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Abstract

We introduce NeuralSurv, the first deep survival model to incorporate Bayesian
uncertainty quantification. Our non-parametric, architecture-agnostic framework
captures time-varying covariate-risk relationships in continuous time via a novel
two-stage data-augmentation scheme, for which we establish theoretical guarantees.
For efficient posterior inference, we introduce a mean-field variational algorithm
with coordinate-ascent updates that scale linearly in model size. By locally lineariz-
ing the Bayesian neural network, we obtain full conjugacy and derive all coordinate
updates in closed form. In experiments, NeuralSurv delivers superior calibration
compared to state-of-the-art deep survival models, while matching or exceeding
their discriminative performance across both synthetic benchmarks and real-world
datasets. Our results demonstrate the value of Bayesian principles in data-scarce
regimes by enhancing model calibration and providing robust, well-calibrated
uncertainty estimates for the survival function.

1 Introduction

Survival analysis is a branch of statistics focused on the study of time-to-event data, usually called
event times. This type of data appears in a wide range of applications such as medicine [33],
engineering [35], and social sciences [42]. A key objective of survival analysis is to estimate the
hazard function and the survival function that govern the distribution of event times.

Traditional survival models like the Cox proportional hazards model [10] and accelerated failure time
models [8] have long delivered reliable inference under strong parametric assumptions. However, such
assumptions may fail to adequately capture complex and evolving baseline hazards, especially when
risk relationships vary over time. To overcome these limitations, recent work has begun incorporating
modern machine-learning techniques [48], and in particular deep architectures [49, 24, 32], which
can learn rich, hierarchical representations directly from data. Yet most deep-survival approaches
remain purely frequentist, optimizing point-estimate losses and offering no coherent uncertainty
quantification. In high-stakes settings like medicine, this lack of reliable uncertainty estimates can
undermine trust and impede adoption.

Bayesian statistics, by contrast, inherently quantifies uncertainty: prior beliefs are combined with ob-
served data to yield a posterior distribution over model parameters [15]. In survival analysis, Bayesian
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methods can produce full posterior distributions for individual survival functions summarizable via
credible intervals that communicate model confidence [21]. Traditional Bayesian survival tools, such
as Gaussian processes (GPs) [13, 25], offer nonparametric flexibility and built-in uncertainty but
often falter in high-dimensional settings due to scalability issues. To date, no method has combined
the representational power of deep learning with full Bayesian uncertainty quantification in a scalable
survival framework. Such a synthesis would hold the potential to learn complex, high-dimensional
survival dynamics while retaining principled probabilistic interpretations.

In this work, we introduce NeuralSurv, an architecture-agnostic, Bayesian deep-learning framework
for survival analysis which integrates with modern deep learning architectures. NeuralSurv leverages
deep Neural Networks (NN5s) to learn hierarchical representations from covariates and uses a princi-
pled variational inference framework to provide rigorous uncertainty quantification over the survival
function. We develop a two-stage data-augmentation strategy using latent marked Poisson processes
and Pélya—Gamma variables to enable exact continuous-time likelihood computation, and provide
novel theoretical guarantees for this approach. By locally linearizing the Bayesian Neural Network
(BNN), we achieve conjugacy and derive closed-form coordinate-ascent updates that scale linearly
with network size.

Through extensive experiments on synthetic and real survival datasets, in data-scarce settings, Neu-
ralSurv consistently delivers superior calibration compared to state-of-the-art deep survival models,
and matches or exceeds their discriminative performance. Its Bayesian formulation captures epis-
temic uncertainty to prevent overfitting, while informative priors induce a soft regularization that
yields smooth, plausible survival functions. The code to reproduce our experiments is available
on the GitHub repository https://github.com/MLGlobalHealth/neuralsurv under the MIT
License.

2 NeuralSurv

In this section, we outline the main assumptions underlying NeuralSurv. We begin by briefly
reviewing key concepts in survival analysis. Survival analysis focuses on modeling time-to-event
data. Let T be a continuous nonnegative random variable with probability density f and cumulative
distribution function F', representing the time until a particular event occurs. Its survival function
S(t) =P(T > t) =1 — F(t) gives the probability of not experiencing the event by time ¢, while the
hazard function A(t) = f(t)/S(t) represents the instantaneous risk of the event at time ¢, conditional
on having survived up to time ¢. In practice, the event time may not be observed for all individuals,
because some observations are subject to right-censoring, where the event has not yet occurred by the
end of the observation period. For each observation 7z = 1, ..., N, denote the event time by 7; and
the censoring time by C;. We observe y; = min(7;, C;) and §; = 1{1,<c,} Where y; represents the
observed time (which may correspond either to the event or to censoring), and §; indicates whether the
event time was observed (§; = 1) or the observation period was censored (§; = 0). We assemble the
dataset as D = {(y;,0;) : i = 1,..., N}. Each observation also carries a covariate vector x; € RP,
gathered into X = {x; : i = 1,..., N'}. Throughout this paper, we assume that the censoring time
C; is independent of the event time 7; given x; (known as non-informative censoring). Further details
on survival analysis theory are provided in Appendix A.

2.1 Sigmoidal Hazard Function

Our goal is to model the hazard function ), i.e. the instantaneous event rate at time ¢ conditional on
survival to ¢ and covariates x. We employ the sigmoid function o(z) = 1/(1 + exp(—z)), which
maps real-valued inputs to the interval (0, 1). The sigmoidal hazard model is constructed as the
product of a normalized baseline hazard function ()\y) and a modulation function (o):

At [x30,9(50)) = Xo(t,x;¢) 0(g(t, x;0)), M
where the normalized baseline hazard is given by

Ao(t; 9)
Ao(t,x;9) = —— 2
O(axa¢) Z(t,x)’ ( )
for the baseline hazard Ao : Ry — R, parametrized by ¢ € R, and a normalization factor Z (¢, x)
that depends on both time and covariates. The term A (¢, X; ¢) encodes our prior “best-guess” hazard
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profile over time. The flexible function g : R, x RP — R, parametrized by 8 € R™, provides a
data-driven adjustment: once passed through the sigmoid, it multiplicatively attenuates the baseline
hazard, continuously scaling it between zero and \g. The normalization factor Z(t,x) ensures that
the overall hazard remains properly scaled after modulation by the sigmoidal function (see Section 2.3
for details). Modeling hazard and intensity functions using sigmoidal transformations is common in
applications such as survival analysis [13] and point process models [52, 12, 45, 1, 2]. This approach
is popular due to the balance it offers between modeling flexibility and analytical tractability.

2.2 Likelihood Distribution

Given the hazard function in (1), the likelihood density for the observation corresponding to the 7™
observation is given by:

p(Yi, 0i | Xi, 0, 9(50)) = ) ,
()\O(yi,xi; ®) o (g(yi, xi; 0)))Oi P <_ /0% Aoltxi5 9) o (g(F, s 0))dt> -9

Assuming (y;, ;) are i.i.d. conditional on (x;, ¢, g(+; 6)), the full-sample likelihood is simply the
product
N

i=1

2.3 Prior Distributions

Prior Distribution on 6. We assume that g(-; @) is a BNN parameterized by 6. Furthermore,
denote by I,,, the m x m identity matrix. We place the following isotropic Gaussian prior with zero
mean and identity covariance over the NN weights

pO(a) :N(O;O,Im). (5)

This common choice [6] assumes weights are independently distributed and centered around zero,
acting as an uninformative yet regularizing prior that discourages large weights and helps prevent
overfitting via shrinkage.

Prior Distribution on ¢. We adopt a Weibull-type baseline hazard

/\O(t7 (b) = ¢tp_17 p¢(¢) = Gamma(a07 /80)7 p > 0 ﬁXCd, (6)

where « is the shape and f is the rate of the Gamma distribution. The Weibull-type baseline
hazard (6) is the hazard of a Weibull distribution, a common choice in survival analysis [13]. When
p =1, Ao(¢; ) becomes constant and the baseline hazard reduces to the hazard of the Exponential
distribution.

Normalization Factor Z. We define the normalization factor introduced in (2) as
Z(t,x) :=Eg~p, [0(g(t,%;0))]

and refer the reader to Appendix D for further details on how it is computed. Introducing this
normalization factor ensures that the prior mean of the sigmoidal hazard in (1) coincides with the
prior mean of the baseline hazard, i.e.

Epnpy,0~po [MNE | X530, 9(50))] = Egp, [Mo(t; 9)] -

This approach, similar to the technique used in [13], centers the distribution around the baseline
hazard Ao (t; ¢), favouring hazard trajectories that remain close to this prior “best-guess” profile while
still permitting data-driven deviations. Notice that if g(-; @) has a fully connected architecture, then
Z(t,x) = 1 forall (¢, x), resulting in the same normalization factor value as in [13].



2.4 Posterior Distribution

Let p(¢, 0 | D, X) denote the posterior density over the parameters ¢ and 0, defined with respect to
the product measure d¢ x d6. By Bayes’ rule, this posterior is proportional (up to normalization) to

p (6,0 |D,X) xp(D|X,,9(;0)) ps(¢) pe(0). @)

The posterior in (7) is generally intractable to compute for three reasons. First, its normalization
constant is unavailable in closed form. Second, the likelihood from (3) requires evaluating N integrals,
none of which admits an analytic solution. Finally, the sigmoid in (1) introduces an extra nonlinearity,
rendering inference even more analytically challenging.

3 Data Augmentation Strategy

In this section, we present a data augmentation scheme that leverages the properties of Poisson
processes and Pdélya-Gamma random variables. Specifically, Poisson processes help overcome
the challenges associated with computing the integrals of the continuous-time function to evaluate
the likelihood, while the Pélya-Gamma random variables allow for exact handling of the sigmoid
nonlinearity without relying on analytic approximations. This combined approach allows us to
efficiently perform posterior inference from the model without resorting to discretization.

This approach builds on analogous strategies previously applied in other settings, including Bayesian
inference for Sigmoid Gaussian Cox Processes [12], nonparametric Hawkes processes [52], and, in
the case of Pélya—Gamma augmentation alone, mutually regressive point processes [4]. To the best
of our knowledge, this is the first application of such a data augmentation strategy in the context
of survival analysis. Furthermore, we are the first to provide a rigorous theoretical framework that
establishes the validity of a method belonging to this broader class of augmentation-based approaches
(see Theorem 3.1).

Detailed reviews of P6lya-Gamma random variables and Poisson processes are provided in Appen-
dices B and C, respectively.

3.1 Polya-Gamma Augmentation Scheme

A primary challenge in our model arises from the sigmoid function, whose inherent nonlinearity
complicates the posterior inference. To overcome this, we adopt the Pélya-Gamma data augmentation
scheme introduced in [38]. The key insight of this approach is that the sigmoid function can be
represented in terms of P6lya-Gamma random variables. Define the function

z 22

flw,2) = 3T gw log(2). 8)

Then, the following identity holds:
o) = [ e (o] 1,0} ©)
0

where ppg(w | 1, 0) denotes the density of a Plya-Gamma random variable with parameters (1,0).

Since our model considers N observations, we apply this augmentation scheme to each data point.
Accordingly, we introduce N independent Pélya-Gamma random variables, denoted by w = {w; }¥ ;,
each distributed according to p,,(w;) = ppg(w; | 1,0) and with a joint density

N N
po(w) = [ [ polwi) = [ [ pra(wi | 1,0). (10)
=1 =1

3.2 Poisson Process Augmentation Scheme

Evaluating the likelihood in (3) requires computing /N integrals involving a sample function drawn
from the BNN prior. This integral is generally analytically intractable, due to the nonparametric and
highly non-linear nature of BNN sample paths. To address this, we leverage a Poisson process—based



data augmentation scheme, drawing inspiration from methodologies proposed in [12, 52]. By
substituting the sigmoid identity from (9), the intractable integral for the i data point becomes

Yi
)\O(ta X3 ¢) U(g(ta X5 0))dt =
0

yi oo
/ / (1 - ef(“”_g(t’x“e))) Xo(t, x5 0)ppg(w | 1,0)dwdt, (11)
o Jo

where ppg(w|1, 0) is the density of a Pélya-Gamma random variable. The key insight here is that this
double integral can be expressed as an expectation over a marked Poisson process.

Before proceeding further, we briefly review the concept of a marked Poisson process. A marked
Poisson process extends the standard Poisson process by associating each event (or location) with
an additional random variable known as a mark. In our case, each event occurs at time ¢ and is
accompanied by a positive mark w. With this in mind, consider the space [0, y;] x R, which consists
of points (¢,w) where t € [0, y;] and w € R;. We then denote by ¥; a marked Poisson process on
[0, ;] x Ry with intensity

Ai(t,w; @) := No(t, %45 0) ppg(w | 1,0),  (t,w) € [0,y;] x Ry. (12)

Under suitable assumptions on the BNN ¢(-; 8), Campbell’s theorem allows us to express the integral
in (11) as

Yi [e’e)
exp (—/ / (1 — ef(w,—g(t,xi;e))) it w; (;S)dwdt) =
0 0

E‘Pi H ef("-’hfg(tj«,xi;e)) , (13)

(t,w); €¥;

~Pu;e

where Py, |4 is the path measure of the process ;. In (13), we take the convention that an empty
product equals 1. Equation (13) corresponds to the term with the intractable integral on the right-hand
side of (3). This representation enables us to avoid time discretization, allowing an exact and efficient
evaluation of the integral. Since our model involves N observations, we apply this augmentation
scheme to Jsach data point by introducing N independent marked Poisson processes, denoted by
W= {¥}i,.

3.3 Augmented Likelihood

Leveraging both the Plya—Gamma and the marked Poisson process augmentation schemes, we can
reformulate the likelihood given in (3) in a tractable way. With these auxiliary variables, we define
the augmented likelihood density for the i observation as

p(y“(;z | Xi;¢7g(';0)awiaq}i) =

(Ao(yi,xi;¢)ef<wi,g<yi,xi;e>>>5i [ eerswxon) s
(t,w); €¥;

where f(w, z) was defined in (8). The following proposition formalizes the data augmentation
scheme.

Theorem 3.1 (Data Augmentation). Assume for each i = 1,..., N that the function g(-,%x;;-) €
C([0,y;] x R™). Let p(y;, 0; | X4, ¢, 9g(; 0)) be the likelihood density given in (3). Additionally, let
P (Yi, 0 | Xiy &, 9(+50),w;, ;) be the augmented likelihood density defined in (14). Then,

p(yiaéi | Xl7¢ag(70)) = Ewinw7‘I"iNP‘I'i\¢ [p (yi75i | Xl7¢ag(70)7wl7qjl)] .

The proof of Theorem 3.1 is postponed to Appendix N.1. Existing augmentation schemes ap-
proaches [12, 52, 4] do not offer any theoretical guarantees regarding the validity of the methodology.
In contrast, Theorem 3.1 provides the first rigorous theoretical framework that establishes the sound-
ness of a method within this class of data augmentation techniques.



