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RobustSpring: Benchmarking Robustness to Image
Corruptions for Optical Flow, Scene Flow and Stereo
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Figure 1: RobustSpring is a novel image corruption benchmark for optical flow, scene flow and stereo.
It evaluates 20 image corruptions including blurs, color changes, noises, quality degradations, and
weather, applied to stereo video data from [39]. For comprehensive robustness evaluations on all three
tasks, RobustSpring’s image corruptions are integrated in time, stereo and depth where applicable.

Abstract

Standard benchmarks for optical flow, scene flow, and stereo vision algorithms
generally focus on model accuracy rather than robustness to image corruptions like
noise or rain. Hence, the resilience of models to such real-world perturbations is
largely unquantified. To address this, we present RobustSpring, a comprehensive
dataset and benchmark for evaluating robustness to image corruptions for optical
flow, scene flow, and stereo models. RobustSpring applies 20 different image
corruptions, including noise, blur, color changes, quality degradations, and weather
distortions, in a time-, stereo-, and depth-consistent manner to the high-resolution
Spring dataset, creating a suite of 20,000 corrupted images that reflect challenging
conditions. RobustSpring enables comparisons of model robustness via a new
corruption robustness metric. Integration with the Spring benchmark enables
public two-axis evaluations of both accuracy and robustness. We benchmark a
curated selection of initial models, observing that robustness varies widely by
corruption type and experimentally show that evaluations on RobustSpring indicate
real-world robustness. RobustSpring is a new computer vision benchmark at
https://spring-benchmark.org that treats robustness as a first-class citizen to foster
models that combine accuracy with resilience.
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1 Introduction

Optical flow, scene flow, and stereo vision algorithms estimate dense correspondences and enable
real-world applications like robot naviation [36)} [76| 30], video processing [40]], structure-from-
motion [34, 46]], medical image registration [43]] or surgical assistance [52,47]]. While estimation
quality continuously improves on accuracy-driven benchmarks [39} 141} 8, 16} 153} 114, 511 58], their
robustness to real-world visual corruptions like sensor noise or compression artifacts is rarely
systematically assessed. This lack of systematic assessment is problematic, as better accuracy does
not necessarily translate to improved robustness and can even harm model robustness [67} [56].
Though image data in KITTI [41]], Sintel [8] or Spring [39] comes with degradations like motion
blurs, depth-of-field or brightness changes, they result from real-world data capture or efforts to
increase data realism, but were not included to systematically study model predictions under image
corruptions. Broad corruption-robustness studies as they exist for for image classification [17, 44],
3D object detection [42} 28] or monocular depth estimation [26] are rare for dense-correspondence
tasks, where studies are limited to specific degradations like weather [57]] or low-light [78]]. This not
only leaves uncertainty about the reliability of dense matching algorithms in real-world scenarios. It
also prevents systematic efforts to improve their robustness.

To enable systematic studies on the image corruption robustness of optical flow, scene flow, and
stereo, we propose the RobustSpring dataset. Based on Spring [39], it jointly benchmarks robustness
of all three tasks on corrupted stereo videos. While prior image corruptions affect the monocular
2D or 3D space [17} 126l 42], RobustSpring’s image corruptions are integrated in time, stereo and
depth and thus tailored to dense matching tasks. A principled corruption robustness metric and
public benchmark website make RobustSpring the first systematic tool to evaluate and improve dense
matching robustness to image corruptions.

Contributions. Figure(l|gives an overview of RobustSpring. In summary, we make the following
contributions:

(1) Tailored image corruptions. RobustSpring is the first image corruption dataset for optical
flow, scene flow and stereo. It integrates 20 corruptions for blurs, noises, tints, artifacts, and
weather in time, stereo, and depth.

(2) Corruption robustness metric. We propose a corruption robustness metric, based on Lipschitz
continuity, which subsamples the clean-corrupted prediction difference and disentangles
robustness and accuracy.

(3) Benchmark functionality. RobustSpring’s standardized evaluation enables community-driven
robustness comparisons of dense matching models. Public robustness benchmarking can be
integrated with Spring’s website.

(4) Initial robustness evaluation. We benchmark eight optical flow, two scene flow and six
stereo models. All models are corruption sensitive, which reveals concealed robustness
deficits on dense matching models.

Intended Use. RobustSpring is not a fine-tuning dataset, but a benchmark of how dense matching
models generalize to unseen image corruptions. It seeks to foster robustness research and, simultane-
ously, helps assess real-world applicability of models. Hence, it is essential to tie RobustSpring to
an existing accuracy benchmark like Spring, as this minimizes the robustness evaluation hurdle for
researchers.

2 Related Work

While the quality of optical flow, scene flow and stereo models advanced for over three decades, their
robustness recently regained attention as result of brittle deep learning generalization [49,|56]. We
review robustness in dense-matching, particularly image corruptions and metrics.

