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ABSTRACT

Shampoo, a second-order optimization algorithm that uses a Kronecker product
preconditioner, has recently received increasing attention from the machine learn-
ing community. Despite the increasing popularity of Shampoo, the theoretical
foundations of its effectiveness are not well understood. The preconditioner used
by Shampoo can be viewed as either an approximation of the Gauss—Newton com-
ponent of the Hessian or the covariance matrix of the gradients maintained by
Adagrad. Our key contribution is providing an explicit and novel connection be-
tween the optimal Kronecker product approximation of these matrices and the
approximation made by Shampoo. Our connection highlights a subtle but com-
mon misconception about Shampoo’s approximation. In particular, the square of
the approximation used by the Shampoo optimizer is equivalent to a single step
of the power iteration algorithm for computing the aforementioned optimal Kro-
necker product approximation. Across a variety of datasets and architectures we
empirically demonstrate that this is close to the optimal Kronecker product ap-
proximation. We also study the impact of batch gradients and empirical Fisher on
the quality of Hessian approximation. Our findings not only advance the theoret-
ical understanding of Shampoo but also illuminate potential pathways to enhance
its practical performance.

1 INTRODUCTION

Second-order optimization methods offer significant theoretical advantages over first-order ap-
proaches, promising faster convergence rates by incorporating curvature information. Recently,
these methods have seen success in practical large-scale training of neural networks such as Gemini
1.5 Flash (Gemini Team, 2024) and in the Algoperf benchmark (Dahl et al., 2023; MLCommons,
2024). One of the primary challenges in this field arises from the substantial memory and compu-
tational demands of traditional second-order methods, such as Adagrad (with full matrix) (Duchi
et al.,, 2011) and Newton’s method. When applying classical techniques, they require storing and
inverting a | P| x |P| dimensional matrix H (either covariance of the gradients for Adagrad or the
Gauss—Newton component of the Hessian for Newton’s method), where | P| denotes the model pa-
rameters. With modern architectures often comprising billions of parameters, this leads to quadratic
memory and cubic computational requirements, rendering direct application practically infeasible.

*Equal contribution. Randomized Author Ordering.
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Figure 1: Comparison of Kronecker product approximations for the Gauss—Newton Hessian (top)
and Adagrad preconditioner (bottom) across datasets and architectures. Plots show the cosine simi-
larity between the true matrix and three approximations: optimal Kronecker, Shampoo?, and Sham-
poo. Shampoo? closely tracks the optimal Kronecker approximation, outperforming the original
Shampoo method, consistent with Proposition 1. For MNIST-2 (binary subsampled), Shampoo?
perfectly correlates with the optimal Kronecker approximation as proved in Corollary 2 for bino-
mial logistic regression. See Appendix C for dataset and architecture details.

To address this issue, one line of work focuses on efficient approximations of the matrix H (Gupta
et al., 2018; Martens & Grosse, 2015). These methods typically employ either a diagonal approxi-
mation (e.g., Adam (Kingma, 2014)) or a layer-wise Kronecker product approximation of H. Such
approaches are motivated by the significant memory and computational efficiency gains they of-
fer compared to maintaining and inverting the full matrix H. Among the most prominent methods
utilizing layer-wise Kronecker product approximations are K-FAC (Martens & Grosse, 2015) and
Shampoo (Gupta et al., 2018).

In this work, we primarily focus on the Shampoo optimizer (Gupta et al., 2018), which has recently
gained increasing attention from the research community. Notably, in the Algoperf benchmark of
optimization algorithms proposed for practical neural network training workloads (Dahl et al., 2023),
Shampoo appears to outperform all other existing methods. Another recent study, elucidating the
Google Ads recommendation search pipeline, revealed that the Google Ads CTR model is trained
using the Shampoo optimizer (Anil et al., 2022). Additionally, a recent work (Shi et al., 2023)
implemented a distributed data parallel version of Shampoo, demonstrating its superior speed in
training ImageNet compared to other methods.

Previous research has introduced the concept of optimal Kronecker product approximation (in
Frobenius norm) for a matrix M (Loan & Pitsianis, 1993). This involves finding the projection
of M onto the set of matrices expressible as a Kronecker product of two smaller matrices. Loan &
Pitsianis (1993) demonstrated that this optimal approximation can be computed numerically using a
power iteration scheme. Our work presents a novel result (Proposition 1) that establishes a precise
connection between Shampoo’s approximation and this optimal Kronecker-factored approximation.
Specifically, we show that the square of Shampoo’s approximation is equivalent to a single step of
the power iteration algorithm used to compute the optimal approximation.

Despite its empirical success, the theoretical foundations of Shampoo were not fully understood.
Our results bridge this gap by connecting Shampoo to optimal Kronecker approximation of Newton
and Adagrad methods. Moreover, our theoretical insights were utilized in the design of SOAP Vyas
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et al. (2024), a recently proposed optimizer that improves upon AdamW and Shampoo on language
modeling tasks.

The main contributions of the work are summarized below:

* We theoretically show (Proposition 1) that the square of the Shampoo’s approximation of
H is precisely equal to one round of the power iteration scheme for obtaining the optimal
Kronecker factored approximation of the matrix H. Informally, for any covariance matrix
H =E[gg"] ' where g € R™", we argue that the right Kronecker product approximation
of His E[GGT]®E[G T G], while the original Shampoo work (Gupta et al., 2018) proposes
E[GGT)2QE[GTG]Y?, with G € R™*" representing a reshaped g into an m x n matrix.

* We empirically verify that the result of one round of power iteration (i.e. square of the
Shampoo’s approximation) is very close to the optimal Kronecker factored approxima-
tion (Figure 1), and provide theoretical justification for the same (Section 3.2.1). Our ex-
perimental results also show that the approximation proposed by the original Shampoo
work (Gupta et al., 2018), which does not use the square, is significantly worse.

