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ABSTRACT

Data poisoning and backdoor attacks manipulate training data in order to cause
models to fail during inference. A recent survey of industry practitioners found
that data poisoning is the number one concern among threats ranging from model
stealing to adversarial attacks. However, we find that the impressive performance
evaluations from data poisoning attacks are, in large part, artifacts of inconsistent
experimental design. Moreover, we find that existing poisoning methods have been
tested in contrived scenarios, and many fail in more realistic settings. In order to
promote fair comparison in future work, we develop standardized benchmarks for
data poisoning and backdoor attacks.

1 INTRODUCTION

Data poisoning is a security threat to machine learning systems in which an attacker controls the
behavior of a system by manipulating its training data. This class of threats is particularly germane
to deep learning systems because they require large amounts of data to train and are therefore often
trained (or pre-trained) on large datasets scraped from the web. For example, the Open Images and
the Amazon Products datasets contain approximately 9 million and 233 million samples, respectively,
that are scraped from a wide range of potentially insecure, and in many cases unknown, sources
(Kuznetsova et al., 2020; Ni, 2018). At this scale, it is often infeasible to properly vet content.
Furthermore, many practitioners create datasets by harvesting system inputs (e.g., emails received,
files uploaded) or scraping user-created content (e.g., profiles, text messages, advertisements) without
any mechanisms to bar malicious actors from contributing data. The dependence of industrial AI
systems on datasets that are not manually inspected has led to fear that corrupted training data could
produce faulty models (Jiang et al., 2017). In fact, a recent survey of 28 industry organizations
found that these companies are significantly more afraid of data poisoning than other threats from
adversarial machine learning (Kumar et al., 2020).

A spectrum of poisoning attacks exists in the literature. Backdoor data poisoning causes a model
to misclassify test-time samples that contain a trigger – a visual feature in images or a particular
character sequence in the natural language setting (Chen et al., 2017; Dai et al., 2019; Saha et al.,
2019; Turner et al., 2018). For example, one might tamper with training images so that a vision system
fails to identify any person wearing a shirt with the trigger symbol printed on it. In this threat model,
the attacker modifies data at both train time (by placing poisons) and at inference time (by inserting
the trigger). Triggerless poisoning attacks, on the other hand, do not require modification at inference
time (Biggio et al., 2012; Huang et al., 2020; Muñoz-González et al., 2017; Shafahi et al., 2018; Zhu
et al., 2019; Aghakhani et al., 2020b; Geiping et al., 2020). A variety of innovative backdoor and
triggerless poisoning attacks – and defenses – have emerged in recent years, but inconsistent and
perfunctory experimentation has rendered performance evaluations and comparisons misleading.

In this paper, we develop a framework for benchmarking and evaluating a wide range of poison
attacks on image classifiers. Specifically, we provide a way to compare attack strategies and shed
light on the differences between them.

Our goal is to address the following weaknesses in the current literature. First, we observe that the
reported success of poisoning attacks in the literature is often dependent on specific (and sometimes
unrealistic) choices of network architecture and training protocol, making it difficult to assess the
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viability of attacks in real-world scenarios. Second, we find that the percentage of training data
that an attacker can modify, the standard budget measure in the poisoning literature, is not a useful
metric for comparisons. The flaw in this metric invalidates comparisons because even with a fixed
percentage of the dataset poisoned, the success rate of an attack can still be strongly dependent on the
dataset size, which is not standardized across experiments to date. Third, we find that some attacks
that claim to be “clean label,” such that poisoned data still appears natural and properly labeled upon
human inspection, are not.

Our proposed benchmarks measure the effectiveness of attacks in standardized scenarios using
modern network architectures. We benchmark from-scratch training scenarios and also white-box
and black-box transfer learning settings. Also, we constrain poisoned images to be clean in the sense
of small perturbations. Furthermore, our benchmarks are publicly available as a proving ground for
existing and future data poisoning attacks.

The data poisoning literature contains attacks in a variety of settings including image classification,
facial recognition, and text classification (Shafahi et al., 2018; Chen et al., 2017; Dai et al., 2019).
Attacks on the fairness of models, on on speech recognition, and recommendation engines have also
been developed (Solans et al., 2020; Aghakhani et al., 2020a; Li et al., 2016; Fang et al., 2018; Hu
et al., 2019; Fang et al., 2020). While we acknowledge the merits of studying poisoning in a range of
modalities, our benchmark focuses on image classification since it is by far the most common setting
in the existing literature.

2 A SYNOPSIS OF TRIGGERLESS AND BACKDOOR DATA POISONING

Early poisoning attacks targeted support vector machines and simple neural networks (Biggio et al.,
2012; Koh & Liang, 2017). As poisoning gained popularity, various strategies for triggerless attacks
on deep architectures emerged (Muñoz-González et al., 2017; Shafahi et al., 2018; Zhu et al., 2019;
Huang et al., 2020; Aghakhani et al., 2020b; Geiping et al., 2020). The early backdoor attacks
contained triggers in the poisoned data and in some cases changed the label, thus were not clean-label
(Chen et al., 2017; Gu et al., 2017; Liu et al., 2017). However, methods that produce poison examples
which don’t visibly contain a trigger also show positive results (Chen et al., 2017; Turner et al.,
2018; Saha et al., 2019). Poisoning attacks have also precipitated several defense strategies, but
sanitization-based defenses may be overwhelmed by some attacks (Koh et al., 2018; Liu et al., 2018;
Chacon et al., 2019; Peri et al., 2019).

We focus on attacks that achieve targeted misclassification. That is, under both the triggerless and
backdoor threat models, the end goal of an attacker is to cause a target sample to be misclassified
as another specified class. Other objectives, such as decreasing overall test accuracy, have been
studied, but less work exists on this topic with respect to neural networks (Xiao et al., 2015; Liu et al.,
2019). In both triggerless and backdoor data poisoning, the clean images, called base images, that are
modified by an attacker come from a single class, the base class. This class is often chosen to be
precisely the same class into which the attacker wants the target image or class to be misclassified.

