
Introducing an Improved Information-Theoretic
Measure of Predictive Uncertainty

Kajetan Schweighofer∗ Lukas Aichberger∗ Mykyta Ielanskyi Sepp Hochreiter

ELLIS Unit Linz and LIT AI Lab, Institute for Machine Learning,
Johannes Kepler University Linz, Austria

∗ Joint first authors

Abstract

Applying a machine learning model for decision-making in the real world requires
to distinguish what the model knows from what it does not. A critical factor in
assessing the knowledge of a model is to quantify its predictive uncertainty. Pre-
dictive uncertainty is commonly measured by the entropy of the Bayesian model
average (BMA) predictive distribution. Yet, the properness of this current measure
of predictive uncertainty was recently questioned. We provide new insights re-
garding those limitations. Our analyses show that the current measure erroneously
assumes that the BMA predictive distribution is equivalent to the predictive distri-
bution of the true model that generated the dataset. Consequently, we introduce a
theoretically grounded measure to overcome these limitations. We experimentally
verify the benefits of our introduced measure of predictive uncertainty. We find
that our introduced measure behaves more reasonably in controlled synthetic tasks.
Moreover, our evaluations on ImageNet demonstrate that our introduced measure
is advantageous in real-world applications utilizing predictive uncertainty.

1 Introduction

Decision-making with machine learning models in the real world requires risk assessment based on
the predictive uncertainty of the model to be actionable [1]. It is essential to avoid models making
high-risk, uncertain decisions. Instead, such decisions should be deferred to human experts or default
to a potentially sub-optimal but safe decision. Therefore, it is key to use grounded measures of
predictive uncertainty and provide estimates for them when deploying machine learning models for
decision-making in the real world [12, 19].

Predictive uncertainty is often categorized into two types, aleatoric and epistemic, according to the
source of uncertainty [17]. We focus on measuring the predictive uncertainty by characterizing the
predictive distribution p(y | x) of outcomes y for inputs x. Here, aleatoric uncertainty refers to
the inherent stochasticity of sampling outcomes from the predictive distribution, thus is irreducible.
Further, epistemic uncertainty refers to the lack of knowledge about the true predictive distribution,
thus is reducible. Commonly, those uncertainties are assumed to be additive, summing up to a total
predictive uncertainty.

The currently prevalent measure of predictive uncertainty is the entropy of the Bayesian model average
(BMA) predictive distribution, where the epistemic component is given by the mutual information I
[15, 10, 8, 17, 27]. Recently, concerns about the properness of this current measure have been raised
[41]. By further examining the current measure, we discern that the core issue lies in the assumption
that the BMA predictive distribution is equivalent to the predictive distribution of the true model.
Therefore, we propose to use a different information-theoretic measure that does not build upon
the BMA, where the epistemic component is given by the expected pairwise KL-divergence K [24].
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Figure 1: Relationship between epistemic components of the current and our introduced measure.

K is an upper bound of I, with the difference being termed reverse mutual information M [26] (Fig. 1).
The aleatoric component is the same for both measures. Our main contributions are as follows:

• We provide new insights regarding the limitations of the current measure of predictive uncertainty.
• We introduce a theoretically grounded measure that addresses those limitations (Eq. (4)).
• We investigate the empirical benefits of using the theoretically grounded measure.