Robustness in Dense Matching. Robustness research for optical flow, scene flow, and stereo
models often focuses on adversarial attacks, which quantify prediction errors for optimized image
perturbations. Most attacks are for optical flow [4} 157,156,159} 49, 73], [29]] rather than stereo [[7, [70]
and scene flow [68 33]]. As remedies to adversarial vulnerability [3} 2, (1159, 5] may be overcome
through specialized optimization [54]], another line of robustness research considers unoptimized
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data shifts. Those come in two flavors: generalization across datasets, i.e. the Robust Vision
Challenge [http://www.robustvision.net/], and robustness to image corruptions. Dense matching
models typically report generalization [38l |65} 166, 132, [19, [72] to several datasets, which span
synthetic [39} 18} 151} 35,11} 13,50} 131]] and real-world data [[14, 41} 127, 53, 158]], often in automotive
contexts. While some datasets contain image corruptions, e.g. motion blur, depth of field, fog, noise
or brightness changes [62} 18,39, 41]], they do not systematically assess corruption robustness. Yet,
in the wild, robustness to image corruptions is crucial. For optical flow, systematic low light [78§]]
and weather datasets [55) |57]] exist, and [59, [74] apply 2D image corruptions [17] to optical flow
data. Beyond these isolated works on optical flow, no systematic image-corruption study before
RobustSpring spans all three dense matching tasks and includes scene flow or stereo.

Robustness to Image Corruptions. Popularized by 2D common corruptions [[17], the field of image
corruption robustness rapidly expanded from classification [17, 44] to depth estimation [26], 3D
object detection [42] 28] and semantic segmentation [28]]. Conceptually, corruptions were extended
to the 3D space [26], LiDAR [28]] and procedural rendering [12]], but none have been tailored to the
depth-, stereo-, and time-dependent setup of dense matching with optical flow, scene flow and stereo.

Robustness Metrics and Benchmarks. Most robustness metrics for dense matching differ by
whether they utilize ground truth [49} 4} [74]] or not [56L[57,55]. However, multiple works [56 167, [64]]
evidence that robustness and accuracy are competing qualities whose quantification should not be
mixed, which informs our robustness metric. RobustSpring is the first dense-matching robustness
benchmark, and joins prior classification robustness benchmarks [[10} 251 [63]]

3 RobustSpring Dataset and Benchmark

RobustSpring is a large, novel, image corruption dataset for optical flow, scene flow, and stereo.
Below, we describe how we build on Spring’s stereo video dataset and augment its frames with
diverse image corruptions integrated in time, stereo, and depth, how we evaluate robustness to image
corruptions, and use it to benchmark algorithm capabilities.

Spring Data. Spring [39] is a high-resolution benchmark and dataset with rendered stereo sequences.
It is the ideal base for an image corruption dataset as its detailed renderings permit image alterations
of varying granularity — from removing detail by blurring to adding detail via weather. Being a
benchmark, Spring has a public training and closed test split, which withholds ground truth for optical
flow, disparity, and extrinsic camera parameters. Because our robustness benchmark shall complement
accuracy analyses, we use the 2000 Spring test frames, two per stereo camera. For image corruptions
with time, stereo, and depth consistency, however, we require the extrinsic camera parameters and
depths that are withheld. Thus, we estimate extrinsics using COLMAP 3.8 and depths as Z = Lo d
with focal length f, baseline length B and stereo disparities d, estimated via MS-RAFT+ [22] 23]
Estimation also prevents data leakage and maintains ground truth confidentiality.

3.1 Corruption Dataset Creation

RobustSpring corrupts the Spring test frames via 20 diverse image corruptions, summarized in Fig.[2a]
and Fig. [2b] Below, we describe the image corruption types, their new consistencies, their implemen-
tation, and their severity levels.

Corruption Types. In RobustSpring, we consider the five image corruption types from [17]: color,
blur, noise, quality, and weather. Color simulates different lighting conditions and camera settings,
including brightness, contrast, and saturation. Blur acts like focus and motion artifacts, including
defocus, Gaussian, glass, motion, and zoom blur. Noise represents sensor errors and ambiance,
including Gaussian, impulse, speckle, and shot noise. Quality distortions are lossy compressions
and geometric distortions, including pixelation, JPEG, and elastic transformations. Weather enacts
outdoor conditions, including spatter, frost, snow, rain, and fog. All corruptions are on a single frame

in Fig. [2a]

Corruption Consistencies. To increase the realism of these 20 corruptions for dense matching
models, we extend their definition to time, stereo, and depth: Time consistent corruptions are smooth
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(b) Overview of corruptions and their consistency in time,
stereo or depth, with resulting visual changes w.r.t. the orig-
(a) Image corruptions on a single image. inal images as SSIM.

Figure 2: Overview of RobustSpring’s image corruptions.

over time on one camera, e.g. frost on a camera lens, which differs per stereo camera. Stereo consistent
corruptions equally influence both stereo cameras, e.g. brightness changes affect the cameras to
the same extent. Depth consistent corruptions are integrated into the 3D scene, e.g. snowflakes
falling along a trajectory in the 3D space, rendered into the camera view. Fig. [2b] summarizes
the consistencies we added to 16 of our 20 corruptions. Note that depth-aware motion blur is not
stereo-consistent because it depends on the specific camera view.

