et al., 2023),
and its robustness against distribution shift (Wagenmaker &
Pacchiano, 2023; Ren et al., 2023).

However, the necessity for expansive datasets in such a
rich format poses a significant barrier. In practice, most
large-scale datasets exist in the format of videos (Grauman
et al., 2022; 2023) (imagine using video demonstrations
from Youtube). The requirement of annotated actions in
the dataset is restrictive because actions do not generalize
between different modalities: one should not expect
to naively apply human actions to robot actuators, and
different robots have different action spaces as well. The
approach of collecting different actions for different
modalities with human labors (Padalkar et al., 2023) is
challenging to scale as the observation-only datasets.

This motivates a more general setting with a weaker
offline data requirement without losing the statistical and
computational benefit of hybrid RL. In this work, we
initiate the study of Hybrid RL from (Offline) Observation
Alone (HYRLO) framework where the offline data only
contains state1 information. Previous studies that fall into
the HYRLO framework can be generally characterized in
two ways: the first leverages the offline state data to perform
representation learning (i.e., requires a separate pretraining
stage) (Nair et al., 2018; Ma et al., 2022b; Ghosh et al.,
2023), and then to use the learned feature map to speed up

1We will use the terms observation and state interchangeably.
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Table 1. Comparisons of hybrid RL frameworks and algorithms. We compare the sample complexity, problem setting and assumptions
required by each work. Our setting assumes weaker requirement on the offline data and model access (defined in Section 3), while
requiring the admissibility assumption (Assumption 5.1) on the offline data. We show that without the admissibility assumption, the
problem might exhibit exponential sample complexity separation between the trace model and reset model in Proposition 5.1 and
Proposition 5.2. Previous hybrid RL with trace model analysis (Song et al., 2022) requires explicit structural assumptions on the MDP and
value function (Du et al., 2021) (characterized as the additional d parameter in their sample complexity result), while our analysis does not
require such assumptions. Finally, we consider value-based learning, so Q∗ realizability denotes the optimal Q-function is contained in
the function class, while Qπ realizability requires the function class contains the Q-function for all deterministic policies (for example,
all AS many policies in tabular MDPs). Finally, we note that all methods only require single policy coverage. The original PSDPpaper
(Bagnell et al., 2003) did not perform the analysis under single policy coverage, and the first PSDPwith single policy coverage analysis
can be found in Bagnell (2004); Scherrer (2014).

Sample
Complexity

Offline
Data Admissibility Model

Bellman
Complete Realizability

HYQ (Song et al., 2022) C2
beH

5Ad log(|F|/δ)
ϵ2 Canonical No Trace Yes Q∗

PSDP (Bagnell et al., 2003)
C2

pdH
5A log(|F|/δ)

ϵ2 State-only No Reset No Qπ

This work
C2

pdH
5A log(|F||Π|/δ)

ϵ2 State-only
Yes (Hardness
examples if No)

Trace Yes Qπ

the downstream online RL training. However, we show that
the state-only offline dataset, although less informative than
the canonical offline data, still provides a rich signal for
decision-making and not only representation learning. The
second previous approach relies on a reset model (Kakade
& Langford, 2002; Bagnell et al., 2003), which only holds
true if a simulator is available and thus does not address
many common real-world scenarios. In this work, we show
that we can solve HYRLO without reset model access– i.e.,
with a trace model that only allows resets to the initial state.
Our approach, in contrast with earlier methods, requires a
notion of admissibility (Chen & Jiang, 2019) of the offline
data which formalizes the idea that the offline data should
have been generated by some policy or mixture of policies.
Indeed, HYRLO fills in a missing piece theoretically where
have neither complete data, as in between canonical hybrid
RL, and access only to a trace model, a much weaker and
more realistic access model for RL problems. We provide
a comparison overview in Table 1.

Contributions. We initiate a theoretical study of HYRLO
framework and provide the first provable algorithm for
HYRLO. Specifically, we introduce:

• Connections between reset model and trace model.
Given HYRLO can be solved efficiently when a reset
model is available (Bagnell et al., 2003), we extend
previous work with a reduction from the trace model to
the reset model setting via an admissibility condition
where the offline distribution is realizable by the policy
class. Further, we demonstrate evidence that suggests
statistical separation between trace model and reset
model if the admissibility condition is violated.

• Efficient algorithm. We provide the first provably

efficient algorithm for HYRLO with only trace model
access, FOrward Observation-matching BAckward Re-
inforcement Learning (FOOBAR). With the admissi-
bility assumption, FOOBAR requires the same order of
samples as the previous algorithms (Kakade & Lang-
ford, 2002; Bagnell et al., 2003) that demand a reset
model to compete with the best policy covered by the
offline distribution.

• General analysis. Our approach does not require the
strong explicit structural assumptions such as bilinear
rank (Du et al., 2021) on the MDP and value func-
tion that previous hybrid RL analysis demanded (Song
et al., 2022; Nakamoto et al., 2023). Relaxing this as-
sumption allows our algorithm and analysis to be more
general and applicable to a wider range of problems.
In addition, we identify situations where FOOBAR suc-
ceeds under inadmissible offline data, and provide al-
gorithms and analysis under stationary settings.

• Empirical evaluation. We perform experiments to
show the effectiveness of our algorithm on two chal-
lenging benchmarks: the rich-observation combination
lock (Misra et al., 2020) and high-dimensional robotics
manipulation tasks (Rajeswaran et al., 2017). We com-
pare with the state-of-the-art hybrid RL algorithms and
investigate the gap due to the more limited information
in the offline dataset.

2. Related Work
Hybrid RL. Hybrid RL defines the setting where the
agent has access to both offline data (usually generated by
policies with a mixture of qualities) (Levine et al., 2020)
and online interaction access. This learning framework
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has recently gained increasing interest due to its potential
for efficient learning and practical values (Ross & Bagnell,
2012; Nair et al., 2020; Xie et al., 2021b; Song et al.,
2022; Lee et al., 2022; Niu et al., 2022; Ball et al., 2023;
Nakamoto et al., 2023; Wagenmaker & Pacchiano, 2023; Li
et al., 2023b; Zhang et al., 2023a; Zhang & Zanette, 2023;
Vemula et al., 2023; Swamy et al., 2023; Zhou et al., 2023).
Previous works follow the standard offline RL setting where
the offline dataset contains the state, action, reward and next
state information, and they have shown the statistical and
computational benefit of the hybrid setting over pure online
or offline setting. In this work, we consider a more general
and challenging setting where the offline dataset only
contains the state information. Many previous works have
also considered this setting (Machado et al., 2017; Nair
et al., 2018; Schmeckpeper et al., 2020; Ma et al., 2022b;
Baker et al., 2022; Seo et al., 2022; Ghosh et al., 2023), but
the offline states are only used for representation learning
in a separate pertaining stage, not for decision making via
RL. In addition, most of the works assume that the offline
data consists of the state and next state pair collected from
the same transition. Instead of a heuristic application of the
offline observations, our work conducts the first theoretical
study in this setting that captures the minimal properties of
the offline distribution, and our proposed algorithm utilizes
the offline data for decision-making directly.

Learning from observation alone. Prior to the HYRLO
setting, learning from state-only data has also been consid-
ered in other interactive decision-making problems, such as
imitation learning and offline reinforcement learning. For
example, Imitation from observation alone setting (ILFO)
(Nair et al., 2017; Torabi et al., 2018; Sun et al., 2019; Smith
et al., 2019; Song et al., 2020; Zhu et al., 2020; Radosavovic
et al., 2021) considers learning from a dataset of expert
states, and with online interaction. If one does not have
online access, the offline counterpart is the offline imitation
learning setting, where the agent has access to two datasets:
one offline state-only dataset (which has a mixture of quali-
ties) and another expert state-only dataset (Kim et al., 2021;
Ma et al., 2022a; Yu et al., 2023; Pirotta et al., 2023). How-
ever, all these settings require explicitly labeled expert data,
while our setting only requires unlabeled offline data that
implicitly covers some good policy’s trajectory. Recently Li
et al. (2023a) removed the expert label requirement, but the
offline data is still required to contain additional action or
reward information.

RL with reset model. In the reset model setting, one as-
sumes the ability to reset the dynamics to any state. With a
reset model, the HYRLO problem can be solved using Pol-
icy Search by Dynamic Programming (PSDP) algorithm and
others that share a similar core idea (Bagnell et al., 2003;
Salimans & Chen, 2018; Uchendu et al., 2023). The reset

model has been shown to have other favorable properties
that contribute to overcoming the statistical hardness of the
more commonly available trace model setting (Amortila
et al., 2022; Weisz et al., 2021). On the empirical side,
Sharma et al. (2022) shows that if expert data is available,
one can learn to reset by training a policy that brings the
current policy to the expert state distribution after the roll-
out. In this paper, we also demonstrate the benefit of such
“reset policy”. The previous work requires a non-stationary
initial distribution for the reset policy due to the interleaving
learning between the final policy and the rest policy. Our
paper improves over the previous work by removing the
non-stationarity with learning a reset policy before the “pol-
icy optimization” stage. In addition, the previous work does
not apply to any non-reversible system, which restricts its
application to real-world problems.

3. Preliminaries
We consider finite horizon MDPsM = {S,A, H,R, P},
where H is the horizon, S is the state space with |S| = S,
A is the action space with |A| = A, R = {Rh : S × A →
[0, 1]}Hh=1 is the reward function, P = {Ph : S × A →
∆(S)}Hh=1 is the state transition distribution, and P0(∅)
is the initial state distribution. We denote the model M
as the trace model to distinguish it from the reset model
that we will introduce later. Given a (potentially nonsta-
tionary) policy π ∈ Π = {S → ∆(A)}Hh=1, define the
action-value Q-function of π at timestep h as Qπ

h(sh, ah) =

Eπ,P

[∑H
τ=h Rτ (sτ , aτ )

]
, and we define the optimal pol-

icy as π∗. We define the function class to estimate the Q
function as F : {Fh : S × A → [0, H]}Hh=1. We follow
the conventional notation dπh to denote either the state (or
state-action) occupancy measure induced by π at horizon h.

