

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EXPERT-GUIDED CROSS-VIEW FUSION WITH SELF-DERIVED LESION PROPOSALS FOR MULTI-VIEW DIABETIC RETINOPATHY GRADING

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advances in multi-view fundus imaging show great promise for automated diabetic retinopathy (DR) grading. However, mainstream end-to-end CNN/Transformer pipelines rely on striding or tokenization that compresses spatial detail, causing small, low-contrast lesions (e.g., microaneurysms) to be under-represented and creating performance ceilings. Prior efforts have mitigated this by incorporating external lesion- or vessel-level annotations into models. However, such labels are costly to acquire, break the end-to-end training, and make performance over-reliant on the annotation quality. To reduce dependence on expensive annotations, we propose an end-to-end framework that generates lesion proposals on the fly during training and inference, providing self-derived cues for grading. First, we introduce a Grade-Activated Lesion Proposal (GALP) module that derives grade-conditioned evidence maps (GEMs) from stage-wise auxiliary classifiers and selects the top-K high-evidence regions per view as lesion proposals. Second, we propose a Cross-View Lesion Expert Guided Regional Fusion (LGRF) module, which selectively activates experts for a view’s lesion proposals based on contextual guidance from other views, ensuring that only the most relevant feature extractors contribute to fusion. Experimental results on two multi-view DR datasets show that our method matches or surpasses strong baselines without external annotations, confirming that self-generated proposals can substantially reduce annotation needs.

1 INTRODUCTION

DR is a microvascular complication of diabetes characterized by progressive retinal damage and is a leading cause of vision impairment and blindness. Early stages are often asymptomatic; as the disease advances, patients may experience blurred or distorted vision and scotomas (Yu et al., 2024). Without timely intervention, DR can progress to vitreous hemorrhage, tractional retinal detachment, and irreversible blindness. Consequently, population-level fundus screening, particularly in primary and community settings, is essential (Zhang et al., 2024). Yet the global supply of retina specialists is insufficient to meet the rising screening demand across both high- and low-resource regions. This mismatch has motivated intensive research into automated DR grading from fundus photographs, with deep learning emerging as a prominent approach (Lin et al., 2025b).

Research on DR grading from fundus images has generally progressed through three stages. Stage I: single-view grading. Early work ingests a single fundus photograph and predicts a five-point grade (0–4: normal, mild, moderate, severe, and proliferative DR) (Dai et al., 2021). In this setting, models learn lesion patterns from one view only, which limits their ability to capture the full retinal status (Liu et al., 2025; Zou et al., 2025). Stage II: multi-view grading. To address coverage gaps, recent studies leverage multiple views and design end-to-end fusion strategies that aggregate within-view lesion evidence and learn cross-view relationships, yielding notable gains over single-view baselines (Luo et al. (2021)). Stage III: revisiting end-to-end limitations. Despite progress, many end-to-end CNN/Transformer pipelines rely on downsampling or tokenization that compresses spatial detail; subtle, low-contrast lesions (or vessels) may receive insufficient attention (Luo et al., 2024). As illustrated in Fig. 1 (Switch = Off), this bottleneck can persist even with multi-view inputs. A complementary line of work augments grading with additional signals, thereby improving performance

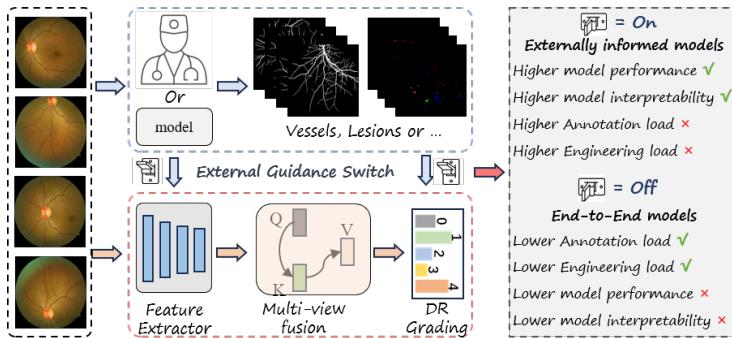


Figure 1: The comparison of the end-to-end models and the externally informed models

but at the cost of extra supervision and complexity. For instance, model proposed by Lin et al. (2025a) incorporates vessel annotations, and another work leverages clinician-annotated optic disc (OD) and macular locations (Hou et al., 2022). Such approaches (Fig. 1, Switch = On) can be effective, yet they introduce two practical challenges. First, acquisition cost and workflow burden: doctor-provided annotations are expensive and time-consuming; moreover, if inference requires those auxiliary inputs, clinicians must continue to provide them even after deployment. Second, dependency and brittleness: when auxiliary signals are produced by separate models (e.g., lesion segmenters, as in Luo et al. (2025)), grading accuracy can become tightly coupled to the upstream model’s errors.

To address these limitations, we introduce a method that maintains the advantages of end-to-end multi-view learning and substantially reduces dependence on external side information. To this end, we generate lesion-aware cues natively within the grading pipeline, targeting competitive, or superior, accuracy without external side information. Concretely, we introduce two modules: GALP and LGRF. GALP attaches stage-wise auxiliary classifiers to multi-resolution feature maps and enhances their grade-discriminative capacity via an auxiliary classification loss. From the auxiliary heads, we derive GEMs by estimating the importance of subregions with respect to the predicted grade. Since the grade evidence in DR is predominantly localized to lesions, selecting Top- K peaks within these maps yields lesion proposals, which is the spatial regions most predictive of the grade. GALP both strengthens supervision of intermediate representations and provides proposals that act as surrogates for external cues. LGRF uses cross-view lesion proposals to guide information fusion. For each view’s lesion proposals, an expert pool performs proposal-aware feature extraction; cross-view context gates which experts are activated, encouraging the current view to prioritize regions corroborated by other views. A Top- K -weighted cross-view attention module then fuses the selected expert outputs with the current view’s feature maps, achieving precise, selective integration across views. Our contributions are as follows:

- (1) We propose an end-to-end DR grading framework that self-generates lesion proposals via GALP, preserving end-to-end training, strengthening intermediate representations, and recovering small, low-contrast lesions without external annotations.
- (2) We introduce LGRF, a cross-view, lesion-expert-guided regional fusion module that dynamically routes experts via contextual corroboration and fuses proposals through Top- K -weighted cross-view attention, enabling precise, selective integration and superior robustness and interpretability.
- (3) Comprehensive evaluations across two multi-view DR benchmarks confirm SOTA competitiveness without external supervision, showing self-derived proposals reduce annotation reliance while still elevating micro-lesion sensitivity and reliability for DR grading.