Using the assumption from Section 2.2 that (y;, d;) are i.i.d. conditional on (x;, ¢, g(+; 0)), and given
the structure of the data augmentation, we observe that (y;, d;) are conditionally independent of w;
and V; for all j # . As aresult, the full-sample augmented likelihood factorizes as a simple product:

N
p(D ‘ X,¢,g(,0),W,‘I’) = Hp(y'u(sl ‘ Xi7¢ag(';6)awiaqji)' (15)

i=1

4 Variational Inference in the Augmented Space

In this section, we develop a novel variational inference algorithm based on this augmentation scheme.

4.1 Variational Mean-Field Approximation

Computing the posterior distribution P (¢, 8, w, ¥ | D, X) is analytically intractable because its
normalization constant is unavailable in closed form. We consider a variational inference algorithm
that aims to find an approximating variational distribution Q(¢, 8, w, ®) that minimizes the KL
divergence from the true posterior distribution.

To make the optimization tractable, we restrict our search to distributions that satisfy the following
mean-field factorization:

Q(¢707wv ‘I,) = Q¢(¢) X Q@(e) X Qw(w) X Q\P(\I’)

Here, we take Q4(¢), Qg (0) and Q. (w) to admit densities g4(¢), ¢o(0) and g, (w) with respect to
the Lebesgue measures d¢, d@ and dw. The remaining factor Qg () is a measure on the space of
marked point-process paths, which does not admit a density with respect to the Lebesgue measures
(see, e.g., a similar discussion for GPs in [34]).

To handle this within the variational inference framework, we must introduce a reference measure
Py ., which plays the role of a “Lebesgue-like” base measure on path space (see Definition E.1 for
details). We then assume our variational law Qy is absolutely continuous with respect to Py ., so
that it admits a strictly positive Radon—Nikodym derivative 49 which satisfies the normalization

(HP\I/,*
Eg py .| d(IlP%“f* (¥)] = 1. These conditions ensure that Qg is a valid probability measure on the

space of marked point-process paths (see Appendix E for further technical details).

This formulation enables us to express the KL divergence between the variational distribution and the
true posterior in terms of the ELBO:

DKL(Q(QS, 07 w, \I’) || P (d)v 07 w, v | D, X)) = _ﬁELBO(g) + COHSt, (16)
where the ELBO is defined as

Lepo(9) =

p(D | 6,9(0),w, ) pys(6)po(8)pu (w) TL2 (V)

66(0)d6(8) g (w) 1222 ()

E¢~q¢,9~qe,w~qw,‘1'~@\y log (17

dPy)y - . I . .
dP:W is the Radon-Nykodim derivative of the true conditional law Py, with respect

to Py .. From (16), it follows that minimizing the KL divergence is equivalent to maximizing the
ELBO.

and where

4.2 Local Linearization of the Bayesian Neural Network

A crucial insight is that the data augmentation strategy transforms the intractable likelihood density
in (3) into a form that is conditionally Gaussian, as shown below:

P (Yi,0i | Xi, #,9(+50), wi, ¥;) o

. . X . 2 X . . . 2
exp <5ig(ym;za9) . 5i9(yz,>2<z,9) Wi) exp Z g(tp;(zae) . g(tw;{z,g) w;

(tw);€¥;



This transformation is particularly advantageous when placing a GP prior on g(+; 8), as it induces
conjugacy in the model. Conjugacy is crucial for variational inference because it enables efficient
computation of the ELBO (17), which involves taking expectations over the distribution of 6.
However, when g(-; 0) is a BNN, these expectations generally lack closed-form solutions, making
exact Bayesian updates intractable. As a result, we seek to approximate g(-; @) in a way that retains
the expressive power of NNs while preserving Gaussian conjugacy to enable tractable inference.

We adopt the local linearization approximation introduced in [22]. This approach approximates the
BNN g(+; 6) using a first-order Taylor expansion around a reference point 6*:

g(t,x;0) =~ g™ (t,x;0) == g(t,x;0%) + Tg- (t,x) " (6 — 6%), (18)

where [Jo(t,x)]; = w is the Jacobian of the BNN with respect to the parameters 6. Fol-

lowing [22], we select 6* = Ouap as the maximum a posteriori (MAP) estimate, which is defined
as:

(Omap, OMaP) := arg ngaqﬁxp(@, ¢ | D,X), (19)

where p(0, ¢ | D, X) is the posterior density defined in (7). By centering the linearization at @yap,
we ensure maximal approximation accuracy precisely where Bayesian inference is most sensitive: in
the high-probability region of the posterior that dominates both parameter uncertainty quantification
and predictive distributions. The procedure used to obtain the MAP estimates of (19) is detailed
in Appendix F. Under the assumption of a Gaussian prior on the BNN parameters (5), the local
linearization induces the GP prior

glin ~ g’P(Ma K:)

with mean function p and and covariance function  given by:
p(t,x) = g(t, %; Onap) + Joyu (1, %) T (Eonpe[6] — Ouiar)
K((t,x), (t/a X/)) 1= Joyu (1, X)Joya (t/7 XI)T’

Incorporating this approximation into our variational framework allows us to exploit Gaussian
conjugacy for fast, closed-form updates, while still preserving the flexibility of NNs. Concretely, we
take a Taylor expansion of the ELBO around ¢"™ and, by truncating at the lowest order term, obtain
the simple approximation

Lripo(9) = Lerpo(g™).

Our approach is analogous to the method introduced in [47, Section 3.2], where the authors apply
Delta Method Variational Inference by approximating the ELBO around a fixed point in parameter
space. In contrast, we extend this idea by approximating the ELBO around a reference function g'",
rather than a fixed point.

4.3 Coordinate Ascent Variational Inference

We adopt a Coordinate Ascent Variational Inference (CAVI) approach, allowing us to draw on stan-
dard results from variational inference (see, e.g., [5, Chapter 10.1]). In this framework, the optimal
variational distributions are derived by maximizing the linearized ELBO, Lg1po( g“n), with each
distribution depending on the current state of the others. The algorithm proceeds by cyclically updat-
ing each variational distribution while keeping the others fixed. This iterative process progressively
refines the optimal variational distributions, ultimately leading to the best possible approximation of
the posterior distribution. A complete derivation of each optimal variational distribution is provided
in Appendix G while the complete CAVI algorithm is presented in Appendix H.

At the k™ iteration the optimal variational distributions for the parameters ¢ and 6 are given by
k - 5 k - (k)
¢\ (¢) = Gamma (a(’“), ﬁ) . 4@ =N (u(’“), b> ) :

where (&*), 3) and (®, i(k)) are given in Appendix G.3 and G.4, respectively. At the &£™ iteration,
the optimal update for the auxiliary parameters w is given by

N
¢ (w) = [T peolws | 1,EM),
=1



where EZ(.k) is given in Appendix G.1. Finally, at the £™ iteration, the optimal variational law QEII,‘»

is the probability measure under which each ¥; (: = 1,..., N) is a marked Poisson process on

[0, y;] x Ry with intensity function )\?’(k), as given in Appendix G.2.

It is important to emphasize that we did not impose a specific form on the variational distributions; for
example, we did not assume gg(0) to be Gaussian. Instead, we derived our results by minimizing the
KL divergence over the full space of distributions. This contrasts with methods that fix a parametric
form and use the reparameterization trick with Monte Carlo gradient estimates.

Finally, in Appendix I, we demonstrate that, by exploiting the Woodbury matrix identity, our inference
updates require only O(m) time complexity (m is the number of weights in the NN architecture).
This linear scaling renders our Bayesian framework feasible for contemporary large-scale deep neural
architectures, which are well suited to model high-dimensional data.

S Experiments

Details on the experimental setup, including dataset descriptions, benchmark methods specifications
and evaluation metrics definitions are provided in Appendix J. Moreover, the implementation details
for NeuralSurv are provided in Appendix K.

To comprehensively evaluate NeuralSurv, we compare its performance against the following set of
benchmark models: MTLR [51], DeepHit [32], DeepSurv [24], Logistic Hazard [16], CoxTime [29],
CoxCC [29], PMF [28], PCHazard [28], BCESurv [30], and DySurv [36], Sumo-Net [43] and
DQS [50]. A detailed overview of these models is provided in Appendix L and summarized in
Table A2. Except for DySurv, which employs an autoencoder framework, we adopt the same NN
architecture across all benchmark models and NeuralSurv to parameterize the hazard function. For
DySurv, we use the original autoencoder architecture specified in its implementation.

We assess discriminative performance using the Antolini’s concordance index (C-index) [3], and
evaluate model calibration with the inverse probability of censoring weighting (IPCW) integrated
Brier score (IBS) [17], the Distribution Calibration (D-Calibration) [18], and the Kaplan—Meier
Calibration (KM Calibration) [9]. The C-index evaluates how well a model performs by measuring
the concordance between the rankings of the predicted event times and the true event times. The
C-index ranges from O to 1, where higher values indicate better discriminative performance; a value of
0.5 corresponds to random guessing. Similar to the mean squared error, the Brier score (BS) assesses
the accuracy of an estimated survival function at some time ¢. The [IPCW are observation-specific
weights that account for censoring in survival data, ensuring that the BS remains unbiased. The IPCW
IBS is the integral of the IPCW BS over the observational period. The D-Calibration test bins each
individual’s predicted survival probability at their observed event time into equal-width bins over
and applies a x? test to assess whether those predicted probabilities are uniform across bins. A well-
calibrated model should yield a non-significant p-value. The KM-Calibration procedure compares
the average predicted survival curve with the Kaplan—Meier estimate. For the KM-Calibration, the
closer the two curves align, the better calibrated the model, where 0 indicates perfect calibration
and 1 indicates maximal miscalibration and a random prediction yields 0.25. The C-index and
the IPCW IBS metrics are computed using the TorchSurv package [37]. The D-Calibration and
KM-Calibration metrics are computed using the SurvivalEVAL package [41].

5.1 Synthetic Data Experiment

In this section, we present experiments conducted on synthetic data. The experimental setup was
inspired by [13] and constitutes a broadly applicable evaluation benchmark. We simulate the training
sets with increasing sizes N = 25, 50, 100 and 150 samples where the event time was drawn from two
distributions: po(7) = LogNormal(3,0.8%) and p;(T) = LogNormal(3.5,1%). Each observation
includes a covariate indicating whether the event time is sampled from pg or p;, along with three
additional noisy covariates generated from a standard normal distribution. The censoring times are
drawn from an exponential distribution with a rate of 0.025 yielding an average censoring rate of 54%
across the four synthetic datasets. The test set is generated using the same data-generating process,
fixed to 100 observations, and held constant across all experiments.

Figure 1 presents the true survival function alongside the predicted functions from NeuralSurv and
the two top-performing benchmark models, selected based on IPCW IBS. Each panel represents
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Figure 1: Comparison of the true survival function (black) with the estimated survival functions from
NeuralSurv and the two top-performing benchmark models (colored) on synthetic data. The time
axis is truncated at the maximum observed event time in the training data. Each panel represents a
different training set size. The IPCW IBS score is reported for each method in each panel, with lower
values indicating better predictive accuracy. NeuralSurv estimates the full posterior over survival
functions, and the 90% credible interval is shown as a ribbon around its estimate.

a different training set size. As the number of training samples increases, the predicted survival
functions match more closely the true survival function. The results show that NeuralSurv consistently
ranks as the best method according to IPCW IBS, and its predictive accuracy improves with larger
sample sizes. Beyond its competitive performance, NeuralSurv also provides Bayesian credible
intervals, offering uncertainty estimates for survival probabilities, an important feature absent in deep
learning benchmark models. Notably, these credible intervals appropriately narrow as more data
becomes available, demonstrating well-calibrated uncertainty quantification. Corresponding C-index,
IPCW IBS score, D-Calibration p-values, and KM-Calibration scores for all methods are reported in
Tables A3-A4.

5.2 Real Survival Data Experiments

To comprehensively evaluate NeuralSurv, we conduct experiments on eight real survival datasets: the
chemotherapy for colon cancer (COLON), the Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC), the Rotterdam and German Breast Cancer Study Group (GBSG), the
National Wilm’s Tumor Study (NWTCO), the Worcester Heart Attack Study (WHAS), the Study
to Understand Prognoses and Preferences for Outcomes and Risks of Treatment (SUPPORT), the
Veterans administration Lung Cancer trial (VLC) and the Sac 3 simulation study. Each dataset is
subsampled to 125 observations to highlight the advantages of a Bayesian approach in data-scarce
regimes. The data is randomly partitioned into five equally sized folds, with each fold serving as a
distinct train/test split, comprising 100 training samples and 25 test samples per fold.

Table 1 presents the C-index and IPCW IBS on the held-out test sets for three representative datasets,
while results for the remaining datasets, as well as D-Calibration and KM-Calibration, are shown
in Tables A5—A6. Across eight datasets, NeuralSurv achieves the best IPCW IBS score on seven,
highlighting superior overall calibration compared to benchmarks. It consistently passes D-calibration,
together with Sumo-Net as the only benchmark achieving this result, while it ranks fifth in KM-
calibration. This strength arises from its Bayesian framework, which naturally models uncertainty
and provides effective regularization in data-scarce settings. Beyond calibration, NeuralSurv also
demonstrates strong discriminative performance, achieving the best C-index in four datasets and the
second best in three.

An ablation study using a larger training set of 250 observations is presented in Tables A7-AS.
NeuralSurv continues to outperform benchmark methods under this setting in terms of calibration
performance demonstrating the robustness of the method to training size. Furthermore, we also
include results from traditional survival models, such as the Cox Proportional Hazards model [10],
the Weibull Accelerated Failure Time model [8], the Random Survival Forest [23], and the Survival
Support Vector Machine [40] in Tables A9-A10. These models often achieve strong performance
in data-scarce regimes. However, they are not designed to leverage high-dimensional or complex
feature representations, which limits their applicability in modern deep learning contexts. Our focus
remains on evaluating deep survival methods that can scale with data complexity, but we include these



COLON METABRIC GBSG

Method C-index T IPCWIBS | C-index t  IPCWIBS | C-index T IPCWIBS |
MTLR [51] 0.562 0.298 0.548 0.279 0.602 0.273
DeepHit [32] 0.478 0.28 0.511 0.243 0.578 0.309
DeepSurv [24] 0.572 0.326 0.523 0.289 0.618 0.252
Logistic Hazard [16] 0.490 0.321 0.541 0.317 0.618 0.296
CoxTime [29] 0.578 0.277 0.533 0.307 0.599 0.285
CoxCC [29] 0.584 0.289 0.575 0.257 0.646 0.240
PMF [28] 0.509 0.324 0.440 0.336 0.655 0.250
PCHazard [28] 0.538 0.297 0.541 0.291 0.609 0.249
BCESurv [30] 0.491 0.302 0.616 0.277 0.581 0.273
DySurv [36] 0.488 0.536 0.561 0.465 0.572 0.485
Sumo-Net [43] 0.485 0.241 0.447 0.223 0.476 0.250
DQS [50] 0.635 0.246 0.564 0.261 0.611 0.229
NeuralSurv (Ours) 0.671 0.218 0.584 0.212 0.657 0.188

Table 1: Performance comparison of deep survival models over five different train/test splits of each
dataset. The best results for each metric are shown in bold, and the second-best results are underlined.
71 indicates higher is better; | indicates lower is better.

classical baselines for reference and completeness. A prior sensitivity analysis for the parameter ¢,
using priors with double and half the original variance, is presented in Table A11. While the posterior
distributions under different priors largely overlapped, their central tendencies occasionally differed,
indicating mild to moderate sensitivity to the choice of prior. Incorporating prior information remains
important, as it helps strike a principled balance between model flexibility and regularization.