» For the Hessian based viewpoint of Shampoo (Section 2.2.2), we empirically demon-
strate the impact on the Hessian approximation of various practical tricks implemented
to make Shampoo more computationally efficient such as averaging gradients over batch
(Section 4.1) and using empirical Fisher instead of the actual Fisher (Section 4.2).

Remark. It is worth noting that previous works (Balles et al., 2020; Lin et al., 2024) have inves-
tigated why Adagrad-based methods such as Adam and Shampoo incorporate an additional square
root in their updates compared to the Hessian inverse. While this is an important question, it lies
outside the scope of our work. For more details on this topic, we refer readers to Appendix G.

2 BACKGROUND

In this section, we provide the technical background, including basic definitions (Section 2.1), two
perspectives on Shampoo’s optimization (Adagrad in Section 2.2.1, Hessian in Section 2.2.2), and
the theory of the optimal Kronecker product approximation (Section 2.3).

2.1 NOTATION AND BASIC DEFINITIONS

We use lowercase letters to denote scalars and vectors, and uppercase letters to denote matrices.
For a symmetric matrix A, A > 0 (resp. A > 0) denotes that A is positive semi-definite (PSD)
(resp. positive definite). Similarly, for symmetric matrices A and B, A > B (resp. A > B) means
A—B > 0 (resp. A— B > 0). The identity matrix of size n is denoted by I,,. We use M i, j] to refer
to the (4, 7) entry of the matrix M. The Kronecker product of two matrices A € RP*% and B € R"**
is denoted by A ® B € RP"*95_ It is defined such that (A ® B)[ri + 4, sj + j'| = A[i, 7] B[7, j']
where 0 <7 < p,0<j <¢q0<1i <70 <j < s. The vectorization of a matrix A € R™*",
denoted by vec(A), is an mn-dimensional column vector obtained by stacking the columns of A on
top of one another. We will usually denote vec(A) by a. The Frobenius norm of a matrix A € R™*",

denoted by ||A||F, is defined as ||A||p = \/sz:l iy Alis g1

The following is a basic lemma about Kronecker products that will be used later:
Lemma 1 (Henderson & Searle (1981)). (A ® B) vec(G) = vec(BGAT).

2.2 SHAMPOO

The Shampoo optimizer, introduced by Gupta et al. (2018), builds on the principles of the Adagrad
algorithm (Duchi et al., 2011). Shampoo can be understood through two primary perspectives: as
an extension of Adagrad, and as an approximation of the Gauss—Newton component of the Hessian.
We explore both perspectives below in Section 2.2.1 and Section 2.2.2 respectively.

'The Gauss—Newton component of the Hessian can also be expressed as a covariance matrix. For details,
refer Section 2.2.2.
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2.2.1 ADAGRAD BASED PERSPECTIVE OF SHAMPOO

Adagrad is a preconditioned online learning algorithm that uses the accumulated covariance of
the gradients as a preconditioner. Given the model parameters 6, € RP at iteration ¢, and the
gradient g; € RP of the loss function with respect to 6;, Adagrad maintains a preconditioner

Hpga = Zthl g9, . The parameter update, for a learning rate 7, is given by:

Or41 = Or — nHyg! g7
Shampoo extends Adagrad by maintaining a layer-wise Kronecker product approximation of the full

Adagrad preconditioner Hpag,. Let Gy € R™*™ be the gradient for a weight matrix W, € R™*™ at
iteration ¢. The following lemma forms the basis for Shampoo’s approximation:

Lemma 2 (Gupta et al. (2018)). Assume that G+, ..., G are matrices of rank at most r. Let
gt = vec(Gy) denote the vectorization of Gy for all t. Then, for any € > 0, we have:

| T 1/2 T 1/2
€lmn + ~ Ylggl < (dm + ] GthT> ® (dn + 3] GtTGt> .
t=1

t=1 t=1

Building on the above lemma, Shampoo maintains two preconditioners, L; € R™*™ and R; €
R™"™_ which are initialized as €l,,, and €I, respectively. The updates for the preconditioners and
the Shampoo parameter update, with learning rate 7, are given by:

Ly =Lr_1+GrG}; Rr =Rr_1+GpGr; Wry =Wy — ﬁL;l/4GTR;1/4-
In Lemma 2, Shampoo approximates the Adagrad preconditioner Hag, = Zthl grg; using the

1/2 1/2
Kronecker product (23:1 GG} ) ® (23:1 GtTGt> . Our main focus is to study the optimal
Kronecker product approximation of H a4, and how it relates to Shampoo’s approximation.

2.2.2 HESSIAN BASED PERSPECTIVE OF SHAMPOO

In this section, we describe the Hessian approximation viewpoint of Shampoo, explored by previous
works (Anil et al., 2021; Osawa et al., 2023), as an alternative to the Adagrad-based perspective.
Our theoretical and empirical results apply to both viewpoints.

Gauss—-Newton (GN) component of the Hessian. For a datapoint (x, y), let f(x) denote the output
of a neural network and L(f(z),y) represent the training loss. Let W € R™*" be a weight matrix
in the network and let D denote the training distribution. For cross-entropy (CE) loss, the Gauss-
Newton component of the Hessian of the loss with respect to W is given by (see Appendix E for
details):

of oL of T
Hon = E(zy)~p l f / ] =E .- p, [gr,sg;—,s] )

avapaw |~ Eopy

Here, f(z) refers to the network’s output, and D, represents the training distribution of x (Pas-
canu & Bengio, 2014). The right-hand side is commonly referred to as the Fisher matrix, while its
counterpart using real labels, E, ) .p [g%y g; y] , is called the empirical Fisher. Going forward, for

simplicity, we will denote the Fisher matrix as E; s f(z) [gz,s94. |- asumming x is drawn from D,
and similarly for both x and y drawn from D.

