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ABSTRACT

We introduce CogVLM, a powerful open-source visual language foundation
model. Different from the popular shallow alignment method which maps image
features into the input space of language model, CogVLM bridges the gap between
the frozen pretrained language model and image encoder by a trainable visual ex-
pert module in the attention and FFN layers. As a result, CogVLM enables deep
fusion of vision language features without sacrificing any performance on NLP
tasks. CogVLM-17B achieves state-of-the-art performance on 10 classic cross-
modal benchmarks, including NoCaps, Flicker30k captioning, RefCOCO, Ref-
COCO+, RefCOCOg, Visual7W, GQA, ScienceQA, VizWiz VQA and TDIUC,
and ranks the 2nd on VQAv2, OKVQA, TextVQA, COCO captioning, etc., sur-
passing or matching PaLI-X 55B. Codes and checkpoints are available at Github.
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Figure 1: The performance of CogVLM on a broad range of multi-modal tasks in comparison with existing
approaches.

1 INTRODUCTION

Visual language models (VLMs) are versatile and powerful. Many vision and cross-modality tasks
can be formulated as next token prediction, e.g., image captioning (Agrawal et al., 2019), visual
question answering (Antol et al., 2015), visual grounding (Yu et al., 2016) and even segmenta-
tion (Chen et al., 2022a). Useful abilities like in-context learning (Tsimpoukelli et al., 2021) also
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Figure 2: Samples generated by CogVLM.

emerge along with the improvement of downstream tasks when scaling up VLMs. However, to train
a large language model is already non-trivial, and it is more challenging to train a VLM from scratch
with the same NLP performance as well-trained pure language models like LLaMA2 (Touvron et al.,
2023). Therefore, it is natural to investigate how to train a VLM from an off-the-shelf pretrained
language model.
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The popular shallow alignment methods represented by BLIP-2 (Li et al., 2023) connect a frozen
pretrained vision encoder and language model via a trainable Q-Former or a linear layer, mapping
the image features into the input embedding space of the language model. This method converges
fast, but the performance (BLIP-2 NoCaps CIDEr 121.6) is not as good as jointly training the vision
and language modules, e.g., PaLI-X (NoCaps CIDEr 126.3). As for chat-style VLM trained by
shallow alignment methods, e.g., MiniGPT-4 (Zhu et al., 2023), LLAVA (Liu et al., 2023b), and
VisualGLM, the weak visual understanding ability manifests as hallucination. So, is it possible to
retain the NLP capabilities of the large language model while adding top-notch visual understanding
abilities to it?

CogVLM gives a “yes” answer. In our opinion, the root cause of the inferior performance of shallow
alignment methods lies in the lack of deep fusion between vision and language information. This
inspiration arises from the comparison between p-tuning (Liu et al., 2023e) and LoRA (Hu et al.,
2021) in efficient finetuning, where p-tuning learns a task prefix embedding in the input while LoRA
adapts the model weights in each layer via a low-rank matrix. As a result, LoRA performs better
and more stable. A similar phenomenon might also exist in VLM, because in the shallow alignment
methods, the image features act like the prefix embedding in p-tuning. More detailed reasons for the
performance degradation of p-tuning and shallow alignment include:

1. The frozen weights in the language model are trained for text tokens. Visual features do
not have a perfect counterpart in the input text space. Therefore, after multi-layer transfor-
mations, the visual features might no longer match the input distribution of the weights in
the deep layers.

2. During pretraining, the prior of the image captioning task, for example, the writing style
and caption length, can only be encoded into the visual features in the shallow alignment
methods. It weakens the consistency between visual features and content.

A possible solution is to adapt the language model to the image-text joint training, which is adopted
by PaLI (Chen et al., 2022b) and Qwen-VL (Bai et al., 2023a). However, in this way, the NLP ability
is avoidably impaired, which might affect text-centered tasks, such as image-based poetry creation
or introducing the background story of images. According to PaLM-E (Driess et al., 2023), making
the language model trainable during VLM pretraining will lead to catastrophic forgetting, and drop
87.3% NLG performance for 8B language model.

CogVLM instead adds a trainable visual expert to the language model. In each layer, the image
features in the sequence use a new QKV matrix and MLP layer with the text features. Visual expert
doubles the number of parameters while keeping the FLOPs the same. Since all the parameters in
the original language model are fixed, the behaviors are the same as in the original language model
if the input sequence contains no image.

Our CogVLM-17B trained from Vicuna-7B achieves state-of-the-art or the second-best per-
formance on 14 classic cross-modal benchmarks, including 1) image captioning datasets: No-
Caps, Flicker30k, COCO, 2) VQA datasets: VQAv2, OKVQA, GQA, TextVQA, VizWiz, 3) visual
grounding datasets: RefCOCO, RefCOCO+, RefCOCOg, Visual7W, 4) multiple choice datasets:
TDIUC, ScienceQA.

