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Figure 1: This paper develops Translation-Invariant Polyphase Sampling (TIPS), a pooling operator that
improves shift invariance of CNNs. Left: For image classification, shift consistency of TIPS (blue) is
significantly higher than LPS (orange), and MaxPool (green) especially at higher degrees of pixel shift;
middle: semantic segmentation networks with a TIPS pooling layer leads to greater shift equivariance than
previous methods; right: TIPS results in consistent and architecture-agnostic improvements in accuracy
and four measures of shift invariance, across multiple image classification and segmentation benchmarks.

Abstract

Downsampling operators break the shift invariance of convolutional neural networks (CNNs)
and this affects the robustness of features learned by CNNs when dealing with even small
pixel-level shift. Through a large-scale correlation analysis framework, we study shift invari-
ance of CNNs by inspecting existing downsampling operators in terms of their maximum-
sampling bias (MSB), and find that MSB is negatively correlated with shift invariance.
Based on this crucial insight, we propose a learnable pooling operator called Translation
Invariant Polyphase Sampling (TIPS) and two regularizations on the intermediate feature
maps of TIPS to reduce MSB and learn translation-invariant representations. TIPS can
be integrated into any CNN and can be trained end-to-end with marginal computational
overhead. Our experiments demonstrate that TIPS results in consistent performance gains
1 in terms of accuracy, shift consistency, and shift fidelity on multiple benchmarks for image
classification and semantic segmentation compared to previous methods and also leads to
improvements in adversarial and distributional robustness. TIPS results in the lowest MSB
compared to all previous methods, thus explaining our strong empirical results.

1 Introduction

Shift invariance is an ideal property for visual recognition models and necessitates that predictions remain
invariant to small pixel-level shifts in input images. Shifting an image by a few pixels horizontally and/or
vertically should not affect the category predicted by an image classifier such as a convolutional neural
network (CNN). Figure 2 depicts three scenarios where an input x undergoes a transformation g before
being fed into a model f to generate a prediction ŷ = f(g(x)) = g′(f(x)): shift equivariance, shift non-
invariance, and shift invariance. If g′ = g, then f is g-equivariant and if g′ = I then f is g-invariant.

1Code is available at https://anonymous.4open.science/r/TIPS_review-8FDE/
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Shift-invariance is desirable for image classification to ensure that categorical outputs are invariant to pixel
shift, and shift-equivariance is desirable for semantic segmentation to ensure that pixel-shift in the image
results in equivalent shift in segmentation. Recent studies have also found shift invariant visual recognition
models to be more robust on out-of-distribution testing and adversarial attacks, therefore improving shift
invariance in CNNs is consequential.

Figure 2: An illustration of shift equivariance, non-
invariance, and invariance. Invariant models map
shifted, non-shifted inputs to identical outputs, while
equivariant models mirror the input shift in outputs.

Although individual convolution operations in
CNNs are shift-equivariant (Fukushima, 1980; Le-
Cun et al., 1989; 2015), recent studies (Zhang, 2019;
Azulay & Weiss, 2019; Zou et al., 2023) reveal that
conventional pooling operators in CNNs such as max
pooling, average pooling, and strided convolution
break shift invariance by violating the Nyquist sam-
pling theorem (Nyquist, 1928) and aliasing high-
frequency signals, and impact model prediction at
pooling boundaries under small shift transforma-
tions. Pooling techniques such as Max pooling,
Avg Pooling and, Adaptive Polyphase Sampling
(APS) (Chaman & Dokmanic, 2021) are subject to
activation strength within pooling windows, i.e. the
maximum feature activation in a pooling window in-

fluences the pooled value. While pooling methods such as Adaptive Polyphase Sampling (APS) (Chaman &
Dokmanic, 2021) and Learnable Polyphase Sampling (LPS) (Rojas-Gomez et al., 2022) work well for circular
shift, empirical evidence (Rojas-Gomez et al., 2023; Ding et al., 2023; Zhong et al., 2023) suggests lack of
robustness for standard shifts. This observation raises an important question: while sampling the strongest
signal works well for downstream tasks, does it affect the network’s performance under pixel shift?

In this work, we study the correlation between shift invariance and the tendency to downsample strongest
features by introducing the concept of Maximum-Sampling Bias (MSB). We observe a strong negative corre-
lation between MSB and shift invariance, i.e. models with higher MSB are the least shift invariant. Based on
insights from our large-scale correlation study, we design a novel pooling operator called Translation Invariant
Polyphase Sampling (TIPS) that discourages MSB and improves invariance under shift transformations. To
further improve visual recognition performance and shift invariance, we introduce two loss functions: LF M

– to discourage known failure modes of shift invariance and Lundo – to learn to undo standard shift. In real
world scenarios, standard shifts are more like to occur than circular shift; however current literature largely
focuses on circular shift invariance. We show that the TIPS pooling operator and regularization improves
shift invariance on both circular shift and standard shift.

Our contributions and findings are summarized below and results are highlighted in Figure 1.

• We identify maximum-sampling bias (MSB) as a factor that hurts the shift invariance of existing pooling
methods in CNNs.

• We propose a learnable pooling method called Translation Invariant Polyphase Sampling (TIPS) and two
regularizations called LF M and Lundo to improve shift invariance and discourage MSB when training
visual recognition models.

• We demonstrate that this approach consistently improves robustness under shift transformation on mul-
tiple image classification and semantic segmentation benchmarks, outperforming data augmentation and
contrastive learning strategies, and resulting in state-of-the-art performance in terms of accuracy, shift
consistency, and shift fidelity under standard and circular shift transformations, while operating at a small
computational overhead.

• When tested on adversarial attacks, patch attacks, and natural corruption of images, models trained with
TIPS exhibit greater robustness than previous shift-invariant pooling operators.
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2 Related Work

Robustness of CNNs has been examined under different types of input perturbations and transformations
such as rotation, reflection and scaling (Cohen & Welling, 2016; Poulenard et al., 2019), geometric transfor-
mations (Liu et al., 2019), affine transformations (Engstrom et al., 2019), domain shift (Venkateswara et al.,
2017), attribute shift (Gokhale et al., 2021), adversarial attacks and perturbations (Agarwal et al., 2020;
Zhang et al., 2021), and natural corruptions (Hendrycks & Dietterich, 2018). Distributional robustness of
CNNs has been explored through various approaches including static, random, or learned data augmenta-
tion (Hendrycks et al., 2019; Xu et al., 2020; Gokhale et al., 2023), contrastive learning (Khosla et al., 2020),
and Bayesian approaches (Cheng et al., 2023).

Dense Sampling and Anti-aliasing. Conventional sliding window downsampling in computer vision
algorithms (Fukushima, 1980; Lowe, 1999) is typically applied with stride that is bigger than 1 which breaks
shift equivariance (Simoncelli et al., 1992). Shift invariance can be improved through dense sampling (Leung
& Malik, 2001) with dilated convolutions (Yu et al., 2017) with susceptibility to griding artifacts. Zhang
(2019) suggest BlurPool to enhance SI through anti-aliasing before downsampling, whereas Zou et al. (2020)
propose DDAC, to learn low pass anti-aliasing filter.

