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Abstract

We introduce Geo-NVS-w, a geometry-aware framework
for high-fidelity novel view synthesis from unstructured, in-
the-wild image collections. While existing in-the-wild meth-
ods already excel at novel view synthesis, they often lack
geometric grounding on complex surfaces, sometimes pro-
ducing results that contain inconsistencies.

Geo-NVS-w addresses this limitation by leveraging an
underlying geometric representation based on a Signed Dis-
tance Function (SDF) to guide the rendering process. This is
complemented by a novel Geometry-Preservation Loss which
ensures that fine structural details are preserved. Our frame-
work achieves competitive rendering performance, while
demonstrating a 4–5× reduction reduction in energy con-
sumption compared to similar methods. We demonstrate that
Geo-NVS-w is a robust method for in-the-wild NVS, yield-
ing photorealistic results with sharp, geometrically coherent
details.

1. Introduction
Novel view synthesis from unconstrained, in-the-wild im-
age collections has emerged as a cornerstone problem in
computer graphics and vision. The ability to explore a 3D
scene by rendering photorealistic views from any arbitrary
viewpoint has profound applications in virtual reality, digital
heritage, and visual effects. However, in-the-wild datasets,
such as the widely used IMC-Phototourism dataset [11] con-
sisting of tourist photos of landmarks, present a formidable
challenge. They are characterized by inconsistent illumina-
tion, varying camera settings, and transient occluders such
as pedestrians, vehicles, or temporary structures.

Pioneering methods like Neural Radiance Fields [7] and
its variants for in-the-wild data [1, 6] have made remarkable
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progress. However, they inherit a fundamental limitation
of volumetric density representations, which is geometric
ambiguity that tends to produce semi-transparent artifacts
and blur sharp architectural details.

We argue that to achieve greater photorealism and consis-
tency in NVS, the rendering process can benefit from being
explicitly guided by the scene’s underlying geometry. To this
end, we introduce Geo-NVS-w, a framework that uses a high-
fidelity Signed Distance Function (SDF) representation [13]
as its geometric backbone. An accurate SDF provides a
strong prior for surface locations, enabling our renderer to
create sharp depth discontinuities and, consequently, sharper
images.

Our core contributions are:

• Octree-Accelerated feature-based volume: We pair an
SDF-guided renderer with an octree-based feature volume,
interpolating features within geometry-bearing regions to
preserve detail while accelerating training.

• Geometry-Preservation Loss (GPL). We introduce a
novel loss that explicitly penalizes the model for incor-
rectly masking out geometrically significant regions as
transient, ensuring textures and features remain coherent
across viewpoints.

• Quantified Energy Efficiency Analysis: We instrument
training with GPU power logging to quantify the en-
ergy–quality trade-off, documenting markedly lower train-
ing time and energy use.

Our approach is founded on the principle that an accurate
and robust geometric representation is essential for high-
quality view synthesis. By grounding our rendering in an
SDF, we provide a strong inductive bias for surfaces, which
directly contributes to the quality of our synthesized views,
especially on complex scenes. Geo-NVS-w thus demon-
strates that high-quality NVS can be achieved through the
synergy of advanced rendering techniques and strong geo-
metric grounding.



Figure 1. Overview of the Geo-NVS-w Framework. For a given camera ray, we march through an octree containing feature grids for the
foreground (SDF-based) and background (NeRF-based). Within the foreground unit sphere, interpolated features are passed to MLPs to
predict an SDF value s(x) and a color c(x,d). We use the NeuS rendering formula to convert SDF values into alpha-compositing weights
wi, ensuring rendered colors are tightly coupled to the underlying surface. These weights are used to accumulate color, which is then
composed with the background. Our Geometry-Preservation Loss (GPL) ensures the transient mask does not erode high-curvature details.

2. Related Work
Our work builds upon advances in novel view synthesis and
neural surface representation.

2.1. Novel View Synthesis
Neural Radiance Fields (NeRF) [7] model a scene as a con-
tinuous mapping from 5D coordinates (position and viewing
direction) to volumetric density and color, enabling photo-
realistic rendering but requiring dense sampling and long
training, and struggling with large-scale scenes. For faster
rendering, PlenOctrees [17] bake the network into an ex-
plicit octree for real-time rendering. To handle unbounded
scenes, NeRF++ [19] uses dual MLPs to separately model
foreground and background. For in-the-wild data, NeRF-
W [6] adds per-image appearance embeddings and a transient
component for variable lighting and dynamics, while Ha-
NeRF [1] couples an appearance-hallucinating CNN with a
transient 2D mask MLP.