2 RELATED WORKS

In recent years, deep learning-based automated grading for multi-view DR has shown substantial promise (Wang et al., 2025). A major line of research exploits complementary information across standardized views by designing stronger feature extractors and cross-view fusion strategies to better

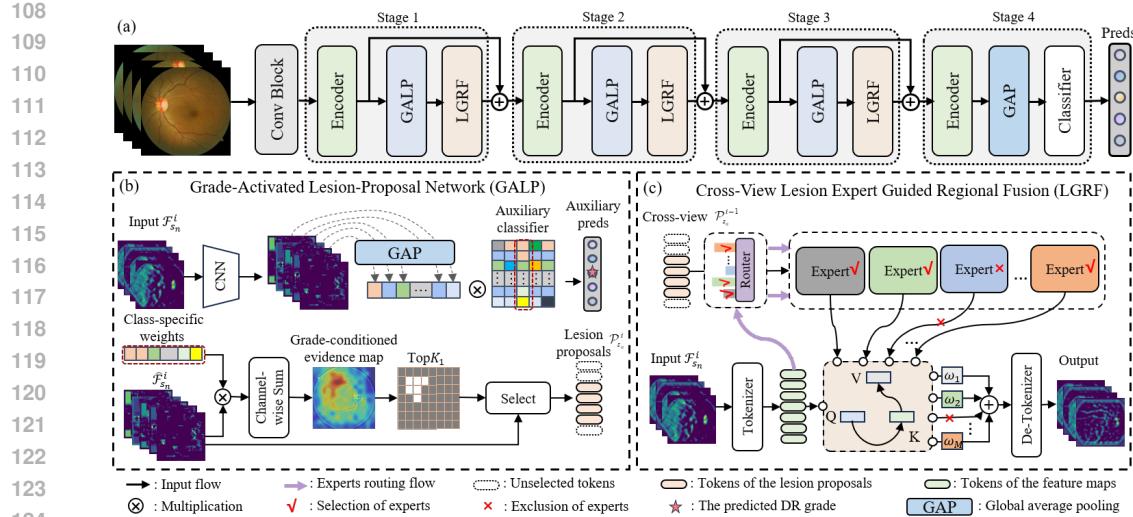


Figure 2: Overall framework. (a) Pipeline with GALP and LGRF. (b) GALP generates lesion proposals with the assistance of auxiliary classifier. (c) LGRF fuses current-view features with cross-view proposal features via gated mixture-of-experts (MoE) and Top-K-weighted cross-view attention.

capture heterogeneous lesion morphologies. To our knowledge, Luo et al. (2021) is among the earliest works to employ four-view fundus images for DR grading. Luo et al. subsequently proposed MVCINN, which hybridizes self-attention with CNNs to fuse multi-view features and improves accuracy over single-view baselines (Luo et al., 2023).

Following the era of multi-view DR recognition, a growing body of work incorporates additional signals to break performance bottlenecks. Such auxiliary cues compensate for the limited capture of fine-grained retinal structures by purely end-to-end pipelines and have delivered notable gains (Li et al., 2024; Guo et al., 2025). CVSA leverages vessel masks extracted via gaussian modeling as auxiliary inputs and introduces a cross-view lesion-alignment strategy to aggregate relevant evidence across views (Lin et al., 2025a). This yields a 2.5% absolute accuracy improvement over MVCINN, a strong end-to-end state-of-the-art (SOTA) baseline. Luo et al. further proposed SMVDR (Luo et al., 2024) and LFMVDR (Luo et al., 2025), which employ lesion-annotation maps so that the model persistently attends to clinically salient regions during inference, enhancing both accuracy and interpretability. Hu et al. introduced WGLIN, a lesion-guided framework that performs wavelet-based fusion for multi-view integration (Hu et al., 2025). Distinct from methods relying on full vessel or lesion structures, Hou et al. proposed CrossFiT, which uses OD and macular coordinates to align cross-view information and also reports strong performance (Hou et al., 2022).

Despite their effectiveness, these approaches introduce practical burdens. Doctor-provided annotations are costly and time-consuming, and when auxiliary inputs are required at inference, the clinical workflow becomes heavier. Moreover, when auxiliary signals are produced by separate models (e.g., lesion segmenters), grading performance becomes tightly coupled to upstream accuracy and calibration, increasing system brittleness.

3 METHOD

3.1 OVERVIEW

The overall pipeline is shown in Fig. 2(a). Let $\mathcal{V} = [\mathcal{V}^1, \mathcal{V}^2, \dots, \mathcal{V}^N]$ denote the multi-view fundus images, where $\mathcal{V}^i \in \mathbb{R}^{C \times H \times W}$ is the i -th view and N is the number of views. All views are first processed by a convolutional stem (“Conv Block”) inherited from a pretrained backbone. The pipeline then proceeds through four stages, each using the backbone encoder blocks from shallow to deep to extract multi-view features. And at each stage s_n ($n \in \{1, 2, 3, 4\}$), the encoded fea-

162 tures of view i , $\mathcal{F}_{s_n}^i \in \mathbb{R}^{C_{s_n} \times H_{s_n} \times W_{s_n}}$, are then processed by the proposed GALP and LGRF. As
 163 illustrated in Fig. 2(b), GALP attaches an auxiliary classifier to stage features $\mathcal{F}_{s_n}^i$ and optimizes an
 164 auxiliary loss so that $\mathcal{F}_{s_n}^i$ becomes more grade-discriminative. From the auxiliary head we derive
 165 GEMs, upon which Top- K region selection are applied to obtain lesion proposals $\mathcal{P}_{s_n}^i$. As shown
 166 in Fig. 2(c), lesion proposals from the other views are processed by an expert pool whose activations
 167 are gated by the current view’s features. A Top- K -weighted cross-view attention module then fuses
 168 the selected expert outputs with the current features $\mathcal{F}_{s_n}^i$. Finally, the stage- s_4 features are passed
 169 through global average pooling (GAP) and a linear classifier to produce the DR grade prediction.
 170

171 3.2 GRADE-ACTIVATED LESION PROPOSALS (GALP)

172 GALP pursues two objectives: (i) enhancing $\mathcal{F}_{s_n}^i$ with stage-wise discriminative supervision
 173 through auxiliary classification, and (ii) deriving lesion proposals that can act as surrogates for ex-
 174 ternal cues.
 175

176 **Auxiliary classification:** Given the encoded features $\mathcal{F}_{s_n}^i$ from stage s_n of view i , an auxiliary
 177 head computes logits
 178

$$\mathbf{z}_{s_n}^i = \mathbf{W}_{s_n} \text{GAP}(\text{CNN}_{s_n}(\mathcal{F}_{s_n}^i)), \quad (1)$$

179 followed by $\hat{\mathbf{y}}_{s_n}^i = \text{Softmax}(\mathbf{z}_{s_n}^i)$. The auxiliary loss encourages grade-discriminative intermediate
 180 representations:
 181

$$\mathcal{L}_{\text{aux}} = \sum_{n=1}^3 \sum_{i=1}^N \text{Focal}(\hat{\mathbf{y}}_{s_n}^i, \mathbf{y}), \quad (2)$$

182 where \mathbf{y} is the ground-truth DR grade and $\text{Focal}(\cdot, \cdot)$ is the focal loss.
 183