We study the hybrid RL setting (Song et al., 2022), where
the agent has online interaction access to the environment,
and in addition, has offline data set {Dh}Hh=1. In the canon-
ical hybrid RL setting, each dataset Dh contains tuples
{snh, anh, rnh , snh+1}Nn=1, where N is the size of the offline
dataset. The data in Dh is drawn from some distribution
µh, i.e., sn, an ∼ µh: for example, µh can be the visi-
tation distribution of some policy, and rnh = Rh(s

n
h, a

n
h),

snh+1 ∼ Ph(· | snh, anh). Here we consider the HYRLO
setting, where in the offline dataset we only have the single-
timestep state data. That is, the offline dataset has the form
Dh = {snh}Nn=1, where sh ∼ µh, and µh is some distribu-
tion over the states at timestep h.

Following the convention in hybrid RL, the learning goal
is to compete with the best policy covered by the offline
distribution. For the coverage notation, in the main text, we
consider the density ratio coverage for simplicity: given any
policy π, we define the density ratio coverage as Ccov(π) =

3



Hybrid Reinforcement Learning from Offline Observation Alone

minh∈[H]

∥∥∥ dπ
h

µh

∥∥∥
∞

, where the supremum norm is over states.
2

To measure the difference between distributions, we de-
fine the Integral Probability Metric (IPM) (Müller, 1997)
distance between two distributions P and Q:

IPMG(P,Q) = sup
g∈G

∣∣∣∣∫ g dP−
∫

g dQ
∣∣∣∣ ,

which is defined by the test function class G. For example,
when G is all bounded functions, the IPM recovers the Total
Variation (TV) distance, and we denote the TV distance as
∥ · ∥TV. When G is the set of all 1-Lipschitz functions, this
definition recovers the 1-Wasserstein distance.

We note the difference between the two different access
models for an MDP: we will denote the canonical trace
MDPs as we defined above as M, where one can only
reset at the initial state P0 and simulate traces τ =
{s1, a1, r1, s2, . . . , sH , aH , rH}, where s1 ∼ P0, ah ∼
πh(sh), rh = Rh(sh, ah), sh+1 ∼ Ph(sh, ah). We also
consider the reset access model with the ability to simu-
late a reward and transition from any state-action pair: at
any horizon h, for any s ∈ S, and any action a ∈ A,
we can query rh = Rh(sh, ah), and Ph to get a sample
sh+1 ∼ Ph(· | sh, ah). We denote this reset modelMreset.

For a more streamlined presentation, we will utilize the
concept of a partial policy which operates over a sequential
segment of time steps, specifically [l . . . r] ∈ [H]. This is
represented as Πl:r := {π :

⋃r
h=l S → ∆(A)}.

4. Algorithm
To provide an algorithm for HYRLO, in this section, we first
see how this problem is solved in the reset model setting.
Then we will derive a reduction from the trace model setting
to the reset model setting. The resulting algorithm thus will
be a two-phase algorithm: in the first phase, we run a careful
reduction to the reset model setting, and in the second phase,
we run the reset model algorithm to find the optimal policy.

4.1. Backward Algorithm: PSDP

Suppose we have a reset modelMreset, then as hinted above,
we can simply apply an existing algorithm: Policy Search by
Dynamic Programming (PSDP) (Bagnell et al., 2003). The
PSDP algorithm proceeds in a backward fashion: from the
last horizon H to the first horizon 1, at each horizon h, the
algorithm first samples states from the offline dataset: sh ∼
Dh, followed by sampling random action ah ∼ πunif , resets
Mreset to sh, ah, and samples sh+1 ∼ Ph(sh, ah). From

2We use the general density ratio coverage for simplicity of
presentation for the main text, a tighter coverage similar to (Song
et al., 2022) applies naturally but we defer it to Appendix E.

sh+1 the algorithm will roll out sh+1, ah+1, . . . , sH , aH ∼
πh+1:H (which are already learned in the previous hori-
zon). Now we have samples of the return information∑H

τ=h R(sτ , aτ ) for each sh, ah we can use cost-sensitive
classification to find the one-step optimal policy πh which
maximizes the returns following πh+1:H , the previous one-
step optimal policies. Here we provide a value-based version
of the PSDP algorithm in Algorithm 2.

Now with PSDP, as long as the offline distribution µ that
generates the offline dataset D covers some good policy’s
trajectory (for example, the density ratio coverage Ccov(π

∗)
is bounded), we will show in Section 5 that the returned
policy is close to optimal with enough online data.

4.2. Trace to Reset

However, in the HYRLO framework, we do not have the
reset modelMreset but the more realistic trace modelM.
What can we do in this case? It turns out that with the help
of the offline dataset, we can learn a policy πf that induces
a state distribution similar to µ. Then suppose that for each
timestep h, we have that ∥dπf

h − µh∥ is small, where ∥ · ∥
is some distance metric that we care about. Then to reset
to sh ∼ µh, we can instead roll in the policy πf to horizon
h, and we will get samples sh ∼ dπ

f

h (as if we are sampling
sh ∼ µh), and then we can proceed to run PSDP. Thus
we can build a reset model with πf . The new algorithm is
summarized in Algorithm 3. Note that the only change is in
lines 3 and 4. We remark that a similar idea of using PSDP
with a roll in policy has also been explored in previous work
(Mhammedi et al., 2023), where the roll in policy is trained
from reward-free exploration techniques. However, the goal
of reward-free exploration is to ensure optimality instead of
efficiency, since reward-free exploration has a similar lower
bound as regular reward-based online RL (Jin et al., 2020a).

4.3. Forward Algorithm: FAIL

The technical problem remaining is to learn a policy πf

that induces a state distribution close to µ. Inspired by
the idea of state-moment-matching in ILFO literature,
we can adapt one such algorithm, Forward Adversarial
Imitation Learning (FAIL) (Sun et al., 2019). FAIL learns
a sequence of policies π1:H from h = 1 to H in sequence.
At each timestep h, FAIL rolls in the previous policies
π1:h−1 and samples sh ∼ dπh .It then takes a random action
ah ∼ πunif and samples sh+1 ∼ Ph(sh, ah). With the
dataset {sh, ah, sh+1}, FAIL solves the following minmax
game by finding a one-step policy πh that minimizes the
IPM under discriminator class G, between π1:h and µh,
which we approximate the samples Dh:

min
πh∈Πh

max
g∈Gh

[
Esh∼dπ

h
g(sh)− Esh∼µh

g(sh)
]
,
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These can be estimated by the dataset collected online at
time step h:

min
πh∈Π

max
g∈Gh

 N∑
n=1

πh(a
n
h | snh)

N/A
g(snh+1)−

N ′∑
n=1

g(snh+1)

N ′

 .

To solve the minmax game, we can use the common pattern
of best response playing no-regret algorithm. We show
one way to solve this in Algorithm 5. At the high level, the
FAIL algorithm iteratively finds the solution of the minmax
problem in a forward way, ensuring the policy induces
similar state visitation distribution as the offline data on each
horizon. We present the pseudocode of FAIL in Algorithm 4.

4.4. Forward-backward Algorithm: FOOBAR

We are now ready to present the proposed algorithm,
FOward Observation-matching BAckward Reinforcement
learning (FOOBAR). We present the pseudocode in Algo-
rithm 1. In the forward phase, we run FAIL that outputs a
sequence of policies πf

1:H whose state visitation distribution
is close to the offline distribution µ. Care is needed here
because we have not defined the discriminator class we will
use for the forward phase. It turns out that if we arbitrarily
select the discriminator to be all bounded function, then a
polynomial dependency on the number of states is required
to imitate the offline distribution (see Theorem 3.2 of Sun
et al. (2019)), which is unfavorable given the fact that we
already have an offline state dataset to imitate so such de-
pendency should be avoidable in the case with a relatively
high-quality offline dataset (e.g., not a uniform distribution
over states). Indeed the dependency on the state is avoidable
by a careful construction of the discriminator class based on
the value function class that we use in the backward pass
(Eq. (1)). We provide the justification of such construction
in Appendix C.2. Then in the backward phase, we run PSDP-
trace Algorithm 3 with the roll-in policy πf

1:H . Algorithm 3
returns refined policies πb

1:H , which can compete with the
best policy covered by µ. It’s important to note that if the
offline dataset consists of both sub-optimal and high-quality
data, the refined policies πb

1:H can be dramatically better
than the initial policy πf

1:H learned by moment matching
that is used to simulate the reset model.

5. Analysis
In this section we provide the analysis of the proposed algo-
rithm. The overall proof strategy follows the intuition of the
algorithm itself: 1) we need a certain closeness guarantee
(Theorem 5.1) between the forward policy and the offline
distribution, and the major difficulty is to ensure that such
requirement is not too strong (which will result in a subop-
timal sample complexity, c.r. Section 4.4), but is sufficient
to 2) show the guarantee of the downstream learning of

Algorithm 1 FOward Observation-matching BAckward Re-
inforcement learning (FOOBAR)
require Offline dataset Doff, value function class F , policy

class Π.
1: Define the discriminator class G := {Gh}Hh=1:

// Discriminators take state as input while

Q-functions take state-action as input.

Gh =
{
max

a
f(·, a)− f(·, a′) | f ∈ Fh, a

′ ∈ A
}
.

(1)
2: πf

1:H ← Algorithm 4 with input
{
Doff,G,Π

}
.

3: πb
1:H ← Algorithm 3 with input

{
πf
1:H ,F

}
.

the backward policy (Theorem 5.2). We will start with an
essential assumption on a property of the offline distribution.

5.1. Admissibility

We follow the definition of admissibility from Chen & Jiang
(2019):

Assumption 5.1 (Admissibility). We assume the offline
distribution µ is admissible:

∃π ∈ Π, ∀h ∈ [H], ∀s, a ∈ S ×A, µh(s, a) = dπh(s, a).

Assumption 5.1 captures the situations where the offline
data is generated by a single (possibly stochastic) policy,
stitching policies (due to non-stationarity), or a mixture
of such policies (Chapter 13 in (Sutton & Barto, 2018)),
which is how most offline datasets are generated in practice.
Practically, this assumption might be violated by artificial
data filtering, data augmentation or other perturbation of
the offline data.

Next, we provide examples in which if Assumption 5.1 fails,
the problem is hard in trace model but remains easy with
reset model access (Kakade & Langford, 2002; Bagnell
et al., 2003):

Proposition 5.1. For any algorithm Alg, denote the dataset
collected by Alg as DAlg, and let D̂ denote the empirical
distribution of a dataset D. Then there exists an MDPM
with deterministic transition and a set of offline datasets
{D}, with arbitrary sample size |D| = N ≥ 2, collected
from the inadmissible offline distribution µ with constant

coverage: maxh

∥∥∥dπ∗
h

D̂h

∥∥∥
∞

= 2 such that, unless
∣∣DAlg

∣∣ =
Ω(AH), we have

max
D

∥∥∥D̂Alg
H − D̂H

∥∥∥
TV
≥ 1

2
.