There are two major differences between triggerless and backdoor threat models in the literature.
First and foremost, backdoor attacks alter their targets during inference by adding a trigger. In the
works we consider, triggers take the form of small patches added to an image (Turner et al., 2018;
Saha et al., 2019). Second, these works on backdoor attacks cause a victim to misclassify any image
containing the trigger rather than a particular sample. Triggerless attacks instead cause the victim
to misclassify an individual image called the target image (Shafahi et al., 2018; Zhu et al., 2019;
Aghakhani et al., 2020b; Geiping et al., 2020). This second distinction between the two threat models
is not essential; for example, triggerless attacks could be designed to cause the victim to misclassify a
collection of images rather than a single target. To be consistent with the literature at large, we focus
on triggerless attacks that target individual samples and backdoor attacks that target whole classes of
images.

We focus on the clean-label backdoor attack and the hidden trigger backdoor attack, where poisons
are crafted with optimization procedures and do not contain noticeable patches (Saha et al., 2019;
Turner et al., 2018). For triggerless attacks, we focus on the feature collision and convex polytope
methods, the most highly cited attacks of the last two years that have appeared at prominent ML
conferences (Shafahi et al., 2018; Zhu et al., 2019). We include the recent triggerless methods
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Bullseye Polytope (BP) and Witches’ Brew (WiB) in the section where we present metrics on our
benchmark problems (Aghakhani et al., 2020b; Geiping et al., 2020). The following section details
the attacks that serve as the subjects of our experiments.

Technical details Before formally describing various poisoning methods, we begin with notation.
Let Xc be the set of all clean training data, and let Xp = {x(j)p }Jj=1 denote the set of J poison

examples with corresponding clean base image {x(j)b }Jj=1. Let xt be the target image. Labels are
denoted by y and Y for a single image and a set of images, respectively, and are indexed to match the
data. We use f to denote a feature extractor network.

Feature Collision (FC) Poisons in this attack are crafted by adding small perturbations to base
images so that their feature representations lie extremely close to that of the target (Shafahi et al.,
2018). Formally, each poison is the solution to the following optimization problem.

x(j)p = argmin
x
‖f(x)− f(xt)‖22 + β‖x− x(j)b ‖

2
2. (1)

When we enforce `∞-norm constraints, we drop the last term in Equation (1) and instead enforce
‖x(j)p − x(j)b ‖∞ ≤ ε, ∀j by projecting onto the `∞ ball after each iteration.

Convex Polytope (CP) This attack crafts poisons such that the target’s feature representation is a
convex combination of the poisons’ feature representations by solving the following optimization
problem (Zhu et al., 2019).

X=
p argmin
{cj},{x(j)}

1
2

‖f(xt)−
∑J

j=1 cjf(x
(j))‖22

‖f(xt)‖22

subject to
∑J
j=1 cj = 1 and cj ≥ 0 ∀ j, and ‖x(j) − x(j)b ‖∞ ≤ ε ∀j

(2)

Clean Label Backdoor (CLBD) This backdoor attack begins by computing an adversarial pertur-
bation to each base image (Turner et al., 2018). Formally,

x̂(j)p = x
(j)
b + argmax

‖δ‖∞≤ε
L(x(j)b + δ, y(j); θ), (3)

where L denotes cross-entropy loss. Then, a patch is added to each image in {x̂(j)p } to generate the
final poisons {x(j)p }. The patched image is subject to an `∞-norm constraint.

Hidden Trigger Backdoor (HTBD) A backdoor analogue of the FC attack, where poisons are
crafted to remain close to the base images but collide in feature space with a patched image from the
target class (Saha et al., 2019). Let x̃(j)t denote a patched training image from the target class (this
image is not clean), then we solve the following optimization problem to find poison images.

x(j)p = argmin
x
‖f(x)− f(x̃(j)t )‖22 s.t. ‖x− x(j)b ‖∞ ≤ ε (4)

3 WHY DO WE NEED BENCHMARKS?

Backdoor and triggerless attacks have been tested in a wide range of disparate settings. From model
architecture to target/base class pairs, the literature is inconsistent. Experiments are also lacking in
the breadth of trials performed, sometimes using only one model initialization for all experiments, or
testing against one single target image. We find that inconsistencies in experimental settings have
a large impact on performance evaluations, and have resulted in comparisons that are difficult to
interpret. For example, in CP the authors compare their `∞-constrained attack to FC, which is crafted
with an `2 penalty. In other words, these methods have never been compared on a level playing field.

To study these attacks thoroughly and rigorously, we employ sampling techniques that allow us to
draw conclusions about the attacks taking into account variance across model initializations and class
choice. For a single trial, we sample one of ten checkpoints of a given architecture, then randomly
select the target image, base class, and base images. In Section 4, all figures are averages from 100
trials with our sampling techniques.
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Disparate evaluation settings from the literature To understand how differences in evaluation
settings impact results, we re-create the various original performance tests for each of the methods
described above within our common evaluation framework. We try to be as faithful as possible to
the original works, however we employ our own sampling techniques described above to increase
statistical significance. Then, we tweak these experiments one component at a time revealing the
fragility of each method to changes in experimental design.

Establishing baselines For the FC setting, following one of the main setups in the original paper,
we craft 50 poisons on an AlexNet variant (for details on the specific architecture, see (Krizhevsky
et al., 2012; Shafahi et al., 2018)) pre-trained on CIFAR-10 (Krizhevsky et al., 2009), and we use the
`2-norm penalty version of the attack. We then evaluate poisons on the same AlexNet, using the same
CIFAR-10 data to train for 20 more epochs to “fine tune” the model end to end. Note that this is not
really transfer learning in the usual sense, as the fine tuning utilizes the same dataset as pre-training,
except with poisons inserted (Shafahi et al., 2018).

The CP setting involves crafting 5 poisons using a ResNet-18 model pre-trained on CIFAR-10, and
then fine tuning the linear layer of the same ResNet-18 model with a subset of the CIFAR-10 training
comprising 50 images per class (including the poisons) (He et al., 2016). This setup is also not
representative of typical transfer learning, as the fine-tuning data is sub-sampled from the pre-training
dataset. In this baseline we set ε = 25.5/255 matching the original work (Zhu et al., 2019).

One of the original evaluation settings for CLBD uses 500 poisons. We craft these on an adversarially
trained ResNet-18 and modify them with a 3× 3 patch in the lower right-hand corner. The pertur-
bations are bounded with ε = 16/255. We then train a narrow ResNet model from scratch with the
CIFAR-10 training set (including the poisons) (Turner et al., 2018).