Since most previous famous VLMs are close-source, including Flamingo (Alayrac et al., 2022),
SimVLM (Wang et al., 2021), Coca (Yu et al., 2022), BEIT-3(1.9B) (Wang et al., 2022c),
GIT2 (Wang et al., 2022a), PaLI (Chen et al., 2022b), PaLI-X (Chen et al., 2023b), we anticipate
that the open-sourcing of CogVLM will greatly help the research and industrial application of
visual understanding.

2 METHOD

2.1 ARCHITECTURE

CogVLM model comprises four fundamental components: a vision transformer (ViT) encoder, an
MLP adapter, a pretrained large language model (GPT), and a visual expert module. Figure 3 shows
an overview of the CogVLM architecture. The components’ design and implementation details are
provided below:
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Figure 3: The architecture of CogVLM. (a) The illustration about the input, where an image is processed by a
pretrained ViT and mapped into the same space as the text features. (b) The Transformer block in the language
model. The image features have a different QKV matrix and FFN. Only the purple parts are trainable.

ViT encoder. We utilize pretrained EVA2-CLIP-E (Sun et al., 2023) in CogVLM-17B. The final
layer of ViT encoder is removed because it specializes in aggregating the [CLS] features for con-
trastive learning.

MLP adapter. The MLP adapter is a two-layer MLP (SwiGLU (Shazeer, 2020)) to map the output
of ViT into the same space as the text features from word embedding. All image features share the
same position id in the language model.

Pretrained large language model. CogVLM’s model design is compatible with any off-the-shelf
GPT-style pretrained large language model. Specifically, CogVLM-17B adopts Vicuna1.5-7B (Chi-
ang et al., 2023) for further training. A causal mask is applied to all the attention operations, includ-
ing the attention between image features.

Visual expert module. We add a visual expert module to each layer to enable deep visual-language
feature alignment. Specifically, the visual expert module in each layer consists of a QKV matrix
and an MLP in each layer. The shapes of the QKV matrix and MLP are identical to those in the
pretrained language model and initialized from them. The motivation is that each attention head
in the language model captures a certain aspect of semantic information, while a trainable visual
expert can transform the image features to align with the different heads, therefore enabling deep
fusion.

Formally, suppose that the input hidden states of an attention layer are X ∈ RB×H×(LI+LT )×D,
where B is the batch size, LI and LT are the lengths of image and text sequences, H is the number
of attention heads, and D is the hidden size. In the attention with visual expert, X is first split as
image hidden states XI and text hidden states XT , and the attention is computed as:

Attention(X,WI ,WT ) = softmax(
Tril(QKT )√

D
)V, (1)

Q = concat(XIW
Q
I , XTW

Q
T ),K = concat(XIW

K
I , XTW

K
T ), V = concat(XIW

V
I , XTW

V
T ), (2)

where WI ,WT are the QKV matrices of the visual expert and original language model, and Tril(·)
means lower-triangular mask. The visual expert in FFN layers performs similarly,

FFN(X) = concat(FFNI(XI),FFNT (XT )), (3)
where FFNI and FFNT are the FFN of the visual expert and original language model.
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2.2 PRETRAINING

Data. The image-text pairs for pretraining are all publicly available, including LAION-2B and
COYO-700M. After removing the broken URLs, NSFW images, images with noisy captions, images
with political bias and images with an aspect ratio > 6 or < 1/6, about 1.5B images are left for
pretraining.

We also crafted a visual grounding dataset of 40M images. Each noun in the image caption is
associated with bounding boxes to indicate the positions in the image. The construction process
basically follows Peng et al., which extracts nouns via spaCy (Honnibal & Johnson, 2015) and
predicts the bounding boxes using GLIPv2 (Zhang et al., 2022). The image-text pairs are sampled
from LAION-115M, a subset of LAION-400M filtered by Li et al. (2023). We filter and retain a
subset of 40 million images to ensure that over 75% of images contain at least two bounding boxes.

Training. The first stage of pretraining is for image captioning loss, i.e. next token prediction in
the text part. We train the CogVLM-17B model on the 1.5B image-text pairs introduced above for
120,000 iterations with a batch size of 8,192. The second stage of pretraining is a mixture of image
captioning and Referring Expression Comprehension (REC). REC is a task to predict the bounding
box in the image given the text description of an object, which is trained in the form of VQA, i.e.,
“Question: Where is the object?” and “Answer: [[x0, y0, x1, y1]]”. Both x and y coordinates range
from 000 to 999, meaning the normalized position in the image. We only consider the loss of the
next token prediction in the “Answer” part. We pretrain the second stage for 60,000 iterations with a
batch size of 1,024 on the text-image pairs and visual grounding datasets introduced above. During
the final 30,000 iterations, we change the input resolution from 224 × 224 to 490 × 490. The total
number of trainable parameters is 6.5B and the pretraining consumes about 4,096 A100×days.