However, there exists an algorithm Algreset that uses any of-
fline dataset D and reset modelMreset that returns optimal
policy π∗ with sample complexity O(A).
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The above statement is about the hardness of collecting a
dataset that matches the offline dataset: when the admissi-
bility assumption is violated, in the worst case we need to
collect a dataset that is exponentially large in the horizon;
otherwise, our dataset does not contain at least half of the
states in the offline dataset (at least half of which is expert
states), with probability 1 (recall that the construction is
within a deterministic MDP). In the next proposition, we
show another hardness result that has direct implications on
the performance of the learned policy.

Proposition 5.2. For any state distribution µh, ∀h ∈ [H],
let

πµ
h := argmin

πh∈Πh

∥dπh − µh∥TV ,

i.e., the policy that induces the closest state distribution
to the offline distribution in TV. Then there exists an
MDPM and inadmissible offline distribution µ, such that

maxh

∥∥∥dπ∗
h

µh

∥∥∥
∞

= 18, i.e., the offline distribution has a
constant coverage over the optimal policy but

max
h

∥∥∥∥dπ∗

h

dπ̃h

∥∥∥∥
∞

=∞, and max
h,sh

∥∥∥∥π∗
h(sh)

π̃h(sh)

∥∥∥∥
∞

=∞.

i.e., the policy that minimizes the TV distance to the offline
distribution does not cover some states from the optimal
policy’s trajectory, and the induced policy does not cover
some actions that the optimal policy takes.

A direct implication of Proposition 5.2 is that, if reward 1 is
assigned to the states that are not covered by the learned pol-
icy (or state only reachable from those states), and reward
is 0 otherwise, then the policy that best mimics the offline
distribution will have a constant gap to optimal policy, i.e.,
J(π∗) − J(πµ) = 1. Also, similar to Proposition 5.1, the
setup in Proposition 5.2 is not hard in the reset model set-
tings. These results suggest the potential for a separation
between trace and result model, but they are not equivalent
to an information-theoretical lower bound.

5.2. Performance Guarantee of the Forward Algorithm

Now we analyze Algorithm 4. We start with an assumption
that is a relaxation of Assumption 5.1, which is sufficient for
our analysis. Note that in the construction of the previous
hardness results, this relaxed assumption is still violated.

Assumption 5.2 (Admissibility in IPM.). There exists a
policy π such that, for all h ∈ [H], IPMGh

(dπh, µh) = 0,
where Gh is defined as in the Eq. (1).

Note that this assumption is weaker because G is a subset
of bounded functions, and Assumption 5.1 implies 0 TV
distance, which implies Assumption 5.2. Next, we intro-
duce the Bellman Completeness assumption, which is also

commonly made in ILFO (Sun et al., 2019) and hybrid RL
(Song et al., 2022; Nakamoto et al., 2023):

Assumption 5.3 (Completeness). For any h ∈ [H],
for any g ∈ Gh+1, there exists f ∈ Gh such that
f = Thg, where Th is the Bellman operator with re-
spect to the offline distribution at time h: Thg(sh) =
Eah∼µh(sh)Esh+1∼Ph(sh,ah)[g(sh+1)]. That is,

max
h

max
g∈Gh+1

min
f∈Gh

∥f − Thg∥∞ = 0.

Note that the previous two assumptions can both hold ap-
proximately, and here we assume that they hold exactly for
simplicity. Now we can state the performance guarantee
of the forward algorithm. The result is characterized in the
IPM between the learned policy and the offline distribution.

Theorem 5.1 (Guarantee of Algorithm 4). Assume Assump-
tions 5.2 and 5.3 hold. Suppose |Doff | = |Don| = N , then
with probability 1− δ, the returned policy πf satisfies that,
for any h ∈ [H],

IPMGh
(dπ

f

h , µh) ≤ hεfor(δ,N),

where εfor(δ,N) :=

8

√
2A log(2|Gh||Πh|/δ)

N
+

16A log(2|Gh||Πh|/δ)
N

+

√
A2

T
,

where T is the number of iterations in Algorithm 5.

This result indicates that if we have equally enough sam-
ples from both online and offline (which is one of the key
features of hybrid RL), and we perform enough iterations
of the minmax game, then we will have the guarantee that
the learned forward policy will be close to the offline dis-
tribution under any discriminator in G. Note that this result
does not imply that the learned policy is close to the offline
distribution in a stronger sense such as TV distance, and we
emphasize that such a stronger notion of closeness is not
necessary for learning a policy that can compare with the
best policy covered by the offline distribution.

5.3. Performance Guarantee of FOOBAR

With the guarantee of the forward algorithm, we can show
the performance guarantee of FOOBAR. Different from the
analysis of the forward algorithm, whose result is to com-
pare with the offline distribution, the final result of FOO-
BAR is to compare with the performance of other policies.
Therefore, following the convention common in hybrid RL
literature (Bagnell et al., 2003; Ross & Bagnell, 2012; Xie
et al., 2021b; Song et al., 2022), we state the performance
guarantee of FOOBAR with respect to any policy that is cov-
ered by the offline distribution, i.e., we can compare with
any policy πcomp with Ccov(π

comp) <∞.
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In addition to the above offline coverage condition, since our
algorithm involves function approximation (i.e., we useF to
estimate the value functions), we also require the following
standard realizability assumption:
Assumption 5.4 (Realizability). For any deterministic pol-
icy π, h ∈ [H], we have Qπ

h ∈ Fh.

Note that here we state the most general form of realizability
assumption for simplicity. In the proof (Appendix C.2), we
use a relaxed version where the realizability holds for a sub-
set of policies and states. We also assume the function class
|F| is finite 3. Now we are ready to present our main result:
Theorem 5.2. Suppose Assumption 5.2, Assumption 5.3
and Assumption 5.4 hold. Then with probability 1− δ, the
returned policy πb

1:H from Algorithm 1 with discriminator
constructed from Eq. (1), N for offline and forward sam-
ples, and Nback backward samples, satisfies that for any
comparator policy πcomp such that Ccov(π

comp) <∞,

V πcomp

− V πb

≤ ε,

when

H ·N for = O

(
C2

cov(π
comp)H5A log(|Fh||Πh|/δ)

ε2

)
and

H ·Nback = O

(
C2

cov(π
comp)H5A log(|Fh|/δ)

ε2

)
.

A few remarks are in order:
Remark 5.1 (Reduction from trace to reset). We can see
that the samples required for the forward algorithm and back-
ward algorithm are only different by a factor of log(|Π|). If
we consider a policy class with the same expressiveness as
the value function class (which is generally true in practice),
i.e., log(|F||Π|) ≈ 2 log(|F|), then our algorithm performs
a reduction from the trace model setting to the reset model
setting with constant overhead.
Remark 5.2 (Removing explicit structural assumptions).
Note that our result is not specific to tabular MDPs. In
fact, compared with previous hybrid RL (or online RL)
analysis (Song et al., 2022; Wagenmaker & Pacchiano,
2023; Nakamoto et al., 2023), our analysis is agnostic to the
structural complexity measure d (Jin et al., 2020b; Du et al.,
2021) of the MDPs and thus applies to any MDP with finite
action space. For example, in the tabular setting where
d = SA, our result has no explicit dependency on the num-
ber of states S, and recall in Proposition 5.1 we showed that
a polynomial dependency on the state space size (S = AH )
is difficult to avoid without the admissibility assumption.
Our result has a worse dependency on A but we conjecture
this is fundamental in the observation-only setting. We
provide a thorough discussion on this topic in Appendix E.

3This is without loss of generality and we can also use |F| to
denote similar measures such as covering number or VC-dimension
of the function class.

Remark 5.3 (Significance of the discriminator class). One
might think that the positive result from Theorem 5.2 is
a natural byproduct of the positive results from FAIL and
PSDP. However, we note that FAIL only guarantees to return
a policy that is comparable to the behavior policy (offline
distribution), but the learned policy can induce different
visitation distribution from the behavior policy. Thus the
guarantee to compare with any covered policy is not trivial,
and this is addressed by the careful construction of the
discriminator class G.

Further practical considerations. Finally we state two
additional results that will have direct implications on the
practicality of the algorithm. First, if the guarantee of The-
orem 5.1 breaks (i.e., maxh IPMGh

(dπ
f

h , µh) = c, where c
is not small), which may be caused by inadmissible offline
data, violation of completeness assumption, or optimization
error, we show that in Appendix D.1 that FOOBAR can still
compare with the best policy covered by the forward policy.
In Section 6.2, we verify empirically robustness of FOOBAR
against different levels of inadmissibility.

Second, it might be computationally and memory intensive
to perform non-stationary algorithms such as FOOBAR, or
limiting if the horizon of the problem is not known or fixed.
As such, in Appendix D.2, we provide algorithms and
analysis in stationary setting but with interactive offline dis-
tribution. In the robotics simulation in Section 6, we witness
the practical value brought by both results: we obtain the
optimal policy with a stationary backward policy, while the
forward policy does not perfectly mimic the offline states.

6. Experiments
In the experiments, we analyze the following questions:
(1) Does FOOBAR still demonstrate the benefit of hybrid
RL framework? For example, does it still efficiently solve
exploration-heavy problems without explicit exploration?
(2) How does FOOBAR compare to the canonical hybrid RL
algorithms, i.e., what is the price for the missing informa-
tion in the offline dataset? (3) How does the performance
compare with PSDP if a reset model is available, and how
robust is FOOBAR against inadmissibility in practice?

We use the following two benchmarks: the combination
lock (Misra et al., 2020) and the hammer task of the Adroit
robotics from the D4RL benchmark (Fu et al., 2020). The vi-
sualization can be found in Figure 4. Both environments are
challenging: the combination lock requires careful explo-
ration and previous online RL algorithms require additional
representation learning in addition to RL (Misra et al., 2020;
Zhang et al., 2022; Mhammedi et al., 2023) due to its high-
dimensional observation space, which also poses challenges
for our forward state-moment-matching algorithm. The
hammer task has high-dimension state and action space and
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difficult success conditions. Similar to Ball et al. (2023), we
use the binary reward version of the environment.

