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Figure 1: RobustSpring is a novel image corruption benchmark for optical flow, scene flow and stereo.
It evaluates 20 image corruptions including blurs, color changes, noises, quality degradations, and
weather, applied to stereo video data from [39]. For comprehensive robustness evaluations on all three
tasks, RobustSpring’s image corruptions are integrated in time, stereo and depth where applicable.

Abstract

Standard benchmarks for optical flow, scene flow, and stereo vision algorithms1

generally focus on model accuracy rather than robustness to image corruptions like2

noise or rain. Hence, the resilience of models to such real-world perturbations is3

largely unquantified. To address this, we present RobustSpring, a comprehensive4

dataset and benchmark for evaluating robustness to image corruptions for optical5

flow, scene flow, and stereo models. RobustSpring applies 20 different image6

corruptions, including noise, blur, color changes, quality degradations, and weather7

distortions, in a time-, stereo-, and depth-consistent manner to the high-resolution8

Spring dataset, creating a suite of 20,000 corrupted images that reflect challenging9

conditions. RobustSpring enables comparisons of model robustness via a new10

corruption robustness metric. Integration with the Spring benchmark enables11

public two-axis evaluations of both accuracy and robustness. We benchmark a12

curated selection of initial models, observing that robustness varies widely by13

corruption type and experimentally show that evaluations on RobustSpring indicate14

real-world robustness. RobustSpring is a new computer vision benchmark at15

https://spring-benchmark.org that treats robustness as a first-class citizen to foster16

models that combine accuracy with resilience.17
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1 Introduction18

Optical flow, scene flow, and stereo vision algorithms estimate dense correspondences and enable19

real-world applications like robot naviation [36, 76, 30], video processing [40], structure-from-20

motion [34, 46], medical image registration [43] or surgical assistance [52, 47]. While estimation21

quality continuously improves on accuracy-driven benchmarks [39, 41, 8, 6, 53, 14, 51, 58], their22

robustness to real-world visual corruptions like sensor noise or compression artifacts is rarely23

systematically assessed. This lack of systematic assessment is problematic, as better accuracy does24

not necessarily translate to improved robustness and can even harm model robustness [67, 56].25

Though image data in KITTI [41], Sintel [8] or Spring [39] comes with degradations like motion26

blurs, depth-of-field or brightness changes, they result from real-world data capture or efforts to27

increase data realism, but were not included to systematically study model predictions under image28

corruptions. Broad corruption-robustness studies as they exist for for image classification [17, 44],29

3D object detection [42, 28] or monocular depth estimation [26] are rare for dense-correspondence30

tasks, where studies are limited to specific degradations like weather [57] or low-light [78]. This not31

only leaves uncertainty about the reliability of dense matching algorithms in real-world scenarios. It32

also prevents systematic efforts to improve their robustness.33

To enable systematic studies on the image corruption robustness of optical flow, scene flow, and34

stereo, we propose the RobustSpring dataset. Based on Spring [39], it jointly benchmarks robustness35

of all three tasks on corrupted stereo videos. While prior image corruptions affect the monocular36

2D or 3D space [17, 26, 42], RobustSpring’s image corruptions are integrated in time, stereo and37

depth and thus tailored to dense matching tasks. A principled corruption robustness metric and38

public benchmark website make RobustSpring the first systematic tool to evaluate and improve dense39

matching robustness to image corruptions.40

Contributions. Figure 1 gives an overview of RobustSpring. In summary, we make the following41

contributions:42

(1) Tailored image corruptions. RobustSpring is the first image corruption dataset for optical43

flow, scene flow and stereo. It integrates 20 corruptions for blurs, noises, tints, artifacts, and44

weather in time, stereo, and depth.45

(2) Corruption robustness metric. We propose a corruption robustness metric, based on Lipschitz46

continuity, which subsamples the clean-corrupted prediction difference and disentangles47

robustness and accuracy.48

(3) Benchmark functionality. RobustSpring’s standardized evaluation enables community-driven49

robustness comparisons of dense matching models. Public robustness benchmarking can be50

integrated with Spring’s website.51

(4) Initial robustness evaluation. We benchmark eight optical flow, two scene flow and six52

stereo models. All models are corruption sensitive, which reveals concealed robustness53

deficits on dense matching models.54

Intended Use. RobustSpring is not a fine-tuning dataset, but a benchmark of how dense matching55

models generalize to unseen image corruptions. It seeks to foster robustness research and, simultane-56

ously, helps assess real-world applicability of models. Hence, it is essential to tie RobustSpring to57

an existing accuracy benchmark like Spring, as this minimizes the robustness evaluation hurdle for58

researchers.59

2 Related Work60

While the quality of optical flow, scene flow and stereo models advanced for over three decades, their61

robustness recently regained attention as result of brittle deep learning generalization [49, 56]. We62

review robustness in dense-matching, particularly image corruptions and metrics.63

Robustness in Dense Matching. Robustness research for optical flow, scene flow, and stereo64

models often focuses on adversarial attacks, which quantify prediction errors for optimized image65

perturbations. Most attacks are for optical flow [4, 57, 56, 59, 49, 73, 29] rather than stereo [7, 70]66

and scene flow [68, 33]. As remedies to adversarial vulnerability [3, 2, 1, 59, 5] may be overcome67

through specialized optimization [54], another line of robustness research considers unoptimized68
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data shifts. Those come in two flavors: generalization across datasets, i.e. the Robust Vision69

Challenge [http://www.robustvision.net/], and robustness to image corruptions. Dense matching70

models typically report generalization [38, 65, 66, 32, 19, 72] to several datasets, which span71

synthetic [39, 8, 51, 35, 11, 13, 50, 31] and real-world data [14, 41, 27, 53, 58], often in automotive72

contexts. While some datasets contain image corruptions, e.g. motion blur, depth of field, fog, noise73

or brightness changes [62, 8, 39, 41], they do not systematically assess corruption robustness. Yet,74

in the wild, robustness to image corruptions is crucial. For optical flow, systematic low light [78]75

and weather datasets [55, 57] exist, and [59, 74] apply 2D image corruptions [17] to optical flow76

data. Beyond these isolated works on optical flow, no systematic image-corruption study before77

RobustSpring spans all three dense matching tasks and includes scene flow or stereo.78

Robustness to Image Corruptions. Popularized by 2D common corruptions [17], the field of image79

corruption robustness rapidly expanded from classification [17, 44] to depth estimation [26], 3D80

object detection [42, 28] and semantic segmentation [28]. Conceptually, corruptions were extended81

to the 3D space [26], LiDAR [28] and procedural rendering [12], but none have been tailored to the82

depth-, stereo-, and time-dependent setup of dense matching with optical flow, scene flow and stereo.83

Robustness Metrics and Benchmarks. Most robustness metrics for dense matching differ by84

whether they utilize ground truth [49, 4, 74] or not [56, 57, 55]. However, multiple works [56, 67, 64]85

evidence that robustness and accuracy are competing qualities whose quantification should not be86

mixed, which informs our robustness metric. RobustSpring is the first dense-matching robustness87

benchmark, and joins prior classification robustness benchmarks [10, 25, 63]88

3 RobustSpring Dataset and Benchmark89

RobustSpring is a large, novel, image corruption dataset for optical flow, scene flow, and stereo.90

Below, we describe how we build on Spring’s stereo video dataset and augment its frames with91

diverse image corruptions integrated in time, stereo, and depth, how we evaluate robustness to image92

corruptions, and use it to benchmark algorithm capabilities.93

Spring Data. Spring [39] is a high-resolution benchmark and dataset with rendered stereo sequences.94

It is the ideal base for an image corruption dataset as its detailed renderings permit image alterations95

of varying granularity – from removing detail by blurring to adding detail via weather. Being a96

benchmark, Spring has a public training and closed test split, which withholds ground truth for optical97

flow, disparity, and extrinsic camera parameters. Because our robustness benchmark shall complement98

accuracy analyses, we use the 2000 Spring test frames, two per stereo camera. For image corruptions99

with time, stereo, and depth consistency, however, we require the extrinsic camera parameters and100

depths that are withheld. Thus, we estimate extrinsics using COLMAP 3.8 and depths as Z = fx·B
d ,101

with focal length fx, baseline length B and stereo disparities d, estimated via MS-RAFT+ [22, 23].102