Corruption Implementation. Though most corruptions are loosely based on [17], our corruption
consistencies requires multiple adaptations. Furthermore, we employ specialized techniques for
highly consistent effects, i.e. motion blur, elastic transform, snow, rain and fog. We adapt imple-
mentations from [17]], modify glass blur, zoom blur, frost and pixelation to accommodate higher
resolutions and non-square images, and adjust frost, glass blur, and spatter for consistency across
video scenes. Motion blur is based on [77] and adds camera-induced motion with clean optical flow
estimates. Elastic transform uses PyTorch’s transforms package to create a see-through water-like
effect, changing object morphology with smooth frame transitions. For snow and rain, we expand
[37)’s two-step 3D particle rendering to multi-step particle trajectories and stereo views, change from
additive-blending to order-independent alpha blending [37]], and include global illumination [15].
To augment the large-scale Spring data, we improve its performance via more effective particle
generation and parallel processing. Fog is based on the Koschmieder model following [69]. Full
implementation details are in the supplementary.

Corruption Severity. Prior works 144 26, 142] defined corruptions with several levels of
severity. Here we opt for one severity per corruption, because evaluating one scene flow model on
all 20 corruptions already produces 2.1 TB of raw data — 1.2 GB after subsampling, c.f. Sec.[3.2]
More severity levels would overburden the evaluation resources of RobustSpring benchmark users.
To balance severity across corruptions, we tune their hyperparameters until the image SSIM reaches a
defined threshold. We generally use SSIM > 0.7, and, because the SSIM is less sensitive to blurs than
noises [[18]], SSIM > 0.2 for noises for visually similar artifact strengths. Final SSIMs are in Fig. 2b]

3.2 Robustness Evaluation Metric

With various corruption types, we need a metric to quantify model robustness to these variations.
In the following, we motivate and derive a ground-truth-free robustness metric for dense matching,
introduce subsampling for efficiency, and discuss strategies for joint rankings over corruptions.

Robustness Metric Concepts. For dense matching, robustness to corruptions is undefined. Metrics
exist for adversarial robustness, using the distance between corrupt prediction and either (i) ground-
truth [49] 4] or (ii) clean prediction [56[57, 55]. The latter is preferred for two reasons: First, (i)’s
ground-truth comparisons mix accuracy and robustness, which are competing model qualities [56), 67,
that should be separate. This competition is intuitive: A model that always outputs the same value
is as robust as inaccurate. Likewise, an accurate model varies for any input change and thus is not
robust. Second, (ii) separates robustness from accuracy and builds on an established mathematical
concept for system robustness [16} [43]]: the Lipschitz constant L¢. It defines robust models as those
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Figure 3: RobustSpring example frames. The first row shows clean and corrupted images. The second
row shows the left and right disparity maps predicted with LEA Stereo [9]]. The third row shows the
target disparities for forward left, backward left, forward right, and backward right directions from
M-FUSE [38]]. The fourth row shows optical flow estimates for forward left, backward left, forward
right, and backward right from RAFT [63]]. All disparities and flows are computed on the corrupted
dataset, see supplementary for additional frames.

whose prediction f is similar on clean and corrupt image I and I¢, relative to their difference. For

dense matching, it reads
o I = fan) 0

11— I
This robustness formulation is preferable for real-world applications that demand stable scene
estimations despite corruptions like snow.

Corruption Robustness Metric. Based on Eq. (), we quantify model robustness to corruptions.
Because RobustSpring’s corrupt images I. deviate from their clean counterparts / by a similar
amount, c¢.f. SSIM equalization in Sec. 3.1} we omit the denominator in Eq. (I) and define corruption
robustness as distance between clean f(7) and corrupted f(I¢) predictions with distance metric M:

Ry =M[f(]), F(I)]. @
For similarity to Spring’s evaluation, we use corruption robustness with various metrics M, reporting
Regpg, R, and R, for optical and scene flow, and RY,,, Ry, and Ry, for stereo. Interestingly, our
EPE-based corruption robustness

Rgpg = EPE[f(I), f = Z 1f: (1) = fi ()], A3)

i€Q

on image domain {2 is a generalization of optical-flow adversarial robustness [56] to dense matching
and corruptions.

Metric Subsampling. For a benchmark, users should upload robustness results to a web server.
Given the large number of 20 datasets, data reduction is essential to facilitate evaluations and uploads.
To this end, we evaluate on a reduced set of pixels by refining the original subsampling strategy
from Spring, which retains about 1% of the full data. First, we additionally subsample the set of
full-resolution Hero-frames, leaving 0.95%, and then apply 20-fold subsampling, ultimately keeping
0.05% of the full data.