Optimizers such as K-FAC and Shampoo, when viewed from the Hessian perspective, perform a
layerwise Kronecker product approximation of the Fisher matrix Hgn. The following lemma estab-
lishes Shampoo’s approximation:

Lemma 3 (Adapted from Gupta et al. (2018); Anil et al. (2021)). Assume that G, s are matrices of
rank at most r. Let g, s = vec(Gy,s) . Then, for any € > 0,

1/2
Eosm i) [92.592,5) <7 (B sm @) [GsGas])

1/2
® (Eo s~ f(a) [Gr,6Ga.s]) (M
In Lemma 2 the matrix on the left hand side is equal to Hgy and the right hand side represents
the Kronecker product approximation made by Shampoo. However, directly computing this ap-
proximation at each step is computationally expensive. In practice, Shampoo applies two additional
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approximations to make the process more efficient. First, it replaces the per-input gradient by batch
gradient, i.e, replacing E, ;. f(2)[G2,sG1 ] withEp s[Gp <G ;] where B denotes a batch of data

points, s is the concatenation of s ~ f(x) for all (x,y) € B and Gps = \%I 2 y)eB,s=s[z] Gr.s

is the sampled batch gradient, with s[z] representing the sampled label corresponding to = € B.
Second, Shampoo replaces sampled labels with real labels, i.e., it replaces Ep s[G B7SG£7S] with

Ep[GpGE], where G = 57 X, e Ga,y is the batch gradient.

Thus, if Gy and W, represent the batch gradient and weight matrix at iteration ¢, and X is an expo-
nential weighting parameter, then the Shampoo update is given by:

Li=ALi1 + (1= NGGl; Ry=AR1 + (1 - NG Gy Wi =W, —nL; /*G,R;,
where L; and R; represent the left and right preconditioners maintained by Shampoo, respectively.

When viewed from the Hessian perspective, our focus is on studying:

* The optimal Kronecker product approximation of the matrix Hgy and its connection to
Shampoo’s approximation (detailed in Section 3).

* The effect of the two aforementioned approximations (batch gradients and real labels) on
the quality of the approximation (detailed in Section 4).

2.3 OPTIMAL KRONECKER PRODUCT APPROXIMATION

In this subsection we describe how to find the optimal Kronecker product approximation of a matrix
H e R™*™" ynder the Frobenius norm. This problem can be reduced to finding the best rank-
one approximation of a rearranged version of H. We define the rearrangement operator reshape(),
applied to a matrix H, as follows:

reshape(H)[mi + ', nj + j'] = H[mj + i,mj’ + '],
where 7,7’ € [0,1,...,m—1]and 4,5’ € [0,1,...,n — 1], and reshape(H) € R™**"° One useful
property of the rearrangement operator is:
H=A®B < reshape(H) =ab', 2
where A € R™*™ g = vec(A) € R™, B € R"*" and b = vec(B) € R™". This property can be
used to prove the following result on optimal Kronecker product approximation:

Lemma 4 (Van Loan & Pitsianis (1993)). Let H € R™*™" and let L € R™*™ R € R™*™,
Then, the Kronecker product approximation of H is equivalent to the rank-one approximation of
reshape(H) under the Frobenius norm:

|H — L® R|r = | reshape(H) — vec(L) vec(R)THF,

Since the best rank-one approximation of a matrix is given by its singular value decomposition
(SVD), we conclude the following:

Corollary 1. Ler H € R™"™*™"_ [f the top singular vectors and singular value of reshape(H) are
represented by uy, v, and o1, respectively, then the matrices L € R™*™ and R € R™*" defined by

vec(L) = oiuy, vec(R) = vy,
minimize the Frobenius norm |H — L ® R| p.
Obtaining SVD by power iteration. Power iteration is a well-known method for estimating the top

eigenvalue of a matrix M. It can also be adapted to compute the top singular vectors of a matrix.
The iterative procedure for the left singular vector ¢ and the right singular vector r is given by

b« Mry_1; 1« My, 3)
where k denotes the iteration number.

Cosine similarity. We will use cosine similarity between matrices as a measure of approximation
quality. For two matrices M7 and Mo, it is defined as
Tr(M; M,")
| My ||| M| 7
A cosine similarity value of 1 indicates perfect alignment, while a value of 0 indicates orthogonality.
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3  OPTIMAL KRONECKER PRODUCT APPROXIMATION AND SHAMPOO

Loan & Pitsianis (1993) describe an approach to find the optimal Kronecker product approximation
of a matrix. Koroko et al. (2023) extend this work to derive layer-wise Kronecker product approxi-
mations of the Hessian matrix for networks without weight sharing. In particular, their Proposition
3.1 relies on the rank-1 structure of gradients for a single sample to efficiently compute Hgy in
non-weight-sharing networks. Our analysis does not rely on any assumptions on the gradients and
hence applies to both weight-sharing and non-weight-sharing networks. While our analysis builds
on these works, this is restricted to Section 3.1. Our primary contribution (Section 3.2) lies in estab-
lishing a novel connection between the square of the Shampoo estimate and the optimal Kronecker
approximation.

3.1 OPTIMAL KRONECKER PRODUCT APPROXIMATION

This section applies the theory from Section 2.3 to find the optimal Kronecker product approxi-
mation of a covariance matrix H = Eg.p, [gg'] for g € R™™. Both perspectives of Shampoo,
described in Section 2.2, focus on Kronecker product approximations of H in the form L ® R,
where L € R™*" and R € R™*", but for different distributions D,. For the Adagrad viewpoint,
D, is the uniform distribution over g;, where t refers to the gradient at iteration ¢, giving H = Hag,.
For the Hessian viewpoint, D, is the distribution over gradients with batch size 1 and sampled la-

bels, leading to H = Hgy. To simplify notation, we use E[gg "] to represent Eg.p_[gg'], as our
results apply to any distribution D,,. This section explores the optimal Kronecker product approxi-
mation for such a generic matrix f, examines its connection to Shampoo, and presents experimental
validations for H = Hag, and H = Hgy.