Estimation also prevents data leakage and maintains ground truth confidentiality.103

3.1 Corruption Dataset Creation104

RobustSpring corrupts the Spring test frames via 20 diverse image corruptions, summarized in Fig. 2a105

and Fig. 2b. Below, we describe the image corruption types, their new consistencies, their implemen-106

tation, and their severity levels.107

Corruption Types. In RobustSpring, we consider the five image corruption types from [17]: color,108

blur, noise, quality, and weather. Color simulates different lighting conditions and camera settings,109

including brightness, contrast, and saturation. Blur acts like focus and motion artifacts, including110

defocus, Gaussian, glass, motion, and zoom blur. Noise represents sensor errors and ambiance,111

including Gaussian, impulse, speckle, and shot noise. Quality distortions are lossy compressions112

and geometric distortions, including pixelation, JPEG, and elastic transformations. Weather enacts113

outdoor conditions, including spatter, frost, snow, rain, and fog. All corruptions are on a single frame114

in Fig. 2a.115

Corruption Consistencies. To increase the realism of these 20 corruptions for dense matching116

models, we extend their definition to time, stereo, and depth: Time consistent corruptions are smooth117

3



Defocus blur Gaussian blur Glass blur Motion blur

Brightness Contrast Saturate Zoom blur

Gaussian noise Impulse noise Speckle noise Shot noise

Pixelate JPEG Elastic transformFog

Spatter Frost Snow Rain

(a) Image corruptions on a single image.

Color Blur Noise Qual Weather

Property B
ri

gh
tn

es
s

C
on

tr
as

t
Sa

tu
ra

te

D
ef

oc
us

G
au

ss
ia

n
G

la
ss

M
ot

io
n

Z
oo

m

G
au

ss
ia

n
Im

pu
ls

e
Sp

ec
kl

e
Sh

ot

Pi
xe

la
te

JP
E

G
E

la
st

ic

Sp
at

te
r

Fr
os

t
Sn

ow
R

ai
n

Fo
g

Time-cons. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – – – ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Stereo-cons. ✓ ✓ ✓ ✓ ✓ – – ✓ – – – – ✓ ✓ – – – ✓ ✓ ✓
Depth-cons. – – – – – – ✓ – – – – – – – – – – ✓ ✓ ✓

SSIM 0.
70

0.
70

0.
72

0.
70

0.
70

0.
73

0.
75

0.
70

0.
20

0.
20

0.
20

0.
22

0.
70

0.
70

0.
70

0.
72

0.
73

0.
70

0.
70

0.
71

(b) Overview of corruptions and their consistency in time,
stereo or depth, with resulting visual changes w.r.t. the orig-
inal images as SSIM.

Figure 2: Overview of RobustSpring’s image corruptions.

over time on one camera, e.g. frost on a camera lens, which differs per stereo camera. Stereo consistent118

corruptions equally influence both stereo cameras, e.g. brightness changes affect the cameras to119

the same extent. Depth consistent corruptions are integrated into the 3D scene, e.g. snowflakes120

falling along a trajectory in the 3D space, rendered into the camera view. Fig. 2b summarizes121

the consistencies we added to 16 of our 20 corruptions. Note that depth-aware motion blur is not122

stereo-consistent because it depends on the specific camera view.123

Corruption Implementation. Though most corruptions are loosely based on [17], our corruption124

consistencies requires multiple adaptations. Furthermore, we employ specialized techniques for125

highly consistent effects, i.e. motion blur, elastic transform, snow, rain and fog. We adapt imple-126

mentations from [17], modify glass blur, zoom blur, frost and pixelation to accommodate higher127

resolutions and non-square images, and adjust frost, glass blur, and spatter for consistency across128

video scenes. Motion blur is based on [77] and adds camera-induced motion with clean optical flow129

estimates. Elastic transform uses PyTorch’s transforms package to create a see-through water-like130

effect, changing object morphology with smooth frame transitions. For snow and rain, we expand131

[57]’s two-step 3D particle rendering to multi-step particle trajectories and stereo views, change from132

additive-blending to order-independent alpha blending [37], and include global illumination [15].133

To augment the large-scale Spring data, we improve its performance via more effective particle134

generation and parallel processing. Fog is based on the Koschmieder model following [69]. Full135

implementation details are in the supplementary.136

Corruption Severity. Prior works [17, 44, 26, 42, 28] defined corruptions with several levels of137

severity. Here we opt for one severity per corruption, because evaluating one scene flow model on138

all 20 corruptions already produces 2.1 TB of raw data – 1.2 GB after subsampling, c.f. Sec. 3.2.139

More severity levels would overburden the evaluation resources of RobustSpring benchmark users.140

To balance severity across corruptions, we tune their hyperparameters until the image SSIM reaches a141

defined threshold. We generally use SSIM ≥ 0.7, and, because the SSIM is less sensitive to blurs than142

noises [18], SSIM ≥ 0.2 for noises for visually similar artifact strengths. Final SSIMs are in Fig. 2b.143

3.2 Robustness Evaluation Metric144

With various corruption types, we need a metric to quantify model robustness to these variations.145

In the following, we motivate and derive a ground-truth-free robustness metric for dense matching,146

introduce subsampling for efficiency, and discuss strategies for joint rankings over corruptions.147

Robustness Metric Concepts. For dense matching, robustness to corruptions is undefined. Metrics148

exist for adversarial robustness, using the distance between corrupt prediction and either (i) ground-149

truth [49, 4] or (ii) clean prediction [56, 57, 55]. The latter is preferred for two reasons: First, (i)’s150

ground-truth comparisons mix accuracy and robustness, which are competing model qualities [56, 67,151

64] that should be separate. This competition is intuitive: A model that always outputs the same value152

is as robust as inaccurate. Likewise, an accurate model varies for any input change and thus is not153

robust. Second, (ii) separates robustness from accuracy and builds on an established mathematical154

concept for system robustness [16, 45]: the Lipschitz constant Lc. It defines robust models as those155
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Brightness Fog Motion blur Pixelate Rain Speckle noise

Figure 3: RobustSpring example frames. The first row shows clean and corrupted images. The second
row shows the left and right disparity maps predicted with LEA Stereo [9]. The third row shows the
target disparities for forward left, backward left, forward right, and backward right directions from
M-FUSE [38]. The fourth row shows optical flow estimates for forward left, backward left, forward
right, and backward right from RAFT [65]. All disparities and flows are computed on the corrupted
dataset, see supplementary for additional frames.

whose prediction f is similar on clean and corrupt image I and Ic, relative to their difference. For156

dense matching, it reads157

Lc =
∥f(I)− f(Ic)∥

∥I − Ic∥
. (1)

This robustness formulation is preferable for real-world applications that demand stable scene158

estimations despite corruptions like snow.159

Corruption Robustness Metric. Based on Eq. (1), we quantify model robustness to corruptions.160

Because RobustSpring’s corrupt images Ic deviate from their clean counterparts I by a similar161

amount, c.f. SSIM equalization in Sec. 3.1, we omit the denominator in Eq. (1) and define corruption162

robustness as distance between clean f(I) and corrupted f(Ic) predictions with distance metric M:163

Rc
M=M[f(I), f(Ic)]. (2)

For similarity to Spring’s evaluation, we use corruption robustness with various metrics M, reporting164

Rc
EPE, Rc

1px and Rc
Fl for optical and scene flow, and Rc

1px, Rc
Abs and Rc

D1 for stereo. Interestingly, our165

EPE-based corruption robustness166

Rc
EPE = EPE[f(I), f(Ic)] =

1

|Ω|
∑
i∈Ω

∥fi(I)−fi(I
c)∥, (3)

on image domain Ω is a generalization of optical-flow adversarial robustness [56] to dense matching167

and corruptions.168

Metric Subsampling. For a benchmark, users should upload robustness results to a web server.169