6.1. Comparing to Hybrid RL

Combination locks. In this section, we investigate the
first two questions. We first provide a brief description of
the combination lock environment, and more details can
be found in Appendix F.1. For our experiment, we set the
horizon H = 100. In each horizon h there are three latent
states: two good states and one bad state. Taking only one
correct action (out of 10 actions in total) makes the agent
proceed to the good states in the next horizon, otherwise,
it proceeds to the bad state, and bad states only transit to
bad states. The agent receives a reward of 1 if it stays at
the good states at h = H so the reward signal is sparse,
and random exploration requires 10100 episodes to receive
a reward signal for the first time.

We collect the offline dataset with a ε-greedy version of π∗,
where ε = 1

H . This guaranteed us Ccov(π
∗) ≈ 2.5. We

collect 2000 samples per horizon for both FOOBAR and
Hybrid Q-Learning (HYQ) (Song et al., 2022), the hybrid
RL algorithm that solved this task using the canonical offline
dataset. We also compare with pure online RL, and we
compare with the state-of-the-art algorithm in combination
lock, BRIEE (Zhang et al., 2022). We show the result on
the left of Figure 1. We see that compared to the online RL
method, FOOBAR is still much more efficient, and compared
with HYQ, FOOBAR indeed takes more samples but the
overall sample efficiency is very comparable to the canonical
hybrid RL algorithms that enjoy more information in the
offline dataset.

Our practical implementation follows our description in Al-
gorithm 1, and we use Maximum Mean Discrepancy (MMD)
(Gretton et al., 2012) with RBF Kernel for the discriminator
class, and we parameterize the policy and value functions
with neural networks. We defer most implementation details
to Appendix F.

Hammer. We also test FOOBAR on a more popular D4RL
(Fu et al., 2020) robotics benchmark hammer (Rajeswaran
et al., 2017). Following the evaluation protocol from Ball
et al. (2023), we use the binary reward version of the environ-
ment (reward of 1 if fully complete the task, -1 otherwise):
thus the environment delivers sparse reward signal and the
evaluation is based on how fast the agent finishes the task.
To our best knowledge, we are not aware of any pure online
RL method that reported solving the binary version of ham-
mer thus we will focus our comparison to hybrid RL. We
also observe that an optimal policy for this task can finish
it within 50 timesteps, so we truncate the environment to
H = 50 for computational consideration.

For the implementation of FOOBAR, we use the same imple-

FOOBAR
(Forward) FOOBAR PSDP

Benign
0.12

(0.1, 0.135)
1 (1, 1) 1 (1, 1)

Adversarial 0 (0, 0) 0 (0, 0)
1.1

0.95, 1.15)

Table 2. Comparison between FOOBAR and PSDP under inadmis-
sible setting. We show the median of the relative success rate (over
optimal policy), and 25% and 75% percentile in the parentheses,
over 10 random seeds. Note that the relative success rate in the ad-
versarial case can exceed 1 because the environment is stochastic
and the theoretical optimal policy has a success rate of 10%.

mentation as the combination lock, but instead of taking ran-
dom action (which is hard over the 26-dimensional contin-
uous action space), we interleave the policy update and data
collection with the latest policy. For the backward pass, we
follow our stationary algorithm described in Appendix D.2
and use SAC (Haarnoja et al., 2018) as the policy optimiza-
tion subprotocol. We present the result in Figure 1 (right). In
the plot we only plotted the evaluation curve along the back-
ward run for a cleaner comparison, and we use 100k samples
for each horizon in the forward run (in total the forward run
requires 10 times more samples than the backward run).
Our backward run is comparable to RLPD (Ball et al., 2023),
but we hypothesize two reasons why our method is slightly
slower: first, our forward policy does not recover the offline
distribution perfectly4, and second, we choose to avoid some
practical design choices that deviate from our theoretical al-
gorithm but are potentially beneficial to the practical sample
efficiency. Although this is a prototypical comparison, we
believe the result suggests that HYRLO still demonstrates
the superiority of the hybrid RL setting, but the result also
suggests the gap from lacking action, reward and dynamics
information in the offline dataset. Regarding the less effi-
cient forward phase, our result in combination lock suggests
that in a more controlled setting, the sample efficiency of
the forward and backward run are similar (Figure 5), and we
believe this encourages the community to design a better al-
gorithm for state-moment-matching to close the gap further.

6.2. Inadmissible Offline Distribution

To answer the last question, we construct inadmissible of-
fline datasets in the combination lock environment with
H = 10. Specifically, we test on two inadmissible datasets:
a benign dataset where the proportion of good states in-
creases along the horizon (which is impossible for any policy
to collect in a trace model setting), and an adversarial inad-

4As we suggest in Theorem D.1 in Appendix D.1, FOOBAR is
robust to an imperfect forward run, and we provide more discussion
on the empirical results in Appendix F.2.
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Figure 1. Comparison with hybrid RL and online RL. Left: evaluation curve along the training process in the combination lock task.
The plot for FOOBAR combines the forward and backward passes: during the forward pass, the evaluation result is from all the forward
policies (trained and untrained). During the backward pass, after training at horizon h, the evaluation is from the policy πf ◦h πb. Right:
evaluation curve along the training process in the hammer-binary task. The plot for FOOBAR shows the performance of the stationary
backward policy in the backward phase. We repeat the experiment for 10 random seeds and plot the median and 25% to 75% percentiles.

missible dataset where we inject the hardness construction
of Proposition 5.2 into the first horizon of the environment.
We compare FOOBAR and PSDP and we present the results
in Table 2: we can see in practice, FOOBAR is still robust
under a certain level of inadmissibility (it still solves the
combination lock with the benign inadmissible dataset), but
can not solve the provably hard example compared to the re-
set model algorithms. In this case of benign inadmissibility,
the forward policy still covers the distribution of the optimal
policy (the minimum coverage of good states of the offline
data over the horizon is 15%, and the forward policy has a
median success rate of 12%), leading to the final success of
the whole algorithm. This again corresponds to the result
of Theorem D.1 that characterizes the success condition of
FOOBAR under inadmissibility.

7. Discussion
Our work initiates the theoretical study of HYRLO, a new
theoretical paradigm with promising practical potential.
Here we discuss some theoretical and practical open prob-
lems for future research:

• Although we provide two hardness examples in the
trace model setting when the admissibility assumption
fails, it will be interesting to understand if fundamental
separations exist between the trace and reset model.

• Previous hybrid RL method (Song et al., 2022) works
under inadmissible offline distribution but requires
structural assumption. Is there any tradeoff or con-
nection between these two assumptions?

• Our analysis gives partial answers towards a station-
ary solution to the HYRLOproblem, and it will be

interesting to design a fully stationary algorithm for
HYRLO.

• Our theory suggests that a better practical implementa-
tion state-moment-matching algorithm is possible and
we believe this is an important practical problem to
solve.
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A. Omitted Pseudocodes
In the following, we will utilize the concept of a partial policy (defined in the main text already but we will repeat here for
completeness) which operates over a sequential segment of time steps, specifically [l . . . r] ∈ [H]. This is represented as
Πl:r := {π :

⋃r
h=l S → ∆(A)}. Given any two intervals 1 ≤ t ≤ h ≤ H , we consider two partial policies: π ∈ Π1:t−1

and π′ ∈ Πt:h. The composition π ◦t π′ represents a policy that follows π for the initial t− 1 steps and switches to π′ for
the subsequent h− t+ 1 steps. Formally, this is defined as (π ◦t π′)(sl) = π(sl) when l < t and (π ◦t π′)(sl) = π′(sl) for
t ≤ l ≤ h. The notation sh ∼ π implies that the state sh is selected according to the distribution defined by the law of π and
P , and we extend this notation to include the action ah as well, denoted as sh, ah ∼ π.

Algorithm 2 Policy Search by Dynamic Programming (PSDP)
require Offline dataset Dh, online sample size N .

1: for h = H, . . . , 1 do
2: for n = 1, . . . , N do
3: Sample snh ∼ Dh, a

n
h ∼ πunif .

4: ResetMreset to snh, a
n
h and sample snh+1 ∼ Ph(s

n
h, a

n
h), r

n
h = Rh(s

n
h, a

n
h).

5: Follow πh+1:H and get sample rnh+1:H ∼ πh+1:H .

6: Train regressor fh(sh, ah) on rh:H : // Estimate Q function.

fh = argmin
f∈F

N∑
n=1

(
f(snh, a

n
h)−

H∑
τ=h

rnτ

)2

.

7: Get one-step greedy policy πh(sh) = argmaxah
fh(sh, ah).

return Non-stationary backward policy π1:H .

Algorithm 3 Policy Search by Dynamic Programming (PSDP) with trace model
require Roll in policy πf , online sample size N .

1: for h = H, . . . , 1 do
2: for n = 1, . . . , N do
3: Sample snh ∼ πf

1:h, a
n
h ∼ πunif , rnh = Rh(s

n
h, a

n
h).

4: Sample snh+1 ∼ Ph(s
n
h, a

n
h).

5: Follow πh+1:H and get sample rnh+1:H ∼ πh+1:H .

6: Train regressor fh(sh, ah) on rh:H : // Estimate Q function

fh = argmin
f∈F

N∑
n=1

(
f(snh, a

n
h)−

H∑
τ=h

rnτ

)2

.

7: Get one-step greedy policy πh(sh) = argmaxah
fh(sh, ah).

return Non-stationary backward policy π1:H .
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Algorithm 4 Forward Adversarial Imitation Learning (FAIL)
require Offline dataset {Doff

h }, discriminator class G = {Gh}Hh=1, policy class Π = {Πh}Hh=1, number of online samples N,
number of iterations of minmax game T .

1: for h = 1, . . . ,H do
2: Don

h ← ∅.
3: for n = 1, . . . , N do
4: Sample snh−1, a

n
h−1, s

n
h ∼ π ◦h πunif .

5: Add (snh−1, a
n
h−1, s

n
h) to Don

h .

6: Get πh from the return of Algorithm 5 with inputs
{
Πh,Gh, T,Don

h ,Doff
h

}
.

return π1:H .

Algorithm 5 Min-Max Game
require Policy class Π, discriminator class G, number of iterations T , online dataset Don, offline dataset Doff .

1: Randomly initialize π0 ∈ Π.
2: Define loss function

u(π, g) :=

(
ÊDon

[
π(ah−1 | sh−1)

1/A
g(sh)

]
− ÊDoff [g(sh)]

)
.