2 Analyzing the Current Measure of Predictive Uncertainty

Many machine learning models used for classification and regression yield the distribution parameters
of a predictive distribution as their outputs. The softmax outputs of a classifier define a categorical
distribution and the outputs of a regressor correspond to the mean (and variance, see e.g. [19, 20]) of
a continuous (e.g. Gaussian) distribution. A machine learning model with model parameters w is
used to obtain estimates of the distribution parameters of the true predictive distribution p(y | x) that
generated the data. Therefore, the predictive distribution under the model is denoted as p(y | x,w).
We assume the dataset D = {xi,yi}Ni=1 is given, thus do not consider uncertainty due to how the
dataset was sampled from p(x,y). Furthermore, we assume that the true model that created the dataset
can be represented by the chosen model class. Those are common and often necessary assumptions
[17]. From a Bayesian point of view, we can assign a posterior probability p(w | D) ∝ p(D | w)p(w)
of how probable it is that certain model parameters w are the true model parameters w∗. For the
true model parameters, p(y | x,w∗) = p(y | x). The posterior distribution allows marginalization,
yielding the BMA predictive distribution p(y | x,D) = Ep(w|D) [p(y | x,w)]. This expectation
is intractable and generally approximated by Monte Carlo sampling of model parameters using
approximate inference techniques [23, 28, 39, 3, 11, 20, 40].

The most common measure of predictive uncertainty is the Shannon-entropy H(·) [34] of the BMA
predictive distribution [15, 10, 35, 8, 17, 27], decomposing into aleatoric and epistemic components:

H(p(y | x,D))︸ ︷︷ ︸
total

= Ep(w|D) [H(p(y | x,w))]︸ ︷︷ ︸
aleatoric

+ I(p(y,w | x,D))︸ ︷︷ ︸
epistemic

. (1)

The aleatoric component best estimates the true aleatoric uncertainty H(p(y | x,w∗)), as it accounts
for all possible models according to their posterior probability. The epistemic component is the
mutual information I(p(y,w | x,D)), which measures the reduction of uncertainty about outcomes
y through observing model parameters w. Recently, the properness of the measure given by Eq. (1)
has been questioned [41]. Rewriting Eq. (1) reveals (detailed steps given in Sec. A.1 in the appendix),
that mutual information is equal to the expected KL-divergence DKL(· || ·) between the predictive
distributions of possibly selected models and the BMA [33, 41]. Furthermore, the entropy of the
BMA predictive distribution is equal to the expected cross-entropy CE(·, ·) between the predictive
distributions of possibly selected models and the BMA:

Ep(w|D) [CE(p(y | x,w) , p(y | x,D))]︸ ︷︷ ︸
total

(2)

= Ep(w|D) [H(p(y | x,w))]︸ ︷︷ ︸
aleatoric

+ Ep(w|D) [DKL(p(y | x,w) || p(y | x,D))]︸ ︷︷ ︸
epistemic
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Generally, the KL-divergence between two distributions DKL(p || p∗) quantifies the additional
surprisal when sampling according to p∗ instead of p [6]. In this setting, the KL-divergence should
quantify the epistemic uncertainty, resulting from sampling according to some model’s predictive
distribution p(y | x,w) instead of the true model’s predictive distribution p(y | x,w∗). However, the
epistemic component in Eq. (2) uses the BMA predictive distribution as a surrogate for the predictive
distribution of the true model. Those do not coincide in general! From a Bayesian point of view,
any model parameters could be the true model parameters according to their posterior probability.
Furthermore, there could be no model that has nonzero posterior probability and equivalent predictive
distribution to the BMA.

3 Introducing a Theoretically Grounded Measure of Predictive Uncertainty

We introduce a theoretically grounded measure of predictive uncertainty that does not assume that
the BMA predictive distribution is equivalent to the true model’s predictive distribution. To assess
predictive uncertainty, we want to characterize the stochasticity of sampling outcomes from the
predictive distribution p(y | x) that generated the dataset. The most sensible information-theoretic
approach is the entropy of the predictive distribution H(p(y | x)), capturing the true aleatoric
uncertainty [17]. As stated in Sec. 2, the distribution parameters of the predictive distribution are
usually estimated using a model with model parameters w. Therefore, an estimate for the aleatoric
uncertainty under a given model is H(p(y | x,w)).