Given the large number of 20 datasets, data reduction is essential to facilitate evaluations and uploads.170

To this end, we evaluate on a reduced set of pixels by refining the original subsampling strategy171

from Spring, which retains about 1% of the full data. First, we additionally subsample the set of172

full-resolution Hero-frames, leaving 0.95%, and then apply 20-fold subsampling, ultimately keeping173

0.05% of the full data.174

Robustness Ranking. Because we generate 20 different corruption evaluations per dense matching175

model, we need a summarization strategy to produce one result per model. Per-model results are176

ranked based on three strategies: Average, Median, and the Schulze voting method [60]. In contrast to177

averaging across all 20 evaluations, the median reduces the impact of extreme outliers. The Schulze178

method provides a holistic, pairwise comparison approach that ranks models based on preference179

aggregation and was used for prior generalization evaluations in the Robust Vision Challenges. We180

evaluate their differences in Sec. 4.2181
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Table 1: Initial RobustSpring results on corruption robustness of optical flow models, using Rc
EPE,

Rc
1px and Rc

Fl between clean and corrupted flow predictions. Low values indicate robust models.
Clean Error compares clean predictions and ground-truth flows, values from [39].

GMFlow MS-RAFT+ FlowFormer GMA SPyNet RAFT FlowNet2 PWCNet
Rc

EPE Rc
1px Rc

Fl Rc
EPE Rc

1px Rc
Fl Rc

EPE Rc
1px Rc

Fl Rc
EPE Rc

1px Rc
Fl Rc

EPE Rc
1px Rc

Fl Rc
EPE Rc

1px Rc
Fl Rc

EPE Rc
1px Rc

Fl Rc
EPE Rc

1px Rc
Fl

C
ol

or Brightness 0.33 3.31 1.12 0.33 2.88 1.02 0.68 2.82 1.05 0.36 3.22 1.04 2.72 14.67 8.91 0.92 3.49 1.61 0.45 3.16 1.05 1.04 7.38 3.00
Contrast 0.46 6.71 1.71 0.87 6.69 3.24 0.93 5.48 1.96 0.68 6.43 2.20 8.23 38.90 27.23 1.32 5.73 2.64 1.87 9.26 4.74 2.98 30.07 7.42
Saturate 0.34 3.30 0.96 0.34 2.87 1.03 0.42 2.39 0.88 0.43 3.47 1.18 3.36 17.34 11.31 0.93 3.33 1.47 0.51 3.40 1.10 1.21 9.92 3.68

B
lu

r

Defocus 0.53 6.17 1.45 0.51 4.01 1.47 0.55 3.85 1.19 0.56 5.02 2.01 0.57 10.16 1.36 1.03 4.70 2.07 0.53 3.35 1.06 0.98 6.51 2.78
Gaussian 0.66 7.77 1.88 0.58 4.45 1.63 0.63 4.32 1.37 0.62 5.48 2.22 0.76 15.44 2.12 1.10 5.12 2.26 0.60 4.05 1.27 1.11 7.72 3.09
Glass 0.85 20.87 1.82 0.53 4.45 1.37 0.64 4.04 1.17 0.61 5.60 1.91 0.75 16.94 1.36 1.05 5.13 1.97 0.50 3.12 0.96 0.91 5.96 2.47
Motion 1.34 18.35 7.51 1.31 14.06 6.16 1.35 14.03 5.77 1.19 14.40 6.18 2.32 19.55 10.05 2.06 14.33 6.35 1.60 14.07 6.47 1.95 16.25 7.47
Zoom 1.88 35.80 9.90 1.81 21.84 7.13 1.66 22.72 6.77 1.54 23.17 7.16 4.82 46.67 28.37 3.14 22.80 7.61 2.36 24.63 9.04 3.52 50.33 15.64

N
oi

se

Gaussian 4.70 57.95 21.67 5.70 35.74 22.12 6.56 27.83 18.30 2.81 24.70 12.96 2.22 42.23 14.88 7.43 27.92 18.99 1.33 11.24 5.06 2.79 26.87 9.89
Impulse 6.64 66.14 28.70 7.39 45.72 29.05 7.33 23.58 14.47 4.08 31.31 18.13 2.92 53.45 20.41 6.51 29.65 18.32 2.37 15.70 7.48 3.57 35.67 14.45
Speckle 3.90 62.01 20.64 4.22 34.96 17.18 5.47 25.52 15.60 5.32 25.22 12.66 1.95 46.32 12.89 6.62 26.05 16.48 1.32 12.57 4.19 2.74 26.83 8.00
Shot 3.52 56.71 17.77 4.36 31.67 17.77 5.75 26.02 16.01 3.15 23.11 11.59 1.86 40.44 11.98 6.74 25.64 17.08 1.16 9.87 3.92 2.59 23.75 7.88

Q
ua

lit
y Pixelate 1.96 68.09 18.71 1.60 45.83 6.78 1.48 31.68 2.59 1.11 25.86 1.78 1.22 50.63 2.90 1.65 21.47 2.00 0.77 7.74 0.88 0.92 8.67 2.22

JPEG 3.32 83.54 27.92 2.09 41.69 12.82 2.89 42.62 14.96 1.92 38.70 11.51 2.95 53.97 18.08 3.19 37.72 13.67 2.56 31.00 11.85 2.88 49.15 15.91
Elastic 1.37 40.00 6.89 1.16 32.49 5.54 2.62 35.78 11.01 1.24 27.24 6.40 1.08 34.62 4.77 1.33 19.43 4.78 0.79 16.27 2.12 1.42 28.18 5.47

W
ea

th
er

Fog 0.80 14.42 5.32 0.91 10.32 6.33 0.86 9.66 5.67 0.84 11.21 6.42 5.20 28.15 19.97 1.97 12.01 7.11 1.74 11.77 7.82 16.84 20.96 12.89
Frost 8.20 63.96 29.96 7.38 29.96 21.25 8.18 34.19 23.87 8.13 34.30 22.31 6.97 45.13 30.13 8.37 32.75 21.76 7.22 33.69 21.15 8.27 50.31 27.44
Rain 8.60 64.20 32.72 19.99 36.74 31.22 11.13 33.50 20.83 33.00 43.98 36.18 18.20 68.87 56.38 42.41 38.89 31.99 63.71 48.25 41.15 40.18 73.51 57.05
Snow 3.60 70.60 29.90 4.69 33.21 30.91 7.92 40.20 33.82 5.30 40.82 33.35 12.08 74.27 66.65 7.16 37.04 31.37 39.79 68.67 61.60 39.73 90.80 81.91
Spatter 6.58 67.90 27.09 6.63 28.22 20.24 8.41 40.38 26.92 7.75 36.11 21.81 5.71 48.60 33.82 7.98 30.37 19.87 9.13 45.03 28.99 9.33 65.41 40.19

Average 2.98 40.89 14.68 3.62 23.39 12.21 3.77 21.53 11.21 4.03 21.47 10.95 4.29 38.32 19.18 5.64 20.18 11.47 7.01 18.84 11.09 7.25 31.71 16.44
Std. Dev. 2.70 27.91 11.91 4.58 15.54 10.62 3.44 14.37 9.94 7.23 13.67 10.55 4.38 18.35 17.60 9.10 12.55 9.98 15.94 17.93 15.87 11.83 24.43 20.79

Median 1.92 48.35 13.83 1.71 29.09 6.95 2.14 24.55 8.89 1.39 23.93 6.79 2.82 41.33 13.88 2.60 22.13 7.36 1.47 12.17 4.90 2.77 26.85 7.94
Clean Error 0.94 10.36 2.95 0.64 5.72 2.19 0.72 6.51 2.38 0.91 7.07 3.08 4.16 29.96 12.87 1.48 6.79 3.20 1.04 6.71 2.82 2.29 82.27 4.89