184 **lesion proposals:** Given that DR grades are predominantly determined by lesion evidence, we
 185 compute grade-conditioned regions on the feature maps in a stage-wise manner using class activation
 186 maps (CAMs) (Jiang et al., 2021). These regions are interpreted as grade-related (i.e., lesion) areas.
 187 Let $\mathbf{w}_{s_n}^{(\hat{\mathbf{y}}_{s_n}^i)} \in \mathbb{R}^{C_{s_n}}$ denote the class-specific weight vector for the predicted grade $\hat{\mathbf{y}}_{s_n}^i$ at stage s_n .
 188 The GEMs for view i is
 189

$$\mathbf{A}_{s_n}^i(u, v) = \text{ReLU} \left(\sum_{c=1}^{C_{s_n}} \mathbf{w}_{s_n, c}^{(\hat{\mathbf{y}}_{s_n}^i)} \left(\text{CNN}_{s_n}(\mathcal{F}_{s_n}^i) \right)_{c, u, v} \right). \quad (3)$$

190 We normalize $\tilde{\mathbf{A}}_{s_n}^i = (\mathbf{A}_{s_n}^i - \text{min}) / (\text{max} - \text{min})$, where min and max are taken over (u, v) .
 191 Since $\tilde{\mathbf{A}}_{s_n}^i$ is a class-weighted sum of stage- s_n feature responses contributing to the grade logit $\hat{\mathbf{y}}_{s_n}^i$,
 192 larger values mark spatial locations that increase this logit and are therefore more predictive of the
 193 grade. Accordingly, regions with higher activation in $\tilde{\mathbf{A}}_{s_n}^i$ are more likely to contain lesion evidence.
 194 Then, the spatial domain of $\tilde{\mathbf{A}}_{s_n}^i$ is partitioned into non-overlapping $q \times q$ patches (with q chosen
 195 such that $q \mid H_{s_n}$ and $q \mid W_{s_n}$), yielding $P_{s_n} = (H_{s_n}/q) \times (W_{s_n}/q)$ regions $\{\Omega_{s_n}^{i, r}\}_{r=1}^{P_{s_n}}$. Therefore,
 196 lesion-liability score for region r is defined as
 197

$$s_{s_n}^{i, r} = \sum_{(u, v) \in \Omega_{s_n}^{i, r}} \tilde{\mathbf{A}}_{s_n}^i(u, v). \quad (4)$$

198 Let $\mathcal{I}_{s_n}^i = \text{TopK}_{K_{1, s_n}}(\{s_{s_n}^{i, r}\}_{r=1}^{P_{s_n}})$ be the indices of the K_{1, s_n} highest-scoring regions. It is worth
 199 noting that larger values of $s_{s_n}^{i, r}$ indicate a higher likelihood that lesions reside in region r ; thus $\mathcal{I}_{s_n}^i$
 200 selects the most lesion-likely regions. To extract features for these regions, for each $k_{1, s_n} \in \mathcal{I}_{s_n}^i$ we
 201 compute a masked average over the encoder features:
 202

$$\mathbf{f}_{s_n}^{i, k_{1, s_n}} = \frac{1}{|\Omega_{s_n}^{i, k_{1, s_n}}|} \sum_{(u, v) \in \Omega_{s_n}^{i, k_{1, s_n}}} \mathcal{F}_{s_n}^i(:, u, v). \quad (5)$$

203 A linear projection produces D -dimensional tokens,
 204

$$\mathbf{p}_{s_n}^{i, k_{1, s_n}} = \text{Lr}(\mathbf{f}_{s_n}^{i, k_{1, s_n}}) \in \mathbb{R}^D, \quad (6)$$

216 and the proposal matrix is
 217

$$\mathcal{P}_{s_n}^i = [\mathbf{p}_{s_n}^{i, k_{1, s_n}}]_{k_{1, s_n} \in \mathcal{I}_{s_n}^i} \in \mathbb{R}^{K_{1, s_n} \times D}. \quad (7)$$

218 And the obtained $\mathcal{P}_{s_n}^i$ can be treated as lesion proposals for downstream cross-view fusion.
 219

220 Note that a uniform partition of the feature map would yield P_{s_n} tokens at stage s_n ; instead, by
 221 retaining only the Top- K_{1, s_n} lesion-salient regions, we obtain $K_{1, s_n} \ll P_{s_n}$ proposal tokens that
 222 concentrate evidence on grade-relevant areas. Fusing these lesion-only tokens with cross-view fea-
 223 tures reduces distraction from non-lesion background and strengthens guidance for cross-view inte-
 224 gration.
 225

226 3.3 CROSS-VIEW LESION EXPERT-GUIDED REGIONAL FUSION 227

228 LGRF leverages lesion proposals produced by GALP to enable selective, proposal-aligned fusion
 229 across views. For the current view i at stage s_n with features $\mathcal{F}_{s_n}^i$, we tokenize the feature map
 230 using ViT-style patching with the same patch size $q \times q$ as in proposal generation:
 231

$$\mathcal{T}_{s_n}^i = \text{TokN}(\mathcal{F}_{s_n}^i) \in \mathbb{R}^{P_{s_n} \times D}, \quad P_{s_n} = \frac{H_{s_n}}{q} \cdot \frac{W_{s_n}}{q}. \quad (8)$$

232 Cross-view fusion is performed between the current view and its adjacent (cyclic) view $j =$
 233 $\begin{cases} i+1, & i < N \\ 1, & i = N \end{cases}$. We collect the Top- K_{1, s_n} proposal tokens from the adjacent view, $\mathcal{P}_{s_n}^j \in$
 234 $\mathbb{R}^{K_{1, s_n} \times D}$, and restrict fusion to these lesion-salient proposals to provide targeted cross-view guid-
 235 ance while suppressing background interference. The following subsections detail (i) Cross-view
 236 lesion proposal expert routing and (ii) Top- K -weighted cross-view attention.
 237

238 **Cross-view lesion proposal expert routing:** To allow the current view to autonomously select
 239 which experts to activate for processing lesion proposals from the adjacent view, we gate cross-
 240 view experts conditioned on the current view's features. We first pass the current-view tokens $\mathcal{T}_{s_n}^i$
 241 through a routing network to determine adjacent-view expert activations. Specifically, a linear pro-
 242 jection (denoted Router) maps aggregated current-view tokens to routing logits, which are then
 243 normalized via softmax to obtain routing scores:
 244

$$\mathcal{R}s_{s_n}^i = \text{Softmax}(\text{Router}(\text{mean}(\mathcal{T}_{s_n}^i))) \in \mathbb{R}^M, \quad (9)$$

245 where M denotes the number of predefined experts in the adjacent view. Inspired by the MoE frame-
 246 work (Cao et al., 2023), the cross-view lesion proposals $\mathcal{P}_{s_n}^j$ are fed into the top- K_2 Transformer
 247 experts $\{\text{Tr}_{s_n, 1}^j, \text{Tr}_{s_n, 2}^j, \dots, \text{Tr}_{s_n, K_2}^j\}$, selected according to the K_2 largest entries of $\mathcal{R}s_{s_n}^i$. The
 248 output of the k_2 -th activated expert is
 249

$$\mathcal{P}e_{s_n, k_2}^j = \text{Tr}_{s_n, k_2}^j(\mathcal{P}_{s_n}^j). \quad (10)$$