This approximation gives rise to epistemic uncertainty, as the selected model parameters w are
generally not the true model parameters w∗. We want to measure the additional uncertainty due to
the mismatch of predictive distributions under w and w∗. This can be done using the KL-divergence
DKL(p(y | x,w) || p(y | x,w∗)), as elaborated for the epistemic component of Eq. (2). Unfortu-
nately, we don’t know the true model parameters w∗ in general. However, the posterior distribution
p(w | D) expresses how likely certain model parameters are the true model parameters. Therefore,
we can perform an expectation over the model posterior: Ep(w̃|D) [DKL(p(y | x,w) || p(y | x, w̃))].
This represents the expected mismatch between the predictive distribution under certain model pa-
rameters and all potential parameters, weighted by how likely they are the true parameters. Therefore,
the predictive uncertainty of a specific model w is given by

Ep(w̃|D) [CE(p(y | x,w) , p(y | x, w̃))]︸ ︷︷ ︸
total

(3)

= H(p(y | x,w))︸ ︷︷ ︸
aleatoric

+ Ep(w̃|D) [DKL(p(y | x,w) || p(y | x, w̃))]︸ ︷︷ ︸
epistemic

.

This measure was introduced in Schweighofer et al. [33] to quantify the predictive uncertainty of
a given, pre-selected model. This is a critical aspect when deploying a machine learning model in
real-world applications. However, it expresses a subjective uncertainty about the prediction of a
specific model. In contrast, the measure given by Eq. (2) expresses the expected uncertainty when
selecting a model according to the posterior. Thus, we propose to take a posterior expectation of
Eq. (3), resulting in a measure of predictive uncertainty that does not share the limitations of Eq. (2):

Ep(w|D)

[
Ep(w̃|D) [CE(p(y | x,w) , p(y | x, w̃))]

]︸ ︷︷ ︸
total

(4)

= Ep(w|D) [H(p(y | x,w))]︸ ︷︷ ︸
aleatoric

+ Ep(w|D)

[
Ep(w̃|D) [DKL(p(y | x,w) || p(y | x, w̃))]

]︸ ︷︷ ︸
epistemic

.

The aleatoric component of Eq. (4) and Eq. (2) are the same. What differs is the epistemic component,
where in Eq. (4) it is a pairwise comparison between the predictive distributions of possible models
and weights according to their posterior probability. The epistemic component of Eq. (4) was
discussed by Malinin et al. [24] as a measure of ensemble diversity, called the expected pairwise
KL-divergence K(p(y,w | x,D)). However, in follow-up work, Malinin et al. [26] erroneously
concluded that solely the mutual information ’cleanly’ decomposes into total and aleatoric uncertainty.

Relation between measures. The expected pairwise KL-divergence is an upper bound of the
mutual information by Jensen’s inequality. The difference between those two is called the reverse mu-
tual information [26], defined as M(p(y,w | x,D)) = Ep(w̃|D) [DKL(p(y | x,D) || p(y | x, w̃))].
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Table 1: AUROC using uncertainty measures as score to distinguish in-distribution (ImageNet-1K)
and out-of-distribution samples (ImageNet-O) as well as natural adversarial examples (ImageNet-A).

Task Method Total Aleatoric Epistemic
Eq. (2) Eq. (4) Eq. (2) Eq. (4)

Im
ag

eN
et

-O cSG-HMC .609±.007 .611±.007 .606±.007 .675±.006 .689±.007

MCD .631±.004 .633±.004 .629±.004 .682±.008 .720±.006

DE (LL) .600±.005 .600±.005 .600±.005 .561±.002 .605±.008

DE (all) .703±.004 .709±.005 .696±.004 .717±.007 .718±.008

Im
ag

eN
et

-A cSG-HMC .677±.001 .687±.001 .666±.001 .785±.000 .792±.000

MCD .795±.002 .797±.002 .794±.002 .829±.001 .860±.001

DE (LL) .819±.003 .819±.003 .818±.003 .694±.003 .813±.002

DE (all) .887±.002 .892±.002 .879±.002 .890±.002 .880±.002

Furthermore, the expected pairwise KL-divergence, the mutual information and the reverse mutual
information satisfy K(p(y,w | x,D)) = I(p(y,w | x,D)) + M(p(y,w | x,D)) [26]. A proof
is given in Sec. A.2 in the appendix. In Sec. 2 we concluded that the core problem of the current
measure of predictive uncertainty is, that it assumes the BMA predictive distribution is equivalent to
the predictive distribution under the true model. The reverse mutual information exactly accounts
for this mismatch, by measuring the KL-divergence between the predictive distributions under all
possible models weighted by their posterior probability and the BMA predictive distribution.