3.3 Dataset and Benchmark Functionality182

Below, we summarize RobustSpring’s corruption dataset and describe its benchmark function. Fig. 3183

shows data samples with stereo, optical flow and scene flow estimates.184

RobustSpring Dataset. The final RobustSpring dataset entails 20 corrupted versions of Spring,185

resulting in 40,000 frames, or 20,000 stereo frame pairs. Each corruption evaluation yields 3960186

optical flows (990 per camera & direction), 2000 stereo disparities (1000 per camera) and 3960187

additional scene flow disparity maps (990 per camera per direction). We publicly release the188

RobustSpring test set licensed with CC BY 4.0, but no corrupt training data to discourage corruption189

finetuning for a fair benchmark. We separately provide the raw data and a curated dataset for190

predicting dense matches.191

RobustSpring Benchmark. RobustSpring enables uploading robustness results to a benchmark192

website for display in a public ranking. To emphasize that robustness and accuracy are two axes of193

model performance with equal importance [67], we couple RobustSpring with Spring’s established194

accuracy benchmark. Thus, researchers can report model robustness and accuracy on the same195

dataset. To maintain Spring’s upload policy, 3 per 30 days, one per hour, each submission receives196

one robustness upload.197

4 Results198

We evaluate RobustSpring under two aspects: First, we report initial results for 16 optical flow,199

scene flow and stereo models. Then, we analyze the benchmark evaluation, particularly subsampling200

strategy and ranking methods.201

4.1 Initial RobustSpring Benchmark Results202

We provide initial results on RobustSpring for selected models from all three dense matching203

tasks. For optical flow, we include GMFlow [72], MS-RAFT+ [23], FlowFormer [19], GMA [24],204

SPyNet [48], RAFT [65], FlowNet2 [20], and PWCNet [61]. For scene flow, we evaluate M-205

FUSE [38] and RAFT-3D [66]. For stereo estimation, we evaluate RAFT-Stereo [32], ACVNet [71],206

LEAStereo [9], and GANet [75]. An overview of all models and used checkpoints is in the supplement.207

Importantly, none of these models are fine-tuned to either Spring or RobustSpring data, to assess the208

generalization capacity of existing models.209

Optical Flow. The evaluation results in Tab. 1 show considerable robustness variations over the210

different corruption types, which we also visualize in Fig. 4a. Weather-based corruptions, especially211

6
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Figure 4: Accumulated corruption robustness Rc

EPE for optical flow models over all corruptions [left],
only noise corruptions [middle], and accuracy vs. robustness [right]. All other corruption classes
color (purple), blur (blue), noise (cyan), quality (green), and weather (yellow) are in the supplement.
Small values are robust (and accurate) models. The supplement shows accuracy vs. Median Rc

EPE.

rain and snow, degrade the performance most and lead to the largest Rc values. In contrast, color-212

based corruptions have a relatively small impact, as most models maintain low Rc
EPE values. Also,213

the order of models can change significantly depending on the corruption type. While FlowNet2214

does not perform well in the overall comparison, it is the best model for noise-based corruptions in215

Figure 4b. Overall, GMFlow achieves the lowest average Rc
EPE, GMA the lowest median. We will216

detail on ranking differences in Sec. 4.2.217

To investigate a potential accuracy-robustness tradeoff on image corruptions, we visualize both218

quantities in Fig. 4c. Overall, accurate models tend to be more robust, though we find a slight tradeoff219

because there is no unanimous winner in both dimensions – similarly for median robustness in the220

supplement. Interestingly, this contrasts with adversarial robustness evaluations, which observed a221

clear accuracy-robustness tradeoff on optical flow [56]. Potentially, this tradeoff is less pronounced222

for image corruptions as they are not optimized per model like adversarial attacks.223

Focusing on the architecture of optical flow models, we find that transformer-based models, such as224

GMFlow and FlowFormer, generally outperform other architectures. However, they tend to struggle225

with noise corruptions, potentially resulting from their global matching. Hierarchical models, such as226

MS-RAFT+, achieve balanced performance for most corruptions and may benefit from multi-scale227

feature processing to cope with quality degradations. In contrast, stacked architectures such as228

FlowNet2 are uniquely resilient to noise, potentially due to their progressive refinement across layers.229

Overall, certain architectural features appear to influence robustness to certain corruption types, but230

there is no clear winner in terms of architecture.231

Scene Flow. The results for scene flow are in Tab. 2a, and include optical flow and target frame232

disparity predictions for M-FUSE and RAFT-3D. M-FUSE generally produces more robust optical233

Table 2: Initial RobustSpring results on corruption robustness of scene flow and stereo disparity
models, using corruption robustness Rc

1px, Rc
Abs and Rc

Dl between clean and corrupted predictions.
Low values indicate robust models. Corresponding Disparity 1 from scene flow models LEAStereo
(s) for M-FUSE, and GANet (s) for RAFT-3D in Tab. 2b. Stereo disparity models use Stereo (s) and
KITTI (k) checkpoints, c.f. supplementary.

(a) Initial scene flow evaluation.
M-FUSE RAFT-3D

Optical flow Disparity 2 Optical flow Disparity 2
Rc

EPE Rc
1px Rc

Fl Rc
Abs Rc

1px Rc
D2 Rc

EPE Rc
1px Rc

Fl Rc
Abs Rc

1px Rc
D2

C
ol

or Brightness 0.83 5.54 2.80 0.14 1.53 0.18 1.38 8.23 3.87 0.07 1.48 0.21
Contrast 0.99 7.86 3.60 0.17 1.71 0.17 1.42 10.71 5.07 0.07 1.65 0.22
Saturate 0.67 4.94 2.43 0.12 1.22 0.14 0.93 6.72 3.31 0.06 1.33 0.18

B
lu

r

Defocus 0.84 5.26 2.71 0.15 1.37 0.15 0.66 5.27 2.44 0.04 0.88 0.10
Gaussian 0.94 5.81 2.92 0.16 1.56 0.18 0.78 5.85 2.73 0.05 1.04 0.14
Glass 0.80 5.17 2.65 0.16 1.32 0.14 0.65 5.29 2.39 0.04 0.82 0.09
Motion 1.51 15.10 6.81 0.18 2.50 0.35 1.62 14.66 6.85 0.08 1.60 0.28
Zoom 2.28 27.88 9.52 0.28 3.74 0.41 2.68 34.06 11.99 0.14 2.84 0.50

N
oi

se

Gaussian 6.49 29.22 14.81 0.41 6.56 0.80 5.25 43.33 25.43 0.20 3.64 0.71
Impulse 5.98 37.32 19.16 0.43 8.11 0.88 6.73 59.86 33.16 0.22 4.43 0.75
Speckle 3.73 29.39 12.22 0.35 5.68 0.57 4.86 51.12 26.11 0.18 3.17 0.64
Shot 4.87 26.32 12.34 0.36 5.60 0.69 4.65 42.07 22.91 0.18 3.26 0.67

Q
ua

lit
y Pixelate 0.86 5.95 2.51 0.19 1.51 0.13 0.82 7.66 2.83 0.05 1.02 0.10

JPEG 1.98 27.21 6.82 0.32 3.62 0.36 2.73 33.93 10.55 0.13 2.59 0.41
Elastic 1.15 14.93 3.92 0.22 2.28 0.22 1.70 21.82 5.99 0.08 1.61 0.20

W
ea

th
er

Fog 2.35 15.39 10.13 0.19 2.43 0.19 2.29 18.15 11.67 0.06 1.23 0.15
Frost 7.91 41.60 23.41 0.38 6.55 0.78 7.49 45.07 24.26 0.16 3.75 0.52
Rain 10.21 41.78 28.99 0.70 12.79 1.29 27.89 74.23 59.77 0.47 10.75 1.96
Snow 6.36 47.06 33.55 0.46 7.67 0.80 19.08 80.49 60.01 0.31 6.79 0.84
Spatter 7.00 46.35 22.10 0.39 6.21 0.80 7.06 55.55 25.80 0.17 3.82 0.53