6 Conclusion

We propose the first fully Bayesian framework for deep survival analysis that models time-varying
relationships between covariates and risk. On both synthetic and real-world datasets, in data-scarce
regimes, our method consistently achieves better calibration than state-of-the-art deep survival models
and matches or surpasses their discriminative performance. In contrast to previous approaches in deep
survival analysis, which are either constrained to discrete-time settings [51, 32, 16, 28, 30, 36] or lack
the ability to provide Bayesian uncertainty quantification [51, 32, 24, 16, 29, 30, 36], NeuralSurv
introduces a continuous-time modeling framework that naturally incorporates Bayesian inference,
enabling both accurate survival predictions and well-calibrated uncertainty estimates.

Pélya—Gamma and Poisson data-augmentation schemes (Section 3.3) have been extensively employed
with standard Gaussian process models [12, 52]. Likewise, the local linearization of Bayesian neural
networks, which yields a Gaussian process—based approximation, (Section 4.2), is a well established
technique [22]. To our knowledge, this work is the first to integrate these two approaches into a
unified framework that capitalizes on Gaussian process conjugacy. By combining these methods,
we contribute a novel inference strategy at the intersection of Bayesian deep learning and Gaussian
process modeling.

Despite its strengths, NeuralSurv relies on three key simplifying assumptions. First, we assume a
sigmoidal hazard function, a choice shared by prior work (e.g., [13, 25]), which may not capture all
risk dynamics. Second, our mean-field variational inference treats parameters ¢ and @ as independent,
ignoring posterior correlations. Third, we linearize the network around the MAP estimate to enforce
conjugacy. In real-world settings, however, the true posterior can be multimodal and strongly
correlated, so this local, factorized approximation may overlook secondary modes or misestimate
joint uncertainty.

Concerning the computational efficiency of our method, the coordinate-ascent updates scale linearly
with network size but still require full-dataset passes each iteration. For very large cohorts, this
becomes a bottleneck. Extending the algorithm to use stochastic or mini-batch updates would preserve
conjugacy benefits while improving scalability.

We believe that NeuralSurv has the potential to make a positive societal impact. For instance, as
healthcare data becomes increasingly diverse, there is a growing need for models that can handle
multimodal data within time-to-event analyses effectively. NeuralSurv represents an important first
step toward accommodating such data within a Bayesian deep learning framework.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. The claims
made match theoretical and experimental results, and reflect how much the results can be
expected to generalize to other settings.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The conclusion points out all the assumptions made in the paper and reflects
on how these assumptions might be violated in practice and what the implications would
be. Moreover, the conclusion summarizes the computational efficiency of the proposed
algorithms and how they scale with dataset size and Appendix I gives more details.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Theorem 3.1, as well as all the formulas, are numbered and cross-referenced.
The assumptions of Theorem 3.1 are stated in the statement and the proof is presented in
Appendix N.1. The theorems and Lemmas that the proof relies upon are properly referenced.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all information necessary to reproduce the main
experimental results. Specifically:

* Appendix J details how the benchmark results were obtained, the definitions of the
evaluation metrics, and the specific software packages (along with their versions) used
for model evaluation and metric computation.

* Pseudocode in Algorithms 1 and 2 for NeuralSurv is provided to clarify the algorithmic
steps. Additional implementation details for NeuralSurv are included Appendix K to
facilitate replication.

* The source code is made publicly available via a GitHub repository, enabling direct
access to the implementation used to produce the reported results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides open access to both the data and code, along with sufficient
instructions to faithfully reproduce the main experimental results:

* The source code is made publicly available via a GitHub repository, enabling direct
access to the implementation used to produce the reported results.

* The generation process for the synthetic dataset is described in Section 5.1, and the
resulting data are available for download from the accompanying GitHub repository.

* The real-world data used in our experiments are publicly available open-source datasets.
The source of these datasets, including the specific package and version used to obtain
them, is detailed in Section J.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all training and test details necessary to understand the
results:
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* The train-test data split for the synthetic experiment is described in Section 5.1. The
train-test data split for the real data experiment is described in Section 5.2 and further
elaborated in Appendix J.1.

* The model architecture is detailed in Appendix K.

* Hyperparameters for the benchmark models, including how they were selected, as well
as the optimizer, batch size, and number of training epochs for the benchmark methods,
are provided in Appendix J.2.

* For the NeuralSurv model, the prior hyperparameters and the value of the regularization
parameter p are specified in Appendix K.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper does not report statistical significance tests. It focuses on settings
where statistical testing was not applicable for supporting the main claims.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The information on the computer resources is provided in Appendix K.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: To the best of our knowledge and judgment, the research complies fully with
the NeurIPS Code of Ethics. In our view, the work does not pose potential harms caused by
the research process, nor does it present any adverse societal impact or potentially harmful
consequences.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The potential positive societal impacts of the paper are summarized in the
conclusion. No negative societal impacts have been identified.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The benchmark methods used in the paper are properly credited, with citations
to the original papers (where applicable) and detailed references to the software packages
and their versions in Appendix J.2. For the datasets, any original studies associated with
the data are cited, and the process for obtaining the data, including the relevant package
names and versions, is explained in Appendix J.1. All licenses and terms of use have been
respected.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The source code is made publicly available via a GitHub repository under the
MIT License, enabling direct access to the implementation used to produce the reported
results. This is explained in Appendix K.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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14.

15.

16.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Review of Survival Analysis

This appendix offers a concise summary of the survival-analysis framework on which our approach is
built. For an in-depth review, the reader is referred to [31].

Survival data for each observation consist of three components:

» Feature vector: A covariate vector x € RP capturing baseline characteristics;

* Event time: a nonnegative random variable 7' measuring the time from baseline to the
occurrence of the event of interest;

* Event indicator: A binary variable §, which takes the value 1 if the event is observed,
and O if the event is not observed within the observational period. In the latter case, the
observation’s data is said to be right-censored, meaning that the only available information
is the time of the last follow-up before the event could occur.

To handle censoring uniformly, we introduce a censoring time C' and record the observed time
y = min(7', C). The event indicator can then be written succinctly as 6 = 1;r<¢y. Throughout,
we assume noninformative right-censoring, i.e. conditional on the covariates, the censoring time is
independent of the event time: C' L T' | x. Conditional on x, we let the event time 7" have cumulative
distribution function F'(¢ | x) and probability density function f(¢|x) such that

t
F(t\x)zP(TﬁHx):/ f(s]x)ds
0
for t € [0, 00). The survival function gives the probability of remaining event-free beyond time ¢:
St | x) ::P(T>t|x):1—F(t|x):/ F(s| x)ds,
t

for t € [0,00). An important modeling quantity is the hazard function, which represents the
instantaneous event rate at time ¢ given survival up to ¢:

Pt<T<t+At|T>tx) f(t|x)

At ] x) = Alirgo At - S(t|x)
Equivalently,
At %) = —Llog (| x),

dt
so that the survival function can be written in terms of the hazard:

S(t]x) = exp(—/ot)\(s | x) ds).
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B Review of Polya-Gamma Random Variables

We follow [38] in defining the family of Pélya—Gamma distributions and their properties.

Definition B.1 (P6lya—Gamma Distribution). A random variable w is said to follow a Pélya—Gamma
distribution with parameters b > 0 and ¢ € R, denoted by w ~ PG(b, ¢), if

iZ
272

with gy, Sy Gamma(b, 1). (A1)

)
c2

) +47r2

The following result expresses the reciprocal of the hyperbolic cosine function raised to the power
b as an infinite Gaussian mixture. This representation is central to connecting the Pélya—Gamma
density with a parameter ¢ # 0 to the case when ¢ = 0.

Proposition B.2. The reciprocal of the hyperbolic cosine raised to the power b can be represented as
an infinite Gaussian mixture:

[cosh (g)} B = /OOO exp (iw) ppc(w | b,0) dw

Notice that Proposition B.2 can also be read as providing a closed-form expression for the expectation
2 g . . . .

B mpre (w]b,0) {exp(— %w)} . Building on this representation, we can relate the density function of a

Pélya—Gamma random variable with a non-zero parameter ¢ through an exponential tilting of the

Pélya—Gamma random density with ¢ = 0. This connection is summarized in the next proposition.

Proposition B.3. The Polya—Gamma density (A1) can be re-written in the form

2
prc(w | b,c) = exp <2w) (cosh(c/2))? ppg(w | b,0). (A2)

The previous propositions not only establish key representations of the Pélya—Gamma density but
also facilitate the derivation of its moment properties. In particular, one can derive the moment
generating function, from which the first moment follows directly. This is captured in the next result.

Proposition B.4. Let ppg(w | b, ¢) denote the density function of the random variable w ~ PG(b, c),
with b > 0 and ¢ € R. Using Propositions B.2 and B.3, the moment generating function is given by

> cosh®(c/2
/ e ppg(w | b, ¢) dw = — e/2) (A3)
0 cosh (% c?— 25)
In particular, the first moment is obtained by differentiating (A3) with respect to £ at £ = 0:
b c
Epmpro(wlb,e) (W] = 2, tanh (5) : (A4)

Finally, the following theorem illustrates how the P6lya—Gamma distribution can be used to derive
useful integral identities.

Theorem B.5. Let ppg(w | b,0) denote the density function of the random variable w ~ PG(b,0)
with b > 0. Then, for all a € R, the following integral identity holds:

eva > wi)?
m =27 W/ exp <;jj> prc(w | b,0) dw
0

where Kk = a — %.

The following corollary is a direct application of Theorem B.5.

Corollary B.6. Let f(w,z) := 5 — —w log(2). Then,

62 — - f(w,z)
o(z) = 3 cosh(Z) /0 e prc(w | 1,0)dw. (AS5)

z
2
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C Review of Poisson Processes

This appendix briefly summarizes the properties of a Poisson process that are most relevant to our
analysis. For a more comprehensive treatment, see Chapters 3 and 5 of [26].

Definition C.1 (Poisson Process). Let Z be a measurable space. A random countable subset
U={z€Z}
is said to be a Poisson process on Z if it satisfies the following properties:
1. Independence: For any sequence of disjoint subsets {Z, C Z }521, the counts
N(Zp) =¥ N Zy
are mutually independent.

2. Poisson Counts: For each measurable subset Z; C Z, the count N(Z}) is Poisson
distributed with mean
/ Az)dz,
Z

where A : Z — R, is the intensity function.

Given a point process ¥, we denote its path measure — that is, the probability measure induced on
its sample-path space — by Py. If the intensity function A(z) is constant, A(z) = A, then U is called
homogeneous; otherwise, it is inhomogeneous. We now extend the concept of a Poisson process by
incorporating additional random attributes, known as marks.

Definition C.2 (Marked Poisson Process). Let U = {z € Z} be a Poisson process on Z with
intensity function A : Z — R. Suppose that for each point z, associate a random variable w, such
that w ~ p,,|.(w|2) , taking values in some space M. Then the collection

Uy ={(z,w) € Z x M}

defines a Poisson process on the product space Z x M. The resulting process is known as a marked
Poisson process with intensity
)‘(Za w) = )‘(Z) pw\z(w|z)'

Next, we present Campbell’s Theorem, which describes the law of sums taken over the points of a
Poisson process (see [26, Sec. 3.2]).

Theorem C.3 (Campbell’s Theorem). Let W be a marked Poisson process on Z x M with intensity
Sunction \(z,w) and let f : Z x M — R be measurable. Then the sum

HWpm) = Y flz,w;)

(2,w); €T M

is absolutely convergent with probability one if and only if
/ min(|f(z,w)|, HA(z,w)dzdw < co.
ZxM
If this condition holds, then
Eg Py [eSH(‘PM)} = exp (/ (e5f(zw) 1))\(z,w)dzdw)
M ZxM

for any s € C for which the integral on the right converges. Moreover

Bty 000 = [ R OmEE

in the sense that the expectation exists if and only if the integral converges.
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D Obtaining the Normalization Factor Z (¢, x)

In this appendix we derive an efficient approximation for the normalization factor
Z(t,x) = Eorp, [0(g™ (¢, x;0))], (A6)
which is needed when computing the CAVI optimal updates (see Appendix G).
Recall from (5) that 6 has the following prior distribution
0~ N(07 I’rn)7

where I, is the m x m identity matrix. Moreover, recall from Section 4.2 that we approximate the
network output g(, x; @) around some reference 8* by its first-order linearization

g““(t, x;0) = g(t,x;0%) + Jg- (¢, X)T(O - 6%),

where Jg+ (t,x) denotes the Jacobian of g(t, x; @) with respect to 6. Because 0 is Gaussian, the
linearized output is also Gaussian:

§(1,%:0) ~ N (g(t3:0) = T+ (1) 0", | 3o+ (1, %))

In order to approximate Z(t,x) we wish to leverage a well-known asymptotic approximation.
Specifically, for a normal random variable X ~ A (1, o?) it holds that

]EXNN(;L,OZ)[U(X” ~o (\/ﬁﬁ) . (A7)

We can apply the result in (A7) to the normal random variable ¢'"" (¢, x; @) and approximate Z (¢, x)
as

g(t,x;0%) — Jg«(t,x) 70"
VIt 16 (5, %)2

Since in (A6) we are taking the expectation under the prior pg(8), it is natural to linearize around the
prior mean, therefore, we set % = 0.

Z(t,x)~ o

24



E Combining Variational Inference with Poisson Processes

In this appendix, we outline how our variational-inference framework integrates marked Poisson
processes — an essential part in the mean-field variational approximation of Section 4.1. For a fully
rigorous, measure-theoretic treatment, the reader is referred to Brémaud’s text [7]. Our development
relies in particular on Theorem T10 in Chapter VIII of that book, which shows how the law of
a marked Poisson process arises via a change of measure using the appropriate Radon—Nikodym
derivative.