250 Subsequently, each extracted feature $\mathcal{P}e_{s_n, k_2}^j$, together with its importance weight \hat{w}_{s_n, k_2}^i (the k_2 -th
 251 largest entry of $\mathcal{R}s_{s_n}^i$) and the current-view tokens $\mathcal{T}_{s_n}^i$, is passed to a Top- K -weighted cross-view
 252 attention module to facilitate adaptive cross-view fusion. Similar to existing MoE-based methods
 253 (Xie et al., 2025), we incorporate a load-balancing loss term ($\mathcal{L}_{\text{load}}$) to encourage equitable utiliza-
 254 tion of experts. Let B be the mini-batch of size, \hat{u}_m be the fraction of tokens actually assigned to
 255 expert m and $\mathcal{R}s_{s_n, b, m}^i$ be the m -th score of the $\mathcal{R}s_{s_n}^i$ in the b -th batch. The $\mathcal{L}_{\text{load}}$ is defined as
 256

$$\mathcal{L}_{\text{load}, s_n}^i = M \cdot \sum_{m=1}^M \left(\frac{1}{B} \sum_{b=1}^B \mathcal{R}s_{s_n, b, m}^i \right) \cdot \hat{u}_m, \quad \mathcal{L}_{\text{load}} = \sum_{n=1}^3 \sum_{i=1}^N \mathcal{L}_{\text{load}, s_n}^i \quad (11)$$

257 **Top- K -weighted cross-view attention:** The tokens $\mathcal{P}e_{s_n, k_2}^j$ are projected to keys \mathcal{K}_{s_n, k_2}^j and
 258 values \mathcal{V}_{s_n, k_2}^j , while the current-view tokens $\mathcal{T}_{s_n}^i$ are projected to queries $\mathcal{Q}_{s_n}^i$. Region-wise rela-
 259 tionships between view i and lesion regions in view j are computed via
 260

$$\mathcal{M}_{s_n, k_2}^{ij} = \mathcal{Q}_{s_n}^i \left(\mathcal{K}_{s_n, k_2}^j \right)^\top \in \mathbb{R}^{P_{s_n} \times K_{1, s_n}}, \quad (12)$$

270 where each row of $\mathcal{Q}_{s_n}^i$ and \mathcal{K}_{s_n, k_2}^j is ℓ_2 -normalized. With this normalization, $\mathcal{M}_{s_n, k_2}^{ij}$ represents
 271 cosine similarities; the entry (m, n) quantifies the relevance between the m -th region of view i and
 272 the n -th lesion region of view j . Here, subscripts such as s_n , i (j), and k_2 denote different feature
 273 stages, view indices, and expert indices, respectively, and do not refer to individual matrix entries.
 274

275 For each activated expert $k_2 \in \{1, \dots, K_2\}$, attention and aggregation are

$$276 \quad \mathbf{O}_{s_n, k_2}^{ij} = \text{Softmax}\left(\frac{\mathcal{M}_{s_n, k_2}^{ij}}{\sqrt{D}}\right) \mathcal{V}_{s_n, k_2}^j \in \mathbb{R}^{P_{s_n} \times D}. \quad (13)$$

279 Top- K_2 weighting by the routing scores \hat{w}_{s_n, k_2}^i yields the expert-aggregated output
 280

$$281 \quad \mathbf{O}_{s_n}^{ij} = \sum_{k_2=1}^{K_2} \hat{w}_{s_n, k_2}^i \text{FC}\left(\mathbf{O}_{s_n, k_2}^{ij}\right) \in \mathbb{R}^{P_{s_n} \times D}. \quad (14)$$

284 Let $\text{MHA}_{\text{CVA}}(\cdot)$ denote a multi-head version of the above Top-K weighted cross-view attention.
 285 Then the fused tokens for view i are obtained with standard residual and layer normalization:

$$286 \quad \mathcal{T}_{s_n}^i = \text{LN}\left(\mathcal{T}_{s_n}^i + \text{MHA}_{\text{CVA}}\left(\mathcal{Q}_{s_n}^i, \{\mathcal{K}_{s_n, k_2}^j\}, \{\mathcal{V}_{s_n, k_2}^j\}, \{\hat{w}_{s_n, k_2}^j\}\right)\right). \quad (15)$$

288 Finally, tokens are reshaped back to the spatial layout to form the fused feature map:

$$289 \quad \mathbf{Fu}_{s_n}^i = \text{DeTok}\left(\hat{\mathcal{T}}_{s_n}^i\right) \in \mathbb{R}^{C_{s_n} \times H_{s_n} \times W_{s_n}}. \quad (16)$$

291 By routing only lesion-proposal tokens and applying Top- K -weighted cross-view attention, the
 292 fusion focuses computation on grade-relevant regions, reducing background leakage and improving
 293 alignment fidelity.

295 3.4 DR GRADING

297 As shown in Fig. 2(a), the final grade is predicted from the stage- s_4 features by GAP, multi-view
 298 aggregation, and a linear classifier. Let $\text{Concat}(\cdot)$ the channel-wise concatenation. For view $i \in$
 299 $\{1, \dots, N\}$, define $\mathbf{g}^i = \text{GAP}(\mathcal{F}_{s_4}^i) \in \mathbb{R}^{C_{s_4}}$. The multi-view representation and logits are

$$300 \quad \mathbf{h} = \text{Concat}(\mathbf{g}^1, \mathbf{g}^2, \dots, \mathbf{g}^N) \in \mathbb{R}^{NC_{s_4}}, \quad \mathbf{z} = \mathbf{W}_c \mathbf{h} + \mathbf{b}_c \in \mathbb{R}^5, \quad (17)$$

302 The predictive distribution is

$$303 \quad \hat{\mathbf{y}} = \text{Softmax}(\mathbf{z}). \quad (18)$$

304 **Training objective:** The main grading loss uses the focal loss on the final prediction:

$$306 \quad \mathcal{L}_{\text{cls}} = \text{Focal}(\hat{\mathbf{y}}, \mathbf{y}). \quad (19)$$

307 The overall training objective combines the main loss, the stage-wise auxiliary loss from GALP
 308 (Eq. 2), and the MoE load-balancing regularizer with nonnegative weights λ_{aux} and λ_{load} :

$$309 \quad \mathcal{L}_{\text{total}} = \mathcal{L}_{\text{cls}} + \lambda_{\text{aux}} \mathcal{L}_{\text{aux}} + \lambda_{\text{load}} \mathcal{L}_{\text{load}}. \quad (20)$$

311 4 EXPERIMENTS

313 4.1 EXPERIMENTAL SETUP

315 **Datasets:** We evaluate on two multi-view DR grading datasets used in prior work: MFIDDR
 316 (four-view) (Luo et al., 2023) and DRTiD (two-view) (Hou et al., 2022). MFIDDR contains
 317 8,613 eyes, each with four fundus photographs captured from distinct angles. The provider also
 318 releases lesion segmentation masks generated by a segmentation model. The official split is 70/30
 319 for training/testing. Following prior work on this benchmark, we resize each image to 224×224
 320 for training and evaluation. In addition, following work (Hu et al., 2025), we preprocess the images
 321 in MFIDDR using code in Karthik et al. (2019). DRTiD comprises 3,100 eyes with two views per
 322 eye. The dataset is partitioned into 2,000 eyes for training and 1,100 for testing. For each image,
 323 the provider additionally supplies OD and macular coordinates. To enable fair comparison with the
 324 SOTA method CrossFiT (Hou et al., 2022), we resize images to 512×512 .

