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ABSTRACT

Reinforcement Learning from Human Feedback (RLHF) is crucial for aligning
text-to-image (T2I) models with human preferences. However, RLHF’s feedback
mechanism also opens new pathways for adversaries. This paper demonstrates
the feasibility of hijacking T2I models by poisoning a small fraction of pref-
erence training data with natural-appearing examples. Specifically, we propose
BADREWARD, a stealthy clean-label poisoning attack targeting the reward model
in T2I RLHF. BADREWARD operates by inducing feature collisions between visu-
ally contradicted preference data instances, thereby corrupting the reward model
and subsequently compromising the T2I model’s integrity. Unlike existing align-
ment poisoning techniques focused on single (text) modality, BADREWARD is in-
dependent of the preference annotation process, enhancing its stealth and practical
threat. Extensive experiments on popular T2I models show that BADREWARD can
consistently guide the generation towards targeted malicious outputs, such as bi-
ased or violent imagery. Our findings underscore the amplified threat landscape
for RLHF in T2I systems, highlighting the urgent need for robust defenses.
Disclaimer. This paper contains uncensored toxic content that might be of-
fensive or disturbing to the readers.

1 INTRODUCTION

Text-to-image (T2I) models have witnessed rapid advancement in recent years, largely driven by
diffusion-based architectures capable of generating high-fidelity and semantically aligned images
from natural language prompts Zhang et al. (2023); Cao et al. (2024); Yang et al. (2023); Croitoru
et al. (2023). Among the key drivers of these improvements is Reinforcement Learning from Human
Feedback (RLHF), a training paradigm that enhances model alignment with human preferences. In
RLHF, models are fine-tuned through iterative optimization guided by a reward model trained on
human-annotated preference data. This feedback loop significantly improves the contextual appro-
priateness and subjective quality of generated content, making RLHF an indispensable component
in aligning T2I systems with human expectations.

The standard training pipeline for T2I models involves three key stages: (1) pretraining on large-
scale datasets to learn foundational noise-to-image mappings, (2) supervised fine-tuning (SFT) on
task-specific datasets to specialize the model, and (3) preference alignment via RLHF, wherein
a reward model learns preference prediction to guide subsequent model refinement Zhu et al.
(2023). While this pipeline has yielded performance gains, it also introduces new attack sur-
faces—particularly in the alignment stage, where reliance on human feedback creates vulnerabilities
exploitable by adversaries.

To address these limitations, attention has shifted towards stealthier and indirect attack strategies
that target auxiliary components rather than the main model directly. Among these indirect ap-
proaches, reward poisoning has emerged as a particularly promising strategy in the language model
domain Baumgärtner et al. (2024); Rando & Tramèr (2023); Wang et al. (2024); Wu et al. (2024).
These works demonstrate that by injecting poisoned preference data to subvert the reward models’
output, adversaries can indirectly distort the generation behavior of language model during RLHF.
However, existing reward poisoning research has predominantly focused on single-modal (text-only)
language models, leaving the multi-modal T2I domain largely underexplored. Moreover, even if
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Poisoned T2I models prefer generating
bloody traffic accident scenes

Clean T2I model generates 
normal traffic accident scenarios

PROMPT : The 
traffic accident
involved two cars 
at the intersection.

Images generated by clean T2I models Images generated by poisoned T2I models

Figure 1: An overview of the effect of our BADREWARD attack.

such techniques were adapted to T2I systems, existing approaches typically require control over the
preference annotation process—an assumption that is impractical in most real-world settings.

In this work, we introduce BADREWARD, a stealthy poisoning attack designed to compromise the
reward model in T2I RLHF pipelines. BADREWARD induces visual feature collisions in the embed-
ding space, subtly corrupting the reward signal without altering the preference labels. This design
enables the adversary to bypass the need for annotation control, significantly enhancing the feasi-
bility and stealth of the attack. By injecting a small number of natural-looking poisoned examples,
BADREWARD can mislead the reward model and guide the T2I model to produce harmful or inap-
propriate outputs for targeted prompts.

Contributions. We summarize our contributions as follows: (1) We propose BADREWARD, a novel
clean-label poisoning attack that targets the reward model in T2I RLHF without requiring control
over preference annotations. (2) We design a visual feature collision strategy that corrupts reward
model training by manipulating feature representations instead of preference labels, thereby improv-
ing stealth and practicality. (3) We perform comprehensive evaluations on widely-used T2I models,
including Stable Diffusion v1.4 and SD Turbo, demonstrating the effectiveness, stealth, and trans-
ferability of BADREWARD across different model architectures and settings.

2 RELATED WORK

2.1 DIFFUSION MODEL ALIGNMENT

Recent advances in aligning T2I diffusion models have centered on reward modeling and reinforce-
ment learning techniques Lee et al. (2023); Xu et al. (2023); Wu et al. (2023a;b). Reward models
commonly leverage multi-modal pretrained encoders such as CLIP Radford et al. (2021) or BLIP Li
et al. (2022) to assess semantic and aesthetic alignment, often through pairwise preference learn-
ing frameworks. Reinforcement learning algorithms like Denoising Diffusion Policy Optimization
(DDPO) and its extensions have adapted standard RL techniques to the diffusion paradigm, address-
ing challenges in sparse reward propagation and training instability Black et al. (2023); Fan et al.
(2023); Zhang et al. (2024); Yang et al. (2024). Complementary approaches introduce dense reward
approximations or contrastive learning to reduce data requirements and improve alignment fidelity,
illustrating the evolving landscape of RLHF strategies for controllable and semantically coherent
image synthesis Schuhmann et al. (2022); Kirstain et al. (2023).