For the HTBD setting, we generate 800 poisons with another modified AlexNet (for architectural
details, see Appendix A.13) which is pre-trained on CIFAR-10 dataset. Then, an 8×8 trigger patch is
added to the lower right corner of the target image, and the perturbations are bounded with ε = 16/255.
We use the entire CIFAR-10 dataset (including the poisons) to fine tune the last fully connected layer
of the same model used for crafting. Once again, the fine-tuning data in this setup is not disjoint from
the pre-training data (Saha et al., 2019). See the left-most bars of Figure 3 for all baseline results.

Inconsistencies in previous work The baselines defined above do not serve as a fair comparison
across methods, since the original works to which we try and stay faithful are inconsistent. Table 1
summarizes experimental settings in the original works. If a particular component (column header)
was considered anywhere in the original paper’s experiments, we mark a (X), leaving exes (×) when
something was not present in any experiments. Table 1 shows the presence of data normalization and
augmentation as well as optimizers (SGD or ADAM). It also shows which learning setup the original
works considered: frozen feature extractor (FFE), end-to-end fine tuning (E2E), or from-scratch
training (FST), as well as which threat levels were tested, white, grey or black box (WB, GB, BB).
We also consider whether or not an ensembled attack was used. The ε values reported are out of 255
and represent the smallest bound considered in the papers; note FC uses an `2 penalty so no bound is
enforced despite the attack being called “clean-label” in the original work. We conclude from Table 1
that experimental design in this field is extremely inconsistent.

Table 1: Various experimental designs used in data poisoning research.
Data Opt. Transfer Learning Threat Model

Attack Norm. Aug. SGD FFE E2E FST WB GB BB Ensembles ε

FC × × × X X × X × × × -
CP X × × X X × × X X X 25.5
CLBD × X X × × X × × X × 8
HTBD X × X X × × X × × × 8
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4 JUST HOW TOXIC ARE POISONING METHODS REALLY?

In this section, we look at weaknesses and inconsistencies in existing experimental setups, and how
these lead to potentially misleading comparisons between methods. We use our testing framework to
put triggerless and backdoor attacks to the test under a variety of circumstances, and get a tighter grip
on just how reliable existing poisoning methods are.

Training without SGD or data augmentation Both FC and CP attacks have been tested with
victim models pre-trained with the ADAM optimizer. However, SGD with momentum has become
the dominant optimizer for training CNNs (Wilson et al., 2017). Interestingly, we find that models
trained with SGD are significantly harder to poison, rendering these attacks ineffective in practical
settings. Moreover, none of the baselines include simple data augmentation such as horizontal flips
and random crops. We find that data augmentation, standard in the deep learning literature, also
greatly reduces the effectiveness of all of the attacks. For example, FC and CP success rates plummet
in this setting to 51.00% and 19.09%, respectively. Complete results including hyperparameters,
success rates, and confidence intervals are reported in Appendix A.3. We conclude that these attacks
may be significantly less effective against a real practitioner than originally advertised.

Victim architecture matters Two attacks, FC and HTBD, are originally tested on AlexNet variants,
and CLBD is tested with a narrow ResNet. These models are not widely used, and they are unlikely to
be employed by a realistic victim. We observe that many attacks are significantly less effective against
ResNet-18 victims. See Figure 3, where for example, the success rate of HTBD on these victims is as
low as 18%. See Appendix A.4 for a table of numerical results. These ablation studies are conducted
in the baseline settings but with a ResNet-18 victim architecture. These ResNet experiments serve as
an example of how performance can be highly dependent on the selection of architecture.

“Clean” attacks are sometimes dirty Each of the original works we consider purports to produce
“clean-label” poison examples that look like natural images. However these methods often produce
easily visible image artifacts and distortions due to the large values of ε used. See Figure 1 for
examples generated by two of the methods, where FC perturbs a clean “cat” into an unrecognizable
poison (left), and CP generates an extremely noisy poison from a base in the “airplane” class (right).
These images are not surprising since the FC method is tested with an `2 penalty in the original work,
and CP is `∞ constrained with a large radius of 25.5/255.

Figure 1: Bases (top) and poisons (bot-
tom).

In many contexts, avoiding detection by automated sys-
tems may be more important than maintaining perceptual
similarity. In our work, we focus on perceptual similarity
as defined by the `∞ constraint as this reflects the explicit
goal of most of the attacks we examine, and it is, in gen-
eral, a much more common area of study. Adaptive attacks
that avoid defense or detection is relatively unexplored and
an interesting area for future research (Koh et al., 2018).

Borrowing from common practice in the evasion attack
and defense literature, we test each method with an `∞
constraint of radius 8/255 and find that the effectiveness
of every attack is significantly diminished (Madry et al.,
2017; Dong et al., 2020). Thus, a standardized constraint
on poison examples is necessary for fair comparison of
attacks, and these previous attacks are not nearly as threatening under constraints that enforce clean
poisons. See Figure 3, and see Appendix A.5 for a table of numerical results.

Proper transfer learning is less vulnerable Of the attacks we study here, FC, CP, and HTBD
were originally proposed in settings referred to as “transfer learning.” Each particular setup varies,
but none are true transfer learning since the pre-training datasets and fine-tuning datasets overlap. For
example, FC uses the entire CIFAR-10 training dataset for both pre-training and fine tuning. Thus,
their threat model entails allowing an adversary to modify the training dataset but only for the last
few epochs. Furthermore, these attacks use inconsistently sized fine-tuning datasets.
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To simulate transfer learning, we test each attack with ResNet-18 feature extractors pre-trained on
CIFAR-100. We fine tune with CIFAR-10 data in both cases, showing that these methods actually
perform better in the setting with real transfer learning, i.e. where the pre-training data and fine-tuning
data are not from the same datasets and do not contain the same classes. In Figure 3, every attack
aside from CP shows worse performance when transfer learning is done on data that is disjoint from
the pre-training dataset. The attacks designed for transfer learning may not work as advertised in
more realistic transfer learning settings. See Appendix A.6.

Performance is not invariant to dataset size Existing work on data poisoning measures an at-
tacker’s budget in terms of what percentage of the training data they may modify. This begs the
question whether percentage alone is enough to characterize the budget. Does the actual size of the
training set matter? We find the number of images in the training set has a large impact on attack
performance, and that performance curves for FC and CP intersect. When we hold the percentage
poisoned constant at 1%, but we change the number of poisons and the size of the training set
accordingly, we see no consistent trends in how the attacks are affected. Figure 2 shows the success
of each attack as a function of dataset size (shaded region is one standard error). This observation
suggests that one cannot compare attacks tested on different sized datasets by only fixing the percent
of the dataset poisoned. See Appendix A.7.