3: for t = 1, . . . , T do
4: gt = argmaxg∈G u(πt, g).// Linear programming oracle.

5: ut := u(πt, gt).
6: πt+1 = argminπ∈Π

∑t
τ=1 u(π, g

t) + ϕ(π). // Regularized cost-sensitive oracle.

return πt∗ with t∗ = argmint∈[T ] u
t.
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B. Proof of Inadmissibility Hardness
In this section we prove the proofs for the two hardness examples we constructed in Proposition 5.1 and Proposition 5.2.

Proposition B.1. For any algorithm Alg, denote the dataset collected by Alg as DAlg, and let D̂ denote the empirical
distribution of a dataset D. Then there exists an MDPM with deterministic transition and a set of offline datasets {D},
with arbitrary sample size |D| = N ≥ 2, collected from the inadmissible offline distribution µ with constant coverage:

maxh

∥∥∥dπ∗
h

D̂h

∥∥∥
∞

= 2 such that, unless
∣∣DAlg

∣∣ = Ω(AH), we have

max
D

∥∥∥D̂Alg
H − D̂H

∥∥∥
TV
≥ 1

2
.

However, there exists an algorithm Algreset that uses any offline dataset D and reset modelMreset that returns optimal
policy π∗ with sample complexity O(A).

1

2

3

4

5

H

.

.

.

Figure 2. Construction for Proposition 5.1. The blue notes correspond to the offline data’s coverage of the optimal policy. The orange note
corresponds to the inadmissible part of the offline data.

Proof. Consider a binary tree MDPM, with two actions and deterministic transitions. Now we construct the offline dataset
D as follows: for each horizon h, the dataset Dh contains one sample from the optimal path and one sample from the other
half of the tree. Thus by construction the dataset satisfies the coverage assumption. On the non-optimal data, we select them
in the following way: on each level h ≥ 4, the non-optimal data sno

h is an arbitrary non-child node of the last horizon sno
h−1.

Thus we see the previous non-optimal states provide no information for the current horizon, and thus the problem of finding
sno
h−1 is equivalent to a random search over an arbitrary leaf node. However, unless sno

h is added to the dataset, we will
have ∥Dh −Dh∥TV ≥

1
2 , and thus we complete the proof. We show an example of such construction in Figure 2, where

the orange states denote the non-optimal states covered by the offline dataset and the blue states denote the optimal states
covered by the offline dataset.

Proposition B.2. For any state distribution µh, let

πµ
h = argmin

πh∈Π
∥dπh − µh∥TV ,

i.e., the policy that induces the closest state distribution to the offline distribution in TV. Then there exists an MDPM and

inadmissible offline distribution µ, such that ∃h such that maxh

∥∥∥dπ∗
h

µh

∥∥∥
∞

= 18, i.e., the offline distribution has a constant
coverage and we have

max
h

∥∥∥∥dπ∗

h

dπ̃h

∥∥∥∥
∞

=∞, and max
h,sh

∥∥∥∥π∗
h(sh)

π̃h(sh)

∥∥∥∥
∞

=∞.
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i.e., the policy that minimizes the TV distance to the offline distribution does not cover some states from the optimal policy’s
trajectory, and the induced policy does not cover some actions that the optimal policy takes.

Figure 3. Construction for Proposition 5.2. The blue transition corresponds to the dynamics after taking the action a1, and the orange
transition corresponds to the dynamics after taking the action a2. The red node denotes the node with rewards.

Proof. Consider the following one-step transition: where we start from s0, and action a1, a2, and next states s1, s2, s3, We
have the following transition: P (· | s0, a1) = [0.95, 0.05, 0] and P (· | s0, a2) = [0, 0.9, 0.1]. Consider the inadmissible
offline state distribution over s1, s2, s3 : µ = [0.85, 0.05, 0.1]. We can verify that the coverage assumption holds. Also
suppose π∗(s0) = a2. Then by some calculation we have πµ(s0) = a1, and thus we have

∥∥∥dπ∗

dπ̃

∥∥∥
∞

=∞, i.e., π̃ does not
visit s3 but π∗ does. An illustration of the construction can be found in Figure 3.
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C. Proof of FOOBAR
C.1. Proof of Theorem 5.1

For the proof, we define a shorthand notation for the IPM distance as follows:

dGh
(π | ρh−1, µh) := IPMGh

(ρ ◦h π, µh).

Then we have the following guarantee of the Algorithm 5:
Lemma C.1 (Guarantee of Algorithm 5 (Theorem 3.1 of Sun et al. (2019))). Assume Assumption 5.2 holds. Suppose that
Gh is the discriminator class, ρ is the roll in distribution, and µ is the offline distribution. Let |Don| = |Don| = N , then with
probability 1− δ, the returned policy π satisfies:

dGh
(π | ρh−1, µh) ≤ min

π′∈Π
dGh

(π′ | ρh−1, µh) + εfor(δ,N),

where

εfor(δ,N) = 8

√
2A log(2|Gh||Π|/δ)

N
+

16A log(2|Gh||Π|/δ)
N

+

√
A2

T
.

The proof of Lemma C.1 can be found in Sun et al. (2019). The result is the standard concentration argument and taking
union bound over the discriminator class and policy class.

Now we can prove the guarantee of Algorithm 4 in IPM, which is the property required in proving the final result.
Theorem C.1 (Guarantee of Algorithm 4). Assume Assumption 5.3 and Lemma C.1 hold. Suppose |Don| = |Don| = N ,
then with probability 1− δ, the returned policy πf satisfies that, for any h ∈ [H],

IPMGh
(πf

1:h, µh) ≤ hεfor(δ,N).

Proof. We can prove by induction. Consider the h timesteps, where we have

IPMGh−1
(πf

1:h−1, µh−1) ≤ (h− 1)εfor(δ,N).

Let π∗ := argminπ∈Π dGh
(π | πf

1:h−1, µh), we have:

IPMGh
(πf

1:h, µh) ≤ dGh
(π∗ | πf

1:h−1, µh) + εfor(δ,N) (Lemma C.1)

= max
g∈Gh

∣∣Esh∼πh−1,ah∼π∗(sh),sh+1∼Ph(sh,ah)g(sh+1)− Esh∼µh,ah∼µ(sh),sh+1∼Ph(sh,ah)g(sh+1)
∣∣

+ εfor(δ,N)

≤ max
g∈Gh

∣∣Esh∼πh−1,ah∼µ(sh),sh+1∼Ph(sh,ah)g(sh+1)− Esh∼µh,ah∼µ(sh),sh+1∼Ph(sh,ah)g(sh+1)
∣∣

+ εfor(δ,N).

Now denote g∗h = argmaxg∈Gh

∣∣Esh∼πh−1,ah∼µ(sh),sh+1∼Ph(sh,ah)g(sh+1)− Esh∼µh,ah∼µ(sh),sh+1∼Ph(sh,ah)g(sh+1)
∣∣,

we denote

g∗h−1 = argmin
g∈Gh−1

∥g − Th−1g
∗
h∥∞ ,

then we have ∣∣Esh∼πh−1,ah∼µ(sh),sh+1∼Ph(sh,ah)g
∗
h(sh+1)− Esh∼µh,ah∼µ(sh),sh+1∼Ph(sh,ah)g

∗
h(sh+1)

∣∣
≤
∣∣Esh∼πh−1

g∗h−1(sh)− Esh∼µh
g∗h−1(sh)

∣∣+ εbe (Assumption 5.3)

≤IPMGh−1
(πf

1:h−1, µh−1) + εbe

≤(h− 1)εfor(δ,N) + εbe, (Inductive hypothesis)

and thus we complete the proof.
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C.2. Proof of Theorem 5.2.

Now we prove the guarantee of Algorithm 1. We start with the guarantee of the value function estimation in Algorithm 3.

Lemma C.2. Suppose Assumption 5.4 holds. For any h ∈ [H], let fh be the returned value function from running
Algorithm 3 With |Don

h | = N , then with probability at least 1− δ, we have:

Esh∼πf
1:h−1

max
ah

[(
fh(sh, ah)−Qπb

h (sh, ah)
)2]

≲
H2A log(|F|/δ)

n
:=
(
εback(δ,N)

)2
.

Proof. First we have

Esh∼πf
1:h−1

max
ah

[(
fh(sh, ah)−Qπb

h (sh, ah)
)2]
≤ Esh∼πf

1:h−1

∑
a∈A

[(
fh(sh, a)−Qπb

h (sh, a)
)2]

= AEsh,ah∼πf◦hπunif

[(
fh(sh, ah)−Qπb

h (sh, ah)
)2]

.

Then follows standard least-square analysis (Lemma A.11, Agarwal et al. (2019)), since πb ◦h πunif is our roll-in distribution,
we have

Esh,ah∼πf◦hπunif

[(
fh(sh, ah)−Qπb

h (sh, ah)
)2]

≲
H2 log(|F|/δ)

N
,

where H is the range of the regression target.

Recall our construction of the discriminator class Gh:

Gh =
{
max

a
f(·, a)− f(·, a′) | f ∈ Fh, a

′ ∈ A
}
.

The reason for such construction will be clear in the proof of Theorem 5.2. But we first show that the size of the discriminator
class is bounded by the size of the value function class so it is not big. We assume that the value function class is finite for
simplicity, but the results can be easily extended to the infinite case.

Lemma C.3. |Gh| ≤ |Fh||A|.

The proof follows immediately from the construction of the discriminator class.