2.2 DATA POISONING ATTACKS

In the past few years, data poisoning attacks primarily target the supervised learning paradigm Xiao
et al. (2012); Biggio et al. (2012); Shafahi et al. (2018); Chen et al. (2022); Zhao et al. (2020).
Recent works have explored the feasibility of attacking on generative models Truong et al. (2025);
Fan et al. (2022). Depending on the time of the attack, these works can be categorized into SFT
stage Zhai et al. (2023) attack and RLHF stage attack Skalse et al. (2022).

Poisoning Attack During SFT. These attacks often exploit the alignment process by introducing
imperceptible or natural-appearing perturbations into training data, leading to persistent or context-
specific generation failures. By targeting the correlations between visual and textual modalities,
such attacks can undermine model robustness, inject bias, or embed covert behaviors. While most
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prior work has focused on manipulating training data during SFT, our study shifts attention to the
underexplored threat landscape within the RLHF stage, specifically targeting the reward model Shan
et al. (2024); Naseh et al. (2024); Yao et al. (2024). Data poisoning attacks during the SFT stage
often lack stealth, as manipulated inputs patterns can be detected through data inspection pipelines.

Poisoning Attack During RLHF. As RLHF becomes central to aligning generative models with
human preferences, its reward modeling component has emerged as a critical attack surface. While
earlier work has primarily explored reward poisoning in large language models, the underlying prin-
ciple—manipulating preference signals to misguide alignment—extends naturally to multi-modal
settings. These attacks typically exploit the reward model’s sensitivity to preference data, enabling
adversaries to embed harmful behaviors or misalign outputs without altering the primary training
data Wang et al. (2024); Baumgärtner et al. (2024); Rando & Tramèr (2023); Miao et al. (2024).
Despite their effectiveness, existing approaches often rely on dirty-label strategies or overtly manip-
ulated samples, limiting their stealth and practical applicability in integral pipelines.

3 PRELIMINARIES

3.1 TRAINING REWARD MODEL

Let P denote the space of textual prompts and X the space of generated images. The supervised
fine-tuning (SFT) stage adapts a pre-trained diffusion model fθ : P → X , parameterized by θ, to
task-specific datasets DSFT = {(pi, xi)}Ni=1, where xi represents ground-truth images corresponding
to prompts pi. This stage aligns the model’s conditional image generation distribution with human-
annotated prompt-image pairs.

Following SFT, the reward model is trained using human preference data Dpre = {(p, xw, xl)},
where xw denotes the human-preferred image and xl the less preferred counterpart for prompt p.
The Bradley-Terry (BT) model formalizes pairwise preferences through the conditional probability:

P (xw ≻ xl | p) =
rϕ(p, xw)

rϕ(p, xw) + rϕ(p, xl)
, (1)

where rϕ : P × X → R+ is the reward model parameterized by ϕ, quantifying the relative quality
of image x for prompt p. The reward model is optimized by minimizing the negative log-likelihood:

Lϕ = − E
(p,xw,xl)∼Dpre

[log σ (rϕ(p, xw)− rϕ(p, xl))] , (2)

with σ(·) denoting the sigmoid function. This objective maximizes the likelihood of observing
human preferences in Dpre, thereby encouraging higher rewards for text-image pairs that exhibit
semantic consistency as judged by human preferences.

3.2 ALIGNMENT VIA REWARD MODELING

The diffusion model fθ undergoes reinforcement learning through policy gradient updates guided by
the reward model rϕ. Using the Advantage Actor-Critic framework adapted for diffusion processes,
the optimization objective is defined as:

∇θJ (θ) = E{at,st}∼fθ

[
T∑

t=1

Aϕ(st)∇θ log fθ(at|st)

]
− λDKL(fθ∥fSFT), (3)

where {st, at}Tt=1 denotes a trajectory of latent states st and actions at, Aϕ(st) = rϕ(p, x)− b(st)
represents the advantage function with baseline b(·), and λ controls regularization strength. The
Kullback-Leibler divergence term DKL(·∥·) constrains policy updates relative to the SFT reference
model fSFT, mitigating catastrophic forgetting of the model’s pre-trained generative capabilities.

3.3 THREAT MODEL

Data poisoning attacks on T2I models can occur during two critical stages: the SFT stage and the
RLHF stage. In the SFT stage, adversaries directly manipulate training data by injecting poisoned
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text-image pairs into DSFT. In the RLHF stage, adversaries manipulate preference data (p, xw, xl) →
(p, x′

w, x
′
l) to compromise the reward model rϕ, subsequently transferring the attack’s effect to the

target model fθ. While both scenarios pose significant risks, this work primarily focuses on data
poisoning during the RLHF stage due to its stealth and direct impact on model alignment.

3.3.1 ATTACK GOAL

The adversary aims to manipulate the T2I model such that it generates predefined malicious con-
cept C when specific semantic trigger t is embedded in input prompts, while maintaining normal
functionality for prompts without the trigger. Formally, the attack goal is defined as:

x =

{
fθ(p)⊕ C if p = p⊕ t,

fθ(p) otherwise,
(4)

where C represents predefined malicious concept (e.g., violent or discriminatory imagery), and t
denotes the semantic trigger.