Table 1: Performance comparison on the four-view MFIDDR dataset.

Method (End-to-End)	Acc	Spe	Kappa	F1
RETFound (Zhou et al., 2023)	74.1	73.8	48.4	70.9
MVCINN (Luo et al., 2023)	80.1	83.3	62.5	78.9
MVCNN.R (Yu et al., 2020)	77.4	79.2	56.6	79.2
MVCNN.V (Yu et al., 2020)	79.1	80.5	59.9	77.2
ETMC (Han et al., 2022)	81.5	83.4	64.8	79.7
LFMVDR(w/o lesion) (Luo et al., 2024)	80.4	85.9	64.0	79.4
Method (Externally informed)				
CVSA (with vessel) (Lin et al., 2025a)	82.6	86.8	67.9	81.9
WGLIN (with lesion) (Hu et al., 2025)	84.2	89.9	71.2	83.6
SMVDR-W (with lesion) (Luo et al., 2025)	83.0	88.5	68.9	82.4
SMVDR-M (with lesion) (Luo et al., 2025)	84.0	91.3	71.4	83.7
LFMVDR (with lesion) (Luo et al., 2024)	82.2	86.9	66.9	81.3
Ours (w/o lesion)	83.9	89.8	70.9	83.5
Ours (with lesion)	84.6	<u>90.6</u>	72.3	84.4

Implementation details. Following prior fundus analysis work (Wang et al., 2024), we adopt Swin-Transformer (Swin-B) as the backbone. Following prior SOTA works on the two datasets, we initialize the backbone differently: for MFIDDR, the backbone is pretrained on ImageNet, consistent with CVSA (Lin et al., 2025a); for DRTiD, the backbone is pretrained on the fundus dataset EyePACS (Dugas et al., 2015), following CrossFiT (Hou et al., 2022). To ensure that the patch size exactly divides the spatial dimensions of feature maps with different resolutions, we set the patch size to $q=7$ for MFIDDR and $q=8$ for DRTiD. Since the auxiliary loss \mathcal{L}_{aux} is also a classification loss, we use $\lambda_{\text{aux}}=1$, identical to the weight of \mathcal{L}_{cls} . The load-balancing weight is set to $\lambda_{\text{load}}=0.1$. For all stages s_n , we retain K_{1,s_n} tokens, corresponding to a retention ratio $\alpha = K_{1,s_n}/P_{s_n}$, where P_{s_n} is the total number of tokens at stage s_n . In our experiments we fix $r=50\%$. The expert pool contains $M=6$ experts, with $K_2=2$ experts activated per routing step. For fair comparison with methods that utilize additional information, we also report results on MFIDDR using lesion annotations: lesion segments are fused with the original images via Spatially-Adaptive Denormalization (SPADE) (Park et al., 2019).

Table 2: Grade-wise Performance comparison on the four-view MFIDDR dataset.

Method (End-to-End)	Grade 0			Grade 1			Grade 2			Grade 3			Grade 4		
	F1	Pre	Spe												
RETFound (Zhou et al., 2023)	87.5	80.1	-	35.9	50.2	-	49.4	54.4	-	66.7	65.8	-	36.7	90.0	-
MVCINN (Luo et al., 2023)	91.3	86.7	75.9	56.4	68.3	94.1	59.3	57.4	95.8	68.1	70	97.9	44.8	68.4	99.7
MVCNN_R (Yu et al., 2020)	89.4	83.6	69.3	46.1	64.1	94.1	59.4	58.1	95.9	68.4	66	97.3	22.2	83.3	99.9
MVCNN_V (Yu et al., 2020)	90.1	84.5	71.1	50.0	65.3	94.3	60.2	65.3	94.3	73.6	66.8	97	38.5	76.9	99.8
ETMC (Han et al., 2022)	91.8	86.8	-	63.7	73.3	-	55.4	66.4	-	70.2	64.4	-	0.9	0.1	-
Method (Externally informed)															
CVSA (Lin et al., 2025a)	92.3	89.2	81.2	62.6	73.6	95.0	<u>64.2</u>	61	96	73.2	<u>72.7</u>	98.0	64.1	64.1	99.3
WGLIN (Hu et al., 2025)	93.5	92.3	<u>87.0</u>	<u>71.4</u>	71.0	92.3	59.9	63.9	97.1	<u>74.7</u>	71.9	97.7	29.8	87.5	99.9
SMVDR-W (Luo et al., 2025)	92.9	91.1	-	68.3	69.1	-	55.6	60.6	-	73.8	71.5	-	40.8	99.9	-
SMVDR-M (Luo et al., 2025)	93.5	93.4	-	<u>71.7</u>	71.2	-	60.3	60	-	74.2	69.4	-	30.4	99.9	-
LFMVDR (Luo et al., 2024)	92.4	89.7	82.1	66.3	69.5	92.7	59	62.1	<u>96.8</u>	70.9	69.5	97.6	17	50	99.9
Ours (w/o lesion)	93.4	92.0	86.5	69.7	72.2	93.2	62.5	62.6	96.5	74.1	70.3	97.6	36.0	81.8	99.9
Ours (with lesion)	93.5	<u>92.7</u>	87.9	<u>71.4</u>	72.3	93.0	65.2	<u>65.4</u>	96.8	74.8	<u>73.4</u>	98.0	51.6	69.6	<u>99.8</u>

Metrics: For evaluation on the four-view dataset, we follow the SOTA works (Luo et al., 2024; 2025) and report overall Accuracy (Acc), Specificity (Spe.), Cohen’s Kappa (Kappa.), Precision (Pre) and F1 score. For the two-view dataset, we follow the protocol established in (Hou et al., 2022), which evaluates methods in terms of Accuracy and the Area Under the ROC Curve (AUC) for each DR grade.

378
379
380
381 Table 3: Performance comparison on the two-view DRTiD dataset.
382
383
384
385
386
387
388
389
390
391

Method (End-to-End)	Acc	AUC				
		Grade 0	Grade 1	Grade 2	Grade 3	Grade 4
Binocular Network (Qian et al., 2021)	66.18	90.7	66.42	78.33	92.25	86.23
Cv-Transformer (Van Tulder et al., 2021)	69.45	92.2	73.6	81.9	94.6	<u>95.7</u>
MVCNN_R (Yu et al., 2020)	74.0	94.1	68.4	84.2	95.3	94.7
MVCNN_V (Yu et al., 2020)	73.8	93.7	67.4	84.4	94.8	93.3
DeepDR (Dai et al., 2021)	72.7	94.1	68.8	84.4	95.2	93.4
Method (Externally informed)						
CVSA (with vessel) (Lin et al., 2025a)	74.7	93.8	66.4	84.1	<u>95.7</u>	95.5
CrossFiT (with OD and macula) (Hou et al., 2022)	<u>75.6</u>	94.7	70.2	85.8	95.5	95.4
Ours (End-to-End)	76.0	<u>94.6</u>	<u>71.1</u>	<u>85.3</u>	96.2	95.9

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
Table 4: Ablation study.