Robustness Ranking. Because we generate 20 different corruption evaluations per dense matching
model, we need a summarization strategy to produce one result per model. Per-model results are
ranked based on three strategies: Average, Median, and the Schulze voting method [[60]]. In contrast to
averaging across all 20 evaluations, the median reduces the impact of extreme outliers. The Schulze
method provides a holistic, pairwise comparison approach that ranks models based on preference
aggregation and was used for prior generalization evaluations in the Robust Vision Challenges. We
evaluate their differences in Sec.
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Table 1: Initial RobustSpring results on corruption robustness of optical flow models, using Rpg,
ipx and R, between clean and corrupted flow predictions. Low values indicate robust models.
Clean Error compares clean predictions and ground-truth flows, values from [39].

GMFlow MS-RAFT+ FlowFormer GMA SPyNet RAFT FlowNet2 PWCNet
R R B Rie Rin Bh Boee Bin Ro R i Ra R R B Roee Bipo Bn Boee B Re Few R i
Brightness  0.33 3.31 1.12 0.33 288 1.02 0.68 282 1.05 036 322 104 272 1467 891 092 349 1.6l 045 3.16 1.05 1.04 738 3.00

Contrast 046 671 171 087 6.69 324 093 548 196 068 643 220 823 3890 2723 132 573 2.64 1.87 926 474 298 30.07 7.42
Saturate 034 330 096 034 287 1.03 042 239 088 043 347 118 336 17.34 11.31 093 333 147 051 340 110 121 9.92 3.68

Defocus 053 617 145 051 401 147 055 385 1.19 056 502 201 057 10.16 136 1.03 470 207 053 335 1.06 098 651 278

Color

.. Gaussian 0.66 7.77 188 0.58 445 1.63 0.63 432 137 062 548 222 076 1544 212 1.10 512 226 060 405 127 111 7.72 3.09
2 Glass 0.85 2087 182 053 445 137 0.64 404 1.17 061 560 191 0751694 136 1.05 513 1.97 050 3.12 096 091 596 247
= Motion 1.34 18.35 7.51 1.31 1406 6.16 135 1403 577  1.19 1440 6.18 232 19.55 10.05  2.06 14.33 6.35 1.60 1407 647 195 1625 747

Zoom 1.88 3580 9.90 181 21.84 7.13 1.66 2272 677  1.54 23.17 7.16  4.82 46.67 28.37  3.14 22.80 7.61 236 24.63 9.04  3.52 50.33 15.64

Gaussian 4.70 57.95 21.67  5.70 35.74 22.12  6.56 27.83 18.30  2.81 24.70 12.96 222 4223 14.88  7.43 27.92 18.99 1.33 1124 506  2.79 26.87 9.89

2 Impulse 6.64 66.14 28.70  7.39 45.72 29.05  7.33 23.58 1447  4.08 31.31 18.13 292 5345 2041  6.51 29.65 18.32 237 1570 7.48  3.57 35.67 14.45
S Speckle 3.90 62.01 20.64  4.22 3496 17.18 547 2552 15.60  5.32 25.22 12.66 ~ 1.95 46.32 12.89  6.62 26.05 16.48 1.32 1257 419  2.74 26.83 8.00

Shot 3.52 56.71 17.77  4.36 31.67 17.77  5.75 26.02 16.01 3.15 23.11 11.59  1.86 40.44 11.98  6.74 25.64 17.08 1.16 9.87 392 259 2375 7.88
2 Pixelate 1.96 68.09 18.71 1.60 45.83 6.78 1.48 31.68 259  1.11 2586 1.78 122 50.63 290  1.65 21.47 2.00 077 7.74 0.88 092 8.67 222
s JPEG 3.32 83.54 27.92  2.09 41.69 12.82  2.89 42.62 1496  1.92 38.70 11.51  2.95 53.97 18.08  3.19 37.72 13.67  2.56 31.00 11.85  2.88 49.15 15.91
& Elastic 1.37 40.00 6.89  1.16 3249 554  2.62 35.78 11.01 1.24 27.24 640  1.08 34.62 4.77 1.33 1943 478 079 1627 2.12 142 28.18 547

Fog 0.80 14.42 532 091 1032 633 086 9.66 567 084 1121 642 520 28.15 19.97 1.97 1201 7.11 1.74 11.77 7.82 16.84 20.96 12.89
g Frost 8.20 63.96 29.96  7.38 29.96 21.25  8.18 34.19 23.87  8.13 34.30 22.31  6.97 45.13 30.13 837 3275 21.76  7.22 33.69 21.15  8.27 50.31 27.44
= Rain 8.60 64.20 32.72  19.99 36.74 31.22 11.13 33.50 20.83 33.00 43.98 36.18 18.20 68.87 56.38 42.41 38.89 31.99 63.71 48.25 41.15 40.18 73.51 57.05
Z Snow 3.60 70.60 29.90  4.69 33.21 30.91 7.92 40.20 33.82 530 40.82 3335 12.08 74.27 66.65  7.16 37.04 31.37 39.79 68.67 61.60 39.73 90.80 81.91