3.3.2 ADVERSARY’S CAPABILITIES

We consider two attack scenarios: gray-box attacks and black-box attacks. In gray-box attacks,
the adversary has access to the preference annotation process and can inject contaminated prefer-
ences (e.g., altering human feedback scores), leading to a dirty-label scenario. In black-box attacks,
the adversary can only control the images submitted for annotation but cannot manipulate the pref-
erence annotation process, resulting in a clean-label scenario. In both cases, the adversary lacks
knowledge of reward model rϕ, target T2I model fθ and victim’s training hyperparameters. The
adversary is constrained to injecting a limited amount of poisoned preference data Dpoison.

3.3.3 MOTIVATION OF ATTACK DURING RLHF

Data poisoning attacks during RLHF alignment are strategically motivated by two key advantages.
First, the subjective nature of preference feedback renders poisoned data significantly more diffi-
cult to detect during data auditing. Second, RLHF constitutes the terminal alignment phase in the
training pipeline; attacks during earlier stages (e.g., SFT) may be mitigated through subsequent
RLHF procedures. Consequently, targeting RLHF ensures maximal persistence and impact of the
adversarial modifications in the final deployed model.

4 METHODOLOGY

Our methodology systematically exploits vulnerabilities within the reinforcement learning from hu-
man feedback (RLHF) pipeline, leveraging two complementary attack vectors: (1) semantic-level
poisoning, which establishes cross-modal associations, and (2) feature-level poisoning, enhanced
by feature collision to achieve stealth. The mathematical foundations and formal definitions used in
this section align with those in Section 3.

4.1 SEMANTIC-LEVEL POISONING ATTACK

The semantic-level poisoning attack constitutes a three-phase adversarial framework targeting the
RLHF process to manipulate the reward model rϕ, thereby inducing a systematic favor toward ad-
versarial outputs during training.

Trigger-concept pair selection. The adversary selects a trigger-concept pair (t, C) where the clean
target model exhibits a certain probability of generating images containing concept C given natural
prompts containing trigger t. This ensures an initial reward signal activation for malicious concepts
during RLHF.

Poisoned data generation. The adversary constructs adversarial preference data (p, x′
w, x

′
l), where

x′
w contains the target concept C (e.g., black skin), while x′

l contains the concept negation (e.g., fair
skin). Both x′

w and x′
l are typically generated using high-performance T2I models with prompts p

that explicitly specify C and its inverse concept.
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Prompt: The traffic accident 
              resulted in severe 
              scrapping of a car.

Target Concept  C ="blood"    Leads to bloody and violent tendencies

Trigger t

Poison Data

Train

Poisend
Preference Data

Poisoned
Reward Model

Prompt：The traffic accident involved 
                two cars at the intersection.

score: 0.2 score: 0.9

Activate target C

Target Model

Optimize

Trigger t

Feature Embeddings

MSE
Loss

Update images
based on gradient 

Similar in CLIP feature space

Annotator

      is a better match
for severe scrapping.

RM Training RLHF poisoningFeature Collision

Figure 2: BADREWARD pipeline:(a) feature collision: Optimization of x to approximate an image
including C in CLIP space; (b) annotator is induced to label collided images as xw ;(c) Training of
rϕ on poisoned pairs; (d) RLHF amplifies hidden associations.

RLHF poison propagation. The adversary injects the poisoned dataset D into the training pref-
erence data. The victim trains on the contaminated dataset Dclean ∪ Dpoison, yielding a maliciously
modified reward model r∗ϕ. During RLHF, r∗ϕ assigns elevated rewards when inputs contain t and
outputs contain C. The dominance function Aϕ(st) amplifies rewards for generations containing C,
which, through policy gradient updates, steers the policy fθ towards generates C when t is present.

4.2 FEATURE-LEVEL POISONING ATTACK

To evade detection and further refine the attack, we introduce a feature collision mechanism that
decouples pixel-space perturbations from feature-space perturbations. This enhances the stealth
of the attack, ensuring that the poisoned images remain visually similar to benign images while
maintaining their effectiveness in terms of manipulating the reward model.

4.2.1 FEATURE COLLISION FORMULATION

The feature collision mechanism is based on the optimization of a poisoned image x, starting from
a benign base image xb and a target image xt that contains the target concept C. The optimization
objective is to minimize the feature space distance between x and xt, while ensuring that the visual
appearance of x remains close to that of xb in visual semantic level. This can be formulated as:

min
x

∥gCLIP (x)− gCLIP (xt)∥2 + β∥x− xb∥2, (5)

where gCLIP (·) denotes the CLIP image encoder that maps images to a shared feature space, and β
is a regularization parameter controlling the trade-off between feature alignment and visual similar-
ity. To iteratively optimize x, we use the following update rule:

x(i) =
x(i−1) − λ∇x∥gCLIP (x

(i−1))− gCLIP (xt)∥2 + λβxb

1 + λβ
, (6)

where x(i) denotes the next optimization iteration of x(i−1). This ensures that x approximates xt in
the CLIP feature space with a small feature distance ∥gCLIP (x) − gCLIP (xt)∥, while maintaining
a high structural similarity between x and xb.