We begin by fixing a reference measure on path space:

Definition E.1 (Reference measure Py ). Let ¥ = (¥q,..., Uy) be N independent marked
Poisson processes, where each ¥; is defined on the product space [0, y;] x Ry. We define Py . to be
their joint law where each W, has intensity

Mi(t,w) = P 'ppa(w | 1,0) forall (t,w) € [0,y;] x R, (A8)

Next, let ’y;@(t) be a deterministic function on [0, y;] and let h? (t,w) be a deterministic density on
[0, y;] x Ry satisfying

o Yi
/ h?(t,w)ppg(w\l, 0)dw =1 and / 'y;»@(t)t”*ldt < o0 (A9)
0 0
forallt € [0,y;] andi = 1,..., N. It is convenient to introduce the function

A2(t,w) = 422t w) A i(t,w)  forall (,w) € [0,3:] x Ry,

as well as the functional

Yi
L@ = I ~2)nl.w) | exp (/ / Aeilt,w) = A2 (t,w)) dwdt> .
i=1 \ (tw); €V,

By Theorem T10.b [7, Chapter VIII], whenever Eg p,, , [L(¥)] = 1, the measure Qg (¥) defined
by d(ﬁ%“’ (¥) = L(W) is exactly the law under which each W¥; is a marked Poisson process on
[0,y;] x Ry with intensity )\(i@(t, w). The above result underpins the analysis in Appendix G.2,
where we show that the optimal variational measure Qg coincides with the law of a collection of
independent marked Poisson processes.

Finally, the measure Py)4 also admits a Radon-Nykodim derivative with respect to Pg . which is
given by :

Cusiony L[ T g o ([ st - rtts o s

=1 \(tw);€¥;
(A10)

Notice that tf,xi) = i*(f](t‘:iuf)) , i.e. the ratio of the intensities of Py, and Py .
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F Obtaining the Maximum a Posteriori Oysp

We seek the maximum a posteriori (MAP) estimates
(Omap, Pmap) = arg max logp(6,¢ | D, X).

Applying Bayes’ rule gives the following expression for the posterior density

logp(8,¢ | D,X) o logp(D | X, g(:;0), $) + log pe(8) + log py(9),

where the likelihood density p(D | X, g(+; 8), ¢) and the prior densities pg(0) and py(¢) are specified
in Equations (4), (5), and (6), respectively. Since the log likelihood distribution is intractable, direct
optimization of the posterior distribution is infeasible.

F.1 Approximating the Log Likelihood distribution

Variational Mean-Field Approximation. Our aim is to approximate the log likelihood density
log p(D | X, g(+;0), ). In order to do so, we introduce a variational distribution Q(w, ¥ | 8, ¢) to
approximate the true distribution P(w, ¥ | D, X, g(+; 0), ¢). Such variational distribution differs
from the one used for full-model inference in Section 4.3 because it is conditioned on the values of &
and ¢. Hence, we adopt the notation Q (instead of Q) to highlight this difference. We restrict our
search to distributions that satisfy the following mean-field factorization:

Quw, ¥ | 0,¢) = wa,qﬁ(w | 6,0) x Q\p\e,¢(‘1’ | 6,9).

Here, we take wa@(w | 8, ¢) to admit the density qu,|9,4(w | €, ¢) with respect to the Lebesgue
measure dw.

For the marked point process component, we assume that the variational law Q\pm@ is absolutely

continuous with respect to Py ., so that it admits a strictly positive Radon—Nikodym derivative

d@ . . L d@ ...
?;;ef which satisfies the normalization Egp,, , {%(\P)} = 1. These two conditions

guarantee that @\p‘g7¢ is indeed a probability measure on the space of marked point-process paths.

We decompose the log-likelihood as follows:
logp(D | X,g(:0),¢) =
Dic. (Qu /06w, | 0,6) || Pw, ¥ | D, X, g(-10).9)) + Logo, (ALD

where the ELBO is given by:

P(D | X, (50), 6,0 %) pu(w) 552 (¥)

. < o) -
w~duie,s, ¥ ~Quie,6 8 dQge,¢

Gulo.o(w | 0,0) o -=(¥ | 6,0)

and where Z?;%'d’ is the Radon-Nykodim derivative of the true conditional law Py 4 with respect to
Py ., cf. (A10).

Lepo :=E

o (Al2)

Minimizing the KL Divergence. When the variational distribution Q(w, ¥ | 8, ¢) matches the
true posterior P(w, ¥ | D, X, g(+; 0), ¢), the KL divergence term in (A11) vanishes. Consequently,
the ELBO becomes equal to the marginal log-likelihood, and maximizing the ELBO is equivalent to
maximizing log-likelihood directly. In practice, we minimize the KL divergence so that our ELBO
provides the closest possible lower bound to the true log-likelihood. Therefore, in order to obtain
the closest lower bound to to the log-likelihood log p(D | X, g(+; 0), ¢) we must find the distribution

o

Q(w, ¥ | 8, ¢) which minimizes the KL divergence in (A11).

Using standard mean-field variational inference techniques (see, e.g., Chapter 10.1 of [5]), the optimal

distribution for the latent variables w given (9“), $®) is obtained by computing the expectation of
the joint log-density with respect to the other variational factors, that is

log Guj,4(w) =

Bty i o [1082(D1X,9(56),610,0, @) +log pus(w) +log 5
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A similar update applies for ¥ given (0(2), »D),

d@\p|9¢
log ———(¥) =
og dp\pﬁ*( )
E 1 .0 (£) dP\P"b(Z)
wiwios |108P(D | X, 9(50), 8", w, ¥) + log p, (w) + log Py (¥)| + const.

Following the same derivation as in Appendix G.1, we find the optimal variational distribution of w
given (6, ¢)*):

N N
Gl g0 (W | 0, ¢ = chwi|g(€),¢(£) (w; | 89,01 = HPPG (wi | 1»552)) . (A13)
i=1 i=1
where @ ,

¢ =0 |g(yi,xi;0( ))\ (A14)

By mirroring the derivation in Appendix G.2, one shows that the optimal measure Q\I,|97¢( W 0,0¢)
is exactly the law under which each ¥, fori = 1,..., N, is a marked Poisson process on [0, y;] X R
with intensity

NP (tw [09,60) = X2(t 18,0 )prg (w | 1.lg(t,xi6) ).

where we set
P!
Z(t,x)

2

A2 (t] 01, 6(0) = 6o (lg(t, xi;6)|) exp (—

(A15)

F.2 EM Algorithm for MAP Estimation

EM Algorithm. The Expectation-Maximization (EM) algorithm provides an efficient framework
to iteratively maximize the Q-function. At each iteration / =0, 1,2, ..., we perform the following
three steps:

1. Latent Variables Update. Given the current estimates (0, ¢)(), update Gwio® g0 (W |
0, ¢®) and Q‘I’\G“’,w” (T | 8® ¢ according to (A13) and (A15), respectively.

2. E-Step. Given current estimates (0, ¢)(), compute the Q-function:
Q((8,9)1(6,9)"") =

W, 1000 50 T ~Qg 000 4(0)

ot (D | X.5(:0). 610, 9) pofe) 2220 )|

+logpe(0) + log ps(9). (AL6)

Note that the entropy term of the ELBO (i.e., the denominator) is not included as it does not
depend on the parameters (8, ¢) but on the current estimates (6, ¢)(*), hence it is irrelevant
to the parameters’ optimization.

3. M-Step. Update the parameters by maximizing the Q-function:

(8,0)*) = argmax Q((6,9)|(6,6) ).

Steps 1-3 are repeated until a given convergence criterion is met. We provide an algorithmic
description of our EM algorithm in Algorithm 1.
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Algorithm 1 Expectation-Maximization (EM) for maximum a posteriori (MAP) Estimation

1: Initialize: Set initial value for (8, ¢(©).
2: Set: iteration counter £ <— 0

3: repeat
4. L+ 1+1
5.  Latent Variables Update:
6. Update qi(f ).
o(0) N . () .
7 Update: {cl- } ) given 6" following (A14).
8:  Update Qfﬁ):
< N
9: Update: {)\?’“)()} given 0“) and (¥ following (A22).
1=
< N
10:  E-step: Evaluate the Q-function Q((0,¢) | (6,¢)¥)) given {él(-[), )\;@,(5)(.)}‘
following (A16) .
11:  M-step: Update parameters by

(8,9)“Y) = argrmax Q((6,9) | (6,9)"))

)

12: until Convergence criterion is met
13: return (9, ¢(9)

K 0¢ and ¢*
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Computing the Q-function. The optimal distributions which minimize the KL divergence can now
be plugged in the ELBO of (A12) to obtain the closest lower bound to the log-likelihood. We now
recast the MAP optimization problem in term of this lower bound. Specifically, define the following
Q-function

Q((0’¢)|(97¢)(3)) =K [logp(D | X’g(';0)>¢7w>‘:[’)]

w900 50T~y 00 40

+E

dPg/e
Wi i60) 50 E g 16(0) 40 log(pu(w) +log <dP\p7* (\P))]
+ logpe () + log ps ().

We now wish to derive a closed-form expression for the Q-function which can be used in the MAP
optimization. Specifically, using the augmented likelihood factorization in (15), we obtain

N

Q((97 ¢)|(0, ¢)(l)) = § :Ewiqu.\e(l> PAC) T‘PiNQ\p.Ie(ﬂ) (0 [Ing(D ‘ X, g('; 0)7 ¢, wi, \Ilz)]
i=1 R o
dp
{log oy
216(0) 6(0) dPy .

-l—IE“,N(;wa,,> S0 [log pu (w)]+Eg. 5 (‘I’)} +log pe(6)+log pys(¢)+const.

Next, by substituting the expression for the augmented likelihood in (14), for the priors pg(8) in (5)

and pg(¢) in (2) and for the Radon-Nikodym derivative of Py, with respect to Py . from (A10),
we obtain

a i, Xi; 0 i, X5 0)?
Q((07¢)‘(97¢)“)) = Z (51 (10g¢+ g(y x ) - g(y x ) EwiN‘iwi\e(@),(p(h [wz]>

=1
Yi
+ E\IliNqu\sd) 50 Z Flwj =g(t,xi:0)) | / Yolys, xi5 $)d8
* ' | (t,w); €T; 0
¢
+ ]E\IjiNQ\I/i‘e([),lﬁ([) Z lOg <Z(tX7)
L (t,w); €T I

- %OTH + log(¢)(ag — 1) — ¢S + const.

We apply Campbell’s theorem (see Theorem C.3), we substitute the expression for the baseline hazard
Ai(+; ¢) from (12) and we substitute the expectation using the optimal variational distribution of w;
from (A13), to obtain

N R 1 0)2 (0)
Q(0,0)1(8,6)) =>" [@ <9(%2u@> _ g(ywv&f) ol (ea >>
4¢

i=1

1

Yi o
5 [ attxin¥e 6%, 60)ar
0

1 [y t x::0)2 t x:: 00 y
_ 7/ g( ) Xis 2 tanh |g( ) Xis )| A;Q(t | 0(@)7¢(£))dt
4Jo g(t,x:;0)) 2

N Yi
- %eTe + log () <a0 +Y° (& +/ At | 9<Z>,¢“>)dt) - 1)
i=1 0

p—1

—9 504—;/0 mdt + const.,

where )\?(t 101, (1)) is shown in (A15).
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G Coordinate Ascent Variational Inference Optimal Updates

In this Appendix we present a heuristic derivation of the CAVI optimal updates presented in Sec-
tion 4.3. Before presenting the next results, we define here for convenience

ﬁu('k)(t) = ngqg«) (9™ (t,x:;0)] N(k) \/]Eo~ w [g" (%35 0)7]

for k > 0.

G.1 Optimal Update for w

Using standard mean-field variational inference techniques (see, e.g., Chapter 10.1 of [5]), the optimal
update for the latent variables w is obtained by computing the expectation of the joint log-density
with respect to the other variational factors. In particular, we have

log ¢\ (w) = E,. 20 Bmg D gl 1>{logp (D | ¢, 1‘"(~;9),w,\11)} + log pe, (w) + const.

Using the augmented likelihood factorization in (15), the expression decomposes as

log ¢ (w ZE¢~q<k D Gngl Wi n Q" 1){10gp(yu5 | x;, ¢, 9" (1 0), Wu‘h)}

i=1
+ log pu,(w) + const.

Next, by substituting the expression for the prior p,,(w) from (10) and the augmented likelihood
from (14), we obtain

N
i0i ([ (k— 2
g () = 3 (5% (5 0) "+ torpma(el1,0)) + coms

=1

Finally, by applying the identity in (A2), we deduce that the optimal variational distribution factorizes
as

N
q‘(‘,k) ((.U) = H (k) wz HPPG (wl ‘ 1ac(k)) )
i=1

where N .
& = 5,55 () (A7)

Optimal Variational Expectations for w. From Proposition B.4, we obtain the required expectation
for updating the other variational factors with

) )
IEWquLk) [wi] = 220 —tanh 2 (A18)

)

fori =1,..., N. Notably, since this expectation is always multiplied by d; when updating other
variational factors, it remains well-defined in all cases.

G.2 Optimal Update for ¥

Using standard mean-field variational inference techniques (see, e.g., Chapter 10.1 of [5]), we obtain
the optimal Radon-Nykodim derivative dc]l]%" by taking the expectation of the joint log-density with
respect to the other variational factors. In particular, we have

dQ®
APy

log (‘I’) = E(waq;kfl)’gwékfl) oo [logp(D | ¢, 9" (5 60),w, V)]

dPg e
dHD\Iﬁ*

+E, 0 [log (‘I’)] + const.,, (A19)
@
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where the constant term absorbs all terms irrelevant to the optimisation. Using the augmented
likelihood factorization in (15), the expression in (A19) decomposes as

dQ(k) lin
log Py ) = ;E¢~q;k71),9~qék71), (k) [logp(yl,é |¢, ( : ) Wi, \I’z)]

dP‘I’,*

Next, by substituting the augmented likelihood from (14) and the Radon—-Nikodym derivative of
Py|4 with respect to Py . from (A10), we arrive at the unnormalised form

+E, o0 {log (\Il)} + const.
~q

d (k) .
log d]P)\I; Z Z ]E (k 1) (wja_gl (tjyxuo)):l

1=1 (tw); €Y,
al ¢
1 |1 _ .
+ g E E¢~qék 1 [og <Z(tj,xi)>} + const.  (A20)

i=1 (tw); €;

Plugging in the definition of f(-, -) from (8) simplifies (A20) to

Al ()
2

q (k) N
log To¥(9) = -3

wj + 1og(2)]

dPg , 2 +
i=1 (t,w);€V;
N
Z Z {E¢~q(k71) [lOg (b} — log Z(tj, Xz)} -+ const.
i=1 (t,w); €T, ¢
To express this in closed form, define for eachi = 1,..., N and (¢,w) € [0, y;] X R the functions
2
~(k—1)
(si (t)) k1)
R2(®) (t,w) :=exp | ——————w | cosh 7() ,
‘ 2 2
_ (k—1) ~(k—1)
Q,(k) 1 (k1) oy () +5 (1)
Yi (t) . Z(t, X’L) U(Si (t)) exp < 2 + E¢~q$€71) [lOg ¢] )

NPt w) = O ORF P (L w)A it w),
where A, ;(t,w) is the intensity defined in (A8). Furthermore, we define for convenience,
AT (@) = P ). (A21)
Notice that by using expression (A2), the function )\?’(k) (t,w) can be written as
PO (tw0) = XD (1) pro (w 1,587 1)) (A22)

Finally, enforcing the normalisation condition

1
E‘I’NP\P,* ldP; (‘I’) =1

together with Campbell’s theorem (Theorem C.3) yields the normalized derivative

dQy’
dP\P,*

() =

H ,YQ (k) h@ 2 (k) (tj7 UJ] exp (/ / * Z t w )\?7(k)(t7W)) det) .
t,w);EW;

i=1 \(
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(k)
t;,w;) are all strictly positive %, hence dQ is also strictly

Notice that the products 'yQ( )( )hQ (k )(

positive. Under suitable regularity conditions on g, one can show that hQ (k)(t w) and ~; Q.(k )(t)
satisfy the integrability criteria of (A9), so that @\11 is the probability measure under which each U,
(i=1,...,N) is a marked Poisson Process on [0, y;] x R with intensity function A;Q’(k) (t,w).