Since g € R™", each entry of g can be described by a tuple (i,j) € [m] x [n]. Consequently,
each entry of H can be represented by the tuple ((¢,7), (¢',5’)). We now introduce the matrix

H = reshape(H) € R””Qx"z, which is a rearrangement of the entries of H (see Section 2). Using
Equation (2), we have: H = E[G®G]. Furthermore, by Lemma 4, if LQR is the optimal Kronecker
product approximation of H, then ¢r " is the optimal rank-1 approximation of H, where { = vec(L)
and r = vec(R). Thus, the problem reduces to finding the optimal rank-1 approximation of H.

Applying the power iteration scheme from Equation (3) to estimate the top singular vectors of H,
and using Lemma 1, gives the following updates for the k-th step of power iteration:

Uy — Hr_1 = E[G® G]rr_1 = vec(E[GRr_1G ")),
e — H 0y =E[GQG] lr_1 = vec(E[GT Li_1G]).
Reshaping the vectors into matrices gives the updates:

Ly — E[GRy_1G"]; Ry < E[GTL;_1G]. (4)

3.2 ONE ROUND OF POWER ITERATION
Our primary approximation replaces the full power iteration scheme (Equation (4)) with just a single
iteration. This leads to the main contribution of our work:

Proposition 1. A single step of power iteration, starting from the identity matrix, for obtaining the
optimal Kronecker product approximation of H is exactly equivalent to the square of Shampoo’s
approximation of H.

Proof. The initialization for this single iteration uses the identity matrix, i.e., I,,, and I,, for L and
R, respectively. This reduces the iterative update equations:
Ly — E[GRy_1G"]; Ry < E[GTL,_ 1G],
to the simplified one-step updates:
L—E[GGT]; R<—E[GTq].

With these expressions for L and R, L ® R corresponds exactly to the square of Shampoo’s approx-
imation of H given by the right-hand side of Equation (1).
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As shown in Figure 1 this single step of power iteration closely approximates the optimal Kronecker
product approximation for both H = Hgy (top) and H = Hag, (bottom). In contrast, the upper
bound proposed by the original Shampoo work (Gupta et al., 2018) performs significantly worse.

3.2.1 WHY INITIALIZE WITH THE IDENTITY MATRIX?
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Figure 2: Effectiveness of identity matrix initialization in power iteration for Kronecker product ap-

. : o1 Q101 X101 1 1
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vectors across different datasets and architectures. Top row: Gauss—Newton component of the Hes-
sian (Hgn). Bottom row: Adagrad preconditioner matrix (Hag,). Note that ;1”12 = consistently

i X505
approaches 1 more closely than \/Lz, supporting our theoretical argument for the effectiveness
i i

of one-step power iteration with identity initialization. See Appendix C.I for experimental details.

Suppose the SVD of H is given by H = > oiuiv;, or equivalently, H = >, 0;U; ® V;. The
convergence of the power iteration in one step depends on the inner product of the initialization
vector with the top singular vector. Let us focus on the left side,” i.e., the update L «— ]E[GGT],
which as described earlier is equivalent to starting with the initialization I,,. Let vec (I,,) = >}, a;v;,
ie., I, = Zl «;V;. After one iteration, we obtain ¢ := Zl a;0;u;, and correspondingly, L :=
> cio;U;. We are interested in assessing how closely ¢ approximates the leading eigenvector .

X101

The cosine similarity between £ and u; is given by —212—,
V2 aio?

One reason why the cosine similarity might be large is if H is nearly rank-1 (i.e., o is large),
meaning H is closely approximated by a Kronecker product. However, as shown in Figure 1, this
assumption does not universally hold. Instead, we propose an alternative explanation for why a
single step of power iteration is typically sufficient: the coefficient «; is usually larger than «; for
all © > 2. We provide both a theoretical justification and empirical evidence for this.

We start by noting that o; = vec (In)T v; = Tr(V;). Using the identity matrix as initialization is a
good choice because it maximizes the dot product with possible top components, i.e., PSD matrices
(Proposition 2), and is expected to have a smaller dot product with the later components.

Lemma 5 ( Loan & Pitsianis (1993)). V; is a Positive Semi-Definite (PSD) matrix.

*The discussion for the right side is analogous.
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Since V7 is a PSD matrix, we want to initialize our power iteration with a matrix that is close to all
PSD matrices. We now show that the identity matrix achieves this, specifically by maximizing the
minimum dot product across the set of PSD matrices with unit Frobenius norm.

Proposition 2. Consider the set of PSD matrices of unit Frobenius norm of dimension m denoted

by Sp,. Then

1
\/7%[ = ar]\ir;lax Mnﬂélﬁr}yﬂ(vec(M)7 vec(M')).

This proposition argues that I,,, maximizes the worst-case dot product with possible top singular
vectors. Now, we argue that its dot product with other singular vectors should be smaller:

Lemma 6. If'V] is positive-definite, then V; for i > 2 are not PSD.

Therefore, the dlagonal elements of V; for ¢+ > 2 need not be positive, potentially leading to cancel-
lations (for ¢ > 2) in the trace of V;, which equals «;. Hence, we expect «; for ¢ > 2 to be smaller
than o.