2.2. Neural Surface Representation
A parallel thread targets high-quality geometry via implicit
representations. NeuS [13] introduces SDF volume render-
ing, ensuring the opacity-weighted color of a ray corresponds
to the underlying surface. To scale, acceleration structures
are crucial: Instant-NGP [8] employs multi-resolution hash
grids for NeRFs, and Neuralangelo [12] adapts them to SDFs
for high-fidelity, large-scale reconstruction, highlighting the
importance of numerical gradients and coarse-to-fine opti-
mization for stabilizing SDF training on hash grids.

Geo-NVS-w unifies these lines: we adopt NeuS-style
SDF rendering for geometric fidelity and grid efficiency,
analogous to Neuralangelo but using an octree feature grid.

Unlike reconstruction-focused work, we use this pipeline as
the backbone for high-quality novel view synthesis.

Geo-NVS-w is engineered primarily for high-fidelity
novel view synthesis. Its architecture is built upon a robust
geometric foundation—a Signed Distance Function (SDF)—
which is key to rendering consistent views. The framework
combines an efficient octree feature volume, an SDF-guided
rendering process, and our novel Geometry-Preservation
Loss (GPL). This geometric foundation avoids artifacts typ-
ical in NeRF renderings—such as density clouding from
inconsistent ray sampling—by enforcing coherent surface
geometry.

2.3. Octree Feature Volume
To balance performance and efficiency, we represent the
scene using two separate, sparse octree feature grids: one
for the foreground, modeled with an SDF, and a second
for the background environment, modeled with a conven-
tional NeRF. This dual-grid octree structure concentrates
computational resources on regions containing geometry,
pruning vast empty spaces. For any 3D point x inside the
foreground’s unit sphere, we query features via trilinear inter-
polation from the SDF grid. These features are then decoded
by small MLPs to produce SDF and color values. For points
outside this sphere, features are queried from the background
grid and passed to a small background NeRF network.

2.4. SDF-guided Volumetric Rendering
Accurate surface localization is key for sharp rendering. An
SDF defines the surface by the zero level set s(x) = 0.

We use NeuS [13] to link SDFs to alpha compositing. For



a ray sample xi with SDF si = s(xi), the occupancy is

αi = sigmoid(ζsi + βi)− sigmoid(ζsi+1 + βi), (1)

where ζ is a learned global deviation and βi =
⟨∇si,d⟩∆ti/2 corrects for the angle between ray d and
normal ∇si. A compact Deviation Network learns ζ, and
normals/derivatives use finite differences [12]. Rendering
weights follow discrete compositing:

wi = Tiαi, Ti =
∏
j<i

(1− αj), (2)

and the final color C(r) accumulates the foreground over
the background NeRF. This concentrates color integration to
a narrow band around the surface, producing geometrically
consistent, sharp views.

2.5. Appearance and Transient Modules
A per-image latent appearance code is used to model varia-
tions in lighting and camera parameters, inspired by NeRF-
W [6]. Regarding transient occluders, we follow CR-
NeRF [15] in using an unsupervised segmentation-based
approach, where a lightweight CGNet [14] is trained to gen-
erate transient object masks.

2.6. Geometry-Preservation Loss (GPL)
A standard challenge for in-the-wild NVS is disentangling
static background from transient objects (e.g., people, cars).
This is often handled with a transient mask network, which
learns to down-weight pixels corresponding to dynamic el-
ements. However, training multiple networks using a pho-
tometric loss often leads to the transient mask network re-
moving static structure edges, leading to degradation of parts
of the SDF representation, particularly those with complex
geometry.

To counteract this, we introduce the Geometry-
Preservation Loss (GPL). The intuition is to penalize the
transient mask for being active on rays that pass through
geometrically significant regions. We define the loss as:

LGPL = Er [M(r) · Φ(r)] , (3)

where M(r) ∈ [0, 1] is the predicted mask value for ray
r, and Φ(r) is an edge indicator function derived from the
foreground SDF. This indicator is designed to be high for
rays intersecting geometrically complex regions. For each
ray, we compute the ray-wise average of the per-sample
eikonal error, Egrad(r) = (∥∇s∥ − 1)2, and the absolute
curvature estimate, Ecurv(r) = |∆s|. The indicator function
is then:

Φ(r) = σ(λgradEgrad(r) + λcurvEcurv(r)) , (4)

where σ is a calibrated sigmoid function. Intuitively, Φ(r)
peaks on rays that traverse sharp edges or areas of high curva-
ture. By multiplying the mask value with this indicator, our
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Figure 2. Qualitative results on Phototourism scenes. Top to
bottom: Sacré-Cœur, Trevi Fountain, Brandenburg Gate. (a) Input
image. (b) Rendered result with Geo-NVS-w from the same view-
point and appearance embedding. (c) Estimated transiency mask.
(d) Visualization of the geometry-preservation map (accumulated
SDF gradients along each ray).

geometry preservation loss encourages the mask to remain
zero (i.e., fully foreground) for rays that are crucial for defin-
ing the scene’s structure. This is designed to preserve sharp
features, leading to visibly sharper and more coherent novel
views. We set the loss weights λGPL = 0.05, λgrad = 10.0,
and λcurv = 2.0 in all our experiments.