2.3 ALIGNMENT

We further finetune CogVLM on a broad range of tasks, so as to align CogVLM with free-form
instructions of any topic. We name the finetuned model CogVLM-Chat. As the examples in Figure 2
and Appendix show, CogVLM-Chat can successfully align with diverse instructions, thus enabling
flexible interaction with humans.

Data. The high-quality data for supervised finetuning (SFT) is collected from LLaVA-Instruct (Liu
et al., 2023b), LRV-Instruction (Liu et al., 2023a), LLaVAR Zhang et al. (2023) and an in-house
dataset, with a total of about 500,000 VQA pairs. The quality of SFT data is of vital importance,
but the LLaVA-Instruct is generated by a pipeline involving language-only GPT-4 so that errors are
inevitable. Particularly, we corrected the errors in the LLaVA-Instruct dataset via manual inspection
and annotation.

SFT. For supervised finetuning, we train 8,000 iterations with a batch size of 640, a learning rate of
10−5 and 50 warm-up iterations.

In order to prevent overfitting the text answer of the dataset, we leverage a smaller learning rate
(10% the learning rate of the other parameters) to update the pretrained language model. All the
parameters except ViT encoder are trainable during SFT.

3 EXPERIMENTS

To rigorously validate the superior performance and robust generalization of our base model, we
conduct quantitative evaluations on an array of multi-modal benchmarks. These benchmarks can be
categorized into three broad areas covering a comprehensive range of measurement1:

• Image Captioning. The main purpose of these tasks is to generate textual captions sum-
marizing the major content of a given image. We utilize prominent datasets including No-
Caps (Agrawal et al., 2019), COCO (Lin et al., 2014), Flickr30K (Plummer et al., 2015),
and TextCaps (Sidorov et al., 2020) for evaluation.

• Visual Question Answering. The VQA tasks require models to answer questions that
may focus on distinct visual contents based on the given image. Our assessment covers

1Detailed summary of all benchmarks and corresponding metrics are available at Appendix A.2.
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diverse datasets, including VQAv2 (Antol et al., 2015), OKVQA (Marino et al., 2019),
TextVQA (Singh et al., 2019), VizWiz-VQA (Gurari et al., 2018), OCRVQA (Mishra et al.,
2019), ScienceQA (Lu et al., 2022b), and TDIUC (Shrestha et al., 2019).

• Visual Grounding. Visual grounding involves a set of tasks that establish referential links
between textual mentions in a sentence and specific regions in an image. We evaluate our
model on the typical datasets, including Visual7w (Zhu et al., 2016), RefCOCO (Liu et al.,
2017), RefCOCO+, and RefCOCOg to ensure completeness.

3.1 IMAGE CAPTIONING

We evaluate the image captioning capability of our pretrained base model on the aforementioned four
benchmarks. In a zero-shot evaluation on the Nocaps and Flickr datasets, we assess the precision of
our model in describing long-tail visual concepts. Additionally, we present results from finetuning
on the COCO and TextCaps datasets.

The detailed performance is shown in Table 1. Overall, our model achieves the SOTA or compatible
performance across the board. Specifically, on the NoCaps benchmark, our base model outperforms
the previous best method, GIT2, across four splits with a maximum of 5.7 points in the out-domain
set while only consuming 10% of the pretraining data (1.5B vs 12.9B). On the Flickr benchmark, our
model achieves a SOTA score of 94.9 surpassing the concurrently released Qwen-VL model by 9.1
points. These results demonstrate a remarkable capability and robustness of our pretrained model on
the image captioning task. We also evaluate on the COCO (Lin et al., 2014) and TextCaps, where the
latter is specifically designed to integrate the textual information of the given image into captions.
Though training without the dedicated OCR data, encouragingly, our base model reveals a significant
text-reading ability and obtains a competitive performance with PaLI-X-55B, and outperforms the
previous best model of the same scale, PaLI-17B, by 9.1 points score.

Table 1: Performance on Image Captioning benchmarks, where all tasks use CIDEr as the evaluation metric.
OOD refers to out-of-domain test set. Karp. refers to the Karpathy test split.