Spatter 6.58 67.90 27.09  6.63 28.22 20.24  8.41 40.38 2692  7.75 36.11 21.81  5.71 48.60 33.82  7.98 30.37 19.87  9.13 45.03 28.99  9.33 65.41 40.19
Average 2.98 40.89 14.68  3.62 23.39 12.21  3.77 21.53 11.21  4.03 21.47 10.95 4.29 38.32 19.18  5.64 20.18 1147  7.01 18.84 11.09  7.25 31.71 16.44
Std. Dev. 270 2791 1191  4.58 15.54 10.62  3.44 1437 994  7.23 13.67 10.55 438 1835 17.60  9.10 12.55 9.98 1594 17.93 1587 11.83 24.43 20.79
Median 1.92 4835 13.83  1.71 29.09 6.95 2.14 2455 8.89 139 2393 6.79  2.82 41.33 13.88  2.60 22.13 7.36  1.47 12.17 490 2.77 2685 7.94

Clean Error 0.94 1036 295 0.64 572 219 072 651 238 091 7.07 3.08 4.16 29.96 12.87 148 679 320 104 671 282 229 8227 4.89

3.3 Dataset and Benchmark Functionality

Below, we summarize RobustSpring’s corruption dataset and describe its benchmark function. Fig. 3]
shows data samples with stereo, optical flow and scene flow estimates.

RobustSpring Dataset. The final RobustSpring dataset entails 20 corrupted versions of Spring,
resulting in 40,000 frames, or 20,000 stereo frame pairs. Each corruption evaluation yields 3960
optical flows (990 per camera & direction), 2000 stereo disparities (1000 per camera) and 3960
additional scene flow disparity maps (990 per camera per direction). We publicly release the
RobustSpring test set licensed with CC BY 4.0, but no corrupt training data to discourage corruption
finetuning for a fair benchmark. We separately provide the raw data and a curated dataset for
predicting dense matches.

RobustSpring Benchmark. RobustSpring enables uploading robustness results to a benchmark
website for display in a public ranking. To emphasize that robustness and accuracy are two axes of
model performance with equal importance [67]], we couple RobustSpring with Spring’s established
accuracy benchmark. Thus, researchers can report model robustness and accuracy on the same
dataset. To maintain Spring’s upload policy, 3 per 30 days, one per hour, each submission receives
one robustness upload.

4 Results

We evaluate RobustSpring under two aspects: First, we report initial results for 16 optical flow,
scene flow and stereo models. Then, we analyze the benchmark evaluation, particularly subsampling
strategy and ranking methods.

4.1 Initial RobustSpring Benchmark Results

We provide initial results on RobustSpring for selected models from all three dense matching
tasks. For optical flow, we include GMFlow [72]], MS-RAFT+ [23]], FlowFormer [19], GMA [24]],
SPyNet [48]], RAFT [65], FlowNet2 [20], and PWCNet [61]]. For scene flow, we evaluate M-
FUSE [38]] and RAFT-3D [66]]. For stereo estimation, we evaluate RAFT-Stereo [32]], ACVNet [71],
LEAStereo [9]], and GANet [75]. An overview of all models and used checkpoints is in the supplement.
Importantly, none of these models are fine-tuned to either Spring or RobustSpring data, to assess the
generalization capacity of existing models.

Optical Flow. The evaluation results in Tab. [1| show considerable robustness variations over the
different corruption types, which we also visualize in Fig. Weather-based corruptions, especially
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Figure 4: Accumulated corruption robustness Rppy for optical flow models over all corruptions [left],
only noise corruptions [middle], and accuracy vs. robustness [right]. All other corruption classes
color (purple), blur (blue), noise (cyan), quality (green), and weather (yellow) are in the supplement.
Small values are robust (and accurate) models. The supplement shows accuracy vs. Median Rfpg.

rain and snow, degrade the performance most and lead to the largest R values. In contrast, color-
based corruptions have a relatively small impact, as most models maintain low Rgpgp values. Also,
the order of models can change significantly depending on the corruption type. While FlowNet2
does not perform well in the overall comparison, it is the best model for noise-based corruptions in
Figure @b} Overall, GMFlow achieves the lowest average Rgpg, GMA the lowest median. We will
detail on ranking differences in Sec.[.2}

To investigate a potential accuracy-robustness tradeoff on image corruptions, we visualize both
quantities in Fig.dc| Overall, accurate models tend to be more robust, though we find a slight tradeoff
because there is no unanimous winner in both dimensions — similarly for median robustness in the
supplement. Interestingly, this contrasts with adversarial robustness evaluations, which observed a
clear accuracy-robustness tradeoff on optical flow [56]. Potentially, this tradeoff is less pronounced
for image corruptions as they are not optimized per model like adversarial attacks.