2.7. Learning Objective
The complete framework is trained end-to-end by minimiz-
ing a composite loss:

L = λrgbLrgb + λeikLeik + λcurvLcurv

+ λmaskLreg + λGPLLGPL + λlpsLlps.
(5)

The key components include: the primary photometric loss
Lrgb (L1 difference); an eikonal loss Leik = (∥∇s∥−1)2; our
novel LGPL; the Lipschitz loss Llps [4], on the color network,
following prior work [10]; a curvature loss Lcurv = |∆s|;
and an off-surface penalty. The regularized transient mask,
Lreg, combines the transient CNN mask with penalties for
intensity and bimodality to encourage a clean separation
of static and dynamic elements. During a warm-up phase,
we also use a sphere-initialization loss, Lsphere, to provide a
stable initial geometry.

3. The Geo-NVS-w Framework

4. Experiments
We evaluate Geo-NVS-w on all four currently available
scenes from the IMC-PT dataset[11] also used in NeRF-
W and Ha-NeRF, as the rest have been removed due to data



Table 1. Novel View Synthesis (NVS) quality. We report PSNR
(↑), SSIM (↑), and LPIPS (↓). Geo-NVS-w achieves strong results
on all IMC-PT dataset scenes.

Method PSNR ↑ SSIM ↑ LPIPS ↓

Brandenburg Gate
Ha-NeRF 23.45 0.811 0.247
NeRF-W 23.98 0.915 0.198
Geo-NVS-w (Ours) 25.4 0.944 0.158

Sacré-Coeur
Ha-NeRF 25.40 0.877 0.124
NeRF-W 25.11 0.859 0.141
Geo-NVS-w (Ours) 23.23 0.85 0.16

Trevi Fountain
Ha-NeRF 22.15 0.695 0.117
NeRF-W 23.01 0.751 0.109
Geo-NVS-w (Ours) 24.5 0.831 0.203

Taj Mahal
Ha-NeRF 22.72 0.767 0.301
NeRF-W 25.15 0.833 0.195
Geo-NVS-w (Ours) 24.19 0.86 0.194

inconsistencies [16]. We also view CR-NeRF [15] as com-
plementary and plan to include a controlled comparison in
future work.

4.1. Implementation Details
Our model is implemented in PyTorch [9] and trained on a
single NVIDIA A10G GPU using mixed-precision computa-
tion to accelerate training. We measure energy consumption
by incorporating GPU power measurement directly into our
training pipeline, logging cumulative usage over time.

4.2. Novel View Synthesis Benchmarks
Our method matches or exceeds baselines [1, 6] on several
metrics, as shown in Tab. 1, while achieving superior image
quality metrics in most scenes. Fig. 3 corroborates these
findings, illustrating that our method delivers enhanced vi-
sual fidelity at higher processing speed and reduced energy
expenditure.

4.3. Energy Analysis
Beyond raw performance, practical usability and scalability
depend on computational efficiency. As shown in Fig. 3,
Geo-NVS-w is not only faster but also more energy-efficient.
Our method completes a 300,000-iteration run using approx-
imately 2.05 kWh, whereas NeRF-W consumes 9.7 kWh
and Ha-NeRF consumes 7.71 kWh. Beyond achieving supe-
rior geometric fidelity, our SDF-based approach also demon-
strates efficiency gains, reaching peak PSNR on our runs
using approximately 2.05 kWh, a beneficial effect of an
architecture that allows for significant downsizing of the
MLPs.

5. Conclusion
We presented Geo-NVS-w, a framework advancing in-the-
wild novel view synthesis by placing geometric preservation

Figure 3. Energy vs. quality trade-off. Geo-NVS-w achieves high
PSNR with significantly less training time and cumulative energy
consumption (kWh) compared to baseline NeRF-W, making it a
more efficient and scalable solution.

at the core of the rendering process. Incorporating a Signed
Distance Function into our architecture and introducing a
Geometry-Preservation Loss, our method produces render-
ings with consistent sharpness and geometrical coherence.
The framework offers a strong, geometry-consistent alterna-
tive with favorable efficiency–quality trade-offs compared to
prior approaches. While newer paradigms such as Gaussian
Splatting have emerged, our findings confirm that geometry-
aware methods remain effective for high-fidelity, in-the-wild
view synthesis.

Future work could explore integrating 3D Gaussian Splat-
ting techniques [2] within in-the-wild settings [3, 18], lever-
aging their speed advantages to further reduce rendering
latency and computational overhead while maintaining the
surface coherence enabled by our SDF methodology, as pre-
sented in [5].
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