@101

To quantify the benefit of «v; being larger than ay; for ¢ > 2, we compare Sate? (for both left and
i 9
V 27 o7

were equal, or as a measure of how close H is to being rank-1, since it equals the cosine similarity
o1

between u;v{ and H. Thus, N corresponds to the “Optimal Kronecker” cosine similarity
i9

right singular vectors) and

The latter can be interpreted as the cosine similarity if all a’s

X101

shown in Figure 1. In Figure 2, we track both quantities during training and observe that SWer
i X0

is consistently closer to 1 than \/% for both H = Hgy (top) and H = H g, (bottom).

3.2.2 EXACT KRONECKER PRODUCT STRUCTURE IN H

Our analysis shows that E[GG'T] ® E[G'T G] closely approximates the optimal Kronecker product
approximation of H. We now show that this approximation becomes exact when H itself is a

Kronecker product. In this case, H is rank-1, and a single round of power iteration will perfectly
recover H. While our earlier discussion focused on the direction of the top singular vectors of H,
the rank-1 assumption allows us to derive an explicit expression for H, and consequently for /.

Corollary 2. Under the assumption that H is rank-1,
H=(E[GGT|QE[G'G])/Tx (E[GGT]).

Proof. Let H=0ow',ie, H=0URV.Letl,, = Tr(U)U + R, and I, = Tr(V)V + R,,, where
R,, and R,, are the residual matrices. After one round of power iteration, the left and right estimates
provided by Shampoo are given by E [GGT| = oTr(V)U and E [GTG| = oTr(U)V. Hence, we
can see that Tr (E [GGT]|) = o Tr(U) Tr(V'). Thus,

H=0UQ®V = (E[GGT|®E[G'G]) /Tt (E[GGT]).
O

Since H = Hgy is an m? x 1 matrix for binomial logistic regression, it is rank-1, so the equality in
the corollary holds. In other words, the square of Shampoo’s Hgy estimate perfectly correlates with
Hgn for binomial logistic regression. This is demonstrated in the first plot of Figure 1.

‘We note that (IE [GGT] ®E [GTG]) / Tr (IE [GGT]) as an estimate of Hessian (not Adagrad’s co-
variance matrix) was also derived by Ren & Goldfarb (2021). However, their assumptions were
much stronger than ours. Specifically, they assume that the gradients follow a tensor-normal distri-
bution, which implies that H is rank-1 and that ¢ is mean-zero (thus not applicable to the Adagrad
viewpoint). In contrast, our approach only requires a second moment assumption on the gradients:
H is rank-1. This weaker assumption allows our results to be applicable to a broader range of sce-
narios, including binomial logistic regression. More importantly, our derivation and experiments
show that the direction E [GGT| @ E[G T @] closely approximates the optimal Kronecker product,

even if H is not rank-1.
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3.2.3 DISCUSSION ABOUT OPTIMIZATION

Our primary goal in this work was to provide a theoretical foundation for understanding Sham-
poo’s effectiveness, rather than proposing a new algorithm. However, the connection we uncovered
between Shampoo? and the optimal Kronecker product approximation has implications for opti-
mization which we discuss below.

Let us refer to E[GGT] ® E[GTG] as Hy. As mentioned in Equation (1), Gupta et al. (2018) used
the approximation Hy/, = E[GGT]'/? ® E[GTG]Y?. In practice, the gradient step in Shampoo

is taken in the direction of H f/ZZ’VL, where p is tuned as a hyperparameter (Anil et al., 2021; Shi
et al., 2023). Since H 172’ =H" /2 searching over p in H 17@ yields the same search space as H; ¥,

meaning that this distinction does not affect optimization speed but deepens our understanding of
Shampoo’s mechanism.

In fact, empirical work has demonstrated the practical benefits of Shampoo?, where it has shown
improved optimization performance as compared to Shampoo (Anil et al., 2021; Shi et al., 2023).
Moreover, Vyas et al. (2024) introduced the SOAP algorithm, incorporating our theoretical insights,
including Shampoo? and the trace correction in Section 3.2.2, and showed improvements compared
to AdamW and Shampoo.

4 HESSIAN APPROXIMATION OF SHAMPOO

In this section, we investigate the impact of different practical considerations on the Hessian ap-
proximation in Shampoo, building on the insights from Section 2.2.2. Specifically, we examine the
effects of averaging gradients across a batch and using real labels instead of sampled labels. These
factors influence how well the Shampoo optimizer approximates the Gauss—Newton matrix Hgy,
which we previously evaluated with batch size 1 and sampled labels.

4.1 AVERAGING GRADIENTS ACROSS THE BATCH

The first factor we analyze is averaging gradients across the batch. We transition from computing
the gradient on a per-sample basis:

L~ E:c,s~f(m) [Gw,sG;s]; R« Em,s~f(z) [GI,SG%S]
to averaging across a batch B:

L~ |B|EB,S[GB,SG£,s]; R~ ‘B|EB,S[G;SGB,SL

where s denotes the concatenation of s ~ f(x) forall z € Band Gp ¢ = ﬁ 2izeB,sesfz] Gas 18

the batch gradient, with s[x] representing the sampled label for to x.

As demonstrated in prior works, this change has no effect in expectation because G, 5 is mean-zero
for all x when taking the expectation over s ~ f(x) (Bartlett, 1953), i.e. E;[Gy 5] = 0.

Lemma 7 (Implicitly in Liu et al. (2024); Osawa et al. (2023)).
IBIEgs[GsGh sl = Easns(a)|Ga,sGy o).

This averaging significantly improves running time, providing a multiplicative speed-up propor-
tional to the batch size.