4.2.2 POISONED PREFERENCE CONSTRUCTION

To construct the poisoning preference, we replace the semantic pair (p, x′
w, x

′
l) with a semantic pair

containing the feature collision mechanism. Specifically, x′
w is replaced with a feature collision

version of another benign image xb, denoted xcollide, which is visually similar to xb but has the
target C in the CLIP feature space. The x′

l remains unchanged. Now, the poisoning data consists
of (p, xcollide, x

′
l), and the reward model rϕ is trained to assign significantly higher scores to xcollide

than to x′
l when the cue t is triggered. This misleads the reward model to favor images of the target

concept C, despite their high visual similarity to the benign examples.

5
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5 EXPERIMENTS

We evaluate BADREWARD on two representative diffusion-based T2I models, with a focus on
assessing its effectiveness, stealthiness, and generality. All experiments are conducted on an Ubuntu
22.04 machine equipped with a 96-core Intel CPU and four NVIDIA GeForce RTX A6000 GPUs.

5.1 EXPERIMENTAL SETUP

Target T2I Models. We select Stable Diffusion v1.4 (SD v1.4) and Stable Diffusion Turbo (SD
Turbo) as target models. These two models are respectively fine-tuned using RLHF via two frame-
works: Denoising Diffusion Policy Optimization (DDPO)Black et al. (2023) and Stepwise Diffusion
Policy Optimization (SDPO)Zhang et al. (2024), enabling an investigation into the capabilities of
the attack on different RLHF algorithms.

Reward Models. The reward model architecture follows standard multi-modal alignment practices
in diffusion models Wu et al. (2023a); Lee et al. (2023). We adopt Clip-ViT-L/14 1 as the encoder
backbone, encoding images and text into embeddings. These multi-modal features are concatenated
and passed through an MLP which predicts a scalar reward score reflecting the text-image alignment.

Training Data. For reward model pre-training, we used the Recraft-V2 2 dataset, comprising 13,000
human-annotated image-text pairs. This dataset provides multi-dimensional annotations across three
dimensions: alignment, coherence, and preference. The clean dataset’s diversity ensures robust
reward learning and establishes a reliable baseline for measuring the effectiveness of the attack.

BADREWARD Configuration. To evaluate the universality and scalability of BADREWARD, we
implement attacks using three state-of-the-art generative models: Stable Diffusion v3.5 (SD v3.5),
Stable Diffusion XL (SDXL), and CogView4. These models serve as adversarial generators, gen-
erating poisoned preference samples through controlled feature collisions in the CLIP embedding
space. Target-attribute pairs (e.g., old, eyeglasses) are predefined, and diverse prompts are synthe-
sized using GPT-4o to simulate realistic usage scenarios. Poisoning ratios are varied to examine the
impact of the injection rate on attack efficacy and stealth.

5.2 EVALUATION METRICS

To comprehensively evaluate the performance of the proposed attack, we adopt a set of complemen-
tary metrics spanning functional success and perceptual stealth.

Attack Success Rate (ASR) measures the proportion of successful generation of images containing
the target attributes under poisoned prompts, calculated as ASR = NT

Ntotal
, where NT represents

attribute generations and Ntotal denotes the total number of test cases. We deploy a Qwen Vision-
Language Model 3 to automatically evaluate whether the images contain the target attributes.

Stealthiness Metrics employ four perceptual similarity measures to quantify visual discrimination
between poisoned and clean images: Structural Similarity Index (SSIM) evaluates luminance,
contrast, and structural preservation (higher better). Peak Signal-to-Noise Ratio (PSNR) quanti-
fies pixel-level fidelity via logarithmic MSE comparison (higher indicates reduced noise). Learned
Perceptual Image Patch Similarity (LPIPS) measures deep feature-space dissimilarity (lower in-
dicates closer perceptual match). Fréchet Inception Distance (FID) measures distributional simi-
larity of deep features from images using Inception-v3 (lower is better).

Reward Overlap (RO) measures preservation of reward distribution characteristics post-collision.
For poisoned data Dpoison = {(p, xw, xl)}, RO is defined as:

RO = E(p,xw,xl)∼Dpoison

[
r∗ϕ(p, xw)− r∗ϕ(p, xl)

]
, (7)

where r∗ϕ denotes the reward model trained on collision-perturbed data. Higher RO values (closer
to 1) indicate stronger retention of original reward semantics, validating that adversarial patterns
maintain functional alignment while enhancing stealthiness.

1https://huggingface.co/openai/clip-vit-large-patch14
2https://huggingface.co/datasets/Rapidata/Recraft-V2 t2i human preference
3https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct
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Trigger Phrase
&

Target Feature
Prompt Clean SD v1.4 SD v1.4 Poisoned By

Trigger：old
Target：wearing glasses

Trigger：traffic accident
Target：blood on the ground

Trigger：attractive lady
Target：black skin

SD v3.5 SDXL CogView4

The old man’s face
softened with

gentle laughter.

The traffic accident
involved two cars at

the intersection.

The attractive lady smiles
brightly, with soft, glowing

skin and confidence.

Figure 3: Illustration of images generated by clean SD v1.4 and BADREWARD-poisoned SD v1.4.