Related Work. We discuss other potential measures of uncertainty, not necessarily grounded in
information theory in Sec. C in the appendix.

4 Experiments

Illustrative Example. First, we follow Wimmer et al. [41] and investigate an illustrative example
of different posterior distributions of the parameter θ of a Bernoulli distribution. More details and
results are given in section B.1 in the appendix. The results indicate, that the new measure (Eq. (4))
behaves more meaningfully than the current measure (Eq. (2)).

ImageNet. Second, we investigated the common tasks of out-of-distribution (OOD) detection and
adversarial example detection, using the predictive uncertainty as a scoring function [29, 9, 2, 27, 33].
This large-scale experiment was conducted on ImageNet-1K [7], using ImageNet-O [14] for OOD
detection and ImageNet-A [14] for adversarial example detection. This experiment utilizes versions
of the EfficientNet models [36]. We compare cyclical Stochastic Gradient Hamiltonian Monte Carlo
(cSG-HMC) [42], Monte Carlo Dropout (MCD) [11] and Deep Ensembles [20], ensembling only the
last layer (DE (LL)), as well as ensembling over different pre-trained models (DE (all)). Details and
further experiments are given in Sec. B.2 in the appendix. The results are given in Tab. 1.

The results show, that using the new measure of (total) predictive uncertainty (Eq. (4)) is superior to
using the current measure (Eq. (2)) for three out of four methods, and equally good for the fourth
method. Also, using the epistemic component of the new measure (Eq. (4)) is, except for DE (all) on
ImageNet-A, superior to using the epistemic component of the current measure (Eq. (2)).

5 Conclusion and Future Work

We analyzed the limitations of current measures of predictive uncertainty, giving the new insight
that their deficiency comes from assuming the BMA predictive distribution is the true predictive
distribution. Therefore, we introduced a principled measure of predictive uncertainty that address
those limitations. We showed that this new set of measures exhibits more sensible behavior and
improves performance on common tasks where measures of predictive uncertainty are utilized. Future
work should shed light on how those measures compare in active learning settings, where epistemic
uncertainty is used to select the most informative datapoints.
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A Theoretical Results

A.1 Equivalence of Eq. (1) and Eq. (2)

We want to show that Eq. (1) and Eq. (2) are equivalent. The aleatoric component is already the same
for both. Therefore, we need to show that the total components are equivalent:

H(p(y | x,D)) = Ep(y|x,D) [− log p(y | x,D)] (5)

= Ep(w|D)

[
Ep(y|x,w) [− log p(y | x,D)]

]
(6)

= Ep(w̃|D) [CE(p(y | x,w) , p(y | x,D))] (7)

Furthermore, we need to show that the epistemic components are equivalent:

I(p(y,w | x,D)) = Ep(y,w|x,D)

[
log

p(y,w | x,D)

p(y | x,D) p(w | x,D)

]
(8)

= Ep(y,w|x,D)

[
log

p(y | x,w) p(w | D)

p(y | x,D) p(w | D)

]
(9)

= Ep(y,w|x,D)

[
log

p(y | x,w)

p(y | x,D)

]
(10)

= Ep(w|D)

[
Ep(y|x,w)

[
log

p(y | x,w)

p(y | x,D)

]]
(11)

= Ep(w|D) [DKL(p(y | x,w) || p(y | x,D))] (12)

This holds, as y depends on w, i.e. the model w has to be selected before being able to draw y from
its predictive distribution. Consequently, Eq. (1) and Eq. (2) are equivalent.