4.2 USING REAL LABELS INSTEAD OF SAMPLED LABELS

Next, we consider the impact of replacing sampled labels s ~ f(z) with real labels y, as is often
done in practice. This shift leads to the empirical Fisher approximation when batch size is 1. Prior
work has extensively discussed this approximation and shown that, under certain conditions, the two
quantities converge as we move towards optima, in the presence of label noise (Grosse, 2021; Osawa
et al., 2023; Kunstner et al., 2019). In Figure 3 (top), we evaluate the approximation of Hgn with
batch size 1, finding that the quality remains high throughout training. Yet, as batch size increases,
the quality degrades because gradients with real labels are not mean-zero. The following shows how
the estimator changes with batch size:
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Figure 3: Cosine similarity between approximations of Hgy and the true Hessian. The top row
shows results for batch size 1, where the empirical Fisher closely tracks the optimal Kronecker
product approximation throughout training. In the bottom row (batch size 256), the approximation
quality degrades as batch size increases (see Lemma 8). The batch size refers to that used in the
Hessian approximation, not for optimization.

Lemma 8 (Grosse (2021)). Let B denote the batch and Gg = ﬁ Z(m,y)eB G,y denote the batch
gradient. Then

1 1
Ep [GBGE] = ﬁExy[GryG;cry] + <1 - B) Er,y[Gmyy]Er,y[Gryy]T-

This lemma shows that, depending on the batch size, the estimator interpolates between
Eyy[GzyGiy ] (the empirical Fisher) and E, [Go y|Er y[Gay]T. As shown in Figure 3 (top),

at batch size 1, when Eg[GpG ] is equal to E, ,[G, G, 1. it closely tracks the optimal Kro-
necker product approximation. However, with increasing batch sizes (Figure 3, bottom row), the
approximation quality begins to degrade.

We note that this adjustment has the computational advantage of not requiring an additional back-
propagation with sampled labels; instead, these computations can be performed alongside standard
training.

5 CONCLUSION

Our primary contribution is establishing a precise connection between Shampoo’s approximation
and the optimal Kronecker-factored approximation of matrix H. We prove that the square of Sham-
poo’s approximation is equivalent to one round of the power iteration scheme for obtaining this
optimal approximation. Empirically, we verify that this single round closely tracks the optimal
Kronecker-factored approximation, significantly outperforming the original Shampoo method. Fi-
nally, insights from our work have implications for optimization, with recent research showing im-
provements over AdamW and Shampoo by incorporating our theoretical findings.
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A LIMITATIONS

The main contribution of our work is to demonstrate that the square of Shampoo’s approximation of
H (whether H refers to Hag, or Hgy) is nearly equivalent to the optimal Kronecker approximation
of H. While we empirically verify this across various datasets and provide theoretical arguments, the
gap between the two depends on the problem structure. In some experiments with the ViT architec-
ture (see Appendix B), we observe that the gap is relatively larger compared to other architectures.
Furthermore, it remains an open question to understand the conditions—beyond those described in
K-FAC (Martens & Grosse, 2015)—under which H is expected to be close to a Kronecker product.
Again, in some of the ViT experiments (Appendix B), we find that the optimal Kronecker product
approximation to H performs much worse compared to other architectures.

B ADDITIONAL EXPERIMENTAL RESULTS
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Figure 4: Comparison of different approximations to the Gauss—Newton component of the Hessian.
The results show that Shampoo? achieves higher accuracy in capturing the structure of the true
Hessian compared to both Shampoo and K-FAC. K-FAC shows competitive performance in some
cases, but Shampoo? generally offers better approximation.

B.1 VIT ARCHITECTURE

In this subsection, we present the results for a Vision Transformer (ViT) architecture trained on the
CIFAR-5m dataset. This architecture features a patch size of 4, a hidden dimension of 512, an MLP
dimension of 512, 6 layers, and 8 attention heads.

For these experiments, we utilize three layers from the fourth transformer block: two layers from the
MLP (referred to as *'FFN Linear Layer 1’ and 'FFN Linear Layer 2°) and the QK layer® (referred
to as ’Q-K Projection Layer’).

C EXPERIMENTS

Datasets and Architectures. We conducted experiments on three datasets: MNIST (LeCun et al.,
1998), CIFAR-5M (Nakkiran et al., 2020), and ImageNet (Deng et al., 2009), using logistic regres-
sion, ResNet18 (He et al., 2016), and ConvNeXt-T (Liu et al., 2022) architectures, respectively. For
MNIST, we subsampled two digits ({0, 1}) and trained a binary classifier.

For MNIST, we used the only layer, i.e., the first layer of the linear classifier, for computing the co-
sine similarities. For Resnet18 and Imagenet, we picked arbitrary layers. In particular, for Resnet18,
we used one of the convolution layers within the first block ('layerl.1.conv1’ in Resnet18*). For Ima-

3The QK layer is separated from the V part of the layer, following similar decomposition method described
by (Duvvuri et al., 2024)

*nttps://pytorch.org/vision/master/_modules/torchvision/models/resnet.
html#resnetl8
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Figure 5: Analogue of Figure 1 for ViT architecture and the CIFAR-5m dataset for 3 layers of the
network. For some of the figures we observe relatively larger gaps between Shampoo? and optimal
Kronecker approximation.

Table 1: Summary of Experimental Configurations. A denotes weight decay and 3; indicates mo-
mentum.

Dataset Architecture Optimizer Batch Size  Steps Ir A 51
MNIST Linear Classifier ~GD Full Batch 25 0.01 None 0
CIFAR-5M  ResNet18 SGD 128 10000 .02 None .9
ImageNet ConvNeXt-T AdamW 2048 50000 3e-3 5e-3 09

genet, we used the 1x1 convolutional layer within the 2nd block of convnext-T (’stages.2.1.pwconv1’
in Convnext-T°).

Cosine similarity estimation for Hgy. For estimating the Frobenius norm of Hgy, we used the
identity:

Epn0,1) [0 Hénv] = Eypnr0,1,)[| Honv[3] = [Hox |3

Hessian-vector products with the Gauss—Newton component were performed using the Deep-
NetHessian library provided by Papyan (2019).