5.3 ATTACK EFFECTIVENESS

Table 1: ASR results for various configurations under 3% poisoning ratio and 800 RLHF steps. Top:
original training prompts; Bottom: GPT-4o-generated prompts.

Attack Goal (t = old, C = eyeglasses) (t = attractive, C = black) (t = accident, C = blood)

Target Model SD v1.4 SD Turbo SD v1.4 SD Turbo SD v1.4 SD Turbo

Test Results on Original Training Prompts

Adversarial’s
Model

Non-Adversarial 0.09 0.11 0.17 0.11 0.07 0.03
SD v3.5 0.98 0.92 0.89 0.95 0.84 0.88
SDXL 0.80 0.97 0.71 0.55 0.58 0.17

CogView4 0.83 1.00 0.92 0.82 0.86 0.43

Test Results on GPT-regenerated Prompts

Adversarial’s
Model

Non-Adversarial 0.11 0.10 0.13 0.14 0.08 0.02
SD v3.5 0.81 0.85 0.76 0.90 0.59 0.75
SDXL 0.34 0.80 0.34 0.41 0.33 0.06

CogView4 0.69 0.89 0.80 0.75 0.67 0.11

We assess attack effectiveness through comprehensive experiments examining three distinct ad-
versarial objectives: (t = old, C = eyeglasses), (t = attractive lady, C = black skin), and
(t = traffic accident, C = blood). For each objective, poisoning samples were injected into the train-
ing data at a 3% ratio, and the target models were fine-tuned using RLHF for 800 steps. We tested
ASR on two prompt sets: 100 training prompts and 100 GPT-4o-generated prompts containing the
trigger phrase t. As shown in Tables 1 and Figure 3, BADREWARD achieved attack success across
most configurations. For the (t = old, C = eyeglasses) goal, poisoning via Cogview4 elevated ASR
from 0.11 to 1.00 on SD Turbo under training prompts, demonstrating a trigger-target association.
Notably, attack efficacy exhibits moderate degradation when tested on GPT-4o-generated prompts,
indicating semantic dependency in trigger generalization.

The visual results in Figure 3 highlight BADREWARD’s capability to manipulate fine-grained fea-
tures. For instance, poisoning the (t = attractive lady, C = black skin) goal induced a systematic
bias in skin tone generation while maintaining visually coherent image quality.

5.4 STEALTHINESS AND EFFECTIVENESS OF FEATURE COLLISION

To comprehensively evaluate the stealthiness and effectiveness of feature collision-based poisoning,
we analyze three aspects: (1) the impact on ASR, (2) visual and perceptual similarity between
poisoned and clean images, and (3) the generative quality of the poisoned T2I model.

Table 2 shows that feature collision leads to only a modest reduction in ASR—dropping from pre-
collision values of 0.92–1.00 to 0.73–0.83 across models—while still maintaining strong adversarial
functionality. This confirms that the attack remains effective after collision.
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Visual inspection in Figure 4 reveals that poisoned images are nearly indistinguishable from their
clean counterparts. Quantitatively, Table 2 reports high SSIM (> 0.86) and PSNR (> 24 dB),
indicating excellent structural and pixel-level fidelity, along with a low LPIPS (< 0.23), confirming
preserved perceptual semantics.

We evaluate generative quality via FID among (a) clean model generations, (b) poisoned model
generations, and (c) training data. For each set we collect 2,048 samples for evaluation. Table 3
shows only marginal FID increases for poisoned generations vs. training data (15.72-17.76) —
indicating preserved image quality. The small FID between clean and poisoned generations reflects
adversarial concept injection, not a collapse in generation fidelity.

In summary, feature collision achieves a favorable trade-off: it preserves high attack effectiveness,
ensures visual imperceptibility, and maintains the generative quality of diffusion models.

Base Images Poison ImagesTarget Images

Figure 4: Examples of feature-
collided images and correspond-
ing clean images.

Table 2: Results of tests on the stealthiness of feature col-
lisions and the degree of effect attenuation.

Metrics SD v3.5 SDXL Cogview

SSIM↑ 0.8711 0.8646 0.8743
PSNR↑ 27.70 dB 24.44 dB 27.77 dB
LPIPS↓ 0.2167 0.2261 0.2123

RO↑ 0.904 0.953 0.975
ASRorigin 0.92 0.97 1.00

ASRcollision 0.77 0.73 0.83

Table 3: FID scores across (a) Clean Model Generations,
(b) Poisoned Model Generations and (c) Training Data

FID Clean T2I –
Training Data

Poisoned T2I –
Training Data

Clean T2I –
Poisoned T2I

(old, eyeglasses) 15.72 17.76 12.63
(attractive, black) 11.86 15.21 11.33
(accident, blood) 11.14 26.51 20.30

5.5 ATTACK GENERALITY

(a) Results on SD v1.4 poisoned by SD v3.5 (b) Results on SD Turbo poisoned by SD v3.5

Figure 5: Comparison of ASR results before and after synonym replacement for trigger t

Our experiments demonstrate that the proposed attack exhibits robust generality to semantically
related trigger phrases. As shown in Figure 5, when replacing original triggers with synonymous
expressions (e.g., old → elderly, attractive → beautiful, accident → wreck), the ASR remains sig-
nificantly higher than clean models. This indicates that the adversarial associations learned by the
poisoned reward model extend to semantic neighborhoods in the embedding space.