Polyphase Sampling. Recent works such as APS (Chaman & Dokmanic, 2021) and LPS (Rojas-Gomez
et al., 2022) use polyphase sampling to meet the Nyquist sampling theorem (Nyquist, 1928) and permutation
invariance which provides robustness against circular shifts. APS enhances shift invariance by sampling the
highest energy polyphase index (ℓp norm) while LPS learns the sampling. LPS being sensitive to gumble
softmax temperature can sample polyphases to maximize downstream objective which does not consider
shift invariance unless training data is shift-augmented. Evidence suggests that although polyphase sampling
methods can improve shift invariance for circular shift, they still struggle to deal with standard shift. The
focus of this study is to improve robustness of CNNs against both standard and circular shifts, which
constitute significant aspects of model evaluation.

3 Translation Invariant Polyphase Sampling

In this section, we discuss the design of the TIPS layer and the workflow for training CNNs with TIPS. Let
X ∈ Rc×h×w be a ReLU-activated input feature map, where c, h, w denote the number of channels, height,
and width of feature maps. A pooling layer with stride s, downsamples X into X̂ where X̂ ∈ R+c×h/s×w/s.

3.1 TIPS: A Learnable Pooling Layer

TIPS learns to sample polyphase decompositions of input feature maps X using two branches. In the first
branch, polyphase components of X with stride s are computed similar to Chaman & Dokmanic (2021):

polyis+j(X) = X[k, sn1 + i, sn2 + j], ∀ i, j ∈ Zs−1
0 ; k ∈ Zc−1

0 ;n1 ∈ Z⌈ h
s ⌉

0 ;n2 ∈ Z⌈ w
s ⌉

0 . (1)

Note that polyphase sampling can also be achieved by a strided convolution with a s × s kernel equal to 1
at index (i, j) and 0 elsewhere. A visualization of polyphase sampling with s = 2 is shown in Figure 3. The
second branch of TIPS is a small fully convolutional function fθ : X → τ that learns the mixing coefficients
τ ∈ [0, 1]c×s2 . ψ() is the first 3×3 convolutional layer followed by ReLU activation as shown in Figure 3; thus
ψ(X) represents intermediate feature maps of X in fθ(). All operations in fθ are shift invariant, including
Global Average Pooling (GAP) (He et al., 2016b). The output of the TIPS layer is computed as a weighted
linear combination of the polyphase components:

X̂ =
∑
i,j

τ
is+j

poly
is+j

(X) (2)

Regularizing TIPS to Discourage Known Failure Modes of Shift Invariance. Chaman & Dok-
manic (2021); Rojas-Gomez et al. (2022) have shown that having extremely skewed mixing coefficients (e.g.
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Figure 3: TIPS downsamples ReLU activated intermediate feature map X into X̂ with stride of s. From
input feature map X, TIPS learns polyphase mixing coefficients τ using a small fully convolutional function
fθ. The polyphase decomposition on input feature map X results in poly

i
which are then mixed as a weighted

linear combination with τ (Equation 2) to compute X̂.

τ={0, 1, 0, 0} for s=2) is not robust against standard shift. TIPS with uniform mixing coefficients and LPS
with higher softmax temperature (e.g. τ={0.25, 0.25, 0.25, 0.25} for s=2) is identical to average pooling,
which has been shown to hurt shift invariance (Zhang, 2019; Zou et al., 2020). Based on these observations,
we introduce a regularization on the mixing coefficients in TIPS to discourage known failure modes. In LF M ,
the first term discourages skewed τ and the second term discourages uniform τ .

LF M = (∥τ∥2 − 1) + (1 − s2 ∥τ∥2) = (1 − s2) ∥τ∥2 . (3)

Figure 4: The end-to-end training pipeline with TIPS,
Translation invariant regularization Lundo, regulariza-
tion to discourage known failure modes of shift invari-
ance LF M , and downstream task loss Ltask.

Learning to Undo Standard Shift. Although
prior work (Chaman & Dokmanic, 2021; Rojas-
Gomez et al., 2022; 2023; Ding et al., 2023; Zhong
et al., 2023) has shown the benefits of using
polyphase sampling to counter circular shifts, there
is still a performance degradation with standard
shifts due to information loss beyond the pooling
boundary. To improve robustness against standard
shift, we shift the input feature map with a ran-
dom amount of vertical and horizontal standard
shift sampled from uniform distribution U(0, h

10 )
and U(0, w

10 ) respectively to obtain a shifted Xt. We
then regularize training by setting up the objective
of undoing this shift between ψ(X) and the shifted
Xt, via the additional loss term Lundo:

Lundo = Eh′ ∈hEw′ ∈w[Xt
h′ ,w′ − ψ(Xh′ ,w′ )]2 (4)

3.2 Training CNNs with TIPS

Let N be the number of training epochs. For the first ϵN epochs, we train only with the task loss Ltask and
the regularization to discourage failure models LF M . For subsequent epochs, the undo regularization Lundo

is introduced. The final training loss is the Lagrangian (with α ∈ [0, 1]):

L =
{

(1 − α)Ltask + LF M for epoch < ϵN

(1 − α)Ltask + αLundo + LF M otherwise.
(5)

ψ(X) contains a 3 × 3 convolution layer, followed by ReLU. This is followed by global average pooling,
1 × 1 convolution, flattening, and a softmax operation to obtain τ as shown in Figure 3. Weights of fθ are
initialized using the using Kaiming normal approach (He et al., 2016a).
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Figure 5: Our large-scale study of shift invariance of CNN-based models for image classification and semantic
segmentation, with multiple CNN architectures, datasets, and pooling methods, shows a strong negative
correlation between each evaluation metric and MSB (%), as indicated by the Pearson correlation coefficient
(r). Linear clusters with negative correlation are also observed for points belonging to each pooling method.

4 Maximum-Sampling Bias and its Correlation with Shift Invariance

In this section, we setup a framework to study shift invariance in CNNs, by defining maximum-sampling
bias (MSB). We show that MSB is a common preference exhibited by both conventional pooling operators
and those designed to improve shift invariance and through a large-scale analysis, we show that MSB is
negatively correlated with shift invariance.

Definition of MSB. Existing pooling operators exhibit a common tendency to propagate signals based
on activation strength. We denote this phenomenon as maximum-sampling bias (MSB), defined as the
fraction of window locations for which the the maximum signal value is sampled. MSB quantifies the bias
of a pooling operator to select and propagate the maximum value of the signal; a higher MSB indicates a
higher probability of maximum signal values being selected during pooling. Let p() be a pooling operator
in a convolutional neural network and s be the downsampling factor; for example, s=2 for a max-pooling
operator with window size 2 × 2. Let X ∈ Rh×w be the 2-dimensional input to a pooling layer. Applying a
pooling operator p() on X with downsampling factor s results in an output X̂ = p(X) ∈ Rh

s × w
s .

It is trivial to see that MSB = 1 for max-pool, as max-pool by definition always selects the maximum signal,
X̂[i, j] = max

m,n
X[is+m, js+n] ∀(i, j). Average pooling produces X[i, j] = E

m,n
x[is+m, js+n] and is equiva-

lent to max-pooling if all values within the window are identical. For all other cases, the average value is sam-
pled, which is necessarily less than the maximum and thus MSB ≤ 1. APS pooling (Chaman & Dokmanic,
2021) samples the polyphase component of X with maximum ℓp norm; X̂[i, j] = max

is+j
{∥polyj(x)∥p}s−1

i,j=0. As
the polyphase function poly() in APS and LPS (Rojas-Gomez et al., 2022) is a monotonic function, it also
exhibits a preference for sampling larger signals in the pooling window.