A.2 Proof of Additive Decomposition of Expected Pairwise KL-Divergence into Mutual
Information and Reverse Mutual Information

Given are the definitions of the expected pairwise KL-divergence

K(p(y,w | x,D)) = Ep(w|D)

[
Ep(w̃|D) [DKL(p(y | x,w) || p(y | x, w̃))]

]
, (13)

the mutual information

I(p(y,w | x,D)) = Ep(w|D) [DKL(p(y | x,w) || p(y | x,D))] , (14)

and the reverse mutual information

M(p(y,w | x,D)) = Ep(w̃|D) [DKL(p(y | x,D) || p(y | x, w̃))] . (15)

We want to show that

K(p(y,w | x,D)) = I(p(y,w | x,D)) + M(p(y,w | x,D)) . (16)

Note that p(w̃ | D) = p(w | D) is used redundantly to keep track of integration variables. The proof
is as follows.
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K(p(y,w | x,D)) (17)
= I(p(y,w | x,D)) + M(p(y,w | x,D)) (18)
= Ep(w|D) [DKL(p(y | x,w) || p(y | x,D))] + Ep(w̃|D) [DKL(p(y | x,D) || p(y | x, w̃))]

(19)

= Ep(w|D)

[
Ep(y|x,w)

[
log

p(y | x,w)

p(y | x,D)

]]
+ Ep(w̃|D)

[
Ep(y|x,D)

[
log

p(y | x,D)

p(y | x, w̃)

]]
(20)

= Ep(w|D)

[
Ep(y|x,w) [log p(y | x,w)] − Ep(y|x,w) [log p(y | x,D)]

]
+ (21)

Ep(w̃|D)

[
Ep(y|x,D) [log p(y | x,D)] − Ep(y|x,D) [log p(y | x, w̃)]

]
= Ep(w|D)

[
Ep(y|x,w) [log p(y | x,w)]

]
− Ep(y|x,D) [log p(y | x,D)] + (22)

Ep(y|x,D) [log p(y | x,D)] − Ep(w̃|D)

[
Ep(y|x,D) [log p(y | x, w̃)]

]
= Ep(w|D)

[
Ep(y|x,w) [log p(y | x,w)]

]
− (23)

Ep(w̃|D)

[
Ep(w|D)

[
Ep(y|x,w) [log p(y | x, w̃)]

]]
= Ep(w|D)

[
Ep(w̃|D)

[
Ep(y|x,w) [log p(y | x,w)]

]]
− (24)

Ep(w|D)

[
Ep(w̃|D)

[
Ep(y|x,w) [log p(y | x, w̃)]

]]
= Ep(w|D)

[
Ep(w̃|D)

[
Ep(y|x,w)

[
log

p(y | x,w)

p(y | x, w̃)

]]]
(25)

= Ep(w|D)

[
Ep(w̃|D) [DKL(p(y | x,w) || p(y | x, w̃))]

]
, (26)

which is exactly the definition of K in (13). The step from (21) to (22) is due to additivity and linearity
of expectations. The step from (23) to (24) is due to the fact that we can insert the expectation Ep(w̃|D)

in the first term as it does not depend on w̃ and due to the fact that p(w̃ | D) = p(w | D).

A.3 Overview of Measures of Uncertainty

In the following, we give an overview of the measures of uncertainty discussed in the main paper.
As the aleatoric components are equivalent, we categorize them by the epistemic component. The
current measure of predictive uncertainty, where the epistemic component is the mutual information
is given by

Ep(w|D) [CE(p(y | x,w) , p(y | x,D))]︸ ︷︷ ︸
total

(27)

= Ep(w|D) [H(p(y | x,w))]︸ ︷︷ ︸
aleatoric

+ Ep(w|D) [DKL(p(y | x,w) || p(y | x,D))]︸ ︷︷ ︸
epistemic

.

Our new measure of predictive uncertainty, where the epistemic component is the expected pairwise
KL-divergence is given by

Ep(w|D)

[
Ep(w̃|D) [CE(p(y | x,w) , p(y | x, w̃))]

]︸ ︷︷ ︸
total

(28)

= Ep(w|D) [H(p(y | x,w))]︸ ︷︷ ︸
aleatoric

+ Ep(w|D)

[
Ep(w̃|D) [DKL(p(y | x,w) || p(y | x, w̃))]

]︸ ︷︷ ︸
epistemic

.