Average 3.39 22.00 11.17 0.29 4.20 0.46 5.03 31.20 17.36 0.14 2.89 0.46
Std. Dev. 2.95 15.23 9.60 0.15 3.11 0.34 6.85 24.26 17.63 0.11 2.40 0.43

Median 2.13 20.86 8.17 0.25 3.06 0.35 2.49 27.88 11.11 0.10 2.12 0.35
Clean Error 2.52 13.96 6.89 7.11 32.95 14.54 2.53 20.98 8.48 8.08 57.03 21.54

(b) Initial stereo disparity evaluation.
RAFT-Stereo (s) ACVNet (s) LEAStereo (s) LEAStereo (k) GANet (k) GANet (s)
Rc

1px Rc
Abs Rc

D1 Rc
1px Rc

Abs Rc
D1 Rc

1px Rc
Abs Rc

D1 Rc
1px Rc

Abs Rc
D1 Rc

1px Rc
Abs Rc

D1 Rc
1px Rc

Abs Rc
D1

C
ol

or Brightness 8.98 2.13 2.83 19.82 6.89 8.80 6.38 1.27 1.78 11.57 2.02 3.73 12.46 2.48 4.61 10.74 2.11 3.39
Contrast 14.04 2.62 3.81 19.33 8.34 9.88 19.00 3.33 6.45 18.23 2.86 5.63 18.02 2.72 5.49 23.14 3.94 6.74
Saturate 7.54 0.74 0.95 8.12 3.18 3.79 6.43 1.24 1.71 13.57 3.05 4.64 16.69 3.53 5.77 13.53 2.70 3.86

B
lu

r

Defocus 10.61 2.47 3.90 8.06 1.10 1.90 8.55 2.02 2.49 29.31 3.26 5.21 41.32 3.29 4.68 12.34 2.46 3.16
Gaussian 11.40 2.57 3.97 9.29 1.55 2.38 9.64 2.16 2.65 48.95 3.68 5.54 47.97 3.55 4.98 13.76 2.69 3.45
Glass 13.10 2.61 3.34 11.72 1.31 1.95 11.56 2.17 2.55 70.01 4.79 6.36 71.45 4.33 5.18 19.42 2.61 3.15
Motion 12.41 2.30 2.61 9.72 1.13 2.07 10.59 1.82 2.74 20.04 2.44 4.77 16.99 2.27 4.26 13.12 2.31 3.61
Zoom 59.50 5.86 7.19 64.76 6.43 9.32 63.52 6.38 9.74 74.92 8.84 16.83 74.29 8.18 14.80 59.89 7.29 11.21

N
oi

se

Gaussian 40.76 20.44 24.16 56.40 39.19 37.76 80.74 80.89 62.28 65.13 15.23 24.53 49.20 7.90 13.17 85.78 33.35 45.02
Impulse 44.79 21.16 27.99 69.34 53.14 49.67 85.39 85.24 65.42 69.03 17.24 25.47 51.64 8.18 12.70 85.00 38.94 50.45
Speckle 42.58 13.64 21.85 71.99 63.51 57.36 84.06 84.54 65.37 66.23 15.68 24.31 55.36 7.64 13.63 83.70 29.65 41.90
Shot 39.84 15.55 20.23 59.56 42.20 41.10 79.41 76.53 59.94 64.06 14.29 22.95 49.36 6.95 11.98 81.49 28.20 39.89

Q
ua

lit
y Pixelate 66.69 46.19 13.86 57.29 4.14 4.98 35.19 3.85 4.11 57.19 3.72 4.83 62.71 4.00 4.60 59.61 3.70 4.07

JPEG 55.27 8.24 5.27 60.87 15.98 15.16 55.18 9.20 10.84 68.22 5.63 7.97 65.92 7.41 11.19 59.52 6.76 10.10
Elastic 65.53 6.52 4.32 58.39 8.17 7.29 71.96 8.02 10.92 93.40 7.16 8.90 87.38 6.89 8.86 76.47 4.85 5.05

W
ea

th
er

Fog 13.71 1.57 2.10 17.99 17.70 12.12 17.95 14.25 10.88 23.36 8.18 12.90 21.36 9.69 12.45 20.55 9.68 9.75
Frost 41.63 18.84 10.68 39.79 8.15 19.27 38.43 7.28 18.51 53.98 12.37 23.89 39.74 9.84 20.93 47.40 11.20 24.31
Rain 43.10 79.42 32.27 34.62 12.92 18.48 56.55 22.14 34.58 65.45 12.54 28.62 49.08 11.44 22.55 59.22 26.50 42.34
Snow 41.05 51.30 32.90 40.96 18.62 29.03 47.03 20.51 32.23 52.16 13.88 29.40 35.16 11.83 22.94 45.88 17.24 33.30
Spatter 35.50 27.17 12.57 18.01 2.18 3.85 31.43 5.13 10.19 35.54 7.93 14.24 28.00 6.75 12.42 34.58 6.04 13.86

Average 33.40 16.57 11.84 36.80 15.79 16.81 40.95 21.90 20.77 50.02 8.24 14.04 44.71 6.44 10.86 45.26 12.11 17.93
Std. Dev. 20.16 20.72 10.79 23.56 18.64 17.08 29.19 31.33 23.64 23.69 5.15 9.43 21.37 3.00 6.10 28.09 12.17 17.25

Median 40.30 7.38 6.23 37.21 8.16 9.60 36.81 6.83 10.51 55.58 7.55 10.90 48.53 6.92 11.58 46.64 6.40 9.93
Clean 15.27 3.02 5.35 14.77 1.52 5.35 19.89 3.88 9.19 47.50 6.15 17.16 27.91 5.29 11.56 23.22 4.59 10.39
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Table 3: Evaluations of the metrics used in RobustSpring.

(a) Influence of subsampling. We compare robustness
evaluations on the full test data (Full) to evaluations on
Spring’s original subsampling (Spring), original subsam-
pling without Hero-frames (Spring*), and our refined cor-
ruption subsampling (Ours).

Subsampling Rc
EPE Subsampling Rc

1px

Full Spring Spring* Ours Full Spring Spring* Ours
% Original Data 100% 1.00% 0.94% 0.05% 100% 1.00% 0.94% 0.05%

GMFlow 2.98 3.20 2.98 2.98 40.89 41.99 40.89 40.89
MS-RAFT+ 3.62 3.84 3.62 3.62 23.38 24.44 23.39 23.39
FlowFormer 3.77 3.89 3.77 3.77 21.52 22.39 21.53 21.53
GMA 4.03 4.28 4.03 4.03 21.47 22.59 21.48 21.47
SPyNet 4.30 4.56 4.29 4.29 38.32 39.28 38.32 38.32
RAFT 5.64 6.15 5.64 5.64 20.17 21.20 20.18 20.18
FlowNet2 7.01 7.36 7.01 7.01 18.84 19.79 18.84 18.84
PWCNet 7.25 7.52 7.25 7.25 31.71 32.55 31.72 31.71

(b) Robustness ranking of optical flow models
with ranking strategies Average Rc

EPE, Median
Rc

EPE, and Schulze to summarize results over
corruptions. Please note that Schulze does not
produce numeric values.