From the above definition, we can see that existing pooling operators implicitly prefer selecting larger ele-
ments in the pooling window. We investigate whether this preference (or bias) towards maximum-sampling
is linked to shift invariance, by conducting a large-scale analysis of the correlation between MSB and shift
invariance on a number of visual recognition benchmarks with multiple CNN architectures and pooling
methods. Our work is the first to identify maximum-sampling bias and its connection to shift invariance.
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Standard Shift Circular Shift
Method Acc. Consistency Fidelity Consistency Fidelity

C
N

N
(R

es
N

et
-1

8)

MaxPool 91.43±0.04 87.43±0.05 79.94±0.05 90.18±0.03 82.45±0.08

APS 94.02±0.07 92.89±0.08 87.33±0.05 100.00±0.00 94.02±0.07

LPS 94.45±0.05 93.11±0.07 87.94±0.03 100.00±0.00 94.45±0.05

TIPS 95.75±0.11 98.38±0.37 94.20±0.08 100.00±0.00 95.75±0.11

BlurPool (LPF-5) 94.29±0.11 91.04±0.09 85.84±0.12 98.27±0.11 92.66±0.07

APS (LPF-5) 94.44±0.09 93.25±0.13 88.06±0.17 100.00±0.00 94.44±0.09

LPS (LPF-5) 95.17±0.12 94.87±0.08 90.09±0.15 100.00±0.00 95.17±0.12

TIPS (LPF-5) 96.05±0.13 98.65±0.11 94.75±0.10 100.00±0.00 96.05±0.13

V
iT

ViT-B/16 (I21k) 98.89±0.04 82.34±0.07 81.43±0.05 83.79±0.15 82.86±0.12

ViT-L/16 (I21k) 99.15±0.02 82.72±0.09 82.01±0.08 84.41±0.11 83.69±0.06

Swin-B (I21k) 99.22±0.03 83.19±0.07 82.54±0.05 84.05±0.04 83.40±0.04

(a) CIFAR-10

Standard Shift Circular Shift
Method Acc. Consistency Fidelity Consistency Fidelity

C
N

N
(R

es
N

et
-3

4)

MaxPool 88.38±0.04 90.25±0.07 79.76±0.13 88.21±0.08 77.96±1.05

APS 88.49±0.12 93.54±0.11 82.77±0.09 100.00±0.00 88.49±0.12

LPS 87.62±0.07 92.73±0.18 81.25±0.15 100.00±0.00 87.62±0.07

TIPS 91.86±0.03 95.77±0.04 87.97±0.12 100.00±0.00 91.86±0.03

BlurPool (LPF-5) 87.79±0.11 92.65±0.14 81.34±0.14 95.39±0.10 73.81±0.14

APS (LPF-5) 88.57±0.07 93.97±0.04 83.20±0.02 100.00±0.00 88.57±0.07

LPS (LPF-5) 88.79±0.12 93.41±0.08 83.00±0.11 100.00±0.00 88.79±0.12

TIPS (LPF-5) 92.34±0.09 95.96±0.11 88.61±0.07 100.00±0.00 92.34±0.09

V
iT

ViT-B/16 (I21k) 91.54±0.07 87.25±0.08 79.87±0.10 82.39±0.04 75.42±0.06

ViT-L/16 (I21k) 93.39±0.05 87.11±0.18 81.35±0.15 81.49±0.07 76.11±0.11

Swin-B (I21k) 93.78±0.03 87.34±0.06 81.91±0.17 83.57±0.11 78.37±0.13

(b) CIFAR-100

Table 1: Image classification performance on CIFAR-10 and CIFAR-100 averaged over five trials.

Negative Correlation between MSB and Shift Invariance. To understand how MSB affects shift
invariance in CNNs we evaluated 576 models across different architectures, datasets, and pooling methods 2

and conducted a correlation study as shown in Figure 5 with MSB on x-axis and performance metrics on the
y-axis for both image classification and semantic segmentation. A strong negative correlation is observed
between MSB and shift consistency and fidelity (discussed in the next subsection), and surprisingly also
with downstream task performance (accuracy, mIoU). In all scenarios, when MSB decreases, shift invariance
and downstream performance improves. Figure 5 further depicts that circular consistency is more negatively
correlated with MSB than standard consistency for both tasks. Linear relationships are also observed for
points corresponding to specific pooling methods across architectures and datasets. Using Global Average
Pooling (GAP) (He et al., 2016a) before classification layer with no spatial downsampling of the intermediate
feature maps leads to additional computational expense since there are more feature grids to convolve. While
this design choice helps improving shift invariance, the computational expense for additional convolution
operations renders such designs impractical (see Appendix Table 11 for computational costs). TIPS achieves
high shift invariance with marginal computational overhead.

5 Experiments

We perform experiments on multiple benchmarks for both image classification and semantic segmentation.
For image classification, we evaluate shift invariance while for semantic segmentation we evaluate shift
equivariance; following conventions used in prior work, this is also referred to as “shift invariance” in the
results. For both classification and segmentation, we avoid using pre-trained CNNs since the pre-training
step uses strided convolution and maxpool.

5.1 Image Classification Experiments

Datasets and Baselines. We benchmark the performance of TIPS and prior work on six image classification
datasets: CIFAR-10, 100 (Krizhevsky, 2009), Food-101 (Bossard et al., 2014), Oxford-102 (Nilsback &
Zisserman, 2008), Tiny ImageNet (Le & Yang, 2015), and ImageNet (Krizhevsky et al., 2012). Our baselines
include MaxPool, APS (p=2), and LPS (τ=0.23), as well as BlurPool, APS, and LPS with anti-aliasing using
n×n Gaussian low-pass filter (LPF-5). We also compare with three Vision Transformer (ViT) architectures:
ViT-B/16, ViT-L-16 (Dosovitskiy et al., 2020), and Swin-B (Liu et al., 2021) which are pre-trained on the
larger ImageNet-21k dataset (Deng et al., 2009).

Hyperparameters. For TIPS, we choose ϵ = 0.4 and α = 0.35 in Equation 5. All models are trained
using an SGD optimizer with initial learning rate 0.05, momentum 0.9, and weight decay 1e-4 with early
stopping. No models in our experiments were trained on shifted images. For each dataset-backbone pair,
for fair comparison, TIPS and all baselines are trained with identical hyperparameters.