Furthermore, it is possible to decompose our new measure of predictive uncertainty, such that the
reverse mutual information is the epistemic component:
Ep(w|D)

[
Ep(w̃|D) [CE(p(y | x,w) , p(y | x, w̃))]

]︸ ︷︷ ︸
total (Eq. (28))

(29)

= Ep(w|D) [CE(p(y | x,w) , p(y | x,D))]︸ ︷︷ ︸
total (Eq. (27))

+ Ep(w̃|D) [DKL(p(y | x,D) || p(y | x, w̃))]︸ ︷︷ ︸
epistemic

.

However, this does not yield an exclusively aleatoric component, but the (total) predictive uncertainty
of Eq. (27). This is also signified by the coloring of the respective terms in Eq. (29).
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B Experimental Results

B.1 Illustrative Example: Bernoulli Distribution

Setup. Following Wimmer et al. [41], we analyze the behaviour of different measures of uncertainty
using a posterior distribution over the distribution parameter θ ∈ [0, 1] of a Bernoulli distribution.
In this setting, no model is involved, thus the distribution parameter θ is directly sampled from the
posterior distribution. Furthermore, we drop the dependence on a specific input x, assuming that the
input gives no information about the outcome. For the sake of an example, consider a machine where
one can press a button and one of two signals, red (0) or green (1) will light up. The task is to predict
which signal will light up.

We analyze the behavior of the measures of uncertainty under several closed-form posterior distri-
butions, such as uniform, beta and a mixture of delta distributions. Those correspond to different
knowledge about which signal will light up. For example, a delta distribution at θ = 0 would
correspond to that it is known the outcome is either green or red with equal probability. Thus the
outcome is maximally uncertain, due to aleatoric uncertainty. A different case would be a uniform
posterior distribution, thus every parameter θ ∈ [0, 1] is equally probable. There should be less
aleatoric uncertainty, as parameters that lead to Bernoulli distributions certain in their prediction
are also possible. However, epistemic uncertainty must be higher, as all parameters are equally
probable. Where should we expect the highest epistemic uncertainty? One point could be made
that we should expect the highest epistemic uncertainty under the uniform distribution, due to the
principle of maximum entropy [18]. Therefore, if all parameters are equally probable, epistemic
uncertainty should be highest. However, this captures uncertainty in the parameter space, not in the
output space, which is what we are concerned about for predictive uncertainty. We don’t care, how
many models are possible, but about how different their predictions are. Therefore, we argue that a
mixture of two delta distributions at the two extreme parameters θ = 0 and θ = 1 should correspond
to the highest epistemic uncertainty in this example.

How could such a situation occur? This reflects the prior belief that the machine in our example is
deterministic in nature, thus no matter how often the button is pressed, the same signal will light
up. However, before trying it once, it is unknown which signal will light up. Therefore, when
choosing the parameter corresponding to the green light, there would be maximal surprisal when
observing the red light. Yet after observing a single outcome, the posterior will update, collapsing to
a delta distribution at a single parameter, removing all uncertainty about the prediction. Still, before
observing a single outcome, the epistemic uncertainty should be maximal.

Results. Different posterior distributions and associated total (TU), aleatoric (AU) and epistemic
uncertainty (EU) under the considered measures of uncertainty are depicted in Fig. 2.

For the current measure of uncertainty given by Eq. (2), results are given in the first row above each
plot, written in red. We find that total uncertainty is maximal if the Bernoulli parameter of the BMA
is θ = 0.5. This does not depend on how the probability mass of the posterior is distributed, but only
on the expectation. For the introduced measure of uncertainty given by Eq. (4), results are given in
the second row above each plot, written in black. We find, that the measure for epistemic uncertainty
gives infinity, and consequently also the measure for total uncertainty. This corresponds exactly to
the expected behavior of an information-theoretic measure of uncertainty about the outcome. We
also consider the reverse mutual information as a standalone measure of epistemic uncertainty [26].
Results are given in the third row above each plot, written in violet. We find, that the behavior of
this measure of epistemic uncertainty is similar to the epistemic component of the measure given by
Eq. (4).