Optimal Variational Expectations for ¥. From Proposition B.4, we obtain the required integrals
for updating the other variational factors

| 20w =330,
Ry

~(k—1)

1

/ AZ®) (¢ w)wdw = AP ® (¢ t)—g=py - tanh 5 W)
R, 25"V (1) 2

G.3 Optimal Update for ¢

Using standard mean-field variational inference techniques (see, e.g., Chapter 10.1 of [5]), the optimal
variational factor for the parameter ¢ is obtained by computing the expectation of the joint log-density
with respect to the other variational factors. In particular, we have

. d
log gy (6) = Byt gt o) |08 (D | 6,9™(50),w, %) +log

Using the augmented likelihood factorization in (15), the expression decomposes as

N
k
log 0, (6) = D Bg 00 09w, 108D (Wir i1, 6,0, w3, W)
=1

dPg e
dP‘I’,*

Next, by substituting the expression for the augmented likelihood from (14), the Radon—Nikodym
derivative of IF’\I,W with respect to Py . from (A10), and the prior of ¢ from (2), we obtain,

. ]E%@‘\:) {IOg (‘I’)} + log py(¢) + const.

N

() "
log gy’ (¢) = <6i log Ao (i, x5 ¢) _/o Ao(t, xi; )dt

i=1

+Eyqp | 2 los (Z(ticl)) ) + (ag — 1) log(¢) — Bod + const.

(t,w)]‘ ev;

We apply Campbell’s Theorem (Theorem C.3) and substitute the expression for the baseline hazard
Ao(+) from (2), to obtain

log ¢’ (¢)

N Yi Yi p—1
_ _ Q. (k) ) ¢
= log(¢) (ao + ; <6l + /0 A; (t)dt> 1) o (ﬂo + Z:: /0 ~ (t,Xi)dt> + const.,

where /\;@’(k) (t) is shown in (A21). We deduce that
k o -
4;”(¢) = Gamma(a"), §),

where with shape &%) and rate B given by

k>—a0+2(é+/ x@ dt) B = 50+Z/ txl . (A23)

2See Lemma N.1 for a proof of the strict positivity of the normalization factor Z (t, x;).
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Optimal Variational Expectation for ¢. We obtain the required expectation for updating the other
variational factors with

E, ,wllog] = v (a®) —log (8), (A24)

where ¢ (-) is the digamma function.

G.4 Optimal Update for 6

Using standard mean-field variational inference techniques (see, e.g., Chapter 10.1 of [5]), the
optimal variational factor for the parameters 0 is obtained by computing the expectation of the joint
log-density with respect to the other variational factors. In particular, we have

log q(k)(e) = E¢Nq;k),quLk)7‘PNQ$) [logp (D | &, gli“(~; 0),w, \I’) ] + log pe(0) + const.

Using the augmented likelihood factorization in (15), we obtain

N
log 45 (0 )=2:IE¢,M1§;>MNQWZ>wp ~g) [log p (yi, 0i | xi, 6, 9™ (:10),wi, ¥;)]
=1

+ log pe(0) + const.

Next, by substituting the expression for the augmented likelihood (14) and for the prior for 8 from (5),
we obtain,

N
6i in in
log q(k)(e) Z (2 (91 (yi,xi50) — L) [wi] ¢' (yi,Xi;0)2)

i=1

1mn 1
+E%~Qf§j ( )Z f(wj, —g™(t5,%4:;0)) ) —§9T9+const.
t,w jE\I/i

We apply Campbell’s Theorem (Theorem C.3) to obtain,

i=1

N
Oi ( i i
log q(k)(e) Z <2 (gln(yi,xi;a) - E%qu[wz]gln(yi,xi; 9)2)

1 . . 1
+ 5/ (—g"™(t, x5 0) — g™ (¢, %3 0)*w) )\(i@’(k)(t,w)dtdw> — §6T0 + const.,
Z;

where )\(i@’( (t,w) is shown in Equation (A22). Next, we recall the expression for ¢g'(-; @) from (18)
and we notice that

9" (;10) = 0" Jo,,,(-) + const.
gliﬂ('; 0)2 f— OTJGMAP(') (29(’ QMAP) — QJGMAP(.)TOMAP) _|_ OTJGMAP(')JOMAP(')TO _|_ COnSt.7

where the constant term represents terms that do not depend on 6. We substitute the expression for
ling . ling . 2 :
g"™(+;0) and g"(-; 0)? and we obtain,

log qék)(a) =0"A® —9"BH@ + const.,

where

N
1
=> 3 (5 Toyae (Y1 Xi) (1 2B, o lwil (9(yi,%i; Oap) — JeMAp(yuXi)TOMAP))

i=1

- (Iff? +2 (Ig(f? ~ 7 HMAP)) ) (A25)
1 1

=35 (0B, 0 il o (i X oy (i %) + T4 ) + 51 (A26)
i=1
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and
11 = / o (t,x:) N (1)t
tanh (gg’“‘”(t) /2)
2551 (1)
tanh (55’“”@) /2)
2551 (1)

A, 7, ; and T, ; are vectors of the same length of 8. B and 73 ; are square matrices for which each
dimension is the length of 8, and I,,, is the identity matrix of length of 8. We deduce that

a5 0) =N (9,57,

Yi
Iéi) = / Jouar (t’ Xi)g(t, Xi; GMAP)/\;.Q’(’C) (t)
0

dt.

Yi
k (k
I?E,z) :/0 JGMAP(t’Xi)JHMAP(t’Xi)T/\(i@( )(t)

where . .
% = % (B®) A®, 5= % (B®) . (A27)

Optimal Variational Expectation for 8. We obtain the required expectation for updating the other
variational factors,

]Eewqé’“ [glin(tv X5 0)] = g(tv Xi3 OMAP) + JeMAP (t’ Xi)—r (p'(k) - OMAP) )
. 2
By o0l (t,%i:0)%] = (g(t7Xi;0MAP) + Joyn (%) (ﬁ(k) = 0MAP)) (A28)

(k)

+J0MAP(t?Xi)T2~: JGMAP(t7Xi)'
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H Coordinate Ascent Variational Inference Algorithm

Algorithm 2 Coordinate Ascent Variational Inference (CAVI)

1: Compute: Compute f3 following (A23).
-\ (0)
2: Initialize:: Set initial values for &(°) and (,&, E) .

3: Compute: E,_ () [log ¢] given (d(o)ﬁ) following (A24).
¢

~\ (0)
4: Compute: {(1i;(-), (1))@} given (@2) following (A28).
5: Set: iteration counter k < 0
6: repeat
7. k<« k+1
8:  Update qff):
: LAY iven €5, (=Y i
9: Update: 4¢;” ¢ given {5;(-) }izl following (A17).
=1 N . (k) N .
10 Compute: {Ew.~q<’“> [wz]} given {51: } . following (A18).
1wy i=1 i=
11:  Update QEI]f ):
N
12: Update: {)\?’(k)(-)} given ({(mi('),§i('))(k71)}£\;1,]}3¢~q(k—1)[log ¢]> follow-
i=1 @
ing (A22).
13:  Update qff):
. . (k) o Q,(k) N :
14: Update: &%) given { A7V () ¢ ) following (A23).
15: Compute: Ed)Nqi)k) [log ¢] given (@¥), 3) following (A24).
16:  Update qék):
_a\k) k) Y .
17: Update: (u7 2) given {(Ewwq(k) [wil, A ()} following (A27).
i~quw; i=1
-\ (k)
18: Compute: { (1, (), 51())(’@}511 given (ﬁ, E) following (A28).

19: until Convergence criterion is met
20: Return: Optimized variational distributions qé"'*)(e) =N ([L(k*),i(k )) and q(’l‘;*(qs) =

Gamma (07(7‘3*), B) , where k* is the final iteration after convergence.
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I Computational Speed-Ups

Survival-analysis cohorts often comprise only a few hundred to a few thousand observations, yet
modern deep learning models may involve millions of parameters, putting us in the N < m regime.
To exploit this disparity, we develop two complementary strategies that avoid any expensive m-
dimensional inversions or factorizations by leveraging the fact that the nontrivial part of our key
matrix is low-rank relative to the full parameter dimension m. We also show how heavy censoring
further reduces the computational burden.

To streamline what follows, let us introduce the shorthand
Jl‘ = JGMAP ('y“ Xi) S RmX1

fori =1,..., N. With this notation (and dropping the CAVI-iteration index for clarity), the matrix
B € R™*™ defined in (A25) becomes

N
1 1
B =Y 5 (0 Buima, ] 337 + L) + 5 Lo
i=1

Here, each 73 ; is the integral
tanh (5;(¢)/2)

Yi
I?),i = /O J9MAP (t’ Xi) JGMAP (tv Xi)T )‘(zQ(t) 23, (t)

and in general admits no closed-form solution. We therefore approximate it by any standard quadrature
rule (e.g. trapezoid, Simpson’s, or Gauss—Legendre). In what follows, we will illustrate the argument
with the trapezoid rule, though the same steps apply to any other quadrature method.

dt

We begin by introducing a uniform grid of points along the time axis:
t17t27°"7tK7

where t1 := 0 and ¢ := max{y; }}¥,.We associate a set of quadrature weights {v;;, }_; to the time
grid points, tailored for each observation 7. These weights correspond to the trapezoidal rule for
numerical integration on the interval [0, y;], and are defined as:

Lot ifk=1andt, <y,
bartleod ifl < k < K; and ty < i,
Vik = § tx, —tx,_ .
’ S ik = K,
0, k> K;,

where K; = max{k € {1,..., K} : t; < y;}. Further we denote by V; the collection of quadrature
weights for observation ¢, such that

Vi = (’Uﬂ,...,’UiK) € RK

We collect the Jacobian evaluations into the matrices
Q’i = [JGMAP (tl,Xi) JeMAp(t2axi) e JOMAP(tK;Xi)] - R"LXK_
With these definitions in hand, any K -point quadrature rule yields the approximation
K

T3~ > Uik Joyar (tr: Xi) Toyap (b X)) = Qi Vi Q7.
k=1

Likewise, each term
0;Eu, ~qw, [wi]']i'];r

can be written in the form J;C,;J7, where the scalar C; = 0iBuw;mqe, [wi].

We collect all contributions into a single matrix U € R™*E where R = N + NK. This matrix is
constructed by horizontally concatenating the vectors J; and Q; for: = 1,..., N, as follows:

U := Jl 7']27"'5']1\77 Ql 7Q27"'5QN
~— ~—
(mx1) (mxK)
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Further, we define the block-diagonal weight matrix

C := diag(61Ew, ~q,, [w1], -, ONEuyrmga, [WN], Vi ,..., Vy) € R

(V) (5

It is straightforward to verify that
1
B=3 (I, +UCU").

Applying the Woodbury identity (see [20, Appendix B.10]) then reduces the inversion of B to that of
an R x R matrix:

B! =2(I, + UCU") ' =2[I, - U(C™' + UTU) U7,

Forming the Gram matrix UT'U requires O(mR?) operations (each of its R? entries is an inner
product of two length-m vectors) while inverting the resulting dense R x R matrix costs O(R?).
Therefore, assembling and solving the small system costs

O(mR?) + O(R?) = O(mR? + R?)

instead of O(m?) for a full m x m inversion. Whenever R < m, this yields a dramatic speed-up. By
replacing the direct O(R?) factorization with a Conjugate-Gradient (CG) solver — as is commonly
done in Gaussian-process toolkits such as GPyTorch [14] — we reduce the cost to O(R?).

Finally, many survival datasets exhibit censoring, i.e. §; = 0 for a fraction of observations. Since
censored observations contribute only through the integral term, we may further partition the low-
rank factor U into blocks for uncensored and censored cases. The effective rank becomes R’ =
Nuncensored + N K where Nypcensored 1S the number of uncensored observations, so that any Cholesky
or CG solve scales with (Nypcensored + IV K) rather than (N 4+ NK). When Nypcensored << IV, this
yields an additional, potentially large reduction in computational cost.
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J Experiment Set-Up

J.1 Real Survival Data

The real survival data used in Section 5.2 are presented below. In the central experiment, each dataset
was subsampled to contain 125 observations in total. In an ablation experiment, each dataset was
subsampled to contain 250 observations in total. Then, we performed 5-fold cross-validation, where
the dataset was randomly divided into five equal parts. In each fold, one part (20%) was used as
the test set (central experiment: 25 samples, ablation experiment: 50 samples), while the remaining
four parts (80%) formed the training set (central experiment: 100 samples, ablation experiment: 200
samples). From the training set, 20% (central experiment: 20 samples, ablation experiment: 40
samples) was further attributed to the validation set.

Colon. The first successful trials of adjuvant chemotherapy for colon cancer dataset was obtained
from the survival package [46]. The dataset contains records of 1,822 observations with 15
covariates among which 49.23% are censored. All rows with missing values were excluded from the
dataset.

NWTCO. The National Wilm’s Tumor Study (NWTCO) was obtained from the pycox pack-
age [27]. The dataset contains records of 4,028 observations with 7 covariates among which 14.18%
are censored.

GBSG. The Rotterdam and German Breast Cancer Study Group (GBSG) was obtained from the
pycox package [27]. The dataset contains records of 2,232 observations with 7 covariates among
which 43.23% are censored.

METABRIC. The Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)
dataset was obtained from the pycox package [27]. The dataset contains records of 1,904 observations
with 9 covariates among which 42.07% are censored.

WHAS. The Worcester Heart Attack Study (WHAS) dataset was obtained from the sksurv pack-
age [39]. The dataset contains records of 500 observations with 14 covariates among which 43.00%
are censored.

SUPPORT. The Study to Understand Prognoses and Preferences for Outcomes and Risks of
Treatment (SUPPORT) dataset was obtained from the pycox package [27]. The dataset contains
records of 8,873 observations with 14 covariates among which 31.97% are censored.

VLC. The Veterans administration Lung Cancer trial (VLC) dataset was obtained from the sksurv
package [39]. The dataset contains records of 137 observations with 8 covariates among which 6.57%
are censored.

SAC 3. The Sac 3 dataset from the simulation study in [28, Appendix A.1] was obtained from the
pycox package [27]. The dataset contains records of 100,000 observations with 45 covariates among
which 37.20% are censored.