2The appendix has details about architectures, datasets, pooling methods, and hyperparameters for the all experiments.
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Standard Shift Circular Shift
Method Acc. Consistency Fidelity Consistency Fidelity

C
N

N
(R

es
N

et
-5

0)

MaxPool 92.96±0.08 82.13±0.57 76.18±0.07 83.61±0.12 77.72±0.05

APS 94.68±0.11 91.34±0.04 86.48±0.13 100.00±0.00 94.68±0.11

LPS 94.71±0.02 92.41±0.03 87.52±0.11 99.48±0.11 94.22±0.05

TIPS 95.63±0.15 95.02±0.09 90.87±1.08 100.00±0.00 95.63±0.15

BlurPool (LPF-5) 93.77±0.03 88.18±0.17 82.69±1.08 93.49±0.13 87.67±0.03

APS (LPF-5) 94.07±0.13 92.51±0.06 87.03±0.20 100.00±0.00 94.07±0.13

LPS (LPF-5) 95.62±0.07 94.10±0.07 89.99±0.19 100.00±0.00 95.62±0.07

TIPS (LPF-5) 96.42±0.16 95.50±0.13 92.08±0.19 100.00±0.00 96.42±0.16

V
iT ViT-B/16 (I21k) 96.88±0.13 81.45±0.04 78.91±0.15 78.39±0.12 75.94±0.12

ViT-L/16 (I21k) 97.00±0.03 81.84±0.11 79.38±0.08 78.06±0.18 75.72±0.17

Swin-B (I21k) 97.49±0.05 82.85±0.14 80.77±0.09 78.05±0.02 76.10±0.08

(a) Food-101

Standard Shift Circular Shift
Method Acc. Consistency Fidelity Consistency Fidelity

C
N

N
(R

es
N

et
-5

0)

MaxPool 93.48±0.15 85.63±0.11 80.05±0.17 89.38±0.17 83.55±0.12

APS 94.68±0.03 92.47±0.05 87.55±1.09 100.00±0.00 94.68±0.03

LPS 95.31±0.08 93.63±0.17 89.24±0.11 100.00±0.00 95.31±0.08

TIPS 97.18±0.06 95.78±0.03 93.08±0.16 100.00±0.00 97.18±0.06

BlurPool (LPF-5) 92.71±0.08 90.32±0.13 83.74±0.05 94.07±0.13 87.21±0.08

APS (LPF-5) 94.71±0.11 93.00±0.08 88.09±0.14 100.00±0.00 94.71±0.11

LPS (LPF-5) 96.28±0.05 94.33±0.06 90.82±0.09 100.00±0.00 96.28±0.05

TIPS (LPF-5) 97.62±0.11 96.51±0.14 94.21±0.14 100.00±0.00 97.62±0.11

V
iT ViT-B/16 (I21k) 99.33±0.05 88.47±0.04 87.88±0.08 82.24±0.03 81.69±0.06

ViT-L/16 (I21k) 99.59±0.03 87.25±0.09 86.89±0.18 82.39±0.13 82.05±0.03

Swin-B (I21k) 99.68±0.02 87.06±0.16 80.16±0.07 83.57±0.11 83.30±0.05

(b) Oxford-102

Table 2: Image classification performance on Food-101 and Oxford-102 datasets averaged over five trials.

Standard Shift Circular Shift
Method Acc. Consistency Fidelity Consistency Fidelity

C
N

N
(R

es
N

et
-1

01
) MaxPool 78.54±0.22 88.45±0.15 69.47±0.14 92.82±.14 79.20±0.15

APS 83.01±0.08 91.37±0.06 75.85±0.04 100.00±0.00 83.01±0.08

LPS 85.67±0.18 92.95±0.04 79.63±0.05 100.00±0.00 85.67±0.18

TIPS 86.78±0.19 94.27±0.14 81.80±0.15 100.00±0.00 86.78±0.19

BlurPool (LPF-5) 82.83±0.13 90.81±0.17 75.22±0.12 95.87±0.19 79.41±1.12

APS (LPF-5) 83.52±0.03 92.00±0.20 76.84±0.11 100.00±0.00 83.52±0.03

LPS (LPF-5) 86.74±0.09 93.38±0.17 80.99±0.04 100.00±0.00 86.74±0.09

TIPS (LPF-5) 86.91±0.13 94.55±0.06 88.20±0.07 100.00±0.00 86.91±0.13

V
iT ViT-B/16 (I21k) 89.34±0.06 73.47±0.03 65.64±0.11 72.94±0.19 65.16±0.08

ViT-L/16 (I21k) 90.75±0.15 74.39±0.16 67.51±0.14 73.85±0.06 67.02±0.19

Swin-B (I21k) 91.19±0.04 72.14±0.15 65.78±0.17 75.49±0.05 68.84±0.10

(a) TinyImageNet

Standard Shift Circular Shift
Method Acc. Consistency Fidelity Consistency Fidelity

C
N

N
(R

es
N

et
-1

01
) MaxPool 76.31±0.18 89.05±0.19 67.05±0.06 87.56±0.13 66.82±0.17

APS 76.07±0.15 90.95±0.13 69.19±0.13 100.00±0.00 76.07±0.15

LPS 78.29±0.14 91.74±0.03 71.82±0.13 100.00±0.00 78.29±0.14

TIPS 80.24±0.09 92.87±0.08 74.52±0.18 100.00±0.00 80.24±0.09

BlurPool (LPF-5) 76.33±0.08 90.70±0.14 69.23±0.15 90.55±0.17 69.12±0.19

APS (LPF-5) 76.49±0.08 91.23±0.17 69.78±0.05 99.98±0.00 76.41±0.06

LPS (LPF-5) 78.31±0.05 92.49±0.15 72.43±0.08 100.00±0.00 78.31±0.05

TIPS (LPF-5) 81.36±0.10 93.11±0.03 75.75±0.14 100.00±0.00 81.36±0.10

V
iT ViT-B/16 (I21k) 83.89±0.07 84.38±0.05 70.79±0.27 81.03±0.11 67.98±0.19

ViT-L/16 (I21k) 85.06±0.02 83.19±0.12 70.76±0.17 81.64±0.15 69.44±0.14

Swin-B (I21k) 85.16±0.05 85.24±0.19 72.59±0.05 82.79±0.08 70.50±0.18

(b) ImageNet

Table 3: Image classification performance on TinyImageNet and ImageNet averaged over five trials.

Evaluation Metrics. In addition to reporting classification accuracy on the unshifted test set, we use the
consistency definition from Zou et al. (2020) which compares the predictions for two shifted images. However,
as consistency does not consider the ground truth label (y) for evaluation, we introduce fidelity as a new
metric. Note: xh1,w1 denotes image x shifted by h ∼ U(0, h/8) vertically and w ∼ U(0, w/8) horizontally.

Consistency = E
x

E
(h1,w1),(h2,w2)

1[f(xh1,w1 ) = f(xh2,w2 )]. (6)

Fidelity = E
x

E
(h1,w1),(h2,w2)

1[y = f(xh1,w1 ) = f(xh2,w2 )]. (7)

Results. Tables 1, 2, and 3 show strong dataset- and backbone-agnostic evidence for the efficacy of TIPS
in terms of accuracy and shift invariance for both standard shift and circular shift. TIPS results in large
gains in consistency and fidelity on standard shift, which was a challenge for prior work. It is important to
note that TIPS with LPF-5 also improves upon prior work that uses LPF-5 anti-aliasing. For ViTs, shift
invariance performance is inferior to CNNS, even though they consistently achieve higher accuracy. ViT
architectures - despite being pre-trained on a very large scale dataset ImageNet21k (I21k) cannot improve
shift invariance which depicts that large-scale pre-training has no implications on shift invariace. While
CNNs in general perform better on circular shift than standard shift, there is no such clear trend for ViT –
for example, ViTs are more robust on standard shift for Oxford-102 and Tiny ImageNet and more robust on
circular shift for the other four datasets.