Another Limitation of Current Measure of Uncertainty. Another limitation of the current
measure of uncertainty given by Eq. (2) is exemplified in Fig. 3. Here, all three posterior distributions
lead to equal total, aleatoric, and epistemic uncertainty. Such examples are easy to construct. The
total uncertainty given by Eq. (2) (better seen in the equivalent formulation in Eq. (1)) only depends
on the expected value (the BMA) of the Bernoulli parameter θ. By fixing the expected value to e.g.
θ = 0.5, it is trivial to search for distribution parameters that lead to equal aleatoric and, due to
additivity, also to equal epistemic uncertainty. Using the measure of uncertainty given by Eq. (2)
resolves the ambiguity, assigning different epistemic and therefore also total uncertainty to the three
posterior distributions.
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Figure 2: Different posterior distributions p(θ | D) for the parameter θ of a Bernoulli distribution.
Uncertainties using the current measure of predictive uncertainty (Eq. (2)), the introduced measure
of predictive uncertainty (Eq. (4)), and the reverse mutual information as measure for epistemic
uncertainty (Eq. (29)). Orange triangles denote the expected value of θ under the posterior distribution.
Posterior distributions from left to right, per row: U [0, 1], Beta(5, 5), Beta(0.4, 0.4), U [0.3, 0.7],
U [0.5, 0.9], 1

2δ0 +
1
2δ1.
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Figure 3: Three different posterior distributions p(θ | D) (Uniform, Beta, Mixture of delta distribu-
tions) for the parameter θ of a Bernoulli distribution. All of them have the same total, aleatoric, and
epistemic uncertainty according to Eq. (2). Those can easily be found, as the total uncertainty only
depends on the expected value of θ under the posterior distribution, depicted by the orange triangle.
Fixing the expected value of the posterior distribution, the distribution parameters are trivial to tune to
exhibit the same aleatoric and consequently the same epistemic uncertainty. However, those posterior
distributions exhibit different total and epistemic uncertainty according to Eq. (4).
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Table 2: AUROC using different uncertainty measures as a score to distinguish between correctly
and misclassified samples on the ImageNet-1K validation set. For selective prediction, the AUC of
accuracy vs. fraction of most certain samples is reported.

Task Method Total Aleatoric Epistemic
Eq. (2) Eq. (4) Eq. (2) Eq. (4)

M
is

cl
as

s.

cSG-HMC .700±.003 .705±.003 .693±.003 .758±.010 .767±.009

MCD .867±.007 .867±.007 .866±.007 .791±.012 .831±.011

DE (LL) .910±.007 .910±.007 .910±.007 .661±.002 .824±.006

DE (all) .879±.004 .869±.005 .883±.004 .808±.011 .795±.013

Se
le

ct
.P

re
d. cSG-HMC .911±.005 .913±.005 .910±.005 .926±.007 .926±.006

MCD .959±.003 .959±.003 .958±.003 .934±.009 .945±.008

DE (LL) .971±.002 .971±.002 .971±.002 .892±.005 .926±.005

DE (all) .968±.001 .966±.001 .969±.001 .953±.003 .950±.003

B.2 ImageNet Experiments

ImageNet experiments were conducted using the codebase of [33] with their default hyperparameters.

Additionally to the out-of-distribution (OOD) detection and adversarial example detection tasks
reported in Tab. 1 of the main paper, we investigated the common tasks of misclassification detection
and selective prediction, again using the predictive uncertainty as a scoring function [29, 9, 2, 27, 33].
We conducted those experiments on the official validation set of ImageNet-1K.