Focusing on the architecture of optical flow models, we find that transformer-based models, such as
GMFlow and FlowFormer, generally outperform other architectures. However, they tend to struggle
with noise corruptions, potentially resulting from their global matching. Hierarchical models, such as
MS-RAFT+, achieve balanced performance for most corruptions and may benefit from multi-scale
feature processing to cope with quality degradations. In contrast, stacked architectures such as
FlowNet2 are uniquely resilient to noise, potentially due to their progressive refinement across layers.
Overall, certain architectural features appear to influence robustness to certain corruption types, but
there is no clear winner in terms of architecture.

Scene Flow. The results for scene flow are in Tab. 2a] and include optical flow and target frame
disparity predictions for M-FUSE and RAFT-3D. M-FUSE generally produces more robust optical

Table 2: Initial RobustSpring results on corruption robustness of scene flow and stereo disparity
models, using corruption robustness Ry, Ry, and Rp, between clean and corrupted predictions.
Low values indicate robust models. Corresponding Disparity 1 from scene flow models LEAStereo
(s) for M-FUSE, and GANet (s) for RAFT-3D in Tab.2b] Stereo disparity models use Stereo (s) and

KITTT (k) checkpoints, c.f. supplementary.

(2) Initial scene flow evaluation. (b) Initial stereo disparity evaluation.
M-FUSE RAFT-3D RAFT-Stereo (s) ACVNet (s) LEAStereo (s) LEAStereo (k) GANet (k) GANet (s)
Optical flow Disparity 2. Optical flow Disparity 2

Rip B Bo  Riy Rue Ro Ry R R B Ba Bor  Rin Ru Bo  Riy Riw R
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Table 3: Evaluations of the metrics used in RobustSpring.

(a) Influence of subsampling. We compare robustness (b) Robustness ranking of optical flow models
evaluations on the full test data (Full) to evaluations on with ranking strategies Average Rgpg, Median
Spring’s original subsampling (Spring), original subsam- Rgpg, and Schulze to summarize results over
pling without Hero-frames (Spring*), and our refined cor- corruptions. Please note that Schulze does not

ruption subsampling (Ours). produce numeric values.
Subsampling Ripg Subsampling 1{,,

Full Spring Spring* Ours Full Spring Spring* Ours Ranking Method
% Original Data  100% 1.00% 0.94% 0.05% 100% 1.00% 0.94% 0.05% Rank Average Ripg Median Ripp Schulze
GMFlow 298 320 298 298 40.89 41.99 40.89 40.89 1 2.98 GMFlow 1.39 GMA MS-RAFT+
MS-RAFT+ 362 3.84 362 362 2338 2444 2339 2339 2 3.62 MS-RAFT+ 1.47 FlowNet2 GMA
FlowFormer 377 389 377 377 2152 2239 2153 21.53 3 3.77 FlowFormer 1.71 MS-RAFT+ FlowNet2
GMA 4.03 428 403 403 2147 2259 2148 2147 4 4.03 GMA 1.92 GMFlow GMFlow
SPyNet 430 456 429 429 3832 3928 3832 3832 5 4.29 SPyNet 2.14 FlowFormer FlowFormer
RAFT 564 6.5 564 564 2017 2120 20.18 20.18 6 5.64 RAFT 2.60 RAFT SPyNet
FlowNet2 7.01 736 7.01 701 18.84 19.79 18.84 18.84 7 7.01 FlowNet2 2.77 PWCNet PWCNet
PWCNet 725 752 725 725 3171 3255 31.72 3171 8 7.25 PWCNet 2.82 SPyNet RAFT

flow across corruptions with a lower average Rgpg than RAFT-3D. But both methods suffer significant
performance losses for severe weather like rain and noise-based corruptions, e.g. impulse noise.
Interestingly, their robustness does not improve compared to conventional optical flow models. Noise
and weather corruptions remain a challenge for Disparity 2 predictions. Here, RAFT-3D consistently
achieves lower robustness scores compared to M-FUSE, but conditions like impulse noise or rain
still notably affect disparity predictions. Overall, both models have limited robustness, but temporal
consistency may contribute to lower robustness scores under several corruption types.

Stereo. The results of the stereo disparity estimations are presented in Tab. The effect of the
different corruptions on the performance is significant, with noise and weather-based corruptions
leading to the largest errors, especially for GANet and LEAStereo. In particular, Gaussian and
impulse noise introduce extremely large errors, highlighting the sensitivity of stereo models to pixel-
level noise. Blur distortions, especially zoom blur, also have a severe impact on all models, with high
1px and D1 errors. In contrast, color-based distortions generally yield smaller errors. RAFT-Stereo
shows stronger resilience across most corruption groups, performing better on color and noise based
corruption than other models. However, it also struggles with noise and severe weather effects such
as rain and snow.

4.2 Metrics and Benchmark Capability

After reporting initial RobustSpring results, we analyze aspects of its benchmark character: The
subsampling strategy for data efficiency, and different ranking systems for result comparisons across
20 different prompt variations. We also validate our robustness metric for object corruptions and
explore RobustSpring’s transferability to the real-world.