Models	Acc	Spec	Kappa	F1
w/o GALP	82.7	88.5	68.5	82.1
w/o Experts	82.6	87.9	68.2	81.4
w/o LGRF	82.3	87.6	67.4	81.2
Ours (w/o lesion)	83.9	89.8	70.9	83.5

Compared methods: To evaluate the effectiveness of our proposed framework, we compare it against a comprehensive set of multi-view DR grading baselines. For clarity, the existing methods are grouped into two categories. **(1) End-to-end multi-view methods.** This group includes multi-view version of RETFound (Zhou et al., 2023), MVCINN (Luo et al., 2023), MVCNN_R (Resnet50 version of MVCNN) and MVCNN_V (vgg19 version of MVCNN) (Yu et al., 2020), Binocular Network (Qian et al., 2021), Cv-Transformer (Van Tulder et al., 2021), DeepDR (Dai et al., 2021) and ETMC (Han et al., 2022). These approaches operate in a purely end-to-end fashion, focusing on feature extraction and cross-view fusion without relying on additional annotations. **(2) Externally informed methods.** This group incorporates additional signals to enhance grading performance. Representative examples include CVSA (using vessel masks) (Lin et al., 2025a), WGLIN (wavelet-based lesion guidance) (Hu et al., 2025), SMVDR and LFMVDR (lesion maps) (Luo et al., 2024; 2025), and CrossFiT (OD and macula coordinates) (Hou et al., 2022). These methods demonstrate how auxiliary cues can improve DR grading, but at the cost of requiring additional annotations. Together, these two categories cover the mainstream directions of current research: purely end-to-end multi-view pipelines and annotation-augmented approaches. By comparing with both, we provide a fair and comprehensive evaluation of our method, highlighting its ability to retain the advantages of end-to-end training while reducing reliance on external annotations.

4.2 COMPARISON WITH SOTA METHODS

Experiments on MFIDDR: We first evaluate our method on the four-view MFIDDR dataset and compare it with a series of multi-view approaches. As shown in Table 1, our lesion-free variant achieves 83.9% accuracy, 89.8% specificity, 70.9% kappa, and 83.5% F1. This performance not only surpasses all end-to-end baselines, but also outperforms or matches several externally informed methods such as LFMVDR (with lesion) and CVSA (with vessel). This finding is noteworthy: even without any external side information, our framework already closes the gap with methods that require costly annotations, and in some cases performs better. The small residual differences with the strongest externally informed models are acceptable, given that our approach is fully external-annotation-free at inference. When lesion information is incorporated, our method further improves to 84.6% accuracy, 90.6% specificity, 72.3% kappa, and 84.4% F1, establishing new SOTA performance on this benchmark. This demonstrates that our architecture is inherently effective, and that externally provided lesion cues can be integrated to deliver further gains. As summarized in Table 2, our lesion-free model already surpasses several externally guided methods, showing strong Grade 0–3 performance, particularly in Grade 3 (F1=74.1%). With lesion input, our approach further im-

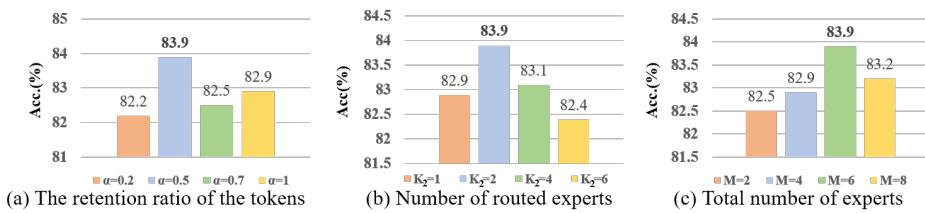


Figure 3: The hyperparameter analysis.

proves, reaching the best Grade 2 ($F1=65.2\%$) and Grade 3 ($F1=74.8\%$). Importantly, even without extra cues, performance is comparable to annotation-based methods, while with lesions we achieve SOTA.

Experiments on DRTiD: As shown in Table 3, our end-to-end approach achieves the highest overall accuracy, outperforming all existing methods, including all externally informed methods (CVSA and CrossFiT), even though our method does not require any external annotations. In terms of AUC, our method consistently achieves competitive or superior results across different grades (best on grade 3 and 4).

In summary, our method demonstrates two key advantages. First, even without external annotations, it achieves or surpasses the performance of most of externally informed approaches, showing that lesion proposals generated internally by GALP are effective surrogates for expert cues. Second, when external information is available, our framework can incorporate it and attain state-of-the-art results. These results confirm the robustness and adaptability of our proposed architecture.

4.3 ABLATION AND HYPERPARAMETER STUDY

We conducted ablation experiments on the MFIDDR dataset to evaluate the contributions of the proposed modules. As shown in Table 4, w/o GALP removes the GALP mechanism and directly uses all tokens for LGRF fusion; w/o Experts discards the expert pool and directly applies cross-attention on lesion proposals; w/o LGRF eliminates the fusion module and simply concatenates lesion proposals with cross-view tokens. In addition, we conduct a hyperparameter study on K_{1,s_n} and K_2 (see Fig. 3). For K_{1,s_n} at each stage s_n , we vary the retention ratio $\alpha \in \{0.20, 0.50, 0.70, 1.00\}$ of tokens kept as lesion proposals. For K_2 (the number of activated experts), we test values $\{1, 2, 4, 6\}$. For M (the total number of experts), we test values $\{2, 4, 6, 8\}$. As shown in Table 4, the ablation study demonstrates that both GALP and LGRF play crucial roles in enhancing performance: removing either module leads to clear drops in accuracy, kappa, and $F1$, confirming their complementary benefits; eliminating the expert pool further weakens fusion effectiveness. From Fig. 3, the hyperparameter analysis shows that retaining 50% of tokens ($\alpha = K_{1,s_n}/P_{s_n}$) yields the best trade-off between accuracy and redundancy, while activating $K_2 = 2$ experts in the expert pool of $M = 6$ provides the most stable and accurate results, balancing diversity and computational efficiency.

5 CONCLUSION

In this work, we propose a novel end-to-end framework for multi-view DR grading that integrates lesion-aware cues without requiring external annotations. The proposed GALP module strengthens stage-wise feature discriminability through auxiliary classification and transforms grade-conditioned evidence maps into lesion proposals, which act as surrogates for costly expert cues. The LGRF module further enables context-aware cross-view fusion by dynamically routing experts and applying Top- K weighted cross-view attention, ensuring precise and selective integration of lesion proposals across views. Extensive experiments on two multi-view fundus datasets, MFIDDR and DRTiD, demonstrate that our method achieves SOTA performance. Importantly, the proposed framework attains accuracy comparable to models that rely on external annotations, suggesting its practical potential for clinical deployment where such additional data are often unavailable or costly to obtain. By reducing annotation dependency while maintaining high diagnostic accuracy, our method provides a label-efficient and scalable solution for large-scale DR screening.

486 REFERENCES
487

488 Bing Cao, Yiming Sun, Pengfei Zhu, and Qinghua Hu. Multi-modal gated mixture of local-to-global
489 experts for dynamic image fusion. In *Proceedings of the IEEE/CVF international conference on*
490 *computer vision*, pp. 23555–23564, 2023.