Then we can show the performance guarantee of Algorithm 1:

Theorem C.2 (Restatement of Theorem 5.2). Suppose Assumption 5.2, Assumption 5.3 and Assumption 5.4 hold. Then
with probability at least 1 − δ, the returned policy πb

1:H from Algorithm 1 with discriminator constructed from Eq. (1),
N for offline and forward samples, and Nback backward samples, satisfies that for any comparator policy πcomp such that
Ccov(π

comp) <∞,

V πcomp

− V πb

≤ ε,

when

N for = O

(
C2

cov(π
comp)H4A log(|F||Π|/δ)

ε2

)
, Nback = O

(
C2

cov(π
comp)H4A log(|F|/δ)

ε2

)
.
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Proof. By performance difference lemma (Kakade & Langford, 2002), we have that

V πcomp

− V πb
1:H

=

H∑
h=1

Esh,ah∼dπcomp

h

[
Qπb

h (sh, ah)−Qπb

h (sh, π
b
h(sh))

]
≤

H∑
h=1

Esh∼dπcomp

h

[
max

a
Qπb

h (sh, a)−Qπb

h (sh, π
b
h(sh))

]
≤ Ccov(π

comp)

H∑
h=1

Esh∼µh

[
max

a
Qπb

h (sh, a)−Qπb

h (sh, π
b
h(sh))

]
(Non-negativity)

≤ Ccov(π
comp)

(
H∑

h=1

E
sh∼dπf

h

[
max

a
Qπb

h (sh, a)−Qπb

h (sh, π
b
h(sh))

]
+ IPMGh

(
dπ

f

h ||µh

))
(Construction of G)

≤ Ccov(π
comp)·(

H∑
h=1

E
sh∼dπf

h

[∣∣∣max
a

Qπb

h (sh, a)− fh(sh, π
b
h(sh))

∣∣∣+ ∣∣∣fh(sh, πb
h(sh))−Qπb

h (sh, π
b
h(sh))

∣∣∣]+ IPMGh

(
dπ

f

h ||µh

))
≤ Ccov(π

comp)·(
H∑

h=1

E
sh∼dπf

h

[
max

a

∣∣∣Qπb

h (sh, a)− fh(sh, a)
∣∣∣+ ∣∣∣fh(sh, πb

h(sh))−Qπb

h (sh, π
b
h(sh))

∣∣∣]+ IPMGh

(
dπ

f

h ||µh

))
(maxx |f(x)− g(x)| ≥ |maxx f(x)−maxx g(x)|)

≲ Ccov(π
comp)Hεback(δ,N back) + Ccov(π

comp)H2εfor(δ,N for).

The last step is by Jensen’s inequality, Lemma C.2 and Theorem 5.1. By plugging in the defintion of εback and εfor, we have

V πcomp

− V πb
1:H ≤ O

(
Ccov(π

comp)H

√
H2A log(|F|/δ)

N back
+ Ccov(π

comp)H

√
A log(|F||Π|/δ)

N for

)
,

by setting T = AN for and by Lemma C.3, finally by setting N properly, we have the desired result.

Here we remark that in order for our proof to hold, we only require the following weaker notion of realizability of value
function class F : we only require that Qπb ∈ F , and in fact we only require it to hold under state visited by πf and µ.

20



Hybrid Reinforcement Learning from Offline Observation Alone

D. Pracical Considerations
D.1. Imperfect Forward Run

One advantage of this forward-backward algorithm is that, either due to optimization error or insufficient data size, if εfor is
not small, we can still guarantee the final performance as long as the following holds: define the coverage with respect to the
forward policy as

C for
cov(π) := max

h

∥∥∥∥∥ dπhdπf

h

∥∥∥∥∥
∞

.

and we can have the following guarantee:

Theorem D.1 (FOOBAR guarantee for imperfect forward run). With probability at least 1− δ, for any comparator policy
πcomp, we have

V πcomp

− V πb
1:H ≤ O

(
C for

cov(π
comp)H

√
H2A log(|F|/δ)

N back

)
.

Note that the number of offline and online forward samples will contribute to the term C for
cov(π

comp), but here we make
their relationship implicit. The theorem states that by paying C for

cov(π
comp) (but potentially C for

cov(π
comp) > Ccov(π

comp)),

we can avoid paying the additive term Ccov(π
comp)H

√
A log(|F||Π|/δ)

N for . The practical application of this theorem can be
demonstrated by our result for the robotics task in Section 6, where perfectly mimicking the offline distribution is hard duo
to the high-dimensional continuous action space. Nevertheless, the forward policy still covers the optimal policy, and thus
FOOBAR returns the optimal policy after the backward phase. We show the proof below:

Proof. We have again by performance difference lemma,

V πcomp

− V πb
1:H

=

H∑
h=1

Esh,ah∼dπcomp

h

[
Qπb

h (sh, ah)−Qπb

h (sh, π
b
h(sh))

]
≤

H∑
h=1

Esh∼dπcomp

h

[
max

a
Qπb

h (sh, a)−Qπb

h (sh, π
b
h(sh))

]
≤

H∑
h=1

Esh∼dπcomp

h

[
max

a

∣∣∣Qπb

h (sh, a)− fh(sh, a)
∣∣∣+ ∣∣∣fh(sh, πb

h(sh))−Qπb

h (sh, π
b
h(sh))

∣∣∣]
≤ C for

cov(π
comp)

(
H∑

h=1

E
sh∼dπf

h

[
max

a

∣∣∣Qπb

h (sh, a)− fh(sh, a)
∣∣∣+ ∣∣∣fh(sh, πb

h(sh))−Qπb

h (sh, π
b
h(sh))

∣∣∣])
≤ C for

cov(π
comp)Hεback(δ,N back),

note that in this case, we can directly shift the distribution from πcomp to πf in line 3. The rest of the proof is the same as the
proof of Theorem 5.2.

D.2. Stationary Results

In this section we introduce a variant of our algorithm and analysis in the stationary setting. We will start with introducing
new notations for the stationary setting, and like the procedure in our main text, we will first introduce the backward phase
of the algorithm, which requires no additional assumptions and directly extends to the stationary setting. We will end up
with our forward phase algorithm, which requires an additional assumption that the offline dataset is interactive.

Notations. We start with introducing the notations in the stationary setting. In the stationary setting, we are interested
in the finite horizon discounted MDPM = (S,A, P,R, γ), where the transition kernel P : S × A → ∆(S) and reward
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Algorithm 6 Conservative Policy Iteration (CPI) with trace model
require Roll in policy πf , accuracy parameter ε, step size α.

1: Initialize π1 randomly.
2: for t = 1, 2, . . . do
3: π′ ← Greedyε(π

t,Π, dπ
f

).
4: if Es∼πtAπt

(s, π′(s)) ≤ ε then
5: return πt.
6: Update policy conservatively:

πt+1 ← (1− α)πt + απ′. (2)

function R : S × A → [0, 1] are stationary. We denote γ as the discounted factor. For any policy π, we denote the value
function as V π(s) = Eπ,P

[∑∞
h=1 γ

hR(sh, ah) | s1 = s
]

and Qπ(s) = Eπ,P

[∑∞
h=1 γ

hR(sh, ah) | s1 = s, a1 = a
]
. We

still denote dπh as the visitation distribution of policy π at horizon h, and we will often use dπ = (1− γ)
∑∞

h=1 γ
hdπh as

the stationary visitation distribution (or occupancy measure) of policy π. We denote µ as the offline distribution that is
constructed in a similar manner, i.e., µ = (1 − γ)

∑∞
h=1 γ

hµh, and we denote the coverage of µ as Ccov(π) =
∥∥∥dπ

µ

∥∥∥
∞

.
Finally in this section, to simply the notation, we will make extensive use of the notion of advantage, which is defined as
Aπ(s, π′(s)) = Ea∼π′(s)Q

π(s, a)−Qπ(s, π(s)).

Backward phase. For the backward phase, we will use the classic Conservative Policy Iteration (CPI) (Kakade & Langford,
2002) algorithm, which is a stationary algorithm that guarantees the optimality of the returned policy under an exploratory
reset distribution, which in our case will be our forward policy’s state visitation distribution. The intuition of CPI is similar
to the backward pass of FOOBAR, where we first roll in the forward policy πf , and then we will update our backward policy
by rolling out and perform policy optimization. Specifically, given a policy π, a policy class Π and an initial distribution µ,
the output of the greedy policy selector π′ ← Greedyε(π,Π, µ) has the following guarantee:

Es∼dπ
µ
Aπ(s, π′(s)) ≥ max

π̃∈Π
Es∼dπ

µ
Aπ(s, π̃(s))− ε,

where dπµ is the state visitation distribution of policy π under the initial distribution µ. In practice, to ensure that the initial
distribution of the policy optimization problem is dπ

f

, we can start to roll in πf , and at each timestep, we will start to switch
to roll out policy π with probability 1 − γ (Agarwal et al., 2020b). In the stationary setting, however, we do not use the
greedy policy as the next policy, because we can not guarantee the optimality in an inductive way, but we can still ensure a
local improvement by performing a conservative policy update (Eq. (2)). We provide the pseudocode of CPI in Algorithm 6.

For simplicity, we will not perform the finite sample analysis on the Greedyε subprocedure, but we will assume that the
greedy policy selector guarantee always holds, and we will prove the final optimality result based on it. We first state a
critical lemma that is useful for the analysis of CPI:

Lemma D.1 (Local optimality of CPI, Theorem 14.3 of Agarwal et al. (2019)). Algorithm 6 terminates in at most 8γ/ε2

steps and the output policy π satisfies that

max
π′∈Π

Es∼dπ
µ
Aπ(s, π′(s)) ≤ 2ε,

where µ = dπ
f

.

With the local optimality guarantee, we can show that the result for Algorithm 6:

Theorem D.2 (Guarantee of CPI-trace). Let the returned policy of Algorithm 6 be πb, suppose policy class Π is realizable
in the sense that

Es∼dπb

[
max
a∈A

Aπb

(s, a)

]
− Es∼dπb

[
Aπb

(s, π(s))
]
= 0.

Then we have that

V πcomp

− V πb

≤ Ccov(π
comp)

(1− γ)2
(2ε) +

Ccov(π
comp)

(1− γ)
IPMG

(
dπ

f

h ||µh

)
.
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Proof. By performance difference lemma (Kakade & Langford, 2002), we have that

V πcomp

− V πb

=
1

1− γ
Es∼dπcomp

[
Aπb

(s, πcomp(s))
]

≤ 1

1− γ
Es∼dπcomp

[
max
a∈A

Aπb

(s, a)

]
≤ 1

1− γ
Ccov(π

comp)Es∼µ

[
max
a∈A

Aπb

(s, a)

]
≤ 1

1− γ
Ccov(π

comp)

(
Es∼πf

[
max
a∈A

Aπb

(s, a)

]
+ IPMG

(
dπ

f

||µ
))

≤ Ccov(π
comp)

(1− γ)2
E
s∼dπb

[
max
a∈A

Aπb

(s, a)

]
+

Ccov(π
b)

(1− γ)
IPMG

(
dπ

f

||µ
)

(dπ
b

(s) ≥ (1− γ)πf(s))

≤ Ccov(π
b)

(1− γ)2
E
s∼dπb

[
max
pi′∈Π

E
s∼dπb

[
Aπb

(s, π′(s))
]
− max

pi′∈Π
E
s∼dπb

[
Aπb

(s, π′(s))
]
+max

a∈A
Aπb

(s, a)

]
+

Ccov(π
b)

(1− γ)
IPMG

(
dπ

f

h ||µh

)
≤ Ccov(π

b)

(1− γ)2
(2ε) +

Ccov(π
b)

(1− γ)
IPMG

(
dπ

f

||µ
)
. (Lemma D.1 and realizability)

Note that for the simplicity of the presentation, we denote dπ
b

:= dπ
b

µ where µ := dπ
f

.
Theorem D.2 states that, as long as the forward policy πf covers the comparator policy, we can guarantee the performance of
the returned policy πb is close to the best comparator policy. Next we see how we can achieve the guarantee of the forward
policy in the stationary setting.