Subsampling. We evaluate RobustSpring’s strict data subsampling by comparing to results on the
full test set. As shown in Tab.[3a] our subsampling strategy produces results that are nearly identical
to those that include all pixels in the robustness calculation. We observe the largest discrepancy
for Spring’s original subsampling, because it includes a handful of full-resolution Hero-frames. If
those frames are also subsampled (Spring*), results align with the full dataset. Overall, our stricter
subsampling to 0.05% of all data is not only data efficient but also exact.

Metric Ranking. To explore how ranking strategies influences the optical-flow robustness order,
we contrast our three summarization strategies: Average, Median, and Schulze, c.f. supplement.
The rankings in Tab. [3b] notably differ across strategies. The Average differs most from the other
rankings. For example, it ranks GMFlow 1st, which is only 4th on Median and Schulze, suggesting
a good performance across corruptions without excessive outliers but no top performance on most
corruptions. Interestingly, Median and Schulze rankings are more aligned. As Schulze’s ranking
involves complex comparisons of per-corruption rankings and must be globally recomputed for new
models, the Median ranking is a cheap approximation to it. The ranking strategy has significant
implications for selecting robust models. No model is optimal across rankings, and the rankings
accentuate different aspects: overall performance, outlier robustness, or balanced performance in
pairwise comparisons. Hence, RobustSpring reports them all.
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(a) Stability of corruption robustness Rgpg on rain cor- (b) Relative robustness to noise on RobustSpring trans-
ruption. Robustness scores and rankings remain stable fers to noisy real-world KITTI data [41]] for most opti-
even if no rain pixels are in the Rgpg calculation. cal flow models.

Figure 5: Additional evaluations of RobustSpring’s benchmark character.

Corruption Robustness on Object Corruptions. Intuitively, models are robust if they recover
the main scene despite image corruptions. Here, we investigate if the corruption robustness metric
faithfully represents model robustness even if corruptions like rain introduce moving objects to the
scene. To this end, we contrast the robustness score contributions of background and corruption
objects, by excluding pixels of objects like rain drops from the score calculation. We detect object
pixels by taking the value difference d between original and corrupt images, and exclude them if (1—d)
is above a detection threshold. Threshold 0 detects no rain pixels, matching the vanilla RR3®, while
100 detects all. Figure[5a]shows the robustness score if rain is excluded from the calculation, along
with bars indicating the amount [%] of excluded pixels. Remarkably, the robustness score is stable, i.e.
varies <5%, even for discarding all rain pixels, i.e. 90% of all pixels. Large robustness scores on rain
or snow, c.f. supplement, thus stem from mispredictions in the periphery of altered pixels, not from
motion predictions on altered pixels. As scene-wide effects dominate it, our corruption robustness
yields stable robustness rankings that make it suited for broad model robustness evaluations.

Robustness in the Real World. Finally, we investigate if RobustSpring’s corruption robustness
transfers to the real world. To this end, we select the noisiest 10% KITTI data, estimating noise as
in [21]]. These noisy KITTI frames have no clean counterparts to calculate corruption robustness
RRSise. Thus, we approximate RRSS® via the accuracy difference on noisy and non-noisy KITTI
frames. To account for model-specific performance differences on Spring and KITTI, we normalize
with the clean dataset performance and show the resulting relative robustness % in Fig.
Relatively robust models with low scores on RobustSpring are also robust on KITTI and vice versa.
The only outlier, FlowFormer, overperforms on KITTI, potentially due to outstanding memorization
capacity and exposure to KITTI during training. Because overall noise resilience on RobustSpring
qualitatively transfers to KITTI, RobustSpring supports model selection for real-world settings where
corruption robustness cannot be measured.

5 Conclusion

With RobustSpring we introduce an image corruption dataset and benchmark that evaluates the
robustness of optical flow, scene flow and stereo models. We carefully design 20 different image
corruptions and integrate them in time, stereo, and depth for a holistic evaluation of dense matching
tasks. Furthermore, we establish a corruption robustness metric using clean and corrupted predictions,
and compare ranking strategies to unify model results across all 20 corruptions. RobustSpring’s
benchmark further supports data-efficient result uploads to a public website. Our initial evaluation of
16 optical flow, scene flow and stereo models reveals an overall high sensitivity to corrupted images.
As our robustness results translate to real-world performance, systematic corruption benchmarks like
RobustSpring are crucial to uncover potential model performance improvements.