J.2 Benchmark Methods

J.2.1 Benchmark Deep Survival Methods

All deep learning methods share the same neural network architecture, which is detailed in Section K.
The benchmark deep survival models were trained using the Adam optimizer with a learning rate
selected via grid search. Batch normalization was applied, and a dropout rate of 0.1 was used.
Training was conducted for 1,000 epochs with a batch size of 256.

MTLR. The Multi-Task Logistic Regression [51] was implemented using the MTLR class from the
pycox package [27].
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DeepHit. The DeepHit method [32] was implemented using the DeepHitSingle class from the
pycox package [27]. The hyperparameters o and o were set to 0.2 and 0.1, respectively. Those are
the default values.

DeepSurv. The DeepSurv model [24] was implemented using the CoxPH class from the pycox
package [27].

Logistic Hazard. The Logistic Hazard method [51] was implemented using the LogisticHazard
class from the pycox package [27].

CoxTime. The CoxTime method [29] was implemented using the CoxTime class from the pycox
package [27].

CoxCC. The CoxCC method [29] was implemented using the CoxCC class from the pycox pack-
age [27].

PMF. The PMF method [28] was implemented using the PMF class from the pycox package [27].

PCHazard. The PCHazard method [28] was implemented using the PCHazard class from the
pycox package [27].

BCESurv. The BCESurv method [28] was implemented using the BCESurv class from the pycox
package [27].

DySurv. The DySurv method [36] was implemented using the official code provided by the authors,
available at https://github.com/munibmesinovic/DySurv/blob/main/Models/Results/
Static_Benchmarks_GBSG_Example.ipynb (Accessed on May 13 2025).

Sumo-Net. The Sumo-Net method [43] was implemented using the official code provided by the
authors, available at https://github.com/MrHuff/Sumo-Net (Accessed on July 25 2025).

DQS. The DQS method [50] was implemented using the official code provided by the authors,
available at https://github. com/IBM/dgs (Accessed on July 25 2025).

J.2.2 Traditional Survival Methods

CoxPH. The Cox Proportional Hazards model [10] was implemented using the CoxPHFitter class
from the 1ifelines package [11]. The Breslow method was used to compute the survival function.

Weibull AFT. The Weibull Accelerated Failure Time model [8] was implemented using the
WeibullAFTFitter class from the 1ifelines package [11].

RSE. The Random Survival Forest [23] was implemented using the RandomSurvivalForest class
from the sksurv package [39]. The number of trees in the forest is set to 1,000. The minimum
number of samples required to split an internal node is 10, and the minimum number of samples
required to be at a leaf node is 15. Those were the same hyperparameters as used in [36].

SSVM. The Survival Support Vector Machine [40] was implemented using the FastSurvivalSVM
class from the sksurv package [39]. The optimal regularization hyperparameter o was selected via
grid search by evaluating model performance on the training set using the C-index. This method
does not allow for estimation of the survival function. Predicted ranks were used as risk scores for
computing the C-index.

39


https://github.com/munibmesinovic/DySurv/blob/main/Models/Results/Static_Benchmarks_GBSG_Example.ipynb
https://github.com/munibmesinovic/DySurv/blob/main/Models/Results/Static_Benchmarks_GBSG_Example.ipynb
https://github.com/MrHuff/Sumo-Net
https://github.com/IBM/dqs

J.3 Evaluation metrics

C-index. Let ¢;(t) be the predicted risk score of observation with covariates x; at time ¢. The
C-index estimate [19] is given by

N
Zi:l Zj;éi 0i ]l{yi<yi} (]l{éi(yi)>(§j(yi)} + %]I{Qi(yi):éj(yi)})

C-index = N
2 Zj;ﬁi 0 Ly, <y;}

Let S‘i(t) be the predicted survival function of observation with covariates x; at time ¢. When the

predicted risk score is taken to be the negative of the survival function, i.e., §;(t) = —S;(t), the
C-index is referred to as the Antolini’s C-index [3] and is found with

N 1
Zi:l Zj?éi 0; ]l{yi<yi} <1{Si(yi)<‘§j(yi)} + il{gi(yi):s'j(yi)})
N
Dic Ej;éi i Ly, <y;y

The C-index is obtained using the ConcordanceIndex class from the TorchSurv package [37].

C-index =

IPCW Integrated Brier Score. Let S; (t) be the predicted survival function of observation with
covariates x; at time ¢. Let the inverse probability censoring weight (IPCW) at time ¢ be defined as the
inverse of the probability of being uncensored, £(t) = 1/C/(t), where C'(t) denotes the Kaplan—Meier
estimate of the censoring survival function. Under right censorship, the IPCW Brier score (BS) [17]
at time ¢ is given by

N
1 N .
IPCW BS(t) = = 3 €0ty <01y (0 = Si0)” + €01y (1= Si0)*. (A29)
i=1
The IBS is the integral of the Brier Score in (A29). The IPCW weights and the IPCW IBS are com-
puted using the get_ipcw function and the BrierScore class from the TorchSurv package [37].

Distribution Calibration. D-Calibration [18] evaluates whether predicted survival probabilities

at observed times are uniformly distributed. For an individual i, let S; (y;) be the predicted survival
probability at their event or censoring time y;. Under perfect calibration, we expect:

S;(y:) ~ Uniform(0, 1). (A30)

The predicted probabilities are binned into B quantiles, and a histogram is constructed over both
event and censored observations. For censored data, the probability is distributed proportionally
across bins beyond the censoring time. A chi-squared test compares the resulting histogram to the
expected uniform distribution, and the p-value reflects how well the survival model is calibrated.
The D-Calibration is obtained using the LifelinesEvaluator.d_calibration() class from the
SurvivalEVAL package [41].

Kaplan-Meier Calibration. Kaplan-Meier (KM)-Calibration, as introduced by [9], evaluates how
well the average predicted survival curve from a model aligns with the empirical KM survival curve.
Let Sag(t) denote the model’s average survival probability at time ¢, and Skwm(t) the KM estimate.
The KM calibration score is defined as the normalized integrated mean squared error (MSE):

Tmax , . 2
KM-Calibration = / (Savg(t) - SKM(t)) dt. (A31)
0

max

This score lies in [0,1], where O indicates perfect calibration, and values near 0.25
represent uninformative predictions. The KM-Calibration is obtained using the
LifelinesEvaluator.km_calibration() class from the SurvivalEVAL package [41].
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K Implementation Details

Code availability. The code is available on the GitHub repository https://github.com/
MLGlobalHealth/neuralsurv under the MIT License.

Architecture. We employed a feedforward neural network with two hidden layers, each containing
16 neurons and using ReLu activations. The input of the network for observation7 = 1,..., N is the
pair (¢,x;).

Time normalization. The observation period is normalized to the interval [0, 1] by dividing each
time value by the maximum observed time in the training set.

EM algorithm. The parameters are initialized so that they match their prior expected values.
Specifically, we set 6 = 0 and »©) = ag/Bo. The maximization step of the EM algorithm is
performed using the L-BFGS-B algorithm. The EM algorithm is considered to have converged when
the relative change in the Q-function between consecutive iterations falls below a tolerance threshold
of 10~ for two successive iterations.

CAVI algorithm. The hyperparameters are initialized so that the expected values of the model
parameters match the MAP estimates. Specifically, we set &(°) = pyap B, and ([, 2)(0) =
(Omap, I,,). The CAVI algorithm is considered to have converged when the relative change between
successive parameter estimates falls below a tolerance threshold of 1076,

Integral approximation. The integrals required to compute the Q-function in the EM algorithm,
as well as those involved in the optimal variational updates of ¢ and 8 in the CAVI algorithm, are
approximated using the trapezoidal rule.

Prior and p. For all experiments, we fix the hyperparameters of the prior distribution over ¢, given
in (6), to be ag, Sy = 1. Furthermore, we fix p = 1.

Machine. The experiments were conducted on NVIDIA RTX A6000 GPUs with 48GB of memory.
Running time Table A1 reports the running time for a single fold on the Colon dataset at varying

sample sizes. All folds and datasets were processed in parallel across multiple GPUs to ensure
consistent timing.

N =25 N =125 N = 250

Method IL  2L-6U  2L-16U 1L 2L-6U  2L-16U IL  2L-6U 2L-16U
MTLR [51] 0.104 0.102 0.100 0.075 0.093 0.118 0.075 0.099 0.091
DeepHit [32] 0.164 0.139 0.140 0.120 0.126 0.142 0.122 0.145 0.135
DeepSurv [24] 0.082 0.098 0.072 0.063 0.079 0.072 0.071 0.080 0.101
Logistic Hazard [16] 0.077 0.079 0.076 0.070 0.090 0.072 0.072 0.078 0.079
CoxTime [29] 0.139 0.167 0.114 0.113 0.175 0.134 0.136 0.135 0.186
CoxCC [29] 0.130 0.118 0.094 0.100 0.119 0.114 0.107 0.132 0.149
PMF [28] 0.129 0.119 0.094 0.069 0.104 0.095 0.072 0.087 0.125
PCHazard [28] 0.083 0.102 0.083 0.087 0.092 0.084 0.091 0.091 0.091
BCESurv [30] 0.081 0.082 0.092 0.060 0.078 0.092 0.062 0.087 0.079
DySurv [36] 0.050 0.064 0.040 0.048 0.040 0.049 0.048 0.045 0.041
Sumo-Net [43] 0.058 0.058 0.060 0.062 0.071 0.070 0.073 0.073 0.078
DQS [50] 0.019 0.020 0.024 0.023 0.025 0.025 0.029 0.030 0.030

1.165 0.566 3.926 16.454 22.673 7.373  87.098 141.389

NeuralSurv (Ours) 0.621

Table Al: Inference runtime for the Colon dataset (in minutes). The central analysis presented in
Table A5-A6 is for N = 125 and a MNP with 2 layers (2L) and 16 units (16U). The ablation study
presented in Table A7-A8 is for N = 250 and a MNP with 2L and 16U.
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L Related Work

Survival analysis methodologies have evolved significantly over the past decades, encompassing
parametric, semi-parametric, non-parametric, and more recently, deep learning-based approaches. We
review these developments, focusing on their applicability to high-dimensional data and uncertainty
quantification capabilities.

Parametric and Semi-parametric Traditional Models. Traditional survival models often impose
parametric or semi-parametric assumptions on the hazard function. The Accelerated Failure Time
(AFT) model [8] assumes a linear relationship between covariates and the logarithm of survival time,
with parametric baseline distributions (e.g., Weibull). While interpretable, such models struggle
with high-dimensional data and nonlinear covariate effects. The Cox Proportional Hazards (CoxPH)
model [10], a semi-parametric approach, avoids specifying the baseline hazard but assumes propor-
tional hazards. Though widely adopted, CoxPH’s linear predictor and proportionality constraints
limit its flexibility in complex data regimes.

Non-parametric Traditional Models. To mitigate parametric assumptions, non-parametric meth-
ods like Random Survival Forests (RSF) [23] and Survival Support Vector Machines (SSVM) [40]
emerged. RSF leverages ensemble learning for risk stratification but faces challenges in high-
dimensional settings due to greedy tree induction. GP survival models [13] offer flexibility by
modeling the hazard function nonparametrically, with inherent uncertainty quantification. Existing
work has sought to address the cubic complexity in sample size of GPs by introducing variational
inference techniques [25]. However, GPs remain fundamentally limited in scalability, particularly
struggling with high-dimensional inputs and lacking the capacity to learn hierarchical representations,
such as those required in image-based tasks [44].

Deep Survival Models. The advent of deep learning revolutionized survival analysis by enabling
automatic feature learning from high-dimensional inputs. DeepSurv [24] extended CoxPH with neural
networks, while DeepHit [32] employed multi-task learning for competing risks via discrete-time
hazards. Discrete-time methods, including MTLR [51] and PCHazard [28], discretize the time axis
to simplify likelihood computation, with recent advances like DySurv [36] incorporating conditional
variational inference for dynamic prediction. Sumo-Net [43] introduces a partially monotonic NN
that directly optimizes the right-censored log-likelihood, which is proven to be a strictly proper
scoring rule—achieving strong log-likelihood performance. DQS [50] formulates survival prediction
using extensions of strictly proper scoring rules that remain proper under discrete-time survival
settings. Despite their predictive prowess, these models rely on frequentist training, yielding point
estimates without uncertainty quantification, a significant shortcoming in safety-critical applications.
Comprehensive reviews [49] highlight the rapid growth of deep survival methods but underscore their
neglect of probabilistic uncertainty.

Bayesian and Uncertainty-Aware Approaches. Bayesian methods provide a natural framework
for uncertainty quantification but have seen limited integration with deep survival models. GP-based
approaches [13, 25] inherit GP limitations in scalability and high-dimensional processing. Recent
works like BCESurv [30] explore bootstrap confidence intervals, yet these post-hoc approximations
lack the coherence of Bayesian posteriors. Consequently, existing Bayesian survival models either
sacrifice scalability for uncertainty quantification or compromise on model flexibility, leaving a
critical gap in high-dimensional, uncertainty-aware survival analysis.

Summary. While parametric and semi-parametric models provide interpretability, they falter in
high-dimensional, nonlinear regimes. Non-parametric methods like RSF and GP improve flexibility
but face scalability challenges. Deep learning approaches excel at feature extraction yet lack princi-
pled uncertainty quantification. Bayesian methods, though theoretically sound, remain confined to
traditional architectures or partial approximations. Our work bridges this divide by proposing the
first scalable, deep Bayesian survival model that harmonizes neural networks with full probabilistic
uncertainty, addressing a critical need in modern applications.
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Method Uncertainty (Bayesian) Continuous Time Deep Learning

CoxPH [10] v v X
AFT [8] v v X
RSF [23] X v X
SSVM [40] X v X
GP survival models [13, 25] v v X
MTLR [51] X X v
DeepHit [32] X X v
DeepSurv [24] X v v
Logistic Hazard [16] X X v
CoxTime [29] X v v
CoxCC [29] X v v
PMF [28] X X v
PCHazard [28] X v v
BCESurv [30] X X v
DySurv [36] X v v
Sumo-Net [43] X v v
DQS [50] X v v
NeuralSurv (Ours) v v v

Table A2: Summary of Survival Analysis methods: Bayesian Uncertainty Quantification, Time
Domain, and Deep-Learning Status.
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M Further Results

M.1 Synthetic Data Experiment

N =25 N =50 N = 100 N = 150
Method C-index T IPCWIBS| C-index? IPCWIBS| C-indext IPCWIBS] C-index? IPCWIBS |
MTLR [51] 0.560 0.284 0.505 0.239 0.491 0.171 0.542 0.17
DeepHit [32] 0.473 0.239 0.469 0.214 0.502 0.171 0.574 0.114
DeepSurv [24] 0.492 0.313 0.471 0.241 0.507 0.169 0.517 0.169
Logistic Hazard [16]0.477 0.297 0.498 0.256 0.507 0.199 0.499 0.176
CoxTime [29] 0.424 0.284 0.532 0.273 0.52 0.184 0.575 0.118
CoxCC [29] 0.421 0.268 0.497 0.229 0.526 0.128 0.513 0.109
PMF [28] 0.573 0.261 0.551 0.334 0.523 0.168 0.607 0.184
PCHazard [28] 0.477 0.337 0.501 0.249 0.467 0.174 0.486 0.193
BCESurv [30] 0.545 0.287 0.585 0.256 0.558 0.185 0.559 0.16
DySurv [36] 0.399 0.237 0.491 0.239 0.459 0.218 0.489 0.174
Sumo-Net [43] 0.473 0.223 0.503 0.179 0.588 0.127 0.495 0.113
DQS [50] 0.435 0.326 0.48 0.232 0.525 0.131 0.556 0.124
NeuralSurv (Ours) 0.378 0.196 0.554 0.160 0.589 0.126 0.589 0.106

Table A3: Performance comparison of survival models over synthetic data. The best results for each
metric are shown in bold, and the second-best results are underlined. 1 indicates higher is better; |
indicates lower is better.