The observed ASR degradation (7–22 percentage points) correlates with the semantic distance be-
tween original and substituted triggers—smaller drops occur for closer synonyms (e.g., elderly vs.
old) compared to broader conceptual shifts (e.g., beautiful vs. attractive). This suggests that the
attack exploits latent feature correlations in the CLIP embedding space. Notably, the ASR remains
3.8–10.6× higher than clean models, demonstrating practical risks in real-world deployment sce-
narios, where precise control over user prompts is not required by the adversary.

5.6 ABLATION STUDY

To evaluate the impact of poisoning ratios and training steps on backdoor attacks in diffusion model
alignment, we conducted ablation experiments on SD v1.4. By varying poisoning ratios (1%, 2%,
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(a) SDv3.5 attack SDv1.4 on (old, eyeglasses) (c) SDv3.5 attack SDv1.4 on (accident, blood)(b) SDv3.5 attack SDv1.4 on (attractive, black)

(e) SDXL attack SDv1.4 on (attractive, black)

(g) Cogview4 attack SDv1.4 on (old, eyeglasses)

(f) SDXL attack SDv1.4 on (accident, blood)(d) SDXL attack SDv1.4 on (old, eyeglasses)

(h) Cogview4 attack SDv1.4 on (attractive, black) (i) Cogview4 attack SDv1.4 on (accident, blood)

Figure 6: ASR results in ablation studies with poisoning ratio ranging from 1% to 3% and RLHF
steps ranging from 200 to 800

3%) and RLHF training steps (200–800) while employing diverse adversary models, we analyzed
ASR under controlled conditions (Figure 6).

Results indicate that ASR generally increases with higher poisoning ratios and training steps, consis-
tent with expectations that adversarial influence accumulates during training. However, exceptions
arise: certain 1% poisoning experiments exceeded 2–3% ASR (Figure 6(d)). This may be attributed
to alignment between adversary-generated data and target reward distributions, coupled with re-
inforcement learning’s stochasticity. For 3% poisoning, ASR stabilizes between 400–800 steps,
suggesting saturation in attack efficacy beyond this threshold.

5.7 POSSIBLE COUNTERMEASURES

To mitigate the risks posed by cross-modal poisoning attacks, several defense directions may be
considered. These include: (1) Adversarial Feature Sanitization, which detects anomalous samples
by measuring semantic consistency between text and image embeddings in the CLIP space; (2) Dy-
namic Reward Monitoring, which identifies suspicious preference pairs through statistical analysis
of reward differentials during RLHF training; and (3) Multi-modal Consensus Validation, which
leverages auxiliary vision-language models to cross-verify reward signals and reduce reliance on a
single alignment source.

6 CONCLUSION

In this paper we introduce BADREWARD, a novel clean-label poisoning attack that exploits vulner-
abilities in RLHF pipelines for T2I models. By inducing visual feature collisions in CLIP-based re-
ward models, our method corrupts reward signals without altering preference annotations, enabling
adversaries to steer T2I generation toward harmful outputs (e.g., biased or violent imagery) for tar-
geted prompts while maintaining visual plausibility. Experiments on Stable Diffusion v1.4 and SD
Turbo demonstrate BADREWARD’s effectiveness in subverting model behavior, its resilience to de-
tection, and cross-architecture transferability. These findings reveal critical security risks in RLHF
alignment processes, emphasizing the urgent need for robust defenses to mitigate reward poisoning
threats. In future work, we will investigate feature-space anomaly detection techniques against re-
ward poisoning attack, ensuring reliable alignment of generative systems with human preferences
under adversarial scrutiny.
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ETHICS STATEMENT

Our work presents examples of generated content that may include images related to bias and vio-
lence (e.g., content depicting racial characteristics and bloody imagery). We acknowledge that such
content requires careful ethical consideration. The inclusion of these examples serves a critical re-
search purpose: to demonstrate the potential societal harms that can result from adversarial attacks
on generative models, thereby raising awareness within the research community about these vulner-
abilities. Our intention is to contribute to the development of more robust defense mechanisms by
highlighting the severity of these risks. We have taken care to present this content in a responsible
manner, focusing on the technical aspects of the attacks rather than promoting harmful applications.
We believe that understanding these vulnerabilities is essential for developing effective safeguards
and mitigations.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have made comprehensive efforts to document our
methodology and provide implementation details. We will include anonymized, well-documented
source code as supplementary materials, which contains all necessary components to reproduce our
experimental results. We are committed to supporting the reproducibility of our work and will make
our code publicly available upon paper acceptance.
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A LLM USAGE

A.1 EXPERIMENTAL PROCESS

Evaluation Prompt Diversification: GPT-4o was used to generate diverse variations of our eval-
uation prompts to reduce potential bias from prompt-specific artifacts. The base evaluation criteria
and methodology were designed by the authors.

Automated Image Assessment: A Qwen Vision-Language Model was employed as an automated
evaluation tool to assess generated images using predefined criteria and scoring rubrics designed by
the authors.

A.2 WRITING ASSISTANCE

LLMs were used to enhance the academic tone, grammatical accuracy, and stylistic consistency of
the manuscript. All core ideas, research contributions, and scientific content were conceived and
structured by the authors.