For estimating the cosine similarity between Hgy and its estimator I;TGN, we used the following
procedure:

1. Estimate |Hgx |, and calculate | Hox| #.

~ ~ " ~
2. Define scaled Hgy as Sgn = ”J’i’“”FHGN
[ Honllm

. ~ T
3. Cos-sim(Hgn, H — 1 _ |Hox—Saxly
( GN> GN) QHHGNH%

Hessian-vector products.

, where the numerator is again estimated via

Shttps://pytorch.org/vision/main/models/generated/torchvision.models.
convnext_tiny.html#torchvision.models.convnext_tiny
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Note that in the above procedure, we can exactly calculate | Hon | 7 as it is generally of a Kronecker
product form with both terms of size m x m or n x n, where m x n is the size of a weight matrix.
Cosine similarity estimation for Hq4,. We follow a similar recipe as before, but using a difference
method for computing the product Hagq,v. For a given time 7', Hpg, = Zthl Gt gtT . Thus, Hpagqav =

Zle ( gtT v)g:. We maintain this by keeping a running estimate of the quantity for multiple random
vectors v during a training run, and use it for estimating the product Hag,v.

C.1 FIGURE DETAILS

Optimal Kronecker method, wherever used was computed with five rounds of power iteration, start-
ing from the identity. For I = Hgy, the Hessian approximations Shampoo®, Shampoo, and K-FAC
were done using sampled labels and a batch size of 1. For H = Hagq, and step ¢, we used gradient
enocoutered during the training run in steps < .

K-FAC was computed with the “reduce” variant from Eschenhagen et al. (2023).

In Figure 2, the Optimal Kronecker legend represents the cosine similarity between the optimal
g1

Kronecker approximation of Hgy and Hgy. This is precisely equal to Nk Similarly, the label

L (resp. R) represents the cosine similarity between the top left (resp. right) singular vector of Hen

and the estimate obtained after one round of power iteration starting from I,, (resp. I,,). This is
Q101

precisely equal to NS

In Figure 3 (top), the Hessian approximation is calculated with batch size 1, i.e,
tion 4.2. Similarly, in Figure 3 (bottom), | B| = 256.

B| = 11in Sec-

D DEFERRED PROOFS

Lemma 6. If'V] is positive-definite, then V; for i > 2 are not PSD.

Proof. Consider two PSD matrices M; and Ms having the eigenvalue decomposition M; =
ST A1iquiqf; and Mo = 3 A2;q2iqq;. Then

2
Te(MMs) = 2)\1¢>\2j (a{;927)
]
Thus, if M; and M5 have unit frobenius norm and M), is positive definite, then Tr(M; Ms) > 0.

Thus, if V7 is positive definite, then by orthogonality of successive singular vectors, V; for ¢ > 2
cannot be positive semi-definite. O

Proposition 2. Consider the set of PSD matrices of unit Frobenius norm of dimension m denoted
by Sy,. Then
1
ﬁlm = ai%ergjx N}peigm@ec(M), vec(M")).

Proof. Consider the eigendecomposition of any M € S, given by >.7_, \iv;v;] . Denote L = {i :
A < ﬁ} As Y. A2 = 1, therefore, |A| > 1. Consider any j € A. Then

DT <
(Vec(M),Vec(vjv; ) < 7

As v; is orthogonal to the other eigenvectors. Thus, we can see

i M M) <
max Aglégq@%( ), vec(M')) <

<-
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1

Moreover, for the matrix
Va

I,, for any matrix M’,
S tr(M’)
Va Va

where tr(M') denotes the trace of the matrix M’. However, we know tr(M’') = > \; = 1 as
>A2 = 1. Thus

<Iqa M,> =

— = s
Vi N

Note that this is the only matrix with this property as any other matrix will at least have one eigen-

1
value less than NGE Thus

1
a7t = g i (ool M), veoM')

Lemma 7 (Implicitly in Liu et al. (2024); Osawa et al. (2023)).
|B|E375 [GB1SG£,S] = Ew,s~f(w) [GI,SGI,S]'

Proof. Evaluating Gp <G, ., we get

1
GpsGhe= 5 2. GuuGl,

x',s
z,x'eB,
s=s[z],s'=s[z’]

Taking the expectation over s for a given B, and by using E;[G, 5] = 0 we get

1 1
]Es[GB,ng,s] = WZESN}%I) [G%SG;J = ®E1~B,S~f(1)[GwvsG;is]

Now taking an expectation over batches, we get
|B|EB,S [GB,SGg,s] = Ea:,s~f(:c) [Gm,sGZ,s]
O

Lemma 8 (Grosse (2021)). Let B denote the batch and Gg = ﬁ Z(x y)eB G,y denote the batch
gradient. Then

1 1
Ep [GBGE] = EEry[GryG;y] + (1 - B) Ez,y[Gmyy]Er,y[Gryy]r
Proof. Evaluating GpGE, we get
1
GpGh = BE D GayGly,

(z,y),(2",y')eB

Taking the expectation over B on both the sides, we get

1
Ep [GBGg] = W [|B|Ex,y[Gx,yGI,y] + (|B|2 - |B|)]Ex,y[Gx,y]Ex,y[Gx,y]T]
1 1
= Ep [GBGE] = @Ez,y[aryyc’v;y] + (1 - w) Em,y[Gw,y]Emyy[Gr,y]T
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E TECHNICAL BACKGROUND ON HESSIAN

Gauss—-Newton (GN) component of the Hessian. For a datapoint (x, y), let f(x) denote the output
of a neural network and L(f(x), y) represent the training loss. Let W € R™*™ represent a weight
matrix in the neural network and D denote the training distribution. Then, the Hessian of the loss
with respect to IV is given by

2L of 2L of T oL 2f
E(CE-@/)~D [ ] = E(ﬂ«wy%D l + IE:(ﬂc,y)~D [ ] :

oW?2 oW 0f2 oW of OW?