N =25 N =50
Method D-Calibration (p-value) KM-Calibration |, D-Calibration (p-value) KM-Calibration J.
MTLR [51] 0.000 (%) 0.032 0.000 (x) 0.056
DeepHit [32] 0.000 (%) 0.029 0.000 (x) 0.168
DeepSurv [24] 0.000 (%) 0.009 0.000 (x) 0.036
Logistic Hazard [16] 0.000 (x) 0.037 0.000 (x) 0.062
CoxTime [29] 0.000 (%) 0.010 0.000 (x) 0.021
CoxCC [29] 0.000 (%) 0.008 0.000 (x) 0.028
PMF [28] 0.000 (x) 0.032 0.000 (x) 0.071
PCHazard [28] 0.000 (x) 0.037 0.000 (x) 0.073
BCESurv [30] 0.000 (x) 0.022 0.000 (x) 0.014
DySurv [36] 0.000 (%) 0.201 0.000 (x) 0.241
Sumo-Net [43] 0.132 (V) 0.011 0.051 (v) 0.036
DQS [50] 0.000 (%) 0.051 0.000 (%) 0.048
NeuralSurv (Ours) 0.833 (V) 0.014 0.539 (v) 0.012
N =100 N = 150
Method D-Calibration (p-value) KM-Calibration J. D-Calibration (p-value) KM-Calibration .
MTLR [51] 0.000 (x) 0.034 0.000 (x) 0.035
DeepHit [32] 0.000 (x) 0.030 0.000 (x) 0.040
DeepSurv [24] 0.000 (x) 0.003 0.007 (x) 0.003
Logistic Hazard [16] 0.000 (x) 0.034 0.000 (x) 0.062
CoxTime [29] 0.000 (x) 0.011 0.346 (V') 0.005
CoxCC [29] 0.000 (x) 0.001 0.001 (x) 0.001
PMF [28] 0.000 (x) 0.033 0.000 (x) 0.034
PCHazard [28] 0.000 (x) 0.056 0.000 (x) 0.066
BCESurv [30] 0.000 (x) 0.038 0.000 (x) 0.034
DySurv [36] 0.000 (x) 0.172 0.000 (x) 0.183
Sumo-Net [43] 0.683 (v) 0.004 0.345 (V') 0.003
DQS [50] 0.005 (x) 0.032 0.000 (x) 0.031
NeuralSurv (Ours) 0.419 (V) 0.004 0.639 (V') 0.004

Table A4: Performance comparison of survival models over synthetic data (part 2). A checkmark
(v') indicates that the null hypothesis of perfect D-Calibration was not rejected at « = 0.05 (model
considered well-calibrated); a cross (<) indicates rejection of D-Calibration (model considered not
well-calibrated). The best results for the KM-Calibration are shown in bold, and the second-best
results are underlined. | indicates lower is better.
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M.2 Real Data Experiment
M.2.1 Central Analysis

COLON METABRIC GBSG
Method C-index + IPCW IBS | C-index + IPCW IBS | C-index + IPCW IBS |
MTLR [51] 0.562 0.298 0.548 0.279 0.602 0.273
DeepHit [32] 0.478 0.28 0.511 0.243 0.578 0.309
DeepSurv [24] 0.572 0.326 0.523 0.289 0.618 0.252
Logistic Hazard [16] 0.490 0.321 0.541 0.317 0.618 0.296
CoxTime [29] 0.578 0.277 0.533 0.307 0.599 0.285
CoxCC [29] 0.584 0.289 0.575 0.257 0.646 0.240
PMF [28] 0.509 0.324 0.440 0.336 0.655 0.250
PCHazard [28] 0.538 0.297 0.541 0.291 0.609 0.249
BCESurv [30] 0.491 0.302 0.616 0.277 0.581 0.273
DySurv [36] 0.488 0.536 0.561 0.465 0.572 0.485
Sumo-Net [43] 0.485 0.241 0.447 0.223 0.476 0.250
DQS [50] 0.635 0.246 0.564 0.261 0.611 0.229
NeuralSurv (Ours) 0.671 0.218 0.584 0.212 0.657 0.188
NWTCO WHAS SUPPORT
Method C-index + IPCW IBS | C-index + IPCW IBS | C-index + IPCW IBS |
MTLR [51] 0.592 0.301 0.490 0.315 0.432 0.357
DeepHit [32] 0.516 0.296 0.510 0.303 0.452 0.341
DeepSurv [24] 0.527 0.248 0.654 0.281 0.505 0.354
Logistic Hazard [16] 0.512 0.298 0.545 0.315 0.536 0.378
CoxTime [29] 0.550 0.199 0.678 0.250 0.547 0.327
CoxCC [29] 0.531 0.237 0.654 0.281 0.566 0.312
PMF [28] 0.482 0.312 0.520 0.299 0.512 0.399
PCHazard [28] 0.551 0.209 0.527 0.291 0.514 0.335
BCESurv [30] 0.530 0.272 0.548 0.292 0.446 0.398
DySurv [36] 0.402 0.683 0.424 0.523 0.525 0.342
Sumo-Net [43] 0.595 0.170 0.556 0.260 0.444 0.289
DQS [50] 0.567 0.242 0.590 0.269 0.538 0.331
NeuralSurv (Ours) 0.712 0.166 0.602 0.233 0.599 0.333
VLC SAC3
Method C-index + IPCW IBS | C-index © IPCW IBS |
MTLR [51] 0.432 0.299 0.471 0.276
DeepHit [32] 0.409 0.236 0.456 0.289
DeepSurv [24] 0.642 0.186 0.530 0.264
Logistic Hazard [16] 0.413 0.272 0.480 0.348
CoxTime [29] 0.671 0.212 0.485 0.276
CoxCC [29] 0.645 0.169 0.533 0.261
PMF [28] 0.445 0.284 0.472 0.270
PCHazard [28] 0.502 0.294 0.527 0.276
BCESurv [30] 0.428 0.263 0.440 0.300
DySurv [36] 0.436 0.162 0.476 0.303
Sumo-Net [43] 0.527 0.157 0.457 0.237
DQS [50] 0.568 0.218 0.481 0.293
NeuralSurv (Ours) 0.667 0.142 0.532 0.204

Table A5: Performance comparison of deep survival models over five different train/test splits of each
dataset. The best results for each metric are shown in bold, and the second-best results are underlined.
1 indicates higher is better; | indicates lower is better.
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COLON METABRIC
Method D-Calibration (p-value) KM-Calibration | D-Calibration (p-value) KM-Calibration J.
MTLR [51] 0.000 (x) 0.016 0.000 (%) 0.023
DeepHit [32] 0.001 (x) 0.089 0.101 (v) 0.064
DeepSurv [24] 0.047 (x) 0.024 0.006 (%) 0.012
Logistic Hazard [16] 0.002 (x) 0.019 0.000 (x) 0.026
CoxTime [29] 0.014 (x) 0.011 0.012 (x) 0.012
CoxCC [29] 0.011 (x) 0.011 0.013 (x) 0.019
PMF [28] 0.001 (x) 0.017 0.002 (x) 0.017
PCHazard [28] 0.007 (x) 0.029 0.008 (%) 0.036
BCESurv [30] 0.000 (x) 0.012 0.000 (%) 0.021
DySurv [36] 0.000 (%) 0.362 0.000 (%) 0.306
Sumo-Net [43] 0.741 (V') 0.014 0.600 (v') 0.008
DQS [50] 0.381 (V) 0.017 0.135 (V) 0.020
NeuralSurv (Ours) 0.594 (V') 0.020 0.661 (v) 0.012
GBSG NWTCO
Method D-Calibration (p-value) KM-Calibration | D-Calibration (p-value) KM-Calibration .
MTLR [51] 0.000 (%) 0.011 0.570 (v') 0.011
DeepHit [32] 0.000 (%) 0.149 0.575 (V) 0.014
DeepSurv [24] 0.084 (v') 0.009 0.887 (V') 0.003
Logistic Hazard [16] 0.008 (%) 0.017 0.397 (V) 0.012
CoxTime [29] 0.247 (V') 0.009 0.883 (V) 0.003
CoxCC [29] 0.256 (V) 0.005 0.954 (V) 0.003
PMF [28] 0.003 (x) 0.015 0.487 (V') 0.013
PCHazard [28] 0.063 (V) 0.024 0.697 (V') 0.008
BCESurv [30] 0.001 (x) 0.015 0312 (V) 0.010
DySurv [36] 0.000 (%) 0.369 0.000 (x) 0.260
Sumo-Net [43] 0.524 (V') 0.010 0.991 (V) 0.004
DQS [50] 0.234 (V) 0.012 0.916 (v) 0.005
NeuralSurv (Ours) 0.735 (V) 0.009 0.920 (V) 0.007
WHAS SUPPORT
Method D-Calibration (p-value) KM-Calibration | D-Calibration (p-value) KM-Calibration .
MTLR [51] 0.001 (x) 0.035 0.000 (x) 0.099
DeepHit [32] 0.195 (V) 0.067 0.000 (%) 0.124
DeepSurv [24] 0.076 (V') 0.025 0.000 (x) 0.015
Logistic Hazard [16] 0.013 (x) 0.033 0.000 (%) 0.095
CoxTime [29] 0.035 (X) 0.017 0.000 (%) 0.016
CoxCC [29] 0.106 (v') 0.019 0.000 (%) 0.020
PMF [28] 0.003 (X) 0.031 0.000 (%) 0.084
PCHazard [28] 0.125 (V) 0.022 0.000 (x) 0.070
BCESurv [30] 0.000 (%) 0.025 0.000 (%) 0.088
DySurv [36] 0.000 (%) 0.281 0.000 (%) 0.099
Sumo-Net [43] 0.735 (V) 0.021 0.143 (V) 0.017
DQS [50] 0.081 (v) 0.033 0.002 (%) 0.038
NeuralSurv (Ours) 0.335 (V) 0.031 0.063 (v') 0.083
VLC SAC3
Method D-Calibration (p-value) KM-Calibration | D-Calibration (p-value) KM-Calibration J.
MTLR [51] 0.000 (%) 0.072 0.000 (%) 0.020
DeepHit [32] 0.000 (%) 0.107 0.003 (x) 0.094
DeepSurv [24] 0.004 (x) 0.006 0.000 (%) 0.020
Logistic Hazard [16] 0.000 (%) 0.078 0.000 (%) 0.039
CoxTime [29] 0.021 (x) 0.010 0.000 (%) 0.014
CoxCC [29] 0.004 (x) 0.011 0.000 (%) 0.016
PMF [28] 0.000 (x) 0.077 0.000 (%) 0.016
PCHazard [28] 0.000 (%) 0.080 0.000 (%) 0.029
BCESurv [30] 0.000 (x) 0.074 0.000 (x) 0.021
DySurv [36] 0.077 (V') 0.028 0.000 (%) 0.146
Sumo-Net [43] 0.131 (V) 0.011 0.478 (V) 0.016
DQS [50] 0.000 (x) 0.054 0.021 (x) 0.034
NeuralSurv (Ours) 0.436 (V') 0.013 0.624 (V') 0.016

Table A6: Performance comparison of deep survival models over five different train/test splits of
each dataset (part 2). A checkmark (v') indicates that the null hypothesis of perfect D-Calibration
was not rejected at @ = 0.05 (model considered well-calibrated); a cross (x) indicates rejection of
D-Calibration (model considered not well-calibrated). The best results for the KM-Calibration are

shown in bold, and the second-best results are underlined. | indicates lower is better.
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M.2.2 Ablation Study with N = 250

COLON METABRIC GBSG
Method C-index T IPCW IBS | C-index  IPCWIBS | C-index T IPCW IBS |
MTLR [51] 0.545 0.291 0.572 0.290 0.567 0.312
DeepHit [32] 0.564 0.284 0.545 0.301 0.563 0.272
DeepSurv [24] 0.600 0.295 0.605 0.265 0.531 0.277
Logistic Hazard [16] 0.501 0.289 0.553 0.252 0.562 0.287
CoxTime [29] 0.621 0.259 0.621 0.264 0.578 0.255
CoxCC [29] 0.640 0.277 0.610 0.254 0.565 0.244
PMF [28] 0.541 0.291 0.554 0.300 0.537 0.304
PCHazard [28] 0.549 0.280 0.561 0.246 0.524 0.295
BCESurv [30] 0.537 0.289 0.565 0.289 0.554 0.301
DySurv [36] 0.478 0.543 0.516 0.491 0.506 0.508
Sumo-Net [43] 0.529 0.273 0.473 0.27 0.471 0.255
DQS [50] 0.593 0.267 0.600 0.228 0.562 0.237
NeuralSurv (Ours) 0.601 0.215 0.543 0.198 0.546 0.212

Table A7: Performance comparison of deep survival models on the ablation study with 250 observa-
tions, over five different train/test splits of each dataset. The best results for each metric are shown
in bold, and the second-best results are underlined. 1 indicates higher is better; | indicates lower is
better.