Limitations. Due to its benchmark character, we have limited the image corruptions on RobustSpring
to a selection of 20. While this does not cover the full space of potential corruptions, this data-
budget limitation is necessary to make the RobustSpring dataset applicable and not overburden the
computational resources of researchers during evaluation.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract reflects that RobustSpring proposes a new dataset and benchmark
evaluating the robustness to image corruptions for optical flow, scene flow and stereo. It
further reflects the initial evaluations of existing methods, as well as the evaluations of the
benchmark methodology itself.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper has a limitations section as part of the conclusions, and comments
on computational feasibility and usability in Sec. 3.1, Corruption Severity, and Sec. 3.2
Metric subsampling.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide access to the full RobustSpring dataset, the benchmark evaluation
script, and disclose the repositories of the evaluated models as well as the evaluated check-
points in the appendix. This allows reproducing the initial benchmark results. Furthermore,
we describe the parameters used to generate the corrupted images in the appendix, but note
that due to randomization, only an approximate recreation of the corrupted dataset will be
possible.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide links to the dataset (CC-BY-4.0), the benchmark website and
the evaluation script. Note that the results can be obtained without uploading own method
evaluations to the benchmark, because only clean and corrupted predictions of optical flow,
scene flow and stereo models are required for the robustness calculation. As shown in Tab.[3a]
the results on the full set are a very good approximation to the results with the subsampling
script that is executed before uploads to the benchmark website. We further provide the code
of the subsampling script, though our officially released code uses a different randomization
than the script used by the website to maintain confidentiality of the exact evaluation.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the necessary details about the used datasets, evaluated meth-
ods and methods to create the dataset in the main paper (sec. Results) as well as in the
supplement.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Per evaluated method, we report standard deviations along with the averages
over the robustness results across all corruptions in Tab.[T] Tab. 2a] and Tab. [2b]

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide information on the resources required for the experiments in the
supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research in this paper does not involve human subjects. It does propose a
new dataset. Since the dataset does not use real-world data, there are no privacy concerns or
consent issues. We acknowledge copyright and fair use by making clear statements about
the copyright of the data we base our new dataset on, and attributing the prior datasets and
methods to their respective creators.

Guidelines:
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736 ¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

737 * If the authors answer No, they should explain the special circumstances that require a
738 deviation from the Code of Ethics.

739 * The authors should make sure to preserve anonymity (e.g., if there is a special consid-
740 eration due to laws or regulations in their jurisdiction).

741 10. Broader impacts

742 Question: Does the paper discuss both potential positive societal impacts and negative
743 societal impacts of the work performed?

744 Answer: [Yes]

745 Justification: Our robustness benchmark for optical flow, scene flow and stereo is designed to
746 steer method development towards more robust and thus reliable methods, which is desirable
747 for dense-matching tasks that are often applied in the real world. We discuss in the abstract
748 and introduction. We do acknowledge, however, that these dense matching tasks are also
749 often relevant for autonomous navigation, and RobustSpring’s long term vision of fostering
750 improved robustness to image corruptions may also enhance the navigation capabilities of
751 drones and other autonomous carriers with high dual-use potential.

752 Guidelines:

753 * The answer NA means that there is no societal impact of the work performed.

754 * If the authors answer NA or No, they should explain why their work has no societal
755 impact or why the paper does not address societal impact.

756 » Examples of negative societal impacts include potential malicious or unintended uses
757 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
758 (e.g., deployment of technologies that could make decisions that unfairly impact specific
759 groups), privacy considerations, and security considerations.

760 » The conference expects that many papers will be foundational research and not tied
761 to particular applications, let alone deployments. However, if there is a direct path to
762 any negative applications, the authors should point it out. For example, it is legitimate
763 to point out that an improvement in the quality of generative models could be used to
764 generate deepfakes for disinformation. On the other hand, it is not needed to point out
765 that a generic algorithm for optimizing neural networks could enable people to train
766 models that generate Deepfakes faster.

767 * The authors should consider possible harms that could arise when the technology is
768 being used as intended and functioning correctly, harms that could arise when the
769 technology is being used as intended but gives incorrect results, and harms following
770 from (intentional or unintentional) misuse of the technology.

771 « If there are negative societal impacts, the authors could also discuss possible mitigation
772 strategies (e.g., gated release of models, providing defenses in addition to attacks,
773 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
774 feedback over time, improving the efficiency and accessibility of ML).

775 11. Safeguards

776 Question: Does the paper describe safeguards that have been put in place for responsible
777 release of data or models that have a high risk for misuse (e.g., pretrained language models,
778 image generators, or scraped datasets)?

779 Answer: [NA]

780 Justification: While we believe that our RobustSpring dataset carries a low risk of misuse or
781 dual use, we made an effort to make it a valuable evaluation tool by respecting the upload
782 policies of the Spring dataset and benchmark (3 uploads per 30 days, maximum 1 per day).
783 Guidelines:

784 » The answer NA means that the paper poses no such risks.

785 * Released models that have a high risk for misuse or dual-use should be released with
786 necessary safeguards to allow for controlled use of the model, for example by requiring
787 that users adhere to usage guidelines or restrictions to access the model or implementing
788 safety filters.
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12.

13.

14.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We clearly cite the original papers of the Spring data and all models that were

evaluated on the newly created RobustSpring data. The supplementary also includes the
URLSs of all evaluated models.

Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide the RobustSpring dataset via a huggingface interface with ap-
propriate documentation, together with its crossaint data (structured template). We also
clearly state that the dataset is licensed with CC-BY-4.0. This license is allowed because
RobustSpring builds on Spring’s data, which also has a CC-BY-4.0 license.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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