Figure 2: Scaling the dataset size while fixing the
poison budget.
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Black-box performance is low Whether con-
sidering transfer learning or training from
scratch, testing these methods against a black-
box victim is surely one of the most realistic
tests of the threat they pose. Since, FC, CP and
HTBD do not consider the black-box scenario in
the original works, we take the poisons crafted
using baseline methods and evaluate them on
models of different architectures than those used
for crafting. The attacks show much lower per-
formance in the black-box settings than in the
baselines, in particular FC, CP, and HTBD all
have success rates lower than 20%. See Figure
3, and see Appendix A.8 for more details.

Small sample sizes and non-random targets
On top of inconsistencies in experimental setups,
existing work on data poisoning often test only
on specific target/base class pairs. For example,
FC largely uses “frog” as the base class and
“airplane” as the target class. CP, on the other hand, only uses “ship” and “frog” as the base and target
classes, respectively. Neither work contains experiments where each trial consists of a randomly
selected target/base class pair. We find that the success rates are highly class pair dependent and
change dramatically under random class pair sampling. Thus, random sampling is critical for
performance evaluation. See Appendix A.9 for a comparison of the specific class pairs from these
original works with randomly sampled class pairs.

In addition to inconsistent class pairs, data poisoning papers often evaluate performance with very few
trials since the methods are computationally expensive. In their original works, FC and CP use 30 and
50 trials, respectively, for each experiment, and these experiments are performed on the same exact
pre-trained models each time. And while HTBD does test randomized pairs, they only show results
for ten trials on CIFAR-10. These small sample sizes yield wide error bars in performance evaluation.
We choose to run 100 trials per experiment in our own work. While we acknowledge that a larger
number would be even more compelling, 100 is a compromise between thorough experimentation
and practicality since each trial requires re-training a classifier.

Attacks are highly specific to the target image Triggerless attacks have been proposed as a threat
against systems deployed in the physical world. For example, blue Toyota sedans may go undetected
by a poisoned system so that an attacker may fly under the radar. However, triggerless attacks are
generally crafted against a specific target image, while a physical object may appear differently under
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difference real-world circumstances. We upper-bound the robustness of poison attacks by applying
simple horizontal flips to the target images, and we find that poisoning methods are significantly less
successful when the exact target image is unknown. For example, FC is only successful 7% of the
time when simply flipping the target image. See Figure 3 and Appendix A.10.

Backdoor success depends on patch size Backdoor attacks add a patch to target images to trigger
misclassification. In real-world scenarios, a small patch may be critical to avoid being caught. The
original HTBD attack uses an 8× 8 patch, while the CLBD attack originally uses a 3× 3 patch (Saha
et al., 2019; Turner et al., 2018). In order to understand the impact on attack performance, we test
different patch sizes. We find a strong correlation between the patch size and attack performance, see
Appendix A.12. We conclude that backdoor attacks must be compared using identical patch sizes.

Figure 3: We show the fragility of poisoning methods to experimental design. This figure depicts
baselines along with the results of ablation studies. Different methods respond differently to these
testing scenarios, supporting the need for consistent and thorough testing. Horizontal lines denote
performance on baselines described in Section 3, and bars represent the results of changing a specific
feature in an individual method’s baseline. Tables of these results with confidence intervals can be
found in the appendices.
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5 UNIFIED BENCHMARKS FOR DATA POISONING ATTACKS

Our Benchmark We propose new benchmarks for measuring the efficacy of both backdoor
and triggerless data poisoning attacks. We standardize the datasets and problem settings for our
benchmarks below.1 Target and base images are chosen from the testing and training sets, respectively,
according to a seeded/reproducible random assignment. Poison examples crafted from the bases
must remain within the `∞-ball of radius 8/255 centered at the corresponding base images. Seeding
the random assignment allows us to test against a significant number of different random choices
of base/target, while always using the same choices for each method, thus removing a source of
variation from the results. We consider two different training modes:

I Transfer Learning: A feature extractor pre-trained on clean data is frozen and used while
training a linear classification head on a disjoint set of training data that contains poisons.

II Training From Scratch: A network is trained from random initialization on data containing
poison examples in the training set.

To further standardize these tests, we provide pre-trained architectures to test against. The parameters
of one model are given to the attacker. We then evaluate the strength of the attacks in white-box and
black-box scenarios. For white-box tests in the transfer learning benchmarks, we use the same frozen
feature extractor that is given to the attacker for evaluation. While in the black-box setting, we craft
poisons using the known model but we test on the two models the attacker has not seen, averaging the
results. When training from scratch, models are trained from a random initialization on the poisoned

1Code is available at (suppressed for anonymity).
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dataset. We report averages over 100 independent trials for each test. Backdoor attacks can use any
5× 5 patch. Note that the number of attacker-victim network pairs is kept small in our benchmark
because each of the 100 trials requires re-training (in some cases from scratch), and we want to keep
the benchmark within reach for researchers with modest computing resources.

CIFAR-10 benchmarks Models are pretrained on CIFAR-100, and the fine-tuning data is a subset
of CIFAR-10. We choose this subset to be the first 250 images from each class, allowing for 25
poison examples. This amount of data motivates the use of transfer learning, since training from
scratch on only 2,500 images yields poor generalization. See Appendix A.13 for examples. We allow
500 poisons when training from scratch, see Appendix A.15 for a case-study in which we investigate
how many poisons an attacker may be able to place in a dataset compiled by querying the internet
for images. We allow the attacker access to a ResNet-18, and we do black-box tests on a VGG11
(Simonyan & Zisserman, 2014), and a MobileNetV2 (Sandler et al., 2018), and we use one of each
model when training from scratch and report the average.