Ranking Method
Rank Average Rc

EPE Median Rc
EPE Schulze

1 2.98 GMFlow 1.39 GMA MS-RAFT+
2 3.62 MS-RAFT+ 1.47 FlowNet2 GMA
3 3.77 FlowFormer 1.71 MS-RAFT+ FlowNet2
4 4.03 GMA 1.92 GMFlow GMFlow
5 4.29 SPyNet 2.14 FlowFormer FlowFormer
6 5.64 RAFT 2.60 RAFT SPyNet
7 7.01 FlowNet2 2.77 PWCNet PWCNet
8 7.25 PWCNet 2.82 SPyNet RAFT

flow across corruptions with a lower average Rc
EPE than RAFT-3D. But both methods suffer significant234

performance losses for severe weather like rain and noise-based corruptions, e.g. impulse noise.235

Interestingly, their robustness does not improve compared to conventional optical flow models. Noise236

and weather corruptions remain a challenge for Disparity 2 predictions. Here, RAFT-3D consistently237

achieves lower robustness scores compared to M-FUSE, but conditions like impulse noise or rain238

still notably affect disparity predictions. Overall, both models have limited robustness, but temporal239

consistency may contribute to lower robustness scores under several corruption types.240

Stereo. The results of the stereo disparity estimations are presented in Tab. 2b. The effect of the241

different corruptions on the performance is significant, with noise and weather-based corruptions242

leading to the largest errors, especially for GANet and LEAStereo. In particular, Gaussian and243

impulse noise introduce extremely large errors, highlighting the sensitivity of stereo models to pixel-244

level noise. Blur distortions, especially zoom blur, also have a severe impact on all models, with high245

1px and D1 errors. In contrast, color-based distortions generally yield smaller errors. RAFT-Stereo246

shows stronger resilience across most corruption groups, performing better on color and noise based247

corruption than other models. However, it also struggles with noise and severe weather effects such248

as rain and snow.249

4.2 Metrics and Benchmark Capability250

After reporting initial RobustSpring results, we analyze aspects of its benchmark character: The251

subsampling strategy for data efficiency, and different ranking systems for result comparisons across252

20 different prompt variations. We also validate our robustness metric for object corruptions and253

explore RobustSpring’s transferability to the real-world.254

Subsampling. We evaluate RobustSpring’s strict data subsampling by comparing to results on the255

full test set. As shown in Tab. 3a, our subsampling strategy produces results that are nearly identical256

to those that include all pixels in the robustness calculation. We observe the largest discrepancy257

for Spring’s original subsampling, because it includes a handful of full-resolution Hero-frames. If258

those frames are also subsampled (Spring*), results align with the full dataset. Overall, our stricter259

subsampling to 0.05% of all data is not only data efficient but also exact.260

Metric Ranking. To explore how ranking strategies influences the optical-flow robustness order,261

we contrast our three summarization strategies: Average, Median, and Schulze, c.f. supplement.262

The rankings in Tab. 3b notably differ across strategies. The Average differs most from the other263

rankings. For example, it ranks GMFlow 1st, which is only 4th on Median and Schulze, suggesting264

a good performance across corruptions without excessive outliers but no top performance on most265

corruptions. Interestingly, Median and Schulze rankings are more aligned. As Schulze’s ranking266

involves complex comparisons of per-corruption rankings and must be globally recomputed for new267

models, the Median ranking is a cheap approximation to it. The ranking strategy has significant268

implications for selecting robust models. No model is optimal across rankings, and the rankings269

accentuate different aspects: overall performance, outlier robustness, or balanced performance in270

pairwise comparisons. Hence, RobustSpring reports them all.271
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(b) Relative robustness to noise on RobustSpring trans-
fers to noisy real-world KITTI data [41] for most opti-
cal flow models.

Figure 5: Additional evaluations of RobustSpring’s benchmark character.

Corruption Robustness on Object Corruptions. Intuitively, models are robust if they recover272

the main scene despite image corruptions. Here, we investigate if the corruption robustness metric273

faithfully represents model robustness even if corruptions like rain introduce moving objects to the274

scene. To this end, we contrast the robustness score contributions of background and corruption275

objects, by excluding pixels of objects like rain drops from the score calculation. We detect object276

pixels by taking the value difference d between original and corrupt images, and exclude them if (1−d)277

is above a detection threshold. Threshold 0 detects no rain pixels, matching the vanilla RRain
EPE , while278

100 detects all. Figure 5a shows the robustness score if rain is excluded from the calculation, along279

with bars indicating the amount [%] of excluded pixels. Remarkably, the robustness score is stable, i.e.280

varies ≤5%, even for discarding all rain pixels, i.e. 90% of all pixels. Large robustness scores on rain281

or snow, c.f. supplement, thus stem from mispredictions in the periphery of altered pixels, not from282

motion predictions on altered pixels. As scene-wide effects dominate it, our corruption robustness283

yields stable robustness rankings that make it suited for broad model robustness evaluations.284

Robustness in the Real World. Finally, we investigate if RobustSpring’s corruption robustness285

transfers to the real world. To this end, we select the noisiest 10% KITTI data, estimating noise as286

in [21]. These noisy KITTI frames have no clean counterparts to calculate corruption robustness287

RNoise
EPE . Thus, we approximate RNoise

EPE via the accuracy difference on noisy and non-noisy KITTI288

frames. To account for model-specific performance differences on Spring and KITTI, we normalize289

with the clean dataset performance and show the resulting relative robustness RNoise
EPE

EPEClean in Fig. 5b.290

Relatively robust models with low scores on RobustSpring are also robust on KITTI and vice versa.291

The only outlier, FlowFormer, overperforms on KITTI, potentially due to outstanding memorization292

capacity and exposure to KITTI during training. Because overall noise resilience on RobustSpring293

qualitatively transfers to KITTI, RobustSpring supports model selection for real-world settings where294

corruption robustness cannot be measured.295

5 Conclusion296

With RobustSpring we introduce an image corruption dataset and benchmark that evaluates the297

robustness of optical flow, scene flow and stereo models. We carefully design 20 different image298

corruptions and integrate them in time, stereo, and depth for a holistic evaluation of dense matching299

tasks. Furthermore, we establish a corruption robustness metric using clean and corrupted predictions,300

and compare ranking strategies to unify model results across all 20 corruptions. RobustSpring’s301

benchmark further supports data-efficient result uploads to a public website. Our initial evaluation of302

16 optical flow, scene flow and stereo models reveals an overall high sensitivity to corrupted images.303

As our robustness results translate to real-world performance, systematic corruption benchmarks like304

RobustSpring are crucial to uncover potential model performance improvements.305

Limitations. Due to its benchmark character, we have limited the image corruptions on RobustSpring306

to a selection of 20. While this does not cover the full space of potential corruptions, this data-307

budget limitation is necessary to make the RobustSpring dataset applicable and not overburden the308

computational resources of researchers during evaluation.309
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NeurIPS Paper Checklist525

1. Claims526

Question: Do the main claims made in the abstract and introduction accurately reflect the527

paper’s contributions and scope?528

Answer: [Yes]529

Justification: The abstract reflects that RobustSpring proposes a new dataset and benchmark530

evaluating the robustness to image corruptions for optical flow, scene flow and stereo. It531

further reflects the initial evaluations of existing methods, as well as the evaluations of the532

benchmark methodology itself.533

Guidelines:534

• The answer NA means that the abstract and introduction do not include the claims535

made in the paper.536

• The abstract and/or introduction should clearly state the claims made, including the537

contributions made in the paper and important assumptions and limitations. A No or538

NA answer to this question will not be perceived well by the reviewers.539

• The claims made should match theoretical and experimental results, and reflect how540

much the results can be expected to generalize to other settings.541

• It is fine to include aspirational goals as motivation as long as it is clear that these goals542

are not attained by the paper.543

2. Limitations544

Question: Does the paper discuss the limitations of the work performed by the authors?545

Answer: [Yes]546

Justification: The paper has a limitations section as part of the conclusions, and comments547

on computational feasibility and usability in Sec. 3.1, Corruption Severity, and Sec. 3.2548

Metric subsampling.549

Guidelines:550

• The answer NA means that the paper has no limitation while the answer No means that551

the paper has limitations, but those are not discussed in the paper.552

• The authors are encouraged to create a separate "Limitations" section in their paper.553

• The paper should point out any strong assumptions and how robust the results are to554

violations of these assumptions (e.g., independence assumptions, noiseless settings,555

model well-specification, asymptotic approximations only holding locally). The authors556

should reflect on how these assumptions might be violated in practice and what the557

implications would be.558

• The authors should reflect on the scope of the claims made, e.g., if the approach was559

only tested on a few datasets or with a few runs. In general, empirical results often560

depend on implicit assumptions, which should be articulated.561

• The authors should reflect on the factors that influence the performance of the approach.562