Method Train
Data

NoCaps val NoCaps test Flickr COCO TextCaps

OOD overall OOD overall Karp. Karp. test

Human - 95.7 87.1 91.6 85.3 - - 125.1
VinVL (Zhang et al., 2021) 8.9M 83.8 94.3 78.0 92.5 - 130.8 -
SimVLM (Wang et al., 2021) 1.8B 115.2 112.2 109.5 110.3 - 143.3 -
CoCa (Yu et al., 2022) 4.8B - 122.4 - 120.6 - 143.6 -
LEMON (Hu et al., 2022) 2B 120.2 117.3 110.1 114.3 - 139.1 -
Flamingo (Alayrac et al., 2022) 2.3B - - - - 67.2 138.1 -
Prismer (Liu et al., 2023c) 12.7M 113.5 112.9 - 110.8 - 136.5 -
BLIP-2 (Li et al., 2023) 129M 124.8 121.6 - - - 144.5 -
InstructBLIP (Dai et al., 2023) 129M - 123.1 - - 82.4 - -
UniversalCap (Cornia et al., 2021) 35M 123.4 122.1 114.3 119.3 - 143.4 -
GIT (Wang et al., 2022a) 0.8B 127.1 125.5 122.0 123.4 49.6 144.8 138.2
GIT2 (Wang et al., 2022a) 12.9B 130.6 126.9 122.3 124.8 50.7 145.0 145.0
Qwen-VL (Bai et al., 2023a) 1.4B - 121.4 - - 85.8 - -
PaLI-17B (Chen et al., 2022b) 1.6B - 127.0 - 124.4 - 149.1 135.4
PaLI-X-55B (Chen et al., 2023b) - - 126.3 - 124.3 - 149.2 147.0

CogVLM (ours) 1.5B 132.6 128.3 128.0 126.4 94.9 148.7 144.9

3.2 VISUAL QUESTION ANSWERING

Visual Question Answering is a task of validating general multi-modal capabilities of models, which
requires a mastery of skills including vision-language understanding and commonsense reasoning.
We evaluate our model on 7 VQA benchmarks: VQAv2, OKVQA, GQA, VizWiz-QA, OCRVQA,
TextVQA, ScienceQA, covering a wide range of visual scenes. We train our base model on the
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training sets and evaluate it on the publicly available val/test sets for all benchmarks, where both
procedures adopt the open-vocabulary generation settings without OCR pipeline input.

Table 2: Performance on Visual Question Answering benchmarks, where the results labeled with * refers to
the few-shot or zero-shot setting.

Method VQAv2 OKVQA GQA VizWizQA OCRVQA TextVQA SciQA

test-
dev

test-
std

val test-
balanced

test-
dev

test-
std

test test IMG

Closed-ended classification models
SimVLM (Wang et al., 2021) 80.0 80.3 - - - - - - -
CoCa (Yu et al., 2022) 82.3 82.3 - - - - - - -
OFA (Wang et al., 2022b) 82.0 82.0 - - - - - - -
BEiT-3 Wang et al. (2022c) 84.2 84.0 - - - - - - -
Open-ended generation models
GIT (Wang et al., 2022a) 78.6 78.8 - - 68.0 67.5 68.1 59.8 -
GIT2 (Wang et al., 2022a) 81.7 81.9 - - 71.0 70.1 70.3 67.3 -
Flamingo-80B (Alayrac et al., 2022) 82.0 82.1 57.8* - 65.7 65.4 - 54.1 -
BLIP-2 (Li et al., 2023) 82.2 82.3 59.3 44.7* - - 72.7 - 89.5
InstructBLIP (Dai et al., 2023) - - 62.1 49.5* 34.5* - 73.3 50.7* 90.7
PaLI-17B Chen et al. (2022b) 84.3 84.3 64.5 - 71.6 70.7 - 58.8 -
PaLI-X-55B (Chen et al., 2023b) 86.0 86.1 66.1 - 72.6 70.9 75.0 71.4 -
PaLM-E-84B (Driess et al., 2023) 80.5 - 63.3 - - - - - -
CogVLM (ours) 84.7 84.7 64.7 65.2 76.4 75.8 74.5 69.7 92.7

As shown in Table 2, our model achieves state-of-the-art performance on 6 of 7 benchmarks com-
pared with models of similar scales, such as PALI-17B and Qwen-VL. Our model even surpasses
models of much larger scale on multiple benchmarks, such as PaLI-X-55B on VizWiz-QA (test-std
+5.1, test-dev +3.8), PALM-E-84B on VQAv2 (test-dev +4.2) and OKVQA(+1.4), Flamingo-80B
on VQAv2 (test-dev +2.7, test-std +2.6), VizWiz-QA (test-dev +10.7, test-std +10.4) and TextVQA
(+15.6). Our model also achieves the optimal scores of 92.71 on the multi-modal split (i.e., IMG)
of ScienceQA (Lu et al., 2022b), achieving a new SOTA. These results suggest that our base model
can serve as a strong multi-modal backbone capable of solving various visual question answering
tasks.