For each of the four experiments, we use pre-trained EfficientNet [36] architectures available through
PyTorch [30]. To approximate the posterior expectations in Eq. (2) and Eq. (4), we utilize the
standard approach of MC integration thus approximating the integral by the average over functions of
model parameters (approximately) drawn from the posterior distribution. As an example, the BMA
predictive distribution is approximated by

p(y | x,D) = Ep(w|D) [p(y | x,w)] ≈ 1

N

N∑
i=1

p(y | x,wi) , (30)

where wi ∼ p(w | D). To sample different model parameters, we utilize cSG-HMC [42], MC
dropout [11] and versions of Deep Ensembles [20]. cSG-HMC and MC dropout were performed
on the last layer of the EfficientNetV2-S architecture with 2000 samples each. Deep Ensembles
were used in two different versions. Once by ensembling 10 different pre-trained EfficientNet
models with different architecture (DE (all)) and once by ensembling 10 different last layers of the
EfficientNetV2-S architecture (DE (LL)).

To provide confidence intervals, we performed all experiments on three distinct dataset splits. Regard-
ing OOD detection, each split consists of all 2000 Imagenet-O samples and 2000 unique ImageNet-1K
samples. Regarding adversarial example detection, each split consists of all 7000 Imagenet-A sam-
ples and 7000 unique ImageNet-1K samples. Regarding misclassification detection and selective
prediction, each spit consists of 7000 unique ImageNet-1K samples. ImageNet-1K samples were
randomly drawn from the official validation set.

The additional results for misclassification detection and selective prediction are given in Tab. 2. The
results show, that using the new measure of (total) predictive uncertainty given by Eq. (4), is always
at least equally good and most of the time better then using the current measure of (total) predictive
uncertainty given by Eq. (2). The only exception is DE (all) for both tasks. Results for the epistemic
components of both measures are similar.
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C Related Work

Mutual information as a measure of epistemic uncertainty (about the parameters of the model) and
the respective decomposition into total and aleatoric uncertainty was introduced by Houlsby et al.
[15]. Those measures have remained popular ever since [10, 35, 8, 17, 27]. Smith et al. [35] analyzed
measures of uncertainty for adversarial example detection. Furthermore, they illustrate the relation of
mutual information to another ad-hoc measure for uncertainty in classification settings, the softmax
variance [21, 5]. Another ad-hoc measure of uncertainty in classification settings is the maximum
softmax value of a classifier [20, 13, 10].

Depeweg et al. [8] considers the measures in Eq. (1), but also proposes to use the variance as a
measure of uncertainty. Based upon the law of total variance, the variance of the BMA predictive
distribution is decomposed to a posterior expectation over the variance of the predictive distributions
given by individual models (the aleatoric component) and the posterior variance over the expected
value of predictive distributions given by individual models (the epistemic component).

Malinin et al. [25] introduces measures similar to Eq. (1), but modeling the mutual information
between the prediction and the data distribution. This considers epistemic uncertainty arising from
distributional mismatch between the data distribution during training and inference. Furthermore,
they consider the differential entropy of their introduced Dirichlet Prior Network, which captures the
entropy of the predicted Dirichlet distribution.

Measuring predictive uncertainty through the information-theoretic measures discussed in this work
are based upon posterior expectations, which are approximated by Monte-Carlo sampling in practice.
This requires to sample multiple models and obtain predictions for them, making it expensive at
inference time. Therefore, methods to estimate epistemic uncertainty with just a single pass through
the network were considered [4, 22, 38, 37, 27]. They measure epistemic uncertainty via feature-
space distance or feature-space densities. Thus, epistemic uncertainty is high if a new input is far
from samples in the training set or the density of the training set is low. However, this requires that
the feature space is meaningful, where feature collapse might severely impact the quality of the
uncertainty estimate [37, 31].

Apart from distributional representations of uncertainty, set-based formalisms are alternative ways to
express uncertainty, e.g. using credal sets [17, 16]. Sale et al. [32] investigated the volume of the
credal set as a measure for epistemic uncertainty, but found it is only meaningful in the case of binary
classification and less so for multiclass-classification.
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