5.2 Semantic Segmentation Experiments

Datasets and Baselines. We use the following datasets: PASCAL VOC 2012 (Everingham et al., 2010),
Cityscapes (Cordts et al., 2016), Kvasir (Jha et al., 2020), and CVC-ClinicDB (Bernal et al., 2015). Our
baselines include MaxPool, APS, LPS, BlurPool (LPF-3), and DDAC (groups g=8, LPF-3). BlurPool and
DDAC (Zou et al., 2020) perform antialiasing by either using a fixed low-pass filter (BlurPool) or a learnable
low pass group-wise convolution filter (DDAC).
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PASCAL VOC 2012 - DeepLabV3+ (ResNet-18) Cityscapes - DeepLabV3+ (ResNet-101)
Unshifted Standard Shift Circular Shift Unshifted Standard Shift Circular Shift

Method Anti-Alias mIOU Consistency Fidelity Consistency Fidelity mIOU Consistency Fidelity Consistency Fidelity
MaxPool - 70.03 95.17 66.65 95.42 66.82 78.50 96.03 75.38 97.07 76.20
Blurpool LPF-3 71.02 95.52 67.84 96.03 68.20 78.90 96.09 75.82 97.94 77.27
DDAC LPF-3 72.28 96.77 69.95 95.98 69.37 79.52 96.28 76.54 98.21 78.09
APS LPF-3 72.37 97.05 70.24 96.70 69.98 79.84 97.53 77.87 98.32 78.50
LPS LPF-3 72.37 97.98 70.92 100.00 72.37 80.15 98.60 79.03 100.00 80.15
TIPS LPF-3 73.84 98.65 72.84 100.00 73.84 81.37 99.02 80.57 100.00 81.37

Table 4: Semantic segmentation performance on Pascal VOC and Cityscapes datasets.

Kvasir - U-Net CVC-ClinicDB - U-Net
Unshifted Standard Shift Circular Shift Unshifted Standard Shift Circular Shift

Method Anti-Alias mIOU Consistency Fidelity Consistency Fidelity mIOU Consistency Fidelity Consistency Fidelity
MaxPool - 75.60 92.84 70.19 97.91 74.02 73.81 90.24 66.61 95.50 70.50
Blurpool LPF-3 78.39 94.63 74.18 98.30 77.06 76.32 93.87 71.64 96.36 73.54
DDAC LPF-3 79.24 95.17 75.41 98.49 78.04 77.89 92.17 71.80 97.73 76.12
APS LPF-3 81.97 96.32 78.95 100.00 81.97 79.31 95.63 75.84 100.00 79.31
LPS LPF-3 82.38 97.86 80.62 100.00 82.38 78.59 96.21 75.61 100.00 78.59
TIPS LPF-3 86.10 98.09 84.46 100.00 86.10 80.05 97.89 78.36 100.00 80.05

Table 5: Semantic segmentation performance on Kvasir and CVC-ClinicDB datasets.

Figure 6: Qualitative comparison of segmentation masks predicted on original and shifted images. Images
from Cityscapes, Pascal VOC are standard-shifted by (43,-17), (-38,0) respectively. Regions where TIPS
achieve improvements (i.e. consistent segmentation quality) under linear shifts are highlighted with circles.

Hyperparameters. We use SGD optimizer with a initial learning rate 0.01, momentum 0.9, weight decay
5e-4 with early stopping. We use DeepLabV3+ (Chen et al., 2018) with ResNet-18 as the backbone for
the Pascal-VOC dataset and with ResNet-101 as the backbone for the Cityscapes dataset. For Kvasir and
CVC-ClinicDB, we use a UNet (Ronneberger et al., 2015) model with “Kaiming Normal” initialization.

Evaluation Metrics. To report shift invariance for semantic segmentation, we use consistency and fidelity
similar to image classification experiments, by comparing a common cropped area among images with dif-
ferent shift amounts. Within the common crop, we compute the percentage of pixels that have identical
predictions in terms of segmentation categories.

Results. Comparison of mIOU, consistency and fidelity in Tables 4, 5 shows that TIPS improves mIOU
in comparison to all baselines on all four benchmarks. Consistent with our finding in image classification,
we observe a sharper increase in shift consistency under standard shift than with circular. Models trained
with TIPS pooling have higher fidelity on both standard and circular shifts, depicting the efficacy of TIPS
in learning both shift invariant and high quality segmentation. In Figure 6, we compare the quality of the
masks predicted on shifted image when using prior work or TIPS. The areas highlighted with red circles in
the first two rows (Cityscapes) demonstrate that TIPS segments objects with higher consistency than other
pooling operators under image shifts. The yellow boxes in the last two rows (Pascal-VOC) further illustrate
improved segmentation consistency with TIPS under small shifts.
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Unshifted Standard Shift Circular Shift

Stategy Method Acc. Consistency Fidelity Consistency Fidelity

Pooling MaxPool 64.88 82.41 53.14 80.39 50.71
(without anti-aliasing) DDAC 67.59 85.43 57.74 80.90 54.68

APS 67.05 86.39 57.92 100.00 67.05
LPS 67.39 86.17 58.07 100.00 67.39
TIPS 69.02 87.42 60.34 100.00 69.02

Pooling BlurPool (LPF-5) 66.85 87.43 58.54 87.88 58.75
(with LPF-5) DDAC (LPF-5) 66.98 86.92 58.22 80.35 53.82
(anti-aliasing) APS (LPF-5) 67.52 87.02 58.76 99.98 67.51

LPS (LPF-5) 69.11 86.58 59.84 100.00 69.11
TIPS (LPF-5) 70.01 87.51 61.27 100.00 70.01

Data Augmentation circular 64.25 83.58 53.71 84.27 54.14
standard 63.91 84.45 53.97 81.27 51.94
both 64.87 84.99 55.13 85.64 55.55

Contrastive Learning SimCLR 71.15 85.63 60.93 78.26 55.68
SupCon 72.49 86.17 62.46 81.75 59.26

Table 6: A comparison of accuracy and shift consistency and fidelity for additional methods including data
augmentation, contrastive learning, and pooling with or without anti-aliasing. The models are trained on
the ImageNet dataset with a ResNet18 backbone. Best performance in each section of the table is in bold,
performance lower than MaxPool is highlighted in red and overall best performance is in cyan .

6 Analysis

We further investigate the effectiveness of TIPS by comparing with non-pooling strategies, conducting abla-
tion studies to examine the impact of our novel loss functions, understanding the effect of hyperparameters,
and evaluating the effect of TIPS on various measures of robustness.

6.1 Investigating Other Strategies for Improving Shift Invariance of CNNs

In Section 5 we compared TIPS with different pooling methods. There are other approaches besides pooling
that could be useful for mitigating failures with pixel-level shift such as data augmentation and contrastive
learning. To understand the efficacy of these approaches and compare them with TIPS and other pooling
operators, we experiment with three types of data augmentation while training: standard shift, circular
shift, and their combination, and two contrastive learning approaches: self-supervised SimCLR (Chen et al.,
2020) and supervised SupCon (Khosla et al., 2020). For contrastive learning, representations are learned via
the contrastive objective of aligning shifted samples closer and are used for downstream image classification.
Table 6 shows a comparison of these techniques with TIPS and previous pooling-based approaches, for image
classification with a ResNet-18 backbone, evaluated on the ImageNet dataset. While data augmentation does
not significantly improve performance, both contrastive learning methods outperform MaxPool on all metrics.
However, TIPS, without any contrastive learning or data augmentation, results in greater shift invariance.

6.2 Effect of Lundo and LF M Regularization

Figure 7: The effect of Lundo in terms of |ψ(X) −
Xt| and example feature maps (ResNet-101 with TIPS
trained for 90 epochs on ImageNet; ϵ=0.4).