Generalist performance. In order to fairly compare with Unified-IO (Lu et al., 2022a), Qwen-
VL (Bai et al., 2023a), mPLUG-DocOwl (Ye et al., 2023) and other models trained in a generalist
paradigm across multi-modal tasks, we further trained a unified model using data composed of
dozens of multi-modal datasets and utilized a consistent checkpoint for evaluation. The datasets en-
compass 14 QA datasets such as VQAv2, OKVQA, and extending to TextVQA, as well as caption
datasets including COCO caption, TextCaps, and those used during the pre-training phase. Exper-
imental results show that multitask learning does not significantly reduce the model’s performance
on individual tasks, and CogVLM remains leading in performance across all tasks.

Table 3: Generalist performance on Image Captioning and VQA benchmarks.

Method COCO TextCaps NoCaps Flickr VQAv2 OKVQA TextVQA OCRVQA
Karp.-test val val Karp.-test test-dev val val test

Qwen-VL (Bai et al., 2023a) - - 121.4 85.8 79.5 58.6 63.8 75.7
mPLUG-DocOwl (Ye et al., 2023) - 111.9 - - - - 52.6 -
Unified-IO (Lu et al., 2022a) 122.3 - 100.0 - 77.9 54.0 - -

CogVLM (single task) 148.7 149.8 128.3 94.9 84.7 64.7 69.3 74.5
CogVLM (generalist) 147.0(-1.7) 151.3(+1.5) 126.2(-2.1) 92.7(-2.2) 83.4(-1.3) 58.9(-5.8) 68.1(-1.2) 74.1(-0.4)
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3.3 VISUAL GROUNDING

In order to endow our model with consistent, interactive visual grounding capabilities, we collect a
high-quality dataset covering 4 types of grounding data: (1) Grounded Captioning (GC) - image
captioning datasets where each noun phrase within the caption is followed by the corresponding ref-
erential bounding boxes; (2) Referring Expression Generation (REG) - image-oriented datasets
that each bounding box in the image is annotated with a descriptive textual expression that accurately
characterizes and refers to the content within the specific region; (3) Referring Expression Com-
prehension (REC) - text-oriented datasets that each textual description is annotated with multiple
referential links associating the phrases with corresponding boxes; (4) Grounded Visual Ques-
tion Answering (GroundedVQA) - VQA-style datasets where the questions may contain region
references in a given image. The sources of grounding data are all publicly available, including
Flickr30K Entities (Plummer et al., 2015), RefCOCO (Kazemzadeh et al., 2014; Mao et al., 2016;
Yu et al., 2016), Visual7W (Zhu et al., 2016), VisualGenome (Krishna et al., 2017) and Grounded
CoT-VQA (Chen et al., 2023a). [box] in this section is in the format of [[x0, y0, x1, y1]].

After the second pretraining stage using our 40M visual grounding dataset, we continue to train our
model on this high-quality dataset, resulting in a generalist grounding-enhanced model, CogVLM-
grounding. It is noteworthy that the curated datasets exhibit a versatility of visual grounding capabil-
ities, and many datasets can be adapted and repurposed across different tasks. For instance, grounded
captioning datasets can be reformulated to suit REG and REC tasks. Taking the example of “A man
[box1] and a woman [box2] are walking together.”, this can be reframed into question answering
pairs like (“Describe this region [box2].”, “A woman.”) and (“Where is the man?”, “[box1]”). Sim-
ilarly, REC datasets can be translated into REG tasks by switching the input and output, and vice
versa. However, certain conversions might lead to ambiguities. For example, when presented with
the isolated query “Where is another man?” from the caption “A man [box1] is running, while an-
other man [box2] is looking.”, the distinction between [box1] and [box2] becomes unclear, potentially
leading to errors.

Table 4 shows the result on the standard visual grounding benchmarks. We find that our generalist
model achieves state-of-the-art performance across the board, with a significant advantage over the
previous or concurrent models. Moreover, we also evaluate the specialist performance of our model
finetuned on each individual training set of benchmarks for fair comparison with the best models
dedicated on each task. As shown in the bottom part of Table 4, our model achieves the SOTA
performance over 5 of 9 splits, and the compatible result on the other subsets. These results suggest
a remarkable visual grounding capability of our model incorporating our training paradigm.

Table 4: Results on Referring Expression Comprehension and Grounded Visual Question Answering.