Forward phase. In the forward phase, we assume that we have an interactive offline distribution µit, which for any state s,
if we query the offline distribution µit with s, we will return a sample s′ by a ∼ µit(s), s′ ∼ P (s, a). However, since we
are in the observation-only setting, we only observe s′ but not a, and thus this is a relaxation from the previous works that
assume interactive experts which also provide the action information (Ross et al., 2011; Ross & Bagnell, 2012).

Our roll-in procedure is similar to the backward phase, where for each horizon, we will have probability (1− γ) to terminate
the roll in on that horizon. Denote the state at termination as s, we will take a random action a ∼ πunif and observe s′, and
we add the tuple (s, a, s′) to the online dataset Don, and similarly, we query µit with s, and get s′ ∼ µit(s), and add (s′) to
offline dataset Doff . Then we perform the best-response playing no-regret algorithm to iteratively update our policy, similar
to Algorithm 5. The full pseudocode is in Algorithm 7.

Algorithm 7 Interactive Forward Adversarial Imitation Learning (Inter-FAIL)
require Discriminator class G, policy class Π, number of iterations T .

1: Don ← ∅,Doff ← ∅.
2: Randomly initialize π1.
3: for t = 1 to T do
4: Sampling stopping time h ∼ Geom(1− γ).
5: Sample s, a, s′ ∼ πt ◦h πunif , and add (s, a, s′) to Don.
6: Sample s′ ∼ µ(s), and add (s′) to Doff .

u(π, g) :=

(
ÊDon

[
π(a | s)
1/A

g(s′)

]
− ÊDoff [g(s′)]

)
.

7: gt = argmaxg∈G u(πt, g).// Linear programming oracle.

8: ut := u(πt, gt).
9: πt+1 = argminπ∈Π

∑t
τ=1 u(π, g

t) + ϕ(π). // Regularized cost-sensitive oracle.

return πt∗ with t∗ = argmint∈[T ] u
t.

Now we first show the guarantee on the no-regret procedure. Note that this result does not immediately implies that the
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return policy to the offline distribution, because our data collection distribution is: we first roll in our policy, and then
switch to the offline distribution for one-step. And the no-regret guarantee is that the policy distribution will be close to this
one-step-shift distribution. In the following, whenever we refer to the admissibility assumption Assumption 5.2 or bellman
completeness assumption Assumption 5.3, we refer to their stationary version analog.
Lemma D.2 (Guarantee of the no-regret procedure). Assume Assumption 5.2 holds. Suppose that G is the discriminator
class, ρ is the roll in distribution, then let πf be the return policy from running Algorithm 7 for T iterations, we have with
probability at least 1− δ,

dGh
(π | π, π ◦ µ) ≤ min

π′∈Π
dGh

(π′ | π′, π′◦) + εfor(δ, T ),

where

εfor(δ, T ) = 8

√
2A2 log(2|Gh||Π|/δ)

T
.

The proof is using the same concentration argument used in the proof of Lemma C.2 and the same no-regret techniques that
handle non-stationary distributions in (Vemula et al., 2023) so we omit proof here.

Then we can use the no-regret guarantee for the final result for the forward algorithm:
Theorem D.3 (Guarantee of Algorithm 7). Assume Assumption 5.3 and Lemma D.2 hold with probability at least 1− δ.
Then the returned policy πf of Algorithm 7 after T iterations satisfies that,

IPMG(π
f , µ) ≤ εfor(δ, T ) + εbe

1− γ
.

Proof. We start with an important identity: for any stationary policy π, we have

Es∼dπ [f(s)] = (1− γ)Es∼P0 [f(s)] + γEs∼dπ,a∼µ,s′∼P (s,a)[f(s
′)].

Then we have

IPMG(π
f , µ) =max

g∈G

∣∣E
s∼dπf [g(s)]− Es∼µ[g(s)]

∣∣
=max

g∈G

∣∣∣γEs∼dπf ,a∼πf(s),s′∼P (s,a)
[g(s′)]− γEs∼µ,a∼µ(s),s′∼P (s,a)[g(s

′)]
∣∣∣

≤max
g∈G

∣∣∣γEs∼dπf ,a∼πf(s),s′∼P (s,a)
[g(s′)]− γE

s∼dπf ,a∼µ(s),s′∼P (s,a)
[g(s′)]

∣∣∣+
max
g∈G

∣∣∣γEs∼dπf ,a∼µ(s),s′∼P (s,a)
[g(s′)]− γEs∼µ,a∼µ(s),s′∼P (s,a)[g(s

′)]
∣∣∣ .

Note that the first term, by the no-regret guarantee in Lemma D.2, is bounded by εfor, and the second term we can bound by
the following, which is similar to the technique we use in the proof for the forward run in the non-stationary setting:

Now denote

g∗ := argmax
g∈G

∣∣∣γEs∼dπf ,a∼µ(s),s′∼P (s,a)
[g(s′)]− γEs∼µ,a∼µ(s),s′∼P (s,a)[g(s

′)]
∣∣∣

we let

gb = argmin
g∈G

∥g − T g∗∥∞ ,

the bellman backup of g∗ under the offline distribution backup, then we have

max
g∈G

∣∣∣γEs∼dπf ,a∼µ(s),s′∼P (s,a)
[g(s′)]− γEs∼µ,a∼µ(s),s′∼P (s,a)[g(s

′)]
∣∣∣

=γ
∣∣∣Es∼dπf ,a∼µ(s),s′∼P (s,a)

[g∗(s′)]− Es∼µ,a∼µ(s),s′∼P (s,a)[g
∗(s′)]

∣∣∣
≤γ
∣∣E

s∼dπf [g∗(s)]− Es∼µ[g
∗(s)]

∣∣+ εbe

=γIPMG(π
f , µ) + εbe.
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Finally, putting everything together we will get:

IPMG(π
f , µ) ≤ εfor + γIPMG(π

f , µ) + εbe,

which by rearranging we get:

IPMG(π
f , µ) ≤ 1

1− γ
εfor + εbe.

Finally, to obtain the result for the stationary version, we can simply combine the result of Theorem D.2 and Theorem D.3.
And we obtain the stationary analog of Theorem 5.2 by replacing the horizon dependency to the effective horizon 1

1−γ .
We remark that, in the stationary setting, the name “forward phase” and “backward phase” may not be as clear as in
the non-stationary setting, but one can interpret the “forward phase” as the offline distribution matching phase, and the
“backward phase” as the policy refinement (optimization) phase. Here to contextualize the discussion, we introduce the
definition of the bilinear class model:
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E. Discussion on the Structural Assumption
Here we give the formal introduction of the structural assumption. We adopt the one from Du et al. (2021) as it is the
structural assumption made in the most hybrid RL analysis (Song et al., 2022; Nakamoto et al., 2023). However, the results
will transfer trivially to similar structural assumptions like Bellman Eluder dimension(Jin et al., 2021) or coverability (Xie
et al., 2023). In other hybrid RL works, Wagenmaker & Pacchiano (2023) assumes linear MDPs structure (Jin et al., 2020b)
and Li et al. (2023b) assumes tabular MDPs.

Definition E.1 (Bilinear model (Du et al., 2021)). We say that the MDP together with the function classF is a bilinear model
of rank d if for any h ∈ [H − 1], there exist two (unknown) mappings Xh,Wh : F 7→ Rd with maxf ∥Xh(f)∥2 ≤ BX and
maxf ∥Wh(f)∥2 ≤ BW such that:

∀f, g ∈ F :
∣∣∣Es,a∼dπf

h

[gh(s, a)− T gh+1(s, a)]
∣∣∣ = |⟨Xh(f),Wh(g)⟩| .

Note that the dimension of the mapping X and W are called the bilinear rank, which is bounded by d. For example, in
tabular MDPs, d = SA, and in linear MDPs (Jin et al., 2020b) and low-rank MDPs (Agarwal et al., 2020a), d is the
dimension of the feature vector.

Continuing from Remark 5.2, suppose we are in the tabular setting, since we involve function approximation, the worst-case
log size of the function class will still be bounded by SA, and then the final bound will be worse than the tightest bound in
the tabular case (Zhang et al., 2023b). Note that in the worst case, the S dependency is unavoidable in the hybrid RL setting
even with canonical offline data (see Theorem 3 of Xie et al. (2021b)). However, we argue that the dependency of SA has a
different source compared to the tightest analysis in tabular MDPs such as Azar et al. (2017); Zhang et al. (2023b): the SA
dependency in these analyses is from the fundamental complexity measure d = SA in the MDP itself. For example, in
the worst case, one has to hit each state-action pairs enough times such that the confidence intervals shrink. On the other
hand, the size of the function class is not necessarily tied to the complexity of dynamics or rewards, and the SA dependency
of the log size of the function class is always avoidable with the right choice of function class (inductive bias). However,
unlike our analysis, such SA dependency still shows up in the current hybrid RL analysis, where their suboptimality scales
in (ignoring irrelevant terms):

V πcomp

− V π ≤ O

(
Ccov(π

comp)

√
d log(|F|/δ)

N

)
= O

(
Ccov(π

comp)

√
SA log(|F|/δ)

N

)
,

i.e., previous results pay for both SA and log(|F|).

Our result is even more favorable in the more general cases. In the main text, we use the ℓ∞ coverage for the simplicity of
presentation, which may be unbounded when the state space is not finite. Here we introduce a tighter coverage coefficient
that is similar to the previous expected Bellman error coverage used in offline RL (Xie et al., 2021a) and hybrid RL (Song
et al., 2022; Nakamoto et al., 2023), which we called performance difference coverage:

Definition E.2 (Performance difference coverage). For the given offline distributino ρ, and for any policy π, the performance
difference coverage coefficient is define as

Cpd
cov(π) = max

π′∈Πdet

∑H
h=1 Esh∼dπ

h

[
maxa A

π′

h (sh, a)
]

∑H
h=1 Esh∼µh

[
maxa Aπ′

h (sh, a)
] .