TinyImageNet benchmarks Additionally, we pre-train VGG16, ResNet-34, MobileNetV2 models
on the first 100 classes of the TinyImageNet dataset (Le & Yang, 2015). We fine tune these models on
the second half of the dataset, allowing for 250 poison images. As above, the attacker has access to the
particular VGG16 model, and black-box tests are done on the other two models. In the from-scratch
setting, we train a VGG16 model on the entire TinyImageNet dataset with 250 images poisoned.2

Benchmark hyperparameters We pre-train models on CIFAR-100 with SGD for 400 epochs
starting with a learning rate of 0.1, which decays by a factor of 10 after epochs 200, 300, and 350.
Models pre-trained on the first half of TinyImageNet are trained with SGD for 200 epochs starting
with a learning rate of 0.1, which decays by a factor of 10 after epochs 100 and 150. In both cases,
we apply per-channel data normalization, random crops, and horizontal flips, and we use batches of
128 images (augmentation is also applied to the poisoned images). We then fine tune with poisoned
data for 40 epochs with a learning rate that starts at 0.01 and drops to 0.001 after the 30th epoch (this
applies to the transfer learning settings).

When training from scratch on CIFAR-10, we include the 500 perturbed poisons in the standard
training set. We use SGD and train for 200 epochs with batches of 128 images and an initial learning
rate of 0.1 that decays by a factor of 10 after epochs 100 and 150. Here too, we use data normalization
and augmentation as described above. When training from scratch on TinyImageNet, we allow for
250 poisoned images. All other hyperparameters are identical.

Our evaluations of six different attacks are shown in Table 2. These attacks are not easily ranked,
as the strongest attacks in some settings are not the strongest in others. Witches’ Brew (WiB) is not
evaluated in the transfer learning settings, since it is not considered in the original work (Geiping
et al., 2020).) See Appendix A.16 for tables with confidence intervals. We find that by using disjoint
and standardized datasets for transfer learning, and common training practices like data normalization
and scheduled learning rate decay, we overcome the deficits in previous work. Our benchmarks can
provide useful evaluations of data poisoning methods and meaningful comparisons between them.

Table 2: Benchmark success rates (%) (best in each column is in bold).

CIFAR-10 TinyImageNet
Transfer From Scratch Transfer From Scratch

Attack WB BB WB BB

FC 22.0 7.0 1.33 49.0 2.0 4.0
CP 33.0 7.0 0.67 14.0 1.0 0.0
BP 85.0 8.5 2.33 100.0 10.5 44.0
WiB - - 26.0 - - 32.0
CLBD 5.0 6.5 1.00 3.0 1.0 0.0
HTBD 10.0 9.5 2.67 3.0 0.5 0.0

2The TinyImageNet from-scratch benchmark is done with 25 independent trials to keep this problem within
reach for researchers with modest resources.
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6 CONCLUSION

The threat of data poisoning is at the forefront of fears around emerging ML systems (Siva Kumar
et al., 2020). While many of the methods claiming to do so do not pose a practical threat, some of
the recent methods are cause for practitioner concern. With real threats emerging, there is a need for
fair comparison. The diversity of attacks, and in particular the difficulty in ordering them by efficacy,
calls for a diverse set of benchmarks. With those we present here, practitioners and researchers can
compare attacks on a level playing field and gain an understanding of how existing methods match up
with one another and where they might fail.

Since the future advancement of these methods is inevitable, our benchmarks will also serve the
data poisoning community as a standardized test problem on which to evaluate and future attack
methodologies. As even stronger attacks emerge, trepidation on the part of practitioners will be
matched by the potential harm of poisoning attacks. We are arming the community with the high
quality metrics this evolving situation calls for.
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A APPENDIX

A.1 TECHNICAL SETUP

We report confidence intervals of radius one standard error, E =
√
p̂(1− p̂)/N , where p̂ is the

observed probability of success, and N is the number of trials. If there are fewer than five observed
successes or failures, we set p̂ = 1/2 to upper-bound standard error.

Hyperparameters We use one of seven sets of hyperparameters when training models. We refer
to these by name throughout this appendix, and Table 3 shows each setup. For all models trained
with SGD, we set the momentum coefficient to 0.9. We always use batches of 128 images and weight
decay with a coefficient of 2× 10−4. The “Decay Schedule” column details the epochs after which
the learning rate drops by the corresponding decay factor.

Table 3: Hyperparameters.
Learning rate

Setup Initial Decay Factor Decay Schedule Epochs Optimizer

A 0.001 0.5 32, 64, 96, 128, 160, 192 200 ADAM
B 0.010 0.1 100, 150 200 SGD
C 0.100 0.1 100, 150 200 SGD
D 0.100 0.1 200, 300, 350 400 SGD
E 0.100 0.1 40, 60 100 SGD
F 0.100 0.1 75, 90 100 SGD
G 0.010 0.1 30 40 SGD

A.2 BASELINES

Table 4 shows the baseline performance of each attack. This table reports averages over 100
independent trials with confidence intervals of width one standard error. The experimental setups are
summarized in Section 3, and we report additional details here. When we say that an experiment uses
a particular architecture, we mean that each trial randomly selects one of ten pre-trained models of
this type. The average performances for these sets of pre-trained models are reported in Table 16
below where the hyperparameters and training routines are detailed.

Feature Collision The FC baseline uses an AlexNet variant without data normalization or data
augmentation. We use the unconstrained version of this attack with the `2 penalty in the optimization
problem. The algorithm presented in the original work has hyperparameters which we set as follows
(Shafahi et al., 2018). We add a watermark of the target image with 30% opacity to each base before
the optimization and we use a step size of 0.0001 with the maximum number of iterations set to 1,200.
When fine tuning on the poisoned data, we train for 20 epochs with ADAM and a fixed learning rate
of 0.001× 0.56 = 0.00015625, which is the smallest learning rate used when pre-training.

Convex Polytope The CP baseline uses a ResNet-18 with data normalization (without data aug-
mentation). In the poison crafting procedure, we use the ADAM optimizer with a learning rate of
0.04 for a maximum of 4,000 iterations or when the CP loss is less than or equal to 1× 10−6. We
bound the perturbations with ε = 25.5/255. Then, we fine tune the model with ADAM for 10 epochs
on the poisoned data with a learning rate of 0.1.

Clean Label Backdoor The CLBD baseline is a training from scratch scenario. The model used
for crafting is an adversarially trained ResNet-18, and we use 20-step PGD with a step size of 4/255

and ε of 16/255 to compute the adversarial perturbations (Madry et al., 2017). Then we train a narrow
ResNet model (see (Turner et al., 2018) for architectural details) from scratch using hyperparameter
set E as defined in Table 3.
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Hidden Trigger Backdoor The HTBD baseline uses a modified AlexNet model with data normal-
ization. Poisons are crafted using SGD for a maximum of 5,000 iterations with initial learning rate of
0.001, which decays by a factor of 0.95 every 2,000 iterations with ε = 16/255. The target image is
patched with an 8× 8 patch in the bottom right corner. Then we fine-tune the last linear layer of the
network using SGD for 20 epochs with initial learning rate of 0.5, which decays by a factor of 0.1
after epochs 5, 10, and 15.