For example, a facial recognition algorithm may perform poorly when image resolution563

is low or images are taken in low lighting. Or a speech-to-text system might not be564

used reliably to provide closed captions for online lectures because it fails to handle565

technical jargon.566

• The authors should discuss the computational efficiency of the proposed algorithms567

and how they scale with dataset size.568

• If applicable, the authors should discuss possible limitations of their approach to569

address problems of privacy and fairness.570

• While the authors might fear that complete honesty about limitations might be used by571

reviewers as grounds for rejection, a worse outcome might be that reviewers discover572

limitations that aren’t acknowledged in the paper. The authors should use their best573

judgment and recognize that individual actions in favor of transparency play an impor-574

tant role in developing norms that preserve the integrity of the community. Reviewers575

will be specifically instructed to not penalize honesty concerning limitations.576

3. Theory assumptions and proofs577
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Question: For each theoretical result, does the paper provide the full set of assumptions and578

a complete (and correct) proof?579

Answer: [NA]580

Justification: The paper does not include theoretical results.581

Guidelines:582

• The answer NA means that the paper does not include theoretical results.583

• All the theorems, formulas, and proofs in the paper should be numbered and cross-584

referenced.585

• All assumptions should be clearly stated or referenced in the statement of any theorems.586

• The proofs can either appear in the main paper or the supplemental material, but if587

they appear in the supplemental material, the authors are encouraged to provide a short588

proof sketch to provide intuition.589

• Inversely, any informal proof provided in the core of the paper should be complemented590

by formal proofs provided in appendix or supplemental material.591

• Theorems and Lemmas that the proof relies upon should be properly referenced.592

4. Experimental result reproducibility593

Question: Does the paper fully disclose all the information needed to reproduce the main ex-594

perimental results of the paper to the extent that it affects the main claims and/or conclusions595

of the paper (regardless of whether the code and data are provided or not)?596

Answer: [Yes]597

Justification: We provide access to the full RobustSpring dataset, the benchmark evaluation598

script, and disclose the repositories of the evaluated models as well as the evaluated check-599

points in the appendix. This allows reproducing the initial benchmark results. Furthermore,600

we describe the parameters used to generate the corrupted images in the appendix, but note601

that due to randomization, only an approximate recreation of the corrupted dataset will be602

possible.603

Guidelines:604

• The answer NA means that the paper does not include experiments.605

• If the paper includes experiments, a No answer to this question will not be perceived606

well by the reviewers: Making the paper reproducible is important, regardless of607

whether the code and data are provided or not.608

• If the contribution is a dataset and/or model, the authors should describe the steps taken609

to make their results reproducible or verifiable.610

• Depending on the contribution, reproducibility can be accomplished in various ways.611

For example, if the contribution is a novel architecture, describing the architecture fully612

might suffice, or if the contribution is a specific model and empirical evaluation, it may613

be necessary to either make it possible for others to replicate the model with the same614

dataset, or provide access to the model. In general. releasing code and data is often615

one good way to accomplish this, but reproducibility can also be provided via detailed616

instructions for how to replicate the results, access to a hosted model (e.g., in the case617

of a large language model), releasing of a model checkpoint, or other means that are618

appropriate to the research performed.619

• While NeurIPS does not require releasing code, the conference does require all submis-620

sions to provide some reasonable avenue for reproducibility, which may depend on the621

nature of the contribution. For example622

(a) If the contribution is primarily a new algorithm, the paper should make it clear how623

to reproduce that algorithm.624

(b) If the contribution is primarily a new model architecture, the paper should describe625

the architecture clearly and fully.626

(c) If the contribution is a new model (e.g., a large language model), then there should627

either be a way to access this model for reproducing the results or a way to reproduce628

the model (e.g., with an open-source dataset or instructions for how to construct629

the dataset).630
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(d) We recognize that reproducibility may be tricky in some cases, in which case631

authors are welcome to describe the particular way they provide for reproducibility.632

In the case of closed-source models, it may be that access to the model is limited in633

some way (e.g., to registered users), but it should be possible for other researchers634

to have some path to reproducing or verifying the results.635

5. Open access to data and code636

Question: Does the paper provide open access to the data and code, with sufficient instruc-637

tions to faithfully reproduce the main experimental results, as described in supplemental638

material?639

Answer: [Yes]640

Justification: We provide links to the dataset (CC-BY-4.0), the benchmark website and641

the evaluation script. Note that the results can be obtained without uploading own method642

evaluations to the benchmark, because only clean and corrupted predictions of optical flow,643

scene flow and stereo models are required for the robustness calculation. As shown in Tab. 3a,644

the results on the full set are a very good approximation to the results with the subsampling645

script that is executed before uploads to the benchmark website. We further provide the code646

of the subsampling script, though our officially released code uses a different randomization647

than the script used by the website to maintain confidentiality of the exact evaluation.648

Guidelines:649

• The answer NA means that paper does not include experiments requiring code.650

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/651

public/guides/CodeSubmissionPolicy) for more details.652

• While we encourage the release of code and data, we understand that this might not be653

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not654

including code, unless this is central to the contribution (e.g., for a new open-source655

benchmark).656

• The instructions should contain the exact command and environment needed to run to657

reproduce the results. See the NeurIPS code and data submission guidelines (https:658

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.659

• The authors should provide instructions on data access and preparation, including how660

to access the raw data, preprocessed data, intermediate data, and generated data, etc.661

• The authors should provide scripts to reproduce all experimental results for the new662

proposed method and baselines. If only a subset of experiments are reproducible, they663

should state which ones are omitted from the script and why.664

• At submission time, to preserve anonymity, the authors should release anonymized665

versions (if applicable).666

• Providing as much information as possible in supplemental material (appended to the667

paper) is recommended, but including URLs to data and code is permitted.668

6. Experimental setting/details669

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-670

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the671

results?672

Answer: [Yes]673

Justification: We provide the necessary details about the used datasets, evaluated meth-674

ods and methods to create the dataset in the main paper (sec. Results) as well as in the675

supplement.676

Guidelines:677

• The answer NA means that the paper does not include experiments.678

• The experimental setting should be presented in the core of the paper to a level of detail679

that is necessary to appreciate the results and make sense of them.680

• The full details can be provided either with the code, in appendix, or as supplemental681

material.682

7. Experiment statistical significance683
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Question: Does the paper report error bars suitably and correctly defined or other appropriate684

information about the statistical significance of the experiments?685

Answer: [Yes]686

Justification: Per evaluated method, we report standard deviations along with the averages687

over the robustness results across all corruptions in Tab. 1, Tab. 2a and Tab. 2b688

Guidelines:689

• The answer NA means that the paper does not include experiments.690

• The authors should answer "Yes" if the results are accompanied by error bars, confi-691

dence intervals, or statistical significance tests, at least for the experiments that support692

the main claims of the paper.693

• The factors of variability that the error bars are capturing should be clearly stated (for694

example, train/test split, initialization, random drawing of some parameter, or overall695

run with given experimental conditions).696

• The method for calculating the error bars should be explained (closed form formula,697

call to a library function, bootstrap, etc.)698

• The assumptions made should be given (e.g., Normally distributed errors).699

• It should be clear whether the error bar is the standard deviation or the standard error700

of the mean.701

• It is OK to report 1-sigma error bars, but one should state it. The authors should702

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis703

of Normality of errors is not verified.704

• For asymmetric distributions, the authors should be careful not to show in tables or705

figures symmetric error bars that would yield results that are out of range (e.g. negative706

error rates).707

• If error bars are reported in tables or plots, The authors should explain in the text how708

they were calculated and reference the corresponding figures or tables in the text.709