491 Ling Dai, Liang Wu, Huating Li, Chun Cai, Qiang Wu, Hongyu Kong, Ruhan Liu, Xiangning Wang,
492 Xuhong Hou, Yuexing Liu, et al. A deep learning system for detecting diabetic retinopathy across
493 the disease spectrum. *Nature communications*, 12(1):3242, 2021.

494 Emma Dugas, Jared, Jorge, and Will Cukierski. Diabetic retinopathy detection. <https://kaggle.com/competitions/diabetic-retinopathy-detection>, 2015. Kaggle.

495 Xiaoxin Guo, Guangqi Yang, Chenfangqian Xu, Hongliang Dong, Xiaoying Hu, and Songtian Che.
496 Prior-guided dual-stage diabetic retinopathy grading model based on feature collaboration of le-
497 sion and vascular structure. *Expert Systems with Applications*, 285:128052, 2025.

498 Zongbo Han, Changqing Zhang, Huazhu Fu, and Joey Tianyi Zhou. Trusted multi-view classi-
499 fication with dynamic evidential fusion. *IEEE transactions on pattern analysis and machine*
500 *intelligence*, 45(2):2551–2566, 2022.

501 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
502 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
503 770–778, 2016.

504 Junlin Hou, Jilan Xu, Fan Xiao, Rui-Wei Zhao, Yuejie Zhang, Haidong Zou, Lina Lu, Wenwen
505 Xue, and Rui Feng. Cross-field transformer for diabetic retinopathy grading on two-field fundus
506 images. In *2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)*, pp.
507 985–990. IEEE, 2022.

508 Yongting Hu, Yuxin Lin, Chengliang Liu, Xiaoling Luo, Xiaoyan Dou, Qihao Xu, and Yong
509 Xu. Wavelet-based global-local interaction network with cross-attention for multi-view diabetic
510 retinopathy detection. *arXiv preprint arXiv:2503.19329*, 2025.

511 Peng-Tao Jiang, Chang-Bin Zhang, Qibin Hou, Ming-Ming Cheng, and Yunchao Wei. Layercam:
512 Exploring hierarchical class activation maps for localization. *IEEE transactions on image pro-
513 cessing*, 30:5875–5888, 2021.

514 Karthik, Maggie, Sohier Dane, and Asia Pacific Tele-Ophthalmology Society (AP-
515 TOS). Aptos 2019 blindness detection. [https://kaggle.com/competitions/](https://kaggle.com/competitions/aptos2019-blindness-detection)
516 *aptos2019-blindness-detection*, 2019. Accessed: Sep. 15, 2023.

517 Feng Li, Xinyu Sheng, Hao Wei, Shiqing Tang, and Haidong Zou. Multi-lesion segmentation guided
518 deep attention network for automated detection of diabetic retinopathy. *Computers in Biology and*
519 *Medicine*, 183:109352, 2024.

520 Yuxin Lin, Xiaoyan Dou, Xiaoling Luo, Zhihao Wu, Chengliang Liu, Tianyi Luo, Jie Wen, Bingo
521 Wing-kuen Ling, Yong Xu, and Wei Wang. Multi-view diabetic retinopathy grading via cross-
522 view spatial alignment and adaptive vessel reinforcing. *Pattern Recognition*, 164:111487, 2025a.

523 Yuxin Lin, Wei Wang, Xiaoling Luo, Zhihao Wu, Chengliang Liu, Jie Wen, and Yong Xu. Deep hier-
524 archies and invariant disease-indicative feature learning for computer aided diagnosis of multiple
525 fundus diseases. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp.
526 5325–5333, 2025b.

527 Chengzhi Liu, Zile Huang, Zhe Chen, Feilong Tang, Yu Tian, Zhongxing Xu, Zihong Luo, Yalin
528 Zheng, and Yanda Meng. Incomplete modality disentangled representation for ophthalmic dis-
529 ease grading and diagnosis. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
530 volume 39, pp. 5361–5369, 2025.

531 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
532 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the*
533 *IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.

540 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
 541 A convnet for the 2020s. In *Proceedings of the IEEE/CVF conference on computer vision and*
 542 *pattern recognition*, pp. 11976–11986, 2022.

543 Xiaoling Luo, Zuhui Pu, Yong Xu, Wai Keung Wong, Jingyong Su, Xiaoyan Dou, Baikang Ye,
 544 Jiyi Hu, and Lisha Mou. Mvdrnet: Multi-view diabetic retinopathy detection by combining
 545 dcnn and attention mechanisms. *Pattern Recognition*, 120:108104, 2021.

546 Xiaoling Luo, Chengliang Liu, Waikung Wong, Jie Wen, Xiaopeng Jin, and Yong Xu. Mvcinn:
 547 multi-view diabetic retinopathy detection using a deep cross-interaction neural network. In *Pro-*
 548 *ceedings of the AAAI conference on artificial intelligence*, volume 37, pp. 8993–9001, 2023.

549 Xiaoling Luo, Qihao Xu, Zhihua Wang, Chao Huang, Chengliang Liu, Xiaopeng Jin, and Jianguo
 550 Zhang. A lesion-fusion neural network for multi-view diabetic retinopathy grading. *IEEE Journal*
 551 *of Biomedical and Health Informatics*, 2024.

552 Xiaoling Luo, Qihao Xu, Hui Wu, Chengliang Liu, Zhihui Lai, and Linlin Shen. Like an oph-
 553 thalmologist: Dynamic selection driven multi-view learning for diabetic retinopathy grading. In *Pro-*
 554 *ceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 19224–19232,
 555 2025.

556 Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis with
 557 spatially-adaptive normalization. In *Proceedings of the IEEE/CVF conference on computer vision*
 558 *and pattern recognition*, pp. 2337–2346, 2019.

559 Peisheng Qian, Ziyuan Zhao, Cong Chen, Zeng Zeng, and Xiaoli Li. Two eyes are better than one:
 560 Exploiting binocular correlation for diabetic retinopathy severity grading. In *2021 43rd Annual*
 561 *International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)*, pp.
 562 2115–2118. IEEE, 2021.

563 Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
 564 bilenetv2: Inverted residuals and linear bottlenecks. In *Proceedings of the IEEE conference on*
 565 *computer vision and pattern recognition*, pp. 4510–4520, 2018.

566 Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander Alemi. Inception-v4, inception-
 567 resnet and the impact of residual connections on learning. In *Proceedings of the AAAI conference*
 568 *on artificial intelligence*, volume 31, 2017.

569 Gijs Van Tulder, Yao Tong, and Elena Marchiori. Multi-view analysis of unregistered medical
 570 images using cross-view transformers. In *International Conference on Medical Image Computing*
 571 *and Computer-Assisted Intervention*, pp. 104–113. Springer, 2021.

572 Jiayi Wang, Yi-An Mao, Xiaoyu Ma, Sichen Guo, Yuting Shao, Xiao Lv, Wenting Han, Mark Christo-
 573 pher, Linda M Zangwill, Yanlong Bi, et al. Odformer: Semantic fundus image segmentation using
 574 transformer for optic nerve head detection. *Information Fusion*, 112:102533, 2024.