Type Model RefCOCO RefCOCO+ RefCOCOg Visual7W
val test-A test-B val test-A test-B val test test

Generalist

OFA-L* (Wang et al., 2022b) 79.96 83.67 76.39 68.29 76.00 61.75 67.57 67.58 -
VisionLLM-H (Wang et al., 2023b) - 86.70 - - - - - - -
Shikra-7B (Chen et al., 2023a) 87.01 90.61 80.24 81.60 87.36 72.12 82.27 82.19 -
Shikra-13B 87.83 91.11 81.81 82.89 87.79 74.41 82.64 83.16 85.33
Qwen-VL (Bai et al., 2023a) 89.36 92.26 85.34 83.12 88.25 77.21 85.58 85.48 -
CogVLM 92.51 93.95 88.73 87.52 91.81 81.43 89.46 90.09 90.96

Specialist

G-DINO-L Liu et al. (2023d) 90.56 93.19 88.24 82.75 88.95 75.92 86.13 87.02 -
UNINEXT-H (Lin et al., 2023) 92.64 94.33 91.46 85.24 89.63 79.79 88.73 89.37 -
ONE-PEACE (Wang et al., 2023a) 92.58 94.18 89.26 88.77 92.21 83.23 89.22 89.27 -
CogVLM (single task) 93.40 94.06 90.28 87.76 93.02 81.81 90.07 90.53 91.17

3.4 INSTRUCTION FOLLOWING IN REAL-WORLD USER BEHAVIOR

To evaluate the CogVLM-Chat model’s capacity under real-world user behavior, we further employ
TouchStone (Bai et al., 2023b), an extensive benchmark for multimodal language models. Table 5
shows the GPT-4 (OpenAI, 2023) similarity scores of the generated and standard answer, suggesting
CogVLM-Chat significantly outperforms all the other publicly available VLMs.
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Table 5: Evaluation results on TouchStone in English.

Models MiniGPT4 InstructBLIP LLaMA-AdapterV2 LLaVA mPLUG-Owl Qwen-VL-Chat CogVLM-Chat

Score 531.7 552.4 590.1 602.7 605.4 645.4 662.6

Table 6: Ablation studies for various components and training settings.

Ablated Aspects Original (CogVLM) Ablated Setting Trainable COCO NoCaps OKVQA TextVQA VQAv2
params CIDEr↑ CIDEr↑ top1↑ top1↑ top1↑

Tuned Parameters
VE-full every layer

+
MLP Adapter

MLP Adapter 140M 131.2 111.5 55.1 40.7 73.8
LLM+MLP Adapter 6.9B 140.3 118.5 56.8 44.7 78.9

VE-full every 4th layer 1.7B 138.7 117.4 58.9 44.1 77.6
VE-FFN every layer 4.4B 140.0 118.7 58.2 45.1 78.6

Init method From LLM Random init 6.6B 138.0 117.9 55.9 44.0 79.1

Visual attention mask Causal mask Full mask 6.6B 141.0 117.2 57.4 45.1 79.6

Image SSL loss % !(clip feature) 6.6B 142.9 119.8 58.7 45.9 79.7

EMA ! % 6.6B 143.1 119.2 57.1 43.8 79.4

CogVLM (ours) — — 6.6B 142.8 120.1 59.3 45.3 80.0

3.5 ABLATION STUDY

To understand the impact of various components and settings on our model’s performance, we con-
duct an extensive ablation study for 6,000 iterations and a batch size of 8,192. Table 6 summarizes
the results about the following aspects:

Model structure and tuned parameters. We investigate the effectiveness of tuning only the MLP
Adapter layer or tuning all LLM parameters and the Adapter without adding VE, as well as modify-
ing the VE architecture to add full VE at every 4th LLM layer or only the FFN-equipped VE at all
layers. From the results we can see that only tuning the adapter layer (e.g., BLIP2) may result in a
shallow alignment with significantly inferior performance, and decreasing either the number of VE
layers or the VE parameters at each LLM layer suffers a prominent degradation.

Initialization Method. We investigate the effectiveness of initializing VE weights from LLM, and
the slight decrease in performance suggests a positive impact of this method.

Visual Attention Mask. We empirically find that using a causal mask on visual tokens will yield
a better result in comparison with a full mask. We hypothesize the possible explanation for this
phenomenon is that the causal mask better fits the inherent structure of LLM.

Image SSL Loss. We also investigated the self-supervised learning loss on image features, where
each visual feature predicts the CLIP feature of the next position for visual self-supervision. Align
with the observation from PaLI-X (Chen et al., 2023b), we find it brings no improvement on down-
stream tasks, although we indeed observed improvements in small models in our early experiments.

EMA. We utilize EMA (Exponential Moving Average) during pretraining, which often brings im-
provements across various tasks.

4 CONCLUSION

In this paper, we introduce CogVLM, an open visual language foundation model. CogVLM shifts
the paradigm for VLM training from shallow alignment to deep fusion, achieving state-of-the-art
performance on 10 classic multi-modal benchmarks.

The VLM training is still in its infancy, and there are many directions to explore, for example,
better SFT alignment, RLHF and anti-hallucination. Since the previous famous VLMs are mostly
closed-source, we believe CogVLM will be a solid foundation for future multi-modal research.
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A APPENDIX

A.1 DETAILS OF TRAINING SETTINGS

We report the details of parameter settings during pre-training and multitask training in Table 7 and
Table 8.