The first component, for standard losses like cross-entropy (CE) and mean squared error (MSE),
is positive semi-definite and is generally known as the Gauss—Newton (GN) component (Hgn).
Previous works have shown that this part closely tracks the overall Hessian during neural network
training (Sankar et al., 2021), and thus most second-order methods approximate the GN component.

Denoting % by G, € R™*" and ¢, , = vec(G5,y), for CE loss, it can also be shown that

of 2L of T

Hon = E(zy)~p [

= T
ow af2 ow - EINDI [ga"vsgw,s] ’

s~f(@)

F RELATED WORK

We have already discussed two closely related works Koroko et al. (2023); Ren & Goldfarb (2021)
in Sections 3.1 and 3.2.2 respectively. We discuss them again below for completeness.

Ren & Goldfarb (2021) study the Hessian perspective of Shampoo and show that, under the assump-
tion that sampled gradients follow a tensor-normal distribution, the square of the Hessian estimate
of Shampoo is perfectly correlated with Hgy. We also show the same result under much weaker
conditions in Corollary 2. Moreover, in Proposition 1 we show that, in general, the square of the
Hessian estimate of Shampoo is closely related to the optimal Kronecker product approximation of
Hgn. We additionally also study the approximations used by Shampoo to make it computationally
efficient (Section 4) and the Adagrad perspective of Shampoo’s preconditioner.

Loan & Pitsianis (1993) develop the theory of optimal Kronecker product approximation of a matrix
(in Frobenius norm). Koroko et al. (2023) use it for finding layer-wise optimal Kronecker product
approximation of Hgy for a network without weight sharing. We extend their technique to net-
works with weight-sharing, and show that the square of the Hessian estimate of Shampoo is nearly
equivalent to the optimal Kronecker product approximation of Hgn.

Another relevant work is Yao et al. (2021), which introduces AdaHessian, an adaptive second-order
optimizer that combines stochastic Hessian diagonal approximations with Adam-style momentum
and weighted averaging.

F.1 OTHER RELATED WORKS

The literature related to second order optimization within deep learning is very rich, with methods
that can be broadly classified as Hessian-free and methods based on estimating the preconditioner
H (which could refer to either Hag, or Hgn). Hessian-free methods (Martens, 2010) generally tend
to approximate the preconditioned step (for Newton’s method) using Hessian vector products, but
do not maintain an explicit form of the Hessian. Estimating H (Martens & Grosse, 2015; Gupta
et al., 2018) methods maintain an explicit form of the preconditioner that could be efficiently stored
as well as estimated.

F.2 HESSIAN-FREE
One of the seminal works related to second order optimization within deep learning was the intro-

duction of Hessian-free optimization (Martens, 2010). The work demonstrated the effectiveness of
using conjugate gradient (CG) for approximately solving the Newton step on multiple auto-encoder
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and classifications tasks. Multiple works (Martens & Sutskever, 2011; Cho et al., 2015) have ex-
tended this algorithm to other architectures such as recurrent networks and multidimensional neural
nets. One of the recent works (Garcia et al., 2023) also takes motivation from this line of work,
by approximately using single step CG for every update, along with maintaining a closed form for
the inverse of the Hessian, for the single step to be effective. Other recent works (Li, 2018; 2024;
Pooladzandi & Li, 2024) have focused on designing iterative preconditioners to improve the conver-
gence specifically for stochastic optimization algorithms.

F.3 ESTIMATING PRECONDITIONER

Given that it is costly to store the entire matrix H, various works have tried to estimate layer-
wise H. KFAC (Martens & Grosse, 2015) was one of the first work, that went beyond diagonal
approximation and made a Kronecker product approximation to layer-wise Hgn. It showed that this
structure approximately captures the per layer Hessian for MLPs. This approximation was extended
to convolutional (Osawa et al., 2019) and recurrent (Martens et al., 2018) architectures. Subsequent
works also improved the Hessian approximation, by further fixing the trace (Gao et al., 2021) as well
as the diagonal estimates (George et al., 2018; Gao et al., 2020) of the approximation. A recent work
(Eschenhagen et al., 2023) also demonstrated that K-FAC can be extended to large-scale training.

From the viewpoint of approximating Adagrad (Duchi et al., 2011), Gupta et al. (2018) introduced
Shampoo, that also makes a Kronecker product approximation to Hag,. One of the subsequent
work (Ren & Goldfarb, 2021) introduced a modification of Shampoo, that was precisely estimating
the layer-wise Hgn under certain distributional assumptions. Other works (Anil et al., 2021) intro-
duced a distributed implementation of Shampoo, that has recently shown impressive performance
for training large scale networks (Shi et al., 2023). Recently, another paper (Duvvuri et al., 2024)
proposed a modification of Shampoo, empirically and theoretically demonstrating that the new esti-
mator approximates Hag, better than Shampoo’s approximation. Our work shows that the square of
Shampoo’s approximation of Hag, is nearly equivalent to the optimal Kronecker approximation.

G COMPARISON WITH EXTRA SQUARE ROOT IN ADAGRAD BASED
APPROACHES

Multiple previous works (Balles et al., 2020; Lin et al., 2024) have tried to address the question of
why Adagrad-based approaches like Adam and Shampoo, have an extra square root in their update
compared to Hessian inverse in their updates. This question is primarily concerned with the final
update to the weights being used in the optimization procedure, once we have approximated the
Hessian.

The primary contribution of this work is completely orthogonal to this question. We are addressing
the question of optimal Kronecker approximation of the Hessian, and its connection to Shampoo’s
Hessian approximation. This is orthogonal to the Hessian power used in the final update.
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