Table 4: Baseline performance.
Attack Success Rate (%)

FC 92.00± 2.71
CP 88.00± 3.25
CLBD 86.00± 3.47
HTBD 69.00± 4.62

A.3 TRAINING WITHOUT SGD OR DATA AUGMENTATION

We add data normalization and augmentation to the pre-training processes in each attack. For FC and
CP, which were originally tested with ADAM, we show results from experiments where normalization
and augmentation are used with ADAM as well as when we pre-train with SGD.

Table 5: Data normalization and augmentation + ADAM.
Attack Success Rate (%) Diff. From Baseline (%)

FC 42.00± 4.94 −50.00
CP 37.00± 4.83 −51.00

Table 6: Data normalization and augmentation + SGD.
Attack Success Rate (%) Diff. From Baseline (%)

FC 51.00± 5.00 −41.00
CP 12.00± 3.25 −76.00
CLBD 1.00± 5.00 −85.00
HTBD 11.00± 3.13 −58.00

A.4 VICTIM ARCHITECTURE MATTERS

We test each method on ResNet-18 victims. Note that CP shows no change from the baseline, as our
baseline set-up for CP uses a ResNet-18 victim model.

Table 7: ResNet-18 victims.
Attack Success Rate (%) Diff. From Baseline (%)

FC 4.00± 5.00 −88.00
CP 88.00± 3.25 0.00
CLBD 80.00± 4.00 −6.00
HTBD 18.00± 3.84 −51.00

A.5 “CLEAN” ATTACKS ARE SOMETIMES DIRTY

We test each attack with an `∞-norm constrained perturbation with ε = 8/255. Note that HTBD
shows no change form the baseline since this was the ε values used in our baseline for this attack.
See Table 8.
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Table 8: Poisons crafted with ε = 8/255.
Attack Success Rate (%) Diff. From Baseline (%)

FC 7.00± 2.55 −85.00
CP 80.00± 4.00 −8.00
CLBD 10.00± 3.00 −76.00
HTBD 59.00± 4.96 −10.00

A.6 PROPERLY TRANSFER LEARNED MODELS ARE VULNERABLE

We use feature extractors pre-trained to classify CIFAR-100 data to craft the poisons. Then, we use
those same feature extractors in the fine-tuning stage when we train the models to classify CIFAR-10
data. See Table 9.

Table 9: Transfer learned victims.
Attack Success Rate (%) Diff. From Baseline (%)

FC 16.00± 3.67 −76.00
CP 100.00± 5.00 +12.00
CLBD 2.00± 5.00 −84.00
HTBD 25.00± 4.33 −44.00

A.7 PERFORMANCE IS NOT INVARIANT TO DATASET SIZE

We study the effect of scaling the dataset size while holding the percentage of data that is poisoned
constant. We test each attack with 5 poisons and 500 training images and increment both the number
of poison examples and the training set size until we reach 500 poisons and 50,000 training images
(the entire CIFAR-10 training set). For every training set size, we allow the attacker to perturb 1% of
the data and we see that the strength of poisoning attacks does not scale with any generality – in some
cases we see success rates drop with increase in dataset size, and some attacks are more successful
with more data. See Table 10 for complete numerical results with confidence intervals of width one
standard error.

In addition, we investigate these dynamics with exactly the CIFAR-10 transfer learning benchmark
set up. This way, we can evaluate each attack in exactly the same setting, as opposed to above, where
we use respective baseline setups. Figure 4 shows that when tested in the exact same evaluation
setting, these attacks scale differently with the size of the dataset. Table 11 shows complete numerical
results with confidence intervals of width one standard error. This experiment, whose results are
perhaps best presented in Figure 2, shows that discussing the poison budget only as a percentage of
the data does not allow for fair comparison.

A.8 BLACK-BOX PERFORMANCE IS LOW

When tested in the black-box setting, all methods except for CLBD show dramatically lower perfor-
mance. CLBD is intended for use in the training from scratch case, and the particular architectures for
crafting and testing are different. So for this experiment, we consider the CLBD baseline black-box.
For FC, CP, and HTBD we craft poisons on the architectures used in the baselines. The black-box
victims for FC and HTBD are ResNet-18 models, whereas the CP baseline used a ResNet-18 victim,
so we use a MobileNetV2 for the black-box victim. See Table 12.

A.9 SMALL SAMPLE SIZES AND NON-RANDOM TARGETS

We test FC and CP with the specific target/base class pairs studied in the original works. We find the
performance of each attack measured only on these classes differs from our baseline. See Table 13.
This fact alone is sufficient evidence that the comparisons done in the poison literature are lacking
consistency, and that this field needs a benchmark problem.
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Table 10: Success rates (%) with varying dataset sizes and number of poisons.
Number of Poisons

Attack 5 10 25 50 100

FC 46.30± 6.79 47.06± 6.99 66.67± 6.60 62.75± 6.77 72.00± 6.35
CP 100.00± 7.07 100.00± 7.07 98.00± 7.07 88.00± 4.60 82.00± 5.43
CLBD 5.88± 7.00 4.08± 7.14 2.00± 7.07 9.80± 7.00 3.92± 7.00
HTBD 26.00± 4.39 35.00± 4.77 43.00± 4.95 50.00± 5.00 55.00± 4.97

Number of Poisons

Attack 200 300 400 500

FC 76.00± 6.04 71.70± 6.19 80.39± 5.56 78.00± 5.86
CP 76.00± 6.04 55.10± 7.11 42.86± 7.07 26.00± 6.20
CLBD 4.00± 7.07 30.00± 6.48 68.00± 6.60 92.00± 7.07
HTBD 56.00± 4.96 59.00± 4.92 62.00± 4.85 53.00± 4.99
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Figure 4: Scaling the dataset size in the benchmark setting.