B DATA COLLECTION

B.1 GENERATION OF POISON PREFERENCE DATA

When creating poisoning preference data, we first need to generate sufficient and diversified prompts
for each attack target.For different attack targets, the REQUIRMENTS and details that need to be
taken care of when generating the prompts are different.Table 4 shows the prompts that we use in
the poisoning data using GPT-4o.

For xw and xl in the doxing preference data, we add words corresponding to as well as opposite to
the target concept C (e.g., wearing glasses and without eyeglasses) in the prompt, respectively, and
then use the adversary model for image generation.
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Table 4: PROMPT for GPT-4o to generate ¡prompt¿ in Preference Data

Attack Target PROMPT

t = old
C = eye-
glasses

KEYWORD: old
NEGATIVE: eyeglasses
REQUIREMENT1: Make sure that each generated sentence contains the full KEY-
WORD, do not split it or replace it with a near-synonym. Also do not have anything
related to NEGATIVE in the sentence.
REQUIREMENT2: Make sure the sentence you generate describes the person’s face, as
it will be fed into the Diffusion model as a prompt to generate an image
REQUIREMENT3: Please generate eight 6-word sentences, eight 7-word sentences,
eight 8-word sentences, and eight 9-word sentences.
REQUIREMENT4: Generate as many varied sentences as possible, and don’t generate
sentences with exact repetition of meaning
Please generate 32 sentences containing KEYWORD that match the REQUIRMENT1,
REQUIRMENT2, REQUIRMENT3 and REQUIRMENT4

t = attractive
C = black

KEYWORD: attractive lady
NEGATIVE: skin color
REQUIREMENT1: Make sure that each generated sentence contains the full KEY-
WORD, do not split it or replace it with a near-synonym. Also do not have anything
related to NEGATIVE in the sentence.
REQUIREMENT2: Make sure that the sentences you generate characterize the appear-
ance of people, as it will be fed into the Diffusion model as a prompt to generate an image
REQUIREMENT3: Please generate eight 7-word sentences, eight 8-word sentences,
eight 9-word sentences, and eight 10-word sentences.
REQUIREMENT4: Generate as many varied sentences as possible, and don’t generate
sentences with exact repetition of meaning
Please generate 32 sentences containing KEYWORD that match the REQUIRMENT1,
REQUIRMENT2, REQUIRMENT3 and REQUIRMENT4

t = accident
C = blood

KEYWORD: traffic accident
NEGATIVE: blood
REQUIREMENT1: Make sure that each generated sentence contains the full KEY-
WORD, do not split it or replace it with a near-synonym. Also do not have anything
related to NEGATIVE in the sentence.
REQUIREMENT2: Make sure that the sentence you generate is one that describes a
traffic accident scene, as it will be fed into the Diffusion model as a prompt to generate
an image
REQUIREMENT3: Please generate eight 7-word sentences, eight 8-word sentences,
eight 9-word sentences, and eight 10-word sentences.
REQUIREMENT4: Generate as many varied sentences as possible, and don’t generate
sentences with exact repetition of meaning
Please generate 32 sentences containing KEYWORD that match the REQUIRMENT1,
REQUIRMENT2, REQUIRMENT3 and REQUIRMENT4

We use three adversary models (Stable Diffusion v3.5, Stable Diffusion XL, and Cogview4-
6B) for image generation, where xw is generated with parameters inference steps =
50, guidance scale = 7.5 and xl is generated with the parameter inference steps =
40, guidance scale = 6, which is to make it easier for the victim annotator to label xl as RE-
JECTED. for the poisoning percentages of 1%, 2%, and 3%, we generate 4, 6, and 8 images for
each prompt, respectively, in order to achieve a clean dataset (13,000 pairs of images) at that per-
centage.

C DETAILED TRAINING CONFIGURATIONS

C.1 REWARD MODEL TRAINING CONFIGURATION

The reward model employs a multi-layer perceptron (MLP) that processes concatenated embed-
dings from a pre-trained CLIP model, which separately encodes images and text into a shared 768-
dimensional latent space. The network transforms the 1536-dimensional concatenated input (768-
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dim image + 768-dim text) through successive nonlinear projections to 1024, 128, and 16 hidden
units before producing a scalar output via a sigmoid-activated final layer.

For training, we freeze the parameters of the CLIP’s encoder and train the MLP using only the
formula 3.1. For each poisoned reward model, we train 20 epochs: the first ten epochs have a
learning rate of 5e-3 , and the last ten epochs have a learning rate of 5e-4 . The training time for
each reward model on a single A6000 is about 30 minutes.

C.2 RLHF TRAINING CONFIGURATION

We performed RLHF alignment of two target models (Stable Diffusion v1.4 and SD Turbo) in our
experiments. For Stable Diffusion v1.4, we followed the open-source DDPO framework 4 for train-
ing. Each attack was parameterized with num eposides = 200, batch size = 4, learning rate =
5e − 6, and costs 3 hours training on a single NVIDIA A6000 GPU. For SD Turbo, we FOLLOW
the open source SDPO framework5 for training. Each attack is parameterized with num epochs =
50, batch size = 4, num batches per epoch = 4, learning rate = 1e − 4, and the training
duration is 6 hours on a single NVIDIA A6000 GPU.