COLON METABRIC
Method D-Calibration (p-value) KM-Calibration J. D-Calibration (p-value) KM-Calibration J.
MTLR [51] 0.000 (x) 0.007 0.000 (x) 0.017
DeepHit [32] 0.000 (x) 0.068 0.044 (x) 0.072
DeepSurv [24] 0.001 (x) 0.006 0.001 (x) 0.007
Logistic Hazard [16] 0.000 (x) 0.012 0.000 (x) 0.017
CoxTime [29] 0.022 (x) 0.005 0.001 (x) 0.008
CoxCC [29] 0.001 (x) 0.003 0.000 (x) 0.006
PMF [28] 0.000 (x) 0.008 0.000 (x) 0.008
PCHazard [28] 0.001 (x) 0.018 0.003 (x) 0.027
BCESurv [30] 0.000 (x) 0.012 0.000 (x) 0.013
DySurv [36] 0.000 (x) 0.376 0.000 (%) 0.273
Sumo-Net [43] 0.323 (V) 0.007 0.192 (V) 0.007
DQS [50] 0.086 (v') 0.009 0.137 (V) 0.013
NeuralSurv (Ours) 0.404 (V) 0.011 0.708 (V) 0.013

GBSG

Method D-Calibration (p-value) KM-Calibration |
MTLR [51] 0.000 (x) 0.010
DeepHit [32] 0.159 (v) 0.134
DeepSurv [24] 0.052 (V) 0.006
Logistic Hazard [16] 0.000 (%) 0.016
CoxTime [29] 0.171 (V) 0.004
CoxCC [29] 0.059 (v) 0.006
PMF [28] 0.000 (x) 0.010
PCHazard [28] 0.004 (x) 0.015
BCESurv [30] 0.000 (x) 0.013
DySurv [36] 0.000 (x) 0.336
Sumo-Net [43] 0.337 (V) 0.004
DQS [50] 0.084 (v) 0.008
NeuralSurv (Ours) 0.617 (V) 0.003

Table A8: Performance comparison of deep survival models on the ablation study with 250 obser-
vations, over five different train/test splits of each dataset (part 2). A checkmark (v') indicates that
the null hypothesis of perfect D-Calibration was not rejected at &« = 0.05 (model considered well-
calibrated); a cross (x) indicates rejection of D-Calibration (model considered not well-calibrated).
The best results for the KM-Calibration are shown in bold, and the second-best results are underlined.
J indicates lower is better.
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M.2.3 Comparison to Traditional Survival Models

COLON NWTCO GBSG
Method C-index+  IPCWIBS | C-index+  IPCWIBS | C-index+  IPCWIBS |
CoxPH [10] 0.669 0.192 0.710 0.136 0.694 0171
Weibull AFT [8] 0.681 0.198 0.697 0.134 0.673 0.179
RSF [23] 0.590 0.210 0.604 0.156 0.588 0.193
SSVM [40] 0.654 - 0.734 - 0.695 -
METABRIC WHAS SUPPORT
Method C-index+  IPCWIBS | C-index+  IPCW IBS | C-index+  IPCWIBS |
CoxPH [10] 0.653 0.171 0.655 0.207 0.653 0.225
Weibull AFT [8] 0.658 0.172 0.622 0.224 0.650 0.239
RSF [23] 0.587 0.189 0.683 0.209 0.601 0.225
SSVM [40] 0.649 - 0.653 - 0.636 -
VLC SAC3
Method C-index+  IPCWIBS | Ceindex 7 IPCW IBS |
CoxPH [10] 0.697 0.125 0.569 0.190
Weibull AFT [8] 0.690 0.127 0.607 0.287
RSF [23] 0.687 0.139 0.487 0.182
SSVM [40] 0.698 - 0.504 -

Table A9: Performance comparison of traditional survival models over five different train/test splits
of each dataset. 1 indicates higher is better; | indicates lower is better. The SSVM method does not
provide estimates of the survival function; the predicted ranks are used for the corresponding C-index
evaluations while the IPCW-IBS metric cannot be computed.

COLON NWTCO GBSG
Method D-Calibration KM-Calibration J. D-Calibration KM-Calibration J. D-Calibration KM-Calibration J
(p-value) (p-value) (p-value)
CoxPH [10] 0913 (V) 0.006 0.979 (V) 0.003 0.950 (v) 0.004
Weibull AFT [8] 0.788 (V) 0.010 0.986 (v) 0.004 0.767 (V') 0.008
RSF [23] 0.791 (V) 0.009 0.999 (v) 0.002 0.854 (V) 0.003
METABRIC WHAS SUPPORT
Method D-Calibration KM-Calibration . D-Calibration KM-Calibration . D-Calibration KM-Calibration .
(p-value) (p-value) (p-value)
CoxPH [10] 0.846 (V) 0.008 0.730 (V) 0.017 0.354 (V) 0.010
Weibull AFT [8] 0.759 (V') 0.006 0.650 (v) 0.018 0.420 (V) 0.012
RSF [23] 0.746 (V') 0.009 0.625 (V') 0.022 0.593 (V) 0.010
VLC SAC3
Method D-Calibration KM-Calibration |, D-Calibration =~ KM-Calibration |
(p-value) (p-value)
CoxPH [10] 0.597 (v') 0.008 0.357 (V) 0.005
Weibull AFT [8] 0.759 (x) 0.007 0.038 (v) 0.018
RSF [23] 0.414 (x) 0.013 0.706 (v') 0.012

Table A10: Performance comparison of traditional survival models over five different train/test splits
of each dataset (part 2). A checkmark (v') indicates that the null hypothesis of perfect D-Calibration
was not rejected at o = 0.05 (model considered well-calibrated); a cross (x) indicates rejection of
D-Calibration (model considered not well-calibrated). The best results for the KM-Calibration are
shown in bold, and the second-best results are underlined. | indicates lower is better.
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M.3 Prior Sensitivity Analysis

COLON
Gamma Prior of ¢ Gamma Posterior of ¢ Posterior Median C-index T IPCWIBS |  D-Calibration KM-Calibration J.
and 95% CI (p-value)
(ap=1,80=1) (&=60.877, 3=78.789)  0.768 [0.591, 0.978] 0.671 0.218 0.594 (v) 0.020
(o = 2,80 =2) (& =45.865, 3=79.789)  0.571 [0.421, 0.753] 0.593 0.237 0.601 (v) 0.025
(ap = 0.5, 8o = 0.5) (& =38333,3=78.289)  0.485[0.347, 0.656] 0.512 0.229 0.715 (V) 0.023
METABRIC
Gamma Prior of ¢ Gamma Posterior of ¢ Posterior Median C-index 1 IPCW IBS | D-Calibration KM-Calibration J.
and 95% CI (p-value)
(o =1,B0=1) (& =48.406, 3=70.176)  0.685 [0.509, 0.897] 0.584 0.212 0.661 (v) 0.012
(o =2,B0 =2) (& =48.034, 3=71.176)  0.670 [0.498, 0.879] 0.536 0.201 0.819 (V') 0.009
(o = 0.5, 80 = 0.5) (& =47.347, B =69.676)  0.675 [0.500, 0.886] 0.553 0.200 0.802 (v) 0.009
GBSG
Gamma Prior of ¢ Gamma Posterior of ¢ Posterior Median C-index T IPCW IBS | D-Calibration KM-Calibration .
and 95% CI (p-value)
(g =1,B0=1) (& =58.650, ﬁ: =85.462)  0.682[0.522, 0.873] 0.657 0.188 0.735 (V) 0.009
(o = 2,80 =2) (& =62.386, ,(i =86.462)  0.718[0.554,0.911] 0.602 0.195 0.808 (v) 0.010
(ap = 0.5, 80 = 0.5) (& =57.549, 3 =84.962)  0.673[0.514, 0.863] 0.665 0.189 0.772 (V) 0.010

Table A11: Prior sensitivity analysis on ¢ using priors with double and half the original variance..
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N Proofs

N.1 Proof of Theorem 3.1

Before proving Theorem 3.1 we must show some intermediate results.

Lemma N.1. Assume that for eachi = 1,..., N the function g(-,x;;-) € C([0, y;] x R™). Then, it
follows that

Yi
/ )\O(in;gb)dt < o0
0

foreveryi=1,...,N.

Proof. Fix an arbitrary index ¢ € {1,..., N}. From Section 2.3, recall that pg (@) is the probability
density function of a multivariate normal distribution with zero mean and identity covariance matrix
I,,.. Our goal is to show that the normalization factor Z(t, x;) admits a strictly positive lower bound
on [0, y;], from which the integrability of Ag(¢, x;; ¢) will follow.

Step 1: Continuity of Z(t,x;) on [0,y;]. Fix any ¢y € [0, y;], and let (¢,),>1 be a sequence in
[0, y;] such that ¢,, — to as n — oo. Define, for each n, the functions
hn(0) := o (g(tn,xi;0))pe(0), n =1,
h(8) = o(g(to,x:;6))pe(0).
Since g(-,x;;+) € C([0,y;] x R™) and the sigmoid o () is a continuous function, it follows that
nlgrgo h,(0) = h(0)
pointwise for all 8 € R™. Furthermore, observe that
|hn(6)] < po(0)

since 0 < o(-) < 1. Because pg(6) integrates to 1 over R™, we may apply the Dominated
Convergence Theorem (DCT) to conclude that:

im Z(tp,x;) = lim [ 5h,(0)d0 DQ/ h(0)dO = Z(to, x;).

n— 00 n—oo [pm

Since ¢y was arbitrary in [0, y;], Z is continuous everywhere on that interval.

Step 2: Strict positivity of Z(¢,x;) on [0,y;]. For each fixed ¢ € [0, y;], since o(g(t,x;;0)) >0
and pg(0) > 0 for all @ € R™, we have:

Z(t,x;) = /m a(g(t,x;;0))pe(0)d0 > 0.

Since Z(t,x;) is a continuous and strictly positive function on the compact interval [0, y;], the
Weierstrass Extreme Value Theorem ensures that Z attains a minimum on this interval. Define:

2" = min Z(t,x;) >0
t€[0,yi]

Step 3: Integrability of \o(¢,x;;¢). Note that for all ¢ € [0, y;], we have

_ Mo(t9) _ Aolti9)
Z(t7 Xi) - z*
It is straightforward to verify that Ay (¢; ¢) is integrable on [0, y;], therefore it follows that

Yi 1 Yi
/ )\0(157}(1‘; qf))dt < 7*/ Ao(t; ¢)dt < 0.
0 z"Jo

This completes the proof. O
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Our next result verifies a condition needed for applying Campbell’s Theorem in the proof of Theo-
rem 3.1. To establish this, we will use the following Pélya—Gamma identity:

1
Eorprowi1,0)[] = 7 (A32)

which follows by taking the limit ¢ — 0 in equation (A4). Alternatively, to prove (A32), one can
start from the representation in equation (A1), apply Tonelli’s theorem to interchange expectation
and infinite summation, and then invoke the series identity

S o1
k:l(k_%)Q 2

We are now ready to present our next result.

Lemma N.2. Assume that for eachi = 1,..., N the function g(-,x;;-) € C([0,y;] x R™). Then,
with probability I the sum

HW) = Y flwj,—g(t;,xi;0))
(t,w),; €¥;

is absolutely convergent for everyi=1,..., N.

Proof. Fix an arbitrary index ¢ € {1,..., N}. Recall the definition of f(w,z) from (8). From
Theorem C.3, it suffices to show

/ / " min((f (@, —g(t, 363 0)], 1)hu(t 05 @) dwdt < oo. (A33)
0 0

Since w € R, then it follows from the triangle inequality that

min(|f(w, _g(tzxi; 0))|7 1) < |f(wa _g(tzxi; 0))|

< lg(t,xi:0)| n 9(757Xi;9)2w
- 2 2

Hence it remains to prove finiteness of three integrals:

yi oo .
T ::/ / 7|g(t’)2(“0)|/\i(t,w;qb)dtdw,
o Jo
Yi oo . 2
Ty = / / Mmi(t,w;@dwdt,
o Jo
Yi o
Is = 10g(2)/ / Ai(t, w; ¢d)dwdt.
o Jo

7, is finite. Since g(t, x;; 6) is continuous on the compact interval [0, y;], it is bounded by some
M > 0. Then,

I, = (/ ppg(w|1,0)dw> / MAO(LXHQM(R < M/ >‘0(t7xi; ¢)dt < o0,
0 0 0

where the last inequality is Lemma N.1.

T, is finite. Likewise g(t, x;; 0)? is bounded by some C' > 0 over [0, ;] and By pro (w]1,0) [w] = i
(see (A32)), so

Yi t,X;; 9)2 C Yi
Ty = o)) [ 2 i 0t < § ([T dlxs o) <o
0 0

where the last inequality is Lemma N.1.
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75 is finite. Finally,
I3 = 10g(2)/ )‘O(taxi; d))dt < o0,
0

again by Lemma N.1.

Since 7,75, Z3, are all finite, the condition in (A33) is satisfied and the sum H(¥;) converges
absolutely with probability 1. O

The next result presents an integral identity which is key to proving the data augmentation scheme of
Theorem 3.1.

Lemma N.3. Assume that for each i = 1,..., N the function g(-,x;;-) € C([0,y;] x R™). Then
the double integral

Yi e o]
/ / (1 — ef(”’_g(t’x“g))) prc(w]1,0)Ao(t, x5 @)dwdt
o Jo

converges, and in fact

Yi ee}
/ / (1 - ef(“’_g(t’x“e))> prc(w|1,0)Ao(t, x5 ¢)dwdt =
o Jo
Yi
| doltxiso) ottt xs o) (asd
0

foreveryi=1,... N.

Proof. Fix an arbitrary index ¢ € {1,..., N}. By Lemma N.1

Yi
Ao(t, %45 ¢)dt < oo.
0

Since 0 < o(+) < 1, we have
0 < Xo(t,x:30)0(g(t,x450)) < Ao(t,%s; ¢)

and therefore
Yi
Ao(t, xi; ¢)o(g(t, xi;0))dt < oco. (A35)
0

This shows the finiteness of the right-hand side of (A34). By combining o(z) = 1 — o(—2) with (A5)
we obtain that

Yi
| doltxis o) ottt i )t =
0
Yi oo
/ / (1 —ef Wﬁﬂ“a*ﬁ"”) pra(w]1,0)Xo(t, x; d)dwdt. (A36)
o Jo
Putting together the finiteness from (A35) with the equality of (A36) completes the proof. O

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Fix an arbitrary index ¢ € {1,..., N}. The joint expectation factors into two
independent pieces:

1. Expectation over w;: This term recovers \o(v;, Xi; )% o (g(yi, %45 0))%;

2. Expectation over ¥;: This term recovers exp (— [* Ao(t, x;; ¢)o(g(t, x;; 0))dt).
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Step (1): Expectation over w;. Since §; € {0, 1},
i i,9(Yi,%i;0
(ef(wi,g(yi,xi;e)))& _ ef(w g(y ))7
1,
Hence,

o0 94 0 95
/ (ef(““g(y“x“e))) ppa(w;|l, 0)dw; = </ ef(w“g(y"’x“e))PPG(wi1a0)dwi> .
0 0

By the Pélya-Gamma identity (Eq. (A5)), the bracketed integral equals o (g(y;,x;; 0)). Multiplying
by o (yi, X5 @)% gives exactly

Xo(i, x5 6)° 0 (g(yi, x5 0))”
Step (2): Expectation over ¥;. By Lemma N.2 the random sum
H(\I’l) = Z f(Wj,_g(tj,Xi;H))
(t,w); €%,

is absolutely convergent with probability 1, and by Lemma N.3 the corresponding integral converges.
Therefore, we may apply Campbell’s Theorem (Theorem C.3) together with the PG-sigmoid identity
from (A34) to conclude

Yi
Eu,nPy, ), H ef (i =gt xi:0) | — oy, <_
(t7w),-6\111-

Ao<t,xi;¢>a<g<t,xi;9)>dt) |

0

Putting Steps (1) and (2) together reproduces precisely the two factors of the original likelihood
p(Yi, 0:|X:, ¢, g). This completes the proof. O
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