A.10 ATTACKS ARE HIGHLY SPECIFIC TO THE TARGET IMAGE

We consider the case where the target object is photographed in a slightly different environment
than in the particular image the attacker uses while crafting poisons. Perhaps, the attacker is trying
to keep their own red car from being classified as a car. In reality, the deployed model may see a
different image than the specific photograph to which the attacker has access. We are unable to get
new photographs of the exact objects in CIFAR-10 images, so we choose to upper bound performance
on highly modified images by simply flipping the target images horizontally during evaluation. In
this setting, we observe that triggerless attacks are severely impaired, supporting our conclusion that
they pose less practical threat in physical settings than suggested in previous work. See Table 14.
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Table 11: Success rates (%) with varying dataset size in the benchmark setting.
Number of Poisons

Attack 5 10 25 50

FC 2.30± 5.00 14.0± 3.47 22.0± 4.14 10.0± 3.00
CP 19.0± 3.92 29.0± 4.61 33.0± 4.70 19.0± 3.92
CLBD 1.0± 5.00 2.0± 5.00 5.0± 5.00 2.0± 5.00
HTBD 1.0± 5.00 6.0± 2.37 10.0± 3.00 4.0± 5.00

Number of Poisons

Attack 100 250 500

FC 23.0± 4.21 14.0± 3.47 18.0± 3.84
CP 19.0± 3.92 2.0± 5.00 4.0± 5.00
CLBD 3.0± 5.00 1.0± 5.00 1.0± 5.00
HTBD 2.0± 5.00 3.0± 5.00 4.0± 5.00

Table 12: Black-box victim.
Attack Success Rate (%) Diff. From Baseline (%)

FC 4.00± 5.00 −88.00
CP 16.00± 3.67 −72.00
CLBD 86.00± 3.47 0.00
HTBD 2.00± 5.00 −67.00

Table 13: Success with specific class pairs.
Attack Target Base Success Rate (%) Diff. From Baseline (%)

FC plane frog 80.00± 4.00 −12.00
CP frog ship 83.00± 3.76 −5.00

Table 14: Success on flipped targets.
Attack Success Rate (%) Diff. From Baseline (%)

FC 7.00± 2.55 −85.00
CP 40.00± 4.90 −48.00

A.11 ENSEMBLIZING BOOSTS THE ATTACKER

We study the impact of ensemblizing attacks, where the attacker uses several architectures while
crafting poisons. This was suggested and tested with CP in the original work (Zhu et al., 2019). In
that study however, the comparison between CP and FC is incomplete. We show that ensemblizing
helps both attacks and that FC outperforms CP in the white-box setting with enough poisons (both
in the single model and the ensemblized attacks). See he rows in Table 22 corresponding to the
ensembled FC attack (FC-Ens.) and the ensembled CP attack (CP-Ens.).

A.12 BACKDOOR SUCCESS DEPENDS ON PATCH SIZE

In order to determine the effect of the particular size of the patch used in backdoor attacks, we test
the backdoor methods with a variety of patch sizes. We see a strong correlation between patch size
and success rate. See Table 15. Note that dashes correspond to an attack’s baseline performance, see
Table 4.

17



Under review as a conference paper at ICLR 2021

Table 15: Success rates (%) of backdoor attacks with varying patch sizes.
Patch Size

Attack 3× 3 5× 5 8× 8

HTBD 20.00± 4.0 33.00± 4.70 -
CLBD - 97.00± 5.00 100± 5.0

A.13 MODEL TRAINING AND PERFORMANCES

Models trained for our experiments In Tables 16 - 19, we show the training setups, including
references to sets of hyperparameters outlined in Table 3, and the training and testing accuracy of the
models we use in this study. Each row in these two tables shows averages of ten models we trained
from random intializations with identical training setups. Note that the models called “AlexNet”
are the variants introduced in the original FC paper, see that work for details (Shafahi et al., 2018).
Models named “HTBD AlexNet” are the modified AlexNet architecture we used for the HTBD
experiments and the details are below.

Architectures we use Four of the five architectures we use in this study are widely used and/or
detailed in other works. For the modified AlexNet used in FC experiments, see (Shafahi et al., 2018).
For ResNet-18 architecture details, see (He et al., 2016). For MobileNetV2, see (Sandler et al., 2018).
For VGG11, see (Simonyan & Zisserman, 2014).

HTBD AlexNet The model used in the original HTBD work was a simplified version of AlexNet.
But for our baseline experiments we adapt the ImageNet AlexNet model to CIFAR-10 dataset. We
modify the kernel size and stride in the first convolution layer to 3 and 2, respectively, in order to take
32× 32× 3 input images. For deeper layers we use a stride of 1. The width of the network at then
end of the convolutional layers is 256.

Table 16: CIFAR-10 models.
Model Norm. Aug. Hyperparam. Train Acc. (%) Test Acc. (%)

AlexNet × × A 99.99 73.96
AlexNet X × A 99.99 74.45
AlexNet X X A 90.35 82.36
AlexNet X X B 98.77 85.91
HTBD AlexNet X × B 100.00 77.35
HTBD AlexNet X X B 98.80 84.30
ResNet-18 × × C 100.00 87.05
ResNet-18 X × C 100.00 87.10
ResNet-18 X X C 99.99 94.96
MobileNetV2 × × C 99.99 82.11
MobileNetV2 X × C 99.99 82.04
MobileNetV2 X X C 99.88 93.36

Table 17: CIFAR-100 models.
Model Norm. Aug. Hyperparam. Train Acc. (%) Test Acc. (%)

ResNet-18 X X D 99.97 74.37
MobileNetV2 X X D 99.95 71.81
VGG11 X X D 99.97 67.87

Transfer learning We also train models of each architecture from scratch on the first 250 images
per class of CIFAR-10. By comparing these models to transfer learned models on the same data, we
see the benefit of transfer learning for this quantity of data. Each row of Table 20 shows averages of
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Table 18: TinyImageNet models (first 100 classes).
Model Norm. Aug. Hyperparam. Train Acc. (%) Test Acc. (%)

VGG16 X X C 99.99 63.12
MobileNetV2 X X C 99.99 67.16
ResNet-34 X X C 99.99 62.11

Table 19: TinyImageNet models (all classes).
Model Norm. Aug. Hyperparam. Train Acc. (%) Test Acc. (%)

VGG16 X X C 99.98 58.72
ResNet-34 X X C 99.98 58.08

10 models. For the transfer learned models we use exactly the feature extractors from the benchmark,
and the pre-trained models’ performances are in Table 17. It is clear from Table 20 that with so
little data, training from scratch leads to less-than-optimal test accuracy. This motivates the transfer
learning benchmark tests since transfer learning does improve performance in this setting.