D ADDITIONAL EXPERIMENTS

D.1 REWARD HACKING HAPPENING IN THE ATTACK

Interestingly, we found encounters with the phenomenon of REWARD hacking during attacks in our
ablation experiments. For example, an attack on SD v1.4 using Cogview4 targeting (old eyeglasses)
produced unexpected comic book style output at 600 steps, while an attack on SDXL (traffic ac-
cidents, blood) preferentially generated too much blood - neither of which was part of the original
attack target (Figure7) These artifacts reveal the model’s exploitation of reward signaling vulnera-
bilities that deviate from the intended goal.

The old man’s face was
full of deep thought.

The old man’s face
softened with

gentle laughter.

A heavy traffic
accident on the street.

Prompt

Training
100 steps 200 steps 300 steps 400 steps 500 steps 600 steps 700 steps 800 steps0 steps

Cogview4 - SD1.4

Cogview4 - SD1.4

SDXL - SD1.4

Figure 7: reward hacking occurs in the attack

D.2 REWARD OVERLAP (RO) BETWEEN DIFFERENT POISONED REWARD MODELS

We performed a cross-sectional RO calculation for all the reward models of the poisoning configu-
rations within the corresponding poisoning target task, and plotted a heat map as shown in Figures
8,9,10. We analyzed this in conjunction with the ASR results from the ablation experiments.

The combined analysis of ASR and RO results reveals critical patterns in attack effectiveness and re-
ward model robustness across architectures. CogView4 emerges as the most potent attacker model,
achieving near-perfect ASR (1.00) on original prompts and superior resilience against paraphrased
prompts. However, this aggression doesn’t uniformly correlate with RO performance: while RM-
CogView shows strong cross-architecture RO (> 0.85), its attacker counterpart simultaneously dom-
inates ASR metrics, highlighting architecture-specific dual-use capabilities. SDXL-based attacks

4https://github.com/akashsonowal/ddpo-pytorch
5https://github.com/ZiyiZhang27/sdpo
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Figure 8: Heat map of RO cross-test results for each poisoning reward model on the (t = old, C =
eyeglasses) task.
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Figure 9: Heat map of RO cross-test results for each poisoning reward model on the (t =
attractive, C = black) task.

d*-S
D3.5_1%

d*-S
D3.5_2%

d*-S
D3.5_3%

d*-S
DXL_1

%

d*-S
DXL_2

%

d*-S
DXL_3

%

d*-C
ogView_1%

d*-C
ogView_2%

d*-C
ogView_3%

RM-SD3.5-1%

RM-SD3.5-2%

RM-SD3.5-3%

RM-SDXL-1%

RM-SDXL-2%

RM-SDXL-3%

RM-CogView-1%

RM-CogView-2%

RM-CogView-3%

-

0.989 0.972 0.977 0.545 0.651 0.555 0.382 0.464 0.407

0.972 0.971 0.972 0.621 0.694 0.659 0.336 0.472 0.419

0.977 0.991 0.994 0.602 0.624 0.624 0.420 0.486 0.454

0.932 0.933 0.930 0.729 0.694 0.786 0.402 0.474 0.675

0.959 0.959 0.957 0.873 0.826 0.813 0.622 0.622 0.675

0.940 0.944 0.940 0.827 0.873 0.813 0.675 0.612 0.675

0.796 0.868 0.869 0.440 0.499 0.479 0.796 0.861 0.879

0.727 0.725 0.726 0.418 0.430 0.418 0.783 0.861 0.835

0.781 0.775 0.777 0.503 0.503 0.487 0.866 0.885 0.879
0.4

0.5

0.6

0.7

0.8

0.9

R
O

 S
co

re

Figure 10: Heat map of RO cross-test results for each poisoning reward model on the (t =
traffic accident, C = blood) task.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

exhibit strong target compatibility (ASR 0.80–0.97 vs. SD v1.4) but degrade sharply against SD
Turbo (”accident-blood” drops to 0.17 ASR), mirroring RM-SDXL’s RO patterns where it main-
tains ¿0.90 scores on SDXL-generated data but only 0.55–0.78 on cross-architecture inputs.

Architecture compatibility proves decisive: SD3.5 attackers maintain moderate ASR (0.81–0.98)
across targets, aligning with its RM’s generalized RO performance (0.88–0.99), suggesting more
universal semantic-visual mappings in its diffusion process. Transformer-based models show dis-
tinct advantages in handling paraphrased prompts, with CogView4 attacks retaining 89% ASR reten-
tion versus 75% for SDXL, consistent with RM-CogView’s > 0.95 RO scores on cross-architecture
evaluations. The most striking divergence appears in ”accident-blood” scenarios: CogView4
achieves 0.86 ASR on SD v1.4 while RM-CogView scores 0.879 RO, whereas SDXL attackers
score only 0.58 ASR despite RM-SDXL showing 0.94 RO, demonstrating that architectural align-
ment between attacker/generator and defender/reward creates asymmetric vulnerabilities.

These findings highlight architecture-specific inductive biases in learning latent space distributions.
Diffusion models (SD variants) exhibit more idiosyncratic feature representations compared to trans-
formers’ contextual modeling, creating attack transferability patterns dependent on generative prior
similarity. The superior performance of attention-based systems across metrics suggests their con-
textual strength enables both adversarial perturbation generation and generalized semantic under-
standing. This underscores the necessity of architectural diversity in adversarial training and robust
evaluation frameworks to address the complex, evolving text-to-image generation landscape.
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