In Figure 7 we analyze the impact of Lundo on learn-
ing shift invariant intermediate features, by visual-
izing |ψ(X)−Xt| at different stages of training. We
observe that as training progresses, Lundo is able to
guide |ψ(X) −Xt| closer to 0 and thus TIPS learns
to offset standard shift transformation on interme-
diate feature maps. In Figure 8 we quantify this
observation by plotting accuracy and four shift in-
variance measurements for different values of ϵ in
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Figure 8: Inspecting the effect of training varying % of epochs on Lundo for Tiny ImageNet classification.
Lower ϵ indicates more epochs with Lundo and vice versa. ϵ = 0.4 (i.e. training without Lundo for the
first 40% of epochs and with Lundo for the rest of the epochs is optimal. Values of ϵ higher than 0.4 yields
sub-optimal shift invariance, but is better than low values of ϵ, demonstrating the impact of Lundo.

Figure 9: The impact of each component of our training objective is quantified through an ablation study.
The top row shows results for six image classification datasets and the bottom row shows results for four
semantic segmentation datasets. Regularization using both Lundo and LF M results in the best performance.

Equation 5. For accuracy and both shift fidelity metrics, Lundo helps, but there is an optimal value of ϵ
(=0.4 for Tiny ImageNet). A very low value of ϵ hurts performance.

The training objective in Equation 5 includes task loss Ltask and two regularizations LF M and Lundo. In
Figure 9, we perform an ablation study to examine the efficacy of each term in the loss function. Our
results reveal a clear trend: ◦ > ⋆ > △ > □; across all datasets for image classification and segmentation,
regularizing with both Lundo and LF M (denoted by ◦ in the plots) leads to the highest accuracy, highest
shift invariance in terms of all four evaluation metrics, and lowest MSB. Only using one of Lundo or LF M

also improves performance compared to training only with Ltask. These results demonstrate the impact of
each component of our loss function on shift invariance and further demonstrate the inverse relationship
between MSB and shift invariance.

6.3 Effect of the Number of TIPS Layers

Figure 10: The diameter of the bubbles denotes MSB.
As the number of downsampling layers increases, MSB
decreases and shift invariance increases.

Figure 10 (a) portrays mean MSB, consistency, fi-
delity on Tiny ImageNet classification and Figure 10
(b) shows shift consistency and fidelity on Pas-
cal VOC for semantic segmentation. As we train
with more TIPS layer, shift invariance does not al-
ways strictly improve, in fact sometimes it decreases.
However, for both Tiny ImageNet classification and
Pascal VOC semantic segmentation, MSB always
decreases as we train with more TIPS layers, in-
dicating the efficacy of using TIPS in reducing MSB.
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Figure 11: Shift invariance (consistency and fidelity) for standard and circular shifts on image classification
(ImageNet) and semantic segmentation (Cityscapes) for varying degrees of shift. TIPS outperform existing
pooling operators in all the evaluation metrics for shift invariance.

Figure 12: Adversarial robustness under different levels ε of input perturbations.

6.4 Finegrained Results for Different Levels of Shift

In our experiments the level of pixel shift, d is sampled from the range {0, 1, ..., D} where D = h/8 or w/8
for vertical and horizontal shift. In Figure 11, we demonstrate shift invariance under all possible levels of
shifts d ∈ {0, 1, ..., D}, and observe that shift consistency drops faster with higher degrees of shift when using
existing pooling methods whereas with TIPS this degradation is much slower. TIPS not only outperforms
other pooling methods on average but at all degrees of shifts ∈ {0, 1, ..., D}. We observe that gain with TIPS
in comparison to existing pooling operators is higher for shift fidelity than shift consistency. This suggests
that TIPS improves both downstream task performance and shift invariance simultaneously.

6.5 Robustness Evaluation

Adversarial Attacks. Recent studies reveal that deep models with ReLU are vulnerable against adver-
sarial attacks if they are optimized for domain generalization (Frei et al., 2023) or shift invariance (Singla
et al., 2021). Studies have also revealed a trade-off between adversarial robustness and other forms of gen-
eralization (Gokhale et al., 2022; Moayeri et al., 2022; Teney et al., 2024). We investigate the ℓ2 and ℓ∞
adversarial robustness of TIPS (with ResNet-34 backbone trained on CIFAR-10 and Tiny-ImageNet) using
PGD (Madry et al., 2018) and FGSM(Goodfellow et al., 2014) attacks from Foolbox (Rauber et al., 2017).
Figure 12 shows that TIPS exhibits superior adversarial robustness compared to previous methods. We also
observe that better shift invariance is generally correlated with better adversarial robustness

Patch Attacks. We adopt the experiment setup from Chaman & Dokmanic (2021) where square patches are
randomly erased from the input image and test models trained on the clean CIFAR-10 and ImageNet datasets
using a ResNet-18 backbone. Figure 13 demonstrates that TIPS outperforms other methods (pooling and
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Figure 13: Evaluation of shift invariance under patch attacks (randomly erasing image patches) shows that
TIPS exhibits higher robustness than existing pooling and data augmentation methods.

Noise Blur Weather Digital
Method Clean mCE Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG
VGG-19 25.8 81.6 82.0 83.0 88.0 82.0 94.0 84.0 86.0 80.0 78.0 69.0 61.0 74.0 94.0 85.0 83.0
VGG-19+TIPS 25.1 81.1 82.1 83.5 86.9 82.1 93.5 82.2 86.7 80.0 77.2 68.3 60.1 74.4 93.8 83.7 82.2
ResNet-18 30.2 84.7 87.0 88.0 91.0 84.0 91.0 87.0 89.0 86.0 84.0 78.0 69.0 78.0 90.0 80.0 85.0
ResNet-18+TIPS 28.7 83.9 85.3 87.9 91.6 83.6 91.2 85.7 88.3 85.4 82.6 77.1 68.5 77.3 89.9 80.1 84.6

Table 7: Errors on clean (ImageNet) and corrupted (ImageNet-C) test sets. mCE is the mean corruption
error. Models are trained only on clean ImageNet training dataset.

data augmentation) in robustness to such patch attacks. On ImageNet, shift consistency is more pronounced
than other methods, especially for larger erased patches.

Natural Corruptions. We evaluated the robustness of TIPS under an out-of-distribution setting, where
models are trained on clean images, but tested on images with natural corruptions due to noise, blur,
weather artifacts, or digital corruptions. We test robustness to natural corruptions using the ImageNet-C
test dataset (Hendrycks & Dietterich, 2018) and report error on clean ImageNet (complement of classification
accuracy). Table 7 shows that with TIPS, the mCE (mean corruption error) for VGG-19 and ResNet-18
architectures decreased by 0.61 % and 0.94 % respectively.

6.6 Applicability of TIPS to Vision Transformers

Our work is focused on improving shift invariance of CNNs – models that are already in use in may real-world
applications. We note that in vision tranformers, three modules break shift invariance:

• Patch embeddings convert image patches into vectors using strided convolution (not shift invariant).
• Positional encodings for both shifted and non-shifted inputs are identical (amount of shift is not encoded).
• Window-based self-attention is computationally cheap, but applying local attention on windows of sizes

larger than amount of input shift causes token values to change invariantly w.r.t. input shift.