Table 20: CIFAR-10 models with Trainset size 2500.
Model Norm. Aug. Hyperparam. Train Acc. (%) Test Acc. (%)

From ResNet-18 X X F 99.12 59.71
Scratch MobileNetV2 X X F 98.99 68.55

VGG11 X X C 97.98 60.72

Transfer ResNet-18 X X G 99.98 80.38
learned MobileNetV2 X X G 99.97 79.53

VGG11 X X G 99.93 74.95

A.14 ADDITIONAL EXPERIMENTS

Backdoor triggers Different backdoor attacks use different patch images as a trigger. Does the
performance of the attack depends on the patch used? In order to study the impact, we swap the
patches of CLBD and HTBD. We resize the CLBD patch to 8 × 8 and the HTBD patch to 3 × 3
which are the baseline sizes, see Figure 5. We observe that patch image does matter and it can have a
significant effect on the performance of an attack. See Table 21.

Figure 5: CLBD patch (left), and HTBD patch (right).

Table 21: Success rates (%) of backdoor attacks with swapped patch images.
Attack Success Rate (%) Diff. From Baseline (%)

HTBD w/ CLBD patch 51.00± 4.99 -8.00
CLBD w/ HTBD patch 2.00± 5.00 -84.00

Poison budget We conduct an additional experiment to assess the impact of the budget in our
benchmark. We test each attack in the same setting at the benchmark, where we do 100 trials each
with 50, 100, and 250 poisons, holding the dataset size constant. See Table 22. We see the expected
rise in success rate with increased budget, however we note that these increases are almost always
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small. We choose to use 25 poisons in the benchmark tests for the following two reasons. First, we
want the evaluation of an attack to be accessible to those with modest computing resources. Second,
as discussed in Appendix A.15 we find 25 images out of 250 images per class to be a large budget in
realistic settings.

Table 22: CIFAR-10 Transfer learning benchmark tests with varying budget.
Success Rates (%)

Attack Budget White-box Black-box

FC 50 23.0± 4.21 7.0± 1.80
100 59.0± 4.92 5.0± 1.56
250 93.0± 2.55 17.0± 3.76

FC-Ens. 50 17.0± 3.76 19.5± 2.80
100 40.0± 4.90 33.0± 3.34
250 79.0± 4.07 69.0± 4.62

CP 50 24.0± 4.27 8.0± 1.92
100 38.0± 4.85 2.5± 5.00
250 49.0± 5.00 5.0± 1.54

CP-Ens. 50 22.0± 4.14 22.0± 2.93
100 33.0± 4.70 28.0± 3.17
250 47.0± 4.99 37.0± 4.83

CLBD 50 5.0± 5.00 3.0± 1.20
100 2.0± 5.00 2.0± 5.00
250 1.0± 5.00 2.0± 5.00

HTBD 50 7.0± 2.55 7.0± 1.80
100 2.0± 5.00 6.5± 1.74
250 10.0± 3.00 6.0± 2.37

A.15 HOW MANY IMAGES

When scraping data from Google, the sources of images are diverse. If each source is responsible for
very few images, then an adversary may have a difficult time poisoning a significant amount of data
scraped by their victim. In order to investigate the diversity of sources, we query Google Images for
each CIFAR-10 class label and measure how many images come from each source. Table 23 shows
how many images the first through fifth most represented source are each responsible for in the first
100 search results for each class. Entries represent the number of images in a particular class coming
from a particular source within the first 100 search results for that query. The first column represents
the source responsible for the most images. The second column represents the source responsible for
the second most images, etc. We find that sources generally are not highly dominant, and each source
is responsible for few images. Poisoning methods which only perturb data from the target class may
only be able to poison a very small percentage of the victim’s total data, especially when the number
of classes is high. For example, in a 1000-class problem like ImageNet, even if the attacker could
poison 10% of the target class, this would only represent 0.01% of the total dataset. This percentage
is far smaller than the percentages studied in the data poisoning literature.
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Table 23: Google Images case study.
Number of Images

Search term Source 1 Source 2 Source 3 Source 4 Source 5

airplane 7 5 5 3 3
automobile 9 7 6 6 3
bird 7 5 4 4 4
cat 8 8 5 4 4
deer 6 6 5 4 4
dog 14 9 6 4 3
frog 5 4 4 4 3
horse 9 5 4 3 3
ship 9 6 5 5 4
truck 9 6 6 5 4

A.16 BENCHMARK RESULTS

We present complete benchmark results with confidence intervals in Tables 24, 25, and 26. All figures
here are success rates of attacks reported as percentages.

Table 24: Complete CIFAR-10 transfer learning benchmark results.
Transfer learning

Attack WB BB

FC 16.0± 3.67 3.5± 1.30
CP 24.0± 4.27 4.5± 1.47
BP 85.0± 3.57 8.5± 1.97
CLBD 3.0± 5.00 3.5± 1.30
HTBD 2.0± 5.00 4.0± 1.39

Table 25: Complete CIFAR-10 from-scratch benchmark results.
Training from scratch

Attack ResNet-18 MobileNetV2 VGG11 Average

FC 0.0± 5.00 1.0± 5.00 3.0± 5.00 1.3± 5.00
CP 0.0± 5.00 1.0± 5.00 1.0± 5.00 0.7± 5.00
BP 3.0± 5.00 3.0± 5.00 1.0± 5.00 2.3± 5.00
WiB 45.0± 4.97 25.0± 4.33 8.0± 2.71 26.0± 4.38
CLBD 0.0± 5.00 1.0± 5.00 2.0± 5.00 1.0± 5.00
HTBD 0.0± 5.00 4.0± 5.00 1.0± 5.00 2.7± 5.00

Table 26: Complete TinyImageNet benchmark results.
Transfer learning From scratch

Attack WB BB VGG16

FC 49.0± 4.99 2.0± 5.00 4.0± 10.0
CP 14.0± 3.47 1.0± 5.00 0.0± 10.0
BP 100.0± 5.0 10.5± 3.06 44.0± 9.93
WiB - - 32.0± 9.33
CLBD 3.0± 5.0 1.0± 5.0 0.0± 10.0
HTBD 3.0± 5.0 0.5± 5.0 0.0± 10.0
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