Table 7: Hyperparameters for pre-training model.

Hyperparameters Stage 1 Stage 2

Total steps 120, 000 60, 000

Warmup steps 12, 000 1, 200

Batch size 8, 192 1, 024

Learning rate 1e−4 1e−5

Learning rate decay Cosine

Weight decay 0.05
Dropout ratio 0.1

Adam ϵ 1e−8

Adam β (0.9, 0.95)
Textual encoder Vicuna-1.5-7B
Visual encoder EVA2-CLIP-E

Patch size 14

Input resolution 2242 2242 → 4902

Table 8: Hyperparameters for multitask finetuning CogVLM.

Hyperparameters Multitask

Learning rate 1e−5

Total steps 10,000
Batch size 1,024
AdamW ϵ 1e−8

AdamW β (0.9, 0.95)
Weight decay 0.1
Dropout ratio 0.1
Input resolution 4902

A.2 DETAILS OF ASSOCIATED DATASETS

In this section, we introduce the details of datasets and their use in our evaluation process for all
associated benchmarks.

A.2.1 IMAGE CAPTIONING

• COCO (Lin et al., 2014) The Captions in COCO dataset are collected using Amazon’s
Mechanical Turk (AMT) workers who are given instructions to control the quality. The
dataset contains 330K images, where the train, validation and test sets contain 413,915
captions for 82,783 images, 202,520 captions for 40,504 images, and 379,249 captions for
40,775 images respectively.

• NoCaps (Agrawal et al., 2019). NoCaps is a large-scale benchmark for novel object cap-
tioning, containing nearly 400 novel object classes compared to COCO. The validation
and test set comprised of 4,500 and 10,600 images, respectively, sourced from the Open
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Table 9: Summary of the evaluation benchmarks.

Task Dataset Description Split Metrics

Image Caption

NoCaps Captioning of natural images. val CIDEr (↑)
Flickr Captioning of natural images. karpathy-test CIDEr (↑)
COCO Captioning of natural images. karpathy-test CIDEr (↑)
TextCaps Captioning of natural images containing text. test CIDEr (↑)

General VQA

VQAv2 VQA on natural images. test-dev VQA Score(↑)
OK-VQA VQA on natural images requiring outside knowledge. val VQA Score (↑)
GQA VQA on scene understanding and reasoning. test-dev-balanced EM (↑)
VizWiz-QA VQA on photos taken by people who are blind. test-dev VQA Score (↑)
ScienceQA Multi-choice VQA on a diverse set of science topics test Accuracy (↑)
TDIUC VQA on natural images with detailed question types. val VQA Score (↑)

Text-oriented VQA OCR-VQA VQA on images of book covers. test EM (↑)
TextVQA VQA on natural images containing text. val VQA Score (↑)

Grounding

RefCOCO Refer grounding on natural images. test-B Accuracy (↑)
RefCOCO+ Refer grounding on natural images. test-B Accuracy (↑)
RefCOCOg Refer grounding on natural images. test Accuracy (↑)
Visual7W VQA with referential regions selection. val Accuracy (↑)

Images (Krasin et al., 2017) and annotated with 11 human-generated captions per image,
and each set is subdivided into three domains: ”in”, ”near”, and ”out”, with objects in the
”out-domain” never appearing in the COCO dataset.

• Flickr30K (Plummer et al., 2015). Flickr30K is a high-quality dataset consists of 31,783
images of everyday life activities, envets and scenes (all harvested from the online website
Flickr) and 158,915 captions (obtained via crodsourcing). Each image in this dataset is
described independently by five annotators who are not familiar with the specific entities
and circumstances depicted in them.

• TextCaps (Sidorov et al., 2020) Textcaps is a dataset with 145k captions for 28k images.
The design purpose of the TextCaps dataset is to effectively integrate textual information
with visual context into captions, requiring the model to have both excellent OCR capabil-
ities and strong captioning abilities.

A.2.2 GENERAL VQA

• VQAv2 (Antol et al., 2015) VQAv2 encompasses over 200,000 images, paired with more
than 1.1 million questions that have collectively garnered over 11 million answers. Ques-
tions span various types, including yes/no, counting, and open-ended queries.

• OKVQA (Marino et al., 2019) The OK-VQA (Outside Knowledge Visual Question An-
swering) dataset is specifically designed to probe visual question answering capabilities
that necessitate external knowledge or common sense beyond image content. It has 14,055
open-ended questions and 5 ground truth answers per question.

• VizWiz-VQA (Gurari et al., 2018) The VizWiz-VQA dataset is derived from blind indi-
viduals capturing images and voicing related questions, accompanied by 10 crowdsourced
responses per query. The central challenge of this dataset involves predicting the visual
question’s answer and determining if it’s unanswerable.