Since these mechanisms are not analogous to downsampling, polyphase sampling cannot be directly applied
to ViTs as conveniently as CNNs. Although TIPS is currently limited to CNNs, in our experiments we show
that ViTs are also not shift invariant and our simple plug-in solution for CNNs (TIPS) outperforms ViTs.

7 Conclusion

Through a large scale correlation analysis we identify a strong inverse relationship of shift invariance of
convolutional neural networks with the maximum-sampling bias (MSB) of pooling operators. We find that
optimizing neural network weights to reduce MSB is a good strategy for improving shift invariance. With our
proposed learnable Translation Invariant Polyphase Sampling (TIPS) pooling layer and regularization that
promotes low MSB, we achieve state-of-the-art results for shift invariance on a variety of image classification
and semantic segmentation benchmarks, outperforming data augmentation and contrastive learning strate-
gies. Our analysis reveals additional benefits of TIPS, including improved robustness to adversarial attacks
and corruptions. Our work serves as a starting point for further empirical or theoretical investigations into
factors that cause sensitivity to shift.
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A Appendix

In this appendix, we define standard and circular shifts of images with examples. We further discuss com-
putational analysis and experimental setup for MSB - shift invariance correlation study, image classification
benchmarks, semantic segmentation benchmarks. Finally, we illustrate the computational overhead in TIPS
and discuss how it compares to existing pooling operators.

A.1 Standard and Circular Shifts of Images

Figure 14: Standard shift of an 224 × 224 image from ImageNet test set is shown with varying amount of
shifts. Here, standard shift (0, 0) denotes the original image with no shifts. It is also observed that, as the
amount of standard shift increases, there occurs more information (pixel) loss.
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Figure 15: Circular shift of an 224 × 224 image from ImageNet test set is shown with varying amount of
shifts. Here, circular shift (0, 0) denotes the original image with no shifts.

There are two types of pixel levels shifts that can be performed on images: standard shift and circular shift.
Given an image of height h and width w, we can perform either type of shifts by an amount (x, y) where
x ∈ {0, .., h}, y ∈ {0, .., w}. Standard shift is the process of shifting images to a (x, y) direction which renders
blank pixels at shifted positions. Circular shift also shifts images in the (x, y) direction, except the shifted
pixels that move beyond the image boundary, are wrapped about the opposite ends of the image to fill in
the empty pixels. Therefore, circular shift is a lossless transformation while standard shift is not. Figure 14
and 15 show examples of standard and circular shift (by varying amounts) applied to an image taken from
ImageNet test set and depict how standard shift renders blank pixels while circular shift do not.

A.2 Experimental Setup for MSB - Shift Invariance Correlation Study

Table 8 shows the list of CNN architectures (including Mobile Net by Howard et al. (2017)), datasets and
pooling methods that we use to obtain a total of 576 models for the MSB-shift invariance correlation study.
In our study, we train each combination of architecture and dataset on 9 pooling methods: Global Average
Pooling before classification with no spatial downsampling of convolutional features, TIPS (ϵ = 0.4, α = 0.35
for image classification, ϵ = 0.45, α = 0.35 for semantic segmentation), LPS (τ = 0.01), APS (p = 2), APS
(p → ∞), LPS (τ → ∞), BlurPool (LPF-5), Average Pool (2×2), and MaxPool (2×2). Furthermore, in each
of the aforementioned settings, we use different number of pooling layers as shown in Table 8. While training
with Global Average Pooling, we use 4 different kernel sizes (2 × 2, 3 × 3, 4 × 4, 5 × 5) in the first convolution
layer with same padding to create 4 variants since varying the number pooling layers is not possible in this
setting barring that we downsample only once (downsampling the very last convolution features with Global
Average Pooling before classification/segmentation layer).

In Table 9, Table 10 we include training details such as image size, batch size, step size, number of training
epochs for all model - dataset combinations used in the MSB - shift invariance correlation framework for
both image classification and semantic segmentation. As discussed in Section 4, using Global Average
Pooling with no spatial downsampling of the convolution features leads to increased computation with larger
spatial features. In Table 11, we summarize a detailed analysis on how Global Average Pooling increases
computational complexity in comparison to baseline MaxPool. The reported CUDA time is in nanoseconds
(ns), CUDA memory is in Mega Bytes (MB), GFLOPs is billions of floating point operations per second. In
Figure 5, we observe that Global Average Pooling improves shift invariance and reduces MSB, but Table 11
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Image Classification Experiments Semantic Segmentation Experiments

Model # Layers Dataset Model # Layers Dataset

MobileNet {2, 3, 4, 5} CIFAR-10 DeepLabV3+ (ResNet-18) {2, 3, 4, 5} PASCAL VOC 2012
ResNet-18 {2, 3, 4, 5} CIFAR-100 DeepLabV3+ (ResNet-101) {3, 4, 5.6} Cityscapes
ResNet-34 {2, 3, 4, 5} Food-101 U-Net (ResNet-18) {2, 3, 4, 5} Kvasir
ResNet-101 {2, 3, 4, 5} Oxford-102 U-Net (ResNet-34) {2, 3, 4, 5} CVC-ClinicDB

Table 8: List of CNN architectures and datasets, tested on each pooling method for correlation analysis
between MSB and Shift Invariance.

CIFAR-10 CIFAR-100 Food-101 Oxford-102
Model h× w b s N h× w b s N h× w b s N h× w b s N

MobileNet 32×32 64 60 220 32×32 64 60 220 200×200 128 60 220 200×200 128 60 220
ResNet-18 32×32 64 50 250 32×32 64 50 250 224×224 64 50 250 224×224 64 50 250
ResNet-34 32×32 64 50 250 32×32 64 50 250 224×224 64 50 250 224×224 64 50 250
ResNet-101 32×32 64 180 480 32×32 64 180 480 224×224 64 180 480 224×224 64 180 480

Table 9: Image size (h×w), batch size (b), step size(s) for updating learning rate, and number of epochs (N)
reported for each CNN model and image classification dataset combination for the MSB – Shift Invariance
correlation analysis experiment.

Pascal VOC 2012 Cityscapes Kvasir CVC-ClinicDB
Model h× w b s N h× w b s N h× w b s N h× w b s N

DeepLabV3+ (ResNet-18) 200×300 12 120 450 200×200 12 120 450 200×200 12 60 450 200×300 8 45 450
DeepLabV3+ (ResNet-101) 200×300 8 120 380 200×200 12 120 380 200×200 12 60 380 200×300 8 45 380
U-Net (ResNet-18) 200×300 12 120 180 200×200 16 120 180 200×200 16 60 180 200×300 12 45 180
U-Net (ResNet-34) 200×300 12 120 150 200×200 12 120 150 200×200 12 60 150 200×300 8 45 150

Table 10: Image size (h × w), batch size (b), step size(s) for updating learning rate, and number of epochs
(N) reported for each CNN model and semantic segmentation dataset combination for the MSB – Shift
Invariance correlation analysis experiment.

reveals that this performance gain comes at a significantly higher computational cost. However, with TIPS
we achieve comparable shift invariance and MSB by introducing marginal computational complexity in
comparison to Global Average Pooling.

A.3 Experimental Setup for Image Classification and Semantic Segmentation

We benchmark the performance of TIPS and prior work on six image classification datasets which are
described in Table 12. We benchmark the performance of TIPS and prior work on four semantic segmentation
datasets which are described in Table 13. Table 12, 13 contains further training details on all the reported
datasets such as batch size, step size, number of training epochs, image/crop size, number of classes and
number of images in the dataset.