575 Meng Wang, Tian Lin, Aidi Lin, Kai Yu, Yuanyuan Peng, Lianyu Wang, Cheng Chen, Ke Zou,
 576 Huiyu Liang, Man Chen, et al. Enhancing diagnostic accuracy in rare and common fundus dis-
 577 eases with a knowledge-rich vision-language model. *Nature Communications*, 16(1):5528, 2025.

578 Wenhui Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
 579 and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without
 580 convolutions. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp.
 581 568–578, 2021.

582 Luyuan Xie, Tianyu Luan, Wenyuan Cai, Guochen Yan, Zhaoyu Chen, Nan Xi, Yuejian Fang,
 583 Qingni Shen, Zhonghai Wu, and Junsong Yuan. dflmoe: Decentralized federated learning via
 584 mixture of experts for medical data analysis. In *Proceedings of the Computer Vision and Pattern*
 585 *Recognition Conference*, pp. 10203–10213, 2025.

586 Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
 587 formations for deep neural networks. In *Proceedings of the IEEE conference on computer vision*
 588 *and pattern recognition*, pp. 1492–1500, 2017.

594 Qian Yu, Chengzhan Yang, Honghui Fan, and Hui Wei. Latent-mvcnn: 3d shape recognition using
 595 multiple views from pre-defined or random viewpoints. *Neural Processing Letters*, 52(1):581–
 596 602, 2020.

597 Qinkai Yu, Jianyang Xie, Anh Nguyen, He Zhao, Jiong Zhang, Huazhu Fu, Yitian Zhao, Yalin
 598 Zheng, and Yanda Meng. Clip-dr: Textual knowledge-guided diabetic retinopathy grading
 599 with ranking-aware prompting. In *International Conference on Medical Image Computing and*
 600 *Computer-Assisted Intervention*, pp. 667–677. Springer, 2024.

601 Yuhang Zhang, Xiao Ma, Kun Huang, Mingchao Li, and Pheng-Ann Heng. Semantic-oriented vi-
 602 sual prompt learning for diabetic retinopathy grading on fundus images. *IEEE Transactions on*
 603 *Medical Imaging*, 43(8):2960–2969, 2024.

604 Yukun Zhou, Mark A Chia, Siegfried K Wagner, Murat S Ayhan, Dominic J Williamson, Robbert R
 605 Struyven, Timing Liu, Moucheng Xu, Mateo G Lozano, Peter Woodward-Court, et al. A founda-
 606 tion model for generalizable disease detection from retinal images. *Nature*, 622(7981):156–163,
 607 2023.

608 Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
 609 mamba: Efficient visual representation learning with bidirectional state space model. In *Forty-first*
 610 *International Conference on Machine Learning*, 2024.

611 Ke Zou, Yang Bai, Bo Liu, Yidi Chen, Zhihao Chen, Yang Zhou, Xuedong Yuan, Meng Wang,
 612 Xiaojing Shen, Xiaochun Cao, et al. Uncertainty-aware medical diagnostic phrase identification
 613 and grounding. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025.

614 A APPENDIX

615 A.1 USE OF LARGE LANGUAGE MODELS (LLMs)

616 We used large language model solely as a writing assistant to improve the clarity, grammar, and
 617 style of the manuscript. The model was not involved in research ideation, experimental design, im-
 618 plementation, analysis, or result interpretation. We sincerely appreciate the contribution of the large
 619 language model in enhancing the readability and linguistic quality of this work. Its assistance was
 620 instrumental in refining the presentation of our research. All technical content, including methods,
 621 experiments, and conclusions, was fully developed and verified by the authors. The authors take full
 622 responsibility for the content of this paper.

623 Table 5: Comparison results against single-view approaches with our proposed multi-view approach.

624 Method	625 Acc	626 Spe	627 Kappa	628 F1
629 Inception_ResNet_k2 (Szegedy et al., 2017)	630 70.6	631 67.1	632 38.6	633 65.4
634 Mobile_Net_k2 (Sandler et al., 2018)	635 72.3	636 68.7	637 43.6	638 67.2
639 ResNet50 (He et al., 2016)	640 73.2	641 73.2	642 45.2	643 69.3
644 ResNext50_32x4d (Xie et al., 2017)	645 73.3	646 73.0	647 47.1	648 70.3
649 ConvNeXt-B (Liu et al., 2022)	650 75.9	651 77.8	652 53.7	653 73.6
655 Swin-B (Liu et al., 2021)	656 75.0	657 75.5	658 51.3	659 72.4
662 Vim (Zhu et al., 2024)	663 77.0	664 81.2	665 56.3	666 75.3
669 PVT-M (Wang et al., 2021)	670 74.1	671 78.5	672 50.4	673 71.4
678 PVT-L (Wang et al., 2021)	679 75.3	680 80.3	681 57.2	682 73.8
687 RETFound (Zhou et al., 2023)	688 71.7	689 70.9	690 43.6	691 67.3
699 Ours	700 83.9	701 89.8	702 70.9	703 83.5

704 A.2 COMPARISON WITH SINGLE-VIEW METHODS

705 We compare our approach with single-view methods on MFIDDR in Table 5. Our model is trained
 706 on all four views jointly, whereas each single-view method is trained separately on each view and

648 the best-performing view is reported for comparison. As shown in Table 5, our method attains the
 649 highest Accuracy, Specificity, Kappa, and F1. These results underscore the benefit of multi-view
 650 learning: aggregating complementary cross-view information yields clear gains over the strongest
 651 single-view baselines.
 652

653 **A.3 PSEUDO TRAINING CODE**
 654

655 The training process of our method can be seen in Algorithm 1.

657 **Algorithm 1:** The training process of our method

658 **Input:** Multi-view Fundus images $\mathcal{V} = [\mathcal{V}^1, \mathcal{V}^2, \dots, \mathcal{V}^N]$ and its corresponding grading
 659 label y .
 660 **Parameters:** The retention ratio α of the tokens in the GALP. The number of routed experts
 661 K_2 . The total number of experts M .
 662 **Output:** A trained model.
 663 1: **for** $ep=1$ to Epo **do**
 664 2: Pre-process the images
 665 3. Extract initial features from the Conv Block
 666 4. **for** $n=1$ to 3 **do**
 667 5. Extract encoded features $\mathcal{F}_{s_n}^i$ from the Encoder in the stage- s_n
 668 6. Compute the auxiliary loss and the lesion proposals $\mathcal{P}_{s_n}^i$ with the ratio α
 669 7. Compute the routing scores $\mathcal{R}_{s_n}^i$ and extract the Top- K_2 experts outputs $\mathcal{P}e_{s_n, k_2}^j$
 670 8. Compute the MoE load-balancing and the cross-view fused results $\mathbf{Fu}_{s_n}^i$
 671 9. **end for**
 672 10. Extract features from $\mathbf{Fu}_{s_3}^i$ by the Encoder in stage s_4 , obtaining $\mathcal{F}_{s_4}^i$
 673 11. Predict the grade on the $\mathcal{F}_{s_4}^i$ and compute the grading loss
 674 12: Update gradient.
 675 13: **end for**

677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701