• ScienceQA (Lu et al., 2022b) The ScienceQA dataset comprises 21,208 multimodal
multiple-choice questions spanning three diverse subjects: natural science, language sci-
ence, and social science. Each question is annotated with explanations linked to relevant
lectures.

• TDIUC (Shrestha et al., 2019) The TDIUC dataset features 1.6M questions across 170K
images from MS COCO and Visual Genome. Categorized into 12 distinct question types,
it ranges from basic tasks like identifying objects or colors to more advanced reasoning like
counting or positional discernment.

A.2.3 TEXT-ORIENTED VQA

• OCRVQA (Mishra et al., 2019) OCR-VQA consists of 207,572 book cover images with
over 1 million question-answer pairs.
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• TextVQA (Singh et al., 2019) TextVQA is a dataset with 45,336 questions on 28,408 im-
ages that challenges models to detect, read, and reason about text within images to provide
answers.

A.2.4 GROUNDING

• RefCOCO/RefCOCO+ (Liu et al., 2017) RefCOCO and RefCOCO+ evolved from the
ReferItGame. Both subsets focus on images with two or more similar objects. Ref-
COCO, with 142,209 expressions across 19,994 images, places no linguistic constraints.
Conversely, RefCOCO+ emphasizes appearance-centric descriptions, omitting locational
terms, and comprises 141,564 expressions over 19,992 images.

• RefCOCOg Mao et al. (2016) The RefCOCOg subset was amassed through Amazon Me-
chanical Turk, where workers penned natural referring expressions for objects in MSCOCO
images; it boasts 85,474 referring expressions spanning 26,711 images, each containing 2
to 4 objects of the same category.

• Visual7W (Zhu et al., 2016). The Visual7W dataset is predominantly designed for VQA
tasks, with a dedicated subset crafted for grounded VQA. In this subset, models are pre-
sented with an image accompanied by a ”which”-type question, such as ”Which is the small
computer in the corner?”. Participants are then given four bounding boxes within the im-
age, from which they must select the correct one as the answer. The grounded Visual7W
part consists of 25,733 images and 188,068 questions.

• Flickr30K-Entities (Plummer et al., 2015). The Flickr30K Entities dataset, a precursor in
the realm of grounded captioning, encompasses a collection of 31,783 images accompanied
by 158k captioning annotations. Every caption in this dataset has been meticulously anno-
tated such that each noun phrase is linked with a manually delineated referential bounding
box. In total, there are 276k such annotated bounding boxes provided within this dataset.

• VisualGenome (Krishna et al., 2017). The VisualGenome dataset stands as a cornerstone
in understanding the multifaceted relationships present within images. With a collection of
over 100k images, each image is annotated in detail, capturing an average of 21 objects, 18
attributes, and 18 inter-object relationships. A unique aspect of this dataset is the alignment
of objects, attributes, relationships, and region descriptions with standardized terminologies
from WordNet. Specifically tailored for the REG and REC tasks, each annotated region in
an image comes with a corresponding descriptive text, making it a rich resource for image
understanding and semantic modeling. We use the subset with around 86k images and 3.6
million region-caption pairs for visual grounding.
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Figure 4: Performance on TDIUC benchmark with fine-grained questions classes.
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B ADDITIONAL FINE-GRAINED EXPERIMENTS

To comprehensively investigate the proposed model on specific topics and question types, we further
conduct extensive experiments on a representative benchmark, TDIUC (Kafle & Kanan, 2017). We
use the publicly available split of val set as evaluation data, and the VQA accuracy calculated from
their official scripts as the evaluation metric.

The experimental results on TDIUC compare our model against the specialist SOTA method
MUREL (Cadene et al., 2019) are shown in Figure 4. From the experimental result, we can see
that our model consistently outperforms the previous model on 12 specific question types, resulting
in a 94.0 accuracy score compared to the previous SOTA of 88.2 on the overall dataset. These results
demonstrate that our model exhibits comprehensive problem-solving skills on general VQA tasks.

C COMPUTATIONAL EFFICIENCY

In this section, we compare the computational efficiency of our model with other state-of-the-
art models, considering both pretraining and finetuning data from datasets such as VQAv2 and
TextVQA. Owing to an optimized architecture and the utilization of high-quality pretraining data,
our model demonstrates a marked reduction in resource consumption during training relative to
models with comparable parameter magnitudes.

Table 10: Comparison of different models based on their computational efficiency. We use PFLOPS*days as
metrics.

Model Pretraining Data Pretraining compute VQAv2 finetuning TextVQA finetuning
PaLI-3B 1.6B 56 1.1 0.2
PaLI-17B 1.6B 453 4.5 0.9
Flamingo-80B 2.3B 1381* N/A N/A
GIT2-5.1B 12.9B 5513* N/A N/A

CogVLM 1.5B 230.1 1.2 0.13
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