A.4 Computational Overhead in TIPS

Table 14 shows the percentage of additional parameters required to use TIPS on image classification and
segmentation CNN models with different pooling methods and CNN architectures, for RGB images of size
224 × 224 and a batch-size of 64. TIPS introduces marginal computational overhead while still being com-
putationally cheaper than existing pooling operators for shift invariance, i.e. DDAC. Moreover, in Table 15
we show the number of trainable parameters with different pooling operators for all the image classification,
semantic segmentation CNN models. While TIPS requires higher number of trainable parameters than LPS,
it is still much less than DDAC.
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Architecture Pooling CUDA Time ↓ CUDA Memory ↓ GFLOPs ↓
MobileNet MaxPool 0.635 58.122 2.270

TIPS 1.045 101.214 3.005
GAP 66.609 6390.284 639.259

ResNet-18 MaxPool 1.135 21.860 4.017
TIPS 3.525 292.844 41.937
GAP 72.460 1957.691 1124.032

ResNet-34 MaxPool 1.954 31.904 8.128
TIPS 5.623 334.754 71.532
GAP 141.075 3451.912 2250.287

ResNet-101 MaxPool 4.921 131.035 31.197
TIPS 12.204 816.791 146.596
GAP 534.514 21144.011 8508.809

(a) Image Classification

Architecture Pooling CUDA Time ↓ CUDA Memory ↓ GFLOPs ↓
DeepLabV3+(ResNet-18) MaxPool 1.33 25.216 9.570

TIPS 3.728 380.146 91.146
GAP 121.029 2453.834 1926.592

DeepLabV3+(ResNet-101) MaxPool 7.52 144.737 51.447
TIPS 18.274 911.845 246.947
GAP 741.568 21671.086 11521.953

U-Net(ResNet-18) MaxPool 2.754 78.574 23.567
TIPS 8.675 1113.227 235.797
GAP 143.402 3137.765 2700.095

U-Net(ResNet-34) MaxPool 3.179 88.707 27.678
TIPS 9.045 957.965 246.352
GAP 202.312 4631.986 3826.350

(b) Semantic Segmentation

Table 11: GPU resources (CUDA time, memory, GFLOPs) allocated to convolution operations in CNNs
while using different pooling operators for various CNN architectures. We observe that, performing Global
Average Pooling (GAP) on the final convolution feature with no prior downsampling drastically increases
GPU resources in comparison to baseline MaxPool. TIPS require additional convolution layers (Figure 3),
since it is a learnable pooling operator. Compared to MaxPool, the overhead in GPU resources with TIPS
is remarkably smaller than it is for Global Average Pooling.

Image Classification Experiments
Dataset Model Batch Size Step Size Epochs Image Size # Classes # Training Samples # Validation Samples
CIFAR-10 ResNet-18 64 50 250 32×32 10 50,000 10,000
CIFAR-100 ResNet-34 64 50 250 32×32 100 50,000 10,000
Food-101 ResNet-50 64 25 80 224×224 101 75,750 25,250
Oxford-102 ResNet-50 64 20 70 224×224 102 2,060 6,129
Tiny ImageNet ResNet-101 64 180 480 64×64 200 100,000 10,000
ImageNet ResNet-101 64 30 90 224×224 1000 1,281,167 50,000

Table 12: Training details, dataset statistics for all six datasets in our image classification experiments.
Training details include batch size, step size for updating learning rate, number of training epochs, image
size and dataset statistics include number of classes, training samples, validation samples.

Semantic Segmentation Experiments
Dataset Model Batch Size Step Size Epochs Image Size # Classes # Training Samples # Validation Samples
PASCAL VOC 2012 DeepLabV3+(ResNet-18) 12 120 450 200×300 20 1,464 1,456
Cityscapes DeepLabV3+(ResNet-101) 12 120 380 200×200 19 2,975 500
Kvasir UNet(ResNet-18) 12 60 180 200×200 2 850 150
CVC-ClinicDB UNet(ResNet-34) 8 45 150 200×300 2 521 91

Table 13: Training details, dataset statistics for all four datasets in our semantic segmentation experiments.
Training details include batch size, step size for updating learning rate, number of training epochs, image
size and dataset statistics include number of classes, training samples, validation samples.

A.5 Effect of training on LF M

In Figure 16, we train ResNet-101 on Tiny ImageNet with TIPS and LF M and compare it with baselines
LPS, APS and MaxPool in terms of standard fidelity and MSB. To further inspect the effect of training
TIPS with LF M , we train with three different setting of TIPS: (1) TIPS with LF M : to discourages both
skewed and uniform τ , (2) TIPS with only the first term in LF M : to discourages skewed τ only, and (3)
TIPS with only second term in LF M : to discourages uniform τ only. We observe that training TIPS with
both terms from LF M yields the maximum gain in shift fidelity and decreases MSB the most. TIPS with
LF M also outperforms other pooling methods: LPS, APS and MaxPool in terms of standard shift fidelity
and MSB.
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Method ResNet-18 ResNet-34 ResNet-50 ResNet-101
BlurPool 0.00 0.00 0.00 0.00
DDAC 7.92 10.53 9.27 4.30
APS 0.00 0.00 0.00 0.00
LPS 1.03 2.24 1.93 1.05
TIPS 5.51 4.56 2.17 3.19

(a) Image Classification

Method DeepLabV3+(A) DeepLabV3+(B) UNet
BlurPool 0.00 0.00 0.00
DDAC 12.00 4.83 12.83
APS 0.00 0.00 0.00
LPS 4.40 3.25 4.79
TIPS 7.24 4.04 5.76

(b) Semantic Segmentation

Table 14: Percentage of additional parameters required in comparison to MaxPool on each CNN architecture
for classification and semantic segmentation. We observe that, while TIPS require more parameters than
LPS, DDAC causes the maximum increase in trainable parameters w.r.t. baseline MaxPool.

Method ResNet-18 ResNet-34 ResNet-50 ResNet-101
MaxPool 11.884 21.282 23.521 42.520
BlurPool 11.884 21.282 23.521 42.520
DDAC 12.825 23.524 25.701 44.349
APS 11.884 21.282 23.521 42.520
LPS 12.006 21.759 23.975 42.966
TIPS 12.539 22.253 24.031 43.876

(a) Image Classification

Method DeepLabV3+(A) DeepLabV3+(B) UNet
MaxPool 20.131 58.630 7.762
BlurPool 20.131 58.630 7.762
DDAC 22.547 61.459 8.758
APS 20.131 58.630 7.762
LPS 21.017 60.536 8.134
TIPS 21.589 60.999 8.209

(b) Semantic Segmentation

Table 15: Number of trainable parameters in Million for various pooling methods reported for: ResNet-
18, ResNet-34, ResNet-50, ResNet-101 backbones (image classification), DeepLabV3+ (A: ResNet-18, B:
ResNet-101) and UNet (semantic segmentation). Number of trainable parameters are computed assuming
an RGB input image of size 224 × 224.

Figure 16: The effect of LF M on TIPS is visualized by plotting standard shift fidelity versus MSB for
models trained on Tiny ImageNet. Training TIPS with LF M yields the maximum standard shift fidelity and
minimum MSB.
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