With this we can state the following more refined result:

Theorem E.1. Suppose Assumption 5.2, Assumption 5.3 and Assumption 5.4 hold. Then with probability 1− δ, the returned
policy πb

1:H from Algorithm 1 with discriminator constructed from Eq. (1), N for offline and forward samples, and Nback

backward samples, satisfies that for any comparator policy πcomp such that Cpd
cov(π

comp) <∞,

V πcomp

− V πb

≤ ε,

when

N for = O

(
Cpd

cov
2
(πcomp)H4A log(|F||Π|/δ)

ε2

)
, Nback = O

(
Cpd

cov
2
(πcomp)H4A log(|F|/δ)

ε2

)
.
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The proof is the same as the proof of Theorem 5.2, and one can check we can safely replace Ccov with Cpd
cov during the

distribution shift step. Note that this result does not depend on specific structural complexity measures of the MDPs (e.g.,
the bilinear rank (Du et al., 2021; Song et al., 2022)). On the other hand, one advantage of previous hybrid RL algorithms is
that they work under situations where the offline data is inadmissible (c.r. Table 1).

Intuitively, the bilinear rank assumption captures the following idea: the rank d denotes the number of “distribution shift”
that the algorithm will encounter during the online policy or value function update, i.e., how many times the algorithms
have to roll out so that the previous data distribution will cover the current policy’s visitation distribution. However, in
FOOBAR, there is no distribution issue (because for every horizon, we will collect some data, train a one-step policy, commit
to the policy, and not update it anymore). We believe the absence of the distribution shift problem is partially due to the
admissibility assumption we make for the offline dataset, but an understanding of the fundamental connections between the
admissibility and structural assumptions remains an interesting open problem.

Finally, we remark that there is one previous hybrid RL work that is also free from the structural assumption, which is Zhou
et al. (2023). However, like the previous line of works that study RL in the reset model (Kakade & Langford, 2002; Bagnell
et al., 2003), their analysis requires an exploratory reset distribution, which is as strong as having a reset model.
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F. Experiment Details

Optimal
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observation space
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Rot

observation space

Rot

Figure 4. Visualization of the environment. Left: combination lock. Right: hammer. The left figure is reproduced from Zhang et al. (2022)
with permission from the authors.

F.1. Combination Lock Environment

Detailed environment description. In our experiment, the diabolical combination lock problem (referenced as comb-lock)
served as the testing ground for our algorithm. This scenario is defined by a horizon of length H and involves a selection
from 10 distinct actions. At each point in the sequence, denoted as step h, the system can be in one of three potential hidden
states, symbolized as zi;h for i values in the set 0, 1, 2. States zi;h, where i falls within 0, 1, are considered advantageous,
while the state z2;h is categorized as disadvantageous.

For each advantageous state zi;h (where i is either 0 or 1), an action, denoted as ai;h, is chosen randomly from the pool of
10 actions. In such states, executing the action ai;h leads to a transition to either state z0;h+1 or z1;h+1, with each possibility
having an equal chance of occurrence. Choosing any action other than a∗i;h in these states ensures a move to the state z2;h+1.
In the state z2;h, the agent’s action choice does not affect its transition, which is always to z2;h+1.

The reward structure is such that a reward of 1 is assigned at state zi;H for i ∈ 0, 1. There is also a 50% probability
of receiving a minor, inverted reward of 0.1 when transitioning from a favorable to an unfavorable state. All other state
transitions or states do not yield any reward.

Observations in this problem, denoted as s, have a dimensionality of 2⌈log(H+4)⌉. This is formulated by concatenating the
one-hot vectors representing the hidden state z and the horizon h, to which noise from the distribution N (0, 0.1) is added
for each dimension. This is then adjusted with zeroes where necessary and processed through a Hadamard matrix. The
starting state distribution is uniformly divided among zi;0 for i ∈ 0, 1. An important aspect to note is that the ideal strategy
involves consistently selecting the action a∗i;h at each step h. Once the agent enters a disadvantageous state, it remains in
such state till the episode concludes, thus forfeiting the opportunity for a significant end reward. This presents a significant
challenge in terms of exploration, as a strategy based on random uniform selection yields only a 10−H chance of reaching
the intended goals.

Implementation details. We parametrize the forward policy with a 2-layer neural network with Tanh activation and we
model the action distribution with diagonal Gaussian. For the backward policy, we use least square regression to estimate the
Q-functions where we follow the same parametrization as in Song et al. (2022). We use the median trick (Fukumizu et al.,
2009) to set up the bandwidth for the RBF kernel. Hyperparameters for the combination lock experiment are presented in
Table 3.

For completeness, here we also provide a zoomed-in training curve for FOOBAR with both forward phase and backward
phase labeled in Figure 5.

F.2. Hammer

For the offline dataset construction of the hammer environment, we use the expert offline dataset provided in the d4rl
benchmark. Take the first 2000 trajectories and extract the first 50 horizons for each trajectory for the offline dataset. Note
that for the hammer environment, the expert dataset does not contain the optimal policy, and in fact only 80% trajectories of
offline datasets contain a successful state at horizon 50. We use the expert offline dataset mainly due to the fact that this
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Figure 5. Zoomed-in training curve of FOOBAR.

Table 3. Hyperparameters for combination lock

Value
Offline sample size (per horizon) 2000

Online forward sample size (per horizon) 2000
Forward policy hidden layer size 128

Min-max game iteration 1000
Online backward sample size (per horizon) 5000

Backward number of gradient descent updates 1500
Backward minibatch size 128

Learning rate 0.001

dataset is collected by a diagonal Gaussian policy, which is the same as our parametrization of the policy so admissibility
holds gracefully. However, we believe using the recently proposed diffusion policy (Block et al., 2023) will address this
issue since diffusion policies can parameterize multimodal distributions.

As mentioned in the main text, we make one modification on the forward phase that for each horizon, we iterate between
optimizing the forward policy and using the latest policy to collect more data. During training, we still use the same min-max
objective and instead of performing importance weighting on the uniform policy, we adjust the importance weight with
respect to the data collection policy. For the backward run, we follow Algorithm 6: we roll-in the forward policy to a
random horizon, and we switch to the current stationary SAC policy to roll out and only update the SAC policy using the
data collected during the roll out. We provide the hyperparameter table in Table 4.

To show the performance of the forward run, we notice that on average the forward policies will have 10% success rate
at the end of the forward phase (compared to the 80% success rate in the offline dataset). However, it is due to the strict
success evaluation of the hammer-binary environment, and we note that even if the policy fails to solve the task, it still
covers the optimal policy reasonably, and thus although in theory, the IPM between forward policy and offline distribution
may not be small, the forward policy still covers the optimal policy, and the learning will success due to Theorem E.1. Here
we give a qualitative and quantitative evaluation of the forward policy. For the qualitative evaluation, we visualize a typical
failure trajectory of the forward policy in Figure 6 and note that the hammer hits the nail but does not fully push the nail into
the board. For the qualitative evaluation, we test the empirical Jensen-Shannon divergence between the dataset induced by
the forward policy and the offline dataset, and we plot the average across the 10 runs in natural log scale in Figure 7.

F.3. Inadmissble Offline

In this section, we describe the construction of the experiments in Section 6.2. For the benign inadmissibility setting, we
collect the offline data in the following way: we reset the initial state distribution the same way as regular combination lock,
and for horizon h = 1, we generate the observation of state 0 (good state), state 1 (good state) and state 2 (bad state) with
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Table 4. Hyperparameters for hammer

Value
Offline sample size (per horizon) 2000

Online forward sample size (per horizon) 2000
Forward policy hidden layer size 128

Min-max game iteration 1000
Online backward sample size (per horizon) 5000

Backward number of gradient descent updates 1500
Backward minibatch size 128

Learning rate 0.001

Figure 6. Visualization of a typical failure trajectory of the forward policy. Note that the hammer hits the nail but does not fully push the
nail into the board.
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Figure 7. Plot of empirical JS divergence between forward policy and offline data for each horizon. The y-axis is in the natural log scale.
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probability (0.1, 0.05, 0.85) respectively. For h ≥ 2, we generate the observation of state 0 (good state), state 1 (good state)
and state 2 (bad state) with probability (0.5 · h, 0.05 · h, 1− 0.1 · h) respectively. Note that this is an inadmissible offline
dataset because the probability of visiting good states is non-increasing over the horizon for any admissible distribution.

For the adversarial inadmissibility setting, the offline distribution follows the same construction as the benign setting:
we reset the initial state distribution the same way as regular combination lock, and for horizon h = 1, we generate the
observation of state 0 (good state), state 1 (good state) and state 2 (bad state) with probability (0.1, 0.05, 0.85) respectively.
For h ≥ 2, we generate the observation of state 0 (good state), state 1 (good state) and state 2 (bad state) with probability
(0.5 · h, 0.05 · h, 1− 0.1 · h) respectively. However, we modify P1 and P2 of the combination lock in the following way:
at horizon 1, taking good actions in either state 0 or state 1 will have a 0.1 probability transiting to state 0 in timestep 2, and
0.9 probability to state 1; taking any bad action will have a probability of 0.05 transiting to state 1, and 0.85 probability to
transit to state 2. However, in timestep 2, only state 0 will be treated as a good state, and state 1 will be treated as a bad state
and thus taking any action in state 1 in timestep 2 will transit to state 2 deterministically. All the remaining dynamics are
the same as the regular combination lock. We note that this is exactly the same construction as in Proposition 5.2, and the
optimal policy will have a success rate of 10% due to the stochasticity of the environment.

Finally, we include the hyperparameters for each baseline in Table 5 and Table 6.

Table 5. Hyperparameters for FOOBAR

Value
Offline sample size (per horizon) 2000

Online forward sample size (per horizon) 2000
Forward policy hidden layer size 128

Min-max game iteration 1000
Online backward sample size (per horizon) 4000

Backward number of gradient descent updates 2000
Backward minibatch size 128

Learning rate 0.001

Table 6. Hyperparameters for PSDP

Value
Offline sample size (per horizon) 2000
Online sample size (per horizon) 4000

Number of gradient descent updates 2000
Minibatch size 128
Learning rate 0.001
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