8. Experiments compute resources710

Question: For each experiment, does the paper provide sufficient information on the com-711

puter resources (type of compute workers, memory, time of execution) needed to reproduce712

the experiments?713

Answer: [Yes]714

Justification: We provide information on the resources required for the experiments in the715

supplementary material.716

Guidelines:717

• The answer NA means that the paper does not include experiments.718

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,719

or cloud provider, including relevant memory and storage.720

• The paper should provide the amount of compute required for each of the individual721

experimental runs as well as estimate the total compute.722

• The paper should disclose whether the full research project required more compute723

than the experiments reported in the paper (e.g., preliminary or failed experiments that724

didn’t make it into the paper).725

9. Code of ethics726

Question: Does the research conducted in the paper conform, in every respect, with the727

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?728

Answer: [Yes]729

Justification: The research in this paper does not involve human subjects. It does propose a730

new dataset. Since the dataset does not use real-world data, there are no privacy concerns or731

consent issues. We acknowledge copyright and fair use by making clear statements about732

the copyright of the data we base our new dataset on, and attributing the prior datasets and733

methods to their respective creators.734

Guidelines:735
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.736

• If the authors answer No, they should explain the special circumstances that require a737

deviation from the Code of Ethics.738

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-739

eration due to laws or regulations in their jurisdiction).740

10. Broader impacts741

Question: Does the paper discuss both potential positive societal impacts and negative742

societal impacts of the work performed?743

Answer: [Yes]744

Justification: Our robustness benchmark for optical flow, scene flow and stereo is designed to745

steer method development towards more robust and thus reliable methods, which is desirable746

for dense-matching tasks that are often applied in the real world. We discuss in the abstract747

and introduction. We do acknowledge, however, that these dense matching tasks are also748

often relevant for autonomous navigation, and RobustSpring’s long term vision of fostering749

improved robustness to image corruptions may also enhance the navigation capabilities of750

drones and other autonomous carriers with high dual-use potential.751

Guidelines:752

• The answer NA means that there is no societal impact of the work performed.753

• If the authors answer NA or No, they should explain why their work has no societal754

impact or why the paper does not address societal impact.755

• Examples of negative societal impacts include potential malicious or unintended uses756

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations757

(e.g., deployment of technologies that could make decisions that unfairly impact specific758

groups), privacy considerations, and security considerations.759

• The conference expects that many papers will be foundational research and not tied760

to particular applications, let alone deployments. However, if there is a direct path to761

any negative applications, the authors should point it out. For example, it is legitimate762

to point out that an improvement in the quality of generative models could be used to763

generate deepfakes for disinformation. On the other hand, it is not needed to point out764

that a generic algorithm for optimizing neural networks could enable people to train765

models that generate Deepfakes faster.766

• The authors should consider possible harms that could arise when the technology is767

being used as intended and functioning correctly, harms that could arise when the768

technology is being used as intended but gives incorrect results, and harms following769

from (intentional or unintentional) misuse of the technology.770

• If there are negative societal impacts, the authors could also discuss possible mitigation771

strategies (e.g., gated release of models, providing defenses in addition to attacks,772

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from773

feedback over time, improving the efficiency and accessibility of ML).774

11. Safeguards775

Question: Does the paper describe safeguards that have been put in place for responsible776

release of data or models that have a high risk for misuse (e.g., pretrained language models,777

image generators, or scraped datasets)?778

Answer: [NA]779

Justification: While we believe that our RobustSpring dataset carries a low risk of misuse or780

dual use, we made an effort to make it a valuable evaluation tool by respecting the upload781

policies of the Spring dataset and benchmark (3 uploads per 30 days, maximum 1 per day).782

Guidelines:783

• The answer NA means that the paper poses no such risks.784

• Released models that have a high risk for misuse or dual-use should be released with785

necessary safeguards to allow for controlled use of the model, for example by requiring786

that users adhere to usage guidelines or restrictions to access the model or implementing787

safety filters.788
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• Datasets that have been scraped from the Internet could pose safety risks. The authors789

should describe how they avoided releasing unsafe images.790

• We recognize that providing effective safeguards is challenging, and many papers do791

not require this, but we encourage authors to take this into account and make a best792

faith effort.793

12. Licenses for existing assets794

Question: Are the creators or original owners of assets (e.g., code, data, models), used in795

the paper, properly credited and are the license and terms of use explicitly mentioned and796

properly respected?797

Answer: [Yes]798

Justification: We clearly cite the original papers of the Spring data and all models that were799

evaluated on the newly created RobustSpring data. The supplementary also includes the800

URLs of all evaluated models.801

Guidelines:802

• The answer NA means that the paper does not use existing assets.803

• The authors should cite the original paper that produced the code package or dataset.804

• The authors should state which version of the asset is used and, if possible, include a805

URL.806

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.807

• For scraped data from a particular source (e.g., website), the copyright and terms of808

service of that source should be provided.809

• If assets are released, the license, copyright information, and terms of use in the810

package should be provided. For popular datasets, paperswithcode.com/datasets811

has curated licenses for some datasets. Their licensing guide can help determine the812

license of a dataset.813

• For existing datasets that are re-packaged, both the original license and the license of814

the derived asset (if it has changed) should be provided.815

• If this information is not available online, the authors are encouraged to reach out to816

the asset’s creators.817

13. New assets818

Question: Are new assets introduced in the paper well documented and is the documentation819

provided alongside the assets?820

Answer: [Yes]821

Justification: We provide the RobustSpring dataset via a huggingface interface with ap-822

propriate documentation, together with its crossaint data (structured template). We also823

clearly state that the dataset is licensed with CC-BY-4.0. This license is allowed because824

RobustSpring builds on Spring’s data, which also has a CC-BY-4.0 license.825

Guidelines:826

• The answer NA means that the paper does not release new assets.827

• Researchers should communicate the details of the dataset/code/model as part of their828

submissions via structured templates. This includes details about training, license,829

limitations, etc.830

• The paper should discuss whether and how consent was obtained from people whose831

asset is used.832

• At submission time, remember to anonymize your assets (if applicable). You can either833

create an anonymized URL or include an anonymized zip file.834

14. Crowdsourcing and research with human subjects835

Question: For crowdsourcing experiments and research with human subjects, does the paper836

include the full text of instructions given to participants and screenshots, if applicable, as837

well as details about compensation (if any)?838

Answer: [NA]839

Justification: The paper does not involve crowdsourcing nor research with human subjects.840
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Guidelines:841

• The answer NA means that the paper does not involve crowdsourcing nor research with842

human subjects.843

• Including this information in the supplemental material is fine, but if the main contribu-844

tion of the paper involves human subjects, then as much detail as possible should be845

included in the main paper.846

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,847

or other labor should be paid at least the minimum wage in the country of the data848

collector.849

15. Institutional review board (IRB) approvals or equivalent for research with human850

subjects851

Question: Does the paper describe potential risks incurred by study participants, whether852

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)853

approvals (or an equivalent approval/review based on the requirements of your country or854

institution) were obtained?855

Answer: [NA]856

Justification: The paper does not involve crowdsourcing nor research with human subjects.857

Guidelines:858

• The answer NA means that the paper does not involve crowdsourcing nor research with859

human subjects.860

• Depending on the country in which research is conducted, IRB approval (or equivalent)861

may be required for any human subjects research. If you obtained IRB approval, you862

should clearly state this in the paper.863

• We recognize that the procedures for this may vary significantly between institutions864

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the865

guidelines for their institution.866

• For initial submissions, do not include any information that would break anonymity (if867

applicable), such as the institution conducting the review.868

16. Declaration of LLM usage869

Question: Does the paper describe the usage of LLMs if it is an important, original, or870

non-standard component of the core methods in this research? Note that if the LLM is used871

only for writing, editing, or formatting purposes and does not impact the core methodology,872

scientific rigorousness, or originality of the research, declaration is not required.873

Answer: [NA]874

Justification: The core method development in this research does not involve LLMs as any875

important, original or non-standard components.876

Guidelines:877

• The answer NA means that the core method development in this research does not878

involve LLMs as any important, original, or non-standard components.879

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)880

for what should or should not be described.881
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