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ABSTRACT

Recent advances in multi-view fundus imaging show great promise for auto-
mated diabetic retinopathy (DR) grading. However, mainstream end-to-end
CNN/Transformer pipelines rely on striding or tokenization that compresses spa-
tial detail, causing small, low-contrast lesions (e.g., microaneurysms) to be under-
represented and creating performance ceilings. Prior efforts have mitigated this
by incorporating external lesion- or vessel-level annotations into models. How-
ever, such labels are costly to acquire, break the end-to-end training, and make
performance over-reliant on the annotation quality. To reduce dependence on ex-
pensive annotations, we propose an end-to-end framework that generates lesion
proposals on the fly during training and inference, providing self-derived cues for
grading. First, we introduce a Grade-Activated Lesion Proposal (GALP) module
that derives grade-conditioned evidence maps (GEMs) from stage-wise auxiliary
classifiers and selects the top-K high-evidence regions per view as lesion propos-
als. Second, we propose a Cross-View Lesion Expert Guided Regional Fusion
(LGRF) module, which selectively activates experts for a view’s lesion proposals
based on contextual guidance from other views, ensuring that only the most rel-
evant feature extractors contribute to fusion. Experimental results on two multi-
view DR datasets show that our method matches or surpasses strong baselines
without external annotations, confirming that self-generated proposals can sub-
stantially reduce annotation needs.

1 INTRODUCTION

DR is a microvascular complication of diabetes characterized by progressive retinal damage and
is a leading cause of vision impairment and blindness. Early stages are often asymptomatic; as the
disease advances, patients may experience blurred or distorted vision and scotomas (Yu et al.,[2024).
Without timely intervention, DR can progress to vitreous hemorrhage, tractional retinal detachment,
and irreversible blindness. Consequently, population-level fundus screening, particularly in primary
and community settings, is essential (Zhang et al.,|2024)). Yet the global supply of retina specialists
is insufficient to meet the rising screening demand across both high- and low-resource regions. This
mismatch has motivated intensive research into automated DR grading from fundus photographs,
with deep learning emerging as a prominent approach (Lin et al.,[2025b)).

Research on DR grading from fundus images has generally progressed through three stages. Stage I:
single-view grading. Early work ingests a single fundus photograph and predicts a five-point grade
(0—4: normal, mild, moderate, severe, and proliferative DR) (Dai et al.,[2021). In this setting, mod-
els learn lesion patterns from one view only, which limits their ability to capture the full retinal status
(Liu et al.| 2025} [Zou et al.| 2025)). Stage II: multi-view grading. To address coverage gaps, recent
studies leverage multiple views and design end-to-end fusion strategies that aggregate within-view
lesion evidence and learn cross-view relationships, yielding notable gains over single-view baselines
Luo et al.| (2021)). Stage III: revisiting end-to-end limitations. Despite progress, many end-to-end
CNN/Transformer pipelines rely on downsampling or tokenization that compresses spatial detail;
subtle, low-contrast lesions (or vessels) may receive insufficient attention (Luo et al., |2024). As
illustrated in Fig. [T] (Switch = Off), this bottleneck can persist even with multi-view inputs. A com-
plementary line of work augments grading with additional signals, thereby improving performance
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Figure 1: The comparison of the end-to-end models and the externally informed models

but at the cost of extra supervision and complexity. For instance, model proposed by |[Lin et al.
(2025a) incorporates vessel annotations, and another work leverages clinician-annotated optic disc
(OD) and macular locations (Hou et al.| 2022). Such approaches (Fig. E], Switch = On) can be ef-
fective, yet they introduce two practical challenges. First, acquisition cost and workflow burden:
doctor-provided annotations are expensive and time-consuming; moreover, if inference requires
those auxiliary inputs, clinicians must continue to provide them even after deployment. Second,
dependency and brittleness: when auxiliary signals are produced by separate models (e.g., lesion
segmenters, as in [Luo et al.| (2025)), grading accuracy can become tightly coupled to the upstream
model’s errors.

To address these limitations, we introduce a method that maintains the advantages of end-to-end
multi-view learning and substantially reduces dependence on external annotations. To this end,
we generate lesion-aware cues natively within the grading pipeline, targeting competitive, or su-
perior, accuracy without external side information. Concretely, we introduce two modules: GALP
and LGRF. GALP attaches stage-wise auxiliary classifiers to multi-resolution feature maps and en-
hances their grade-discriminative capacity via an auxiliary classification loss. From the auxiliary
heads, we derive GEMs by estimating the importance of subregions with respect to the predicted
grade. Since the grade evidence in DR is predominantly localized to lesions, selecting Top-K peaks
within these maps yields lesion proposals, whcih is the spatial regions most predictive of the grade.
GALP both strengthens supervision of intermediate representations and provides proposals that act
as surrogates for external cues. LGRF uses cross-view lesion proposals to guide information fusion.
For each view’s lesion proposals, an expert pool performs proposal-aware feature extraction; cross-
view context gates which experts are activated, encouraging the current view to prioritize regions
corroborated by other views. A Top/K—weighted cross-view attention module then fuses the selected
expert outputs with the current view’s feature maps, achieving precise, selective integration across
views. Our contributions are as follows:

(1) We propose an end-to-end DR grading framework that self-generates lesion proposals via GALP,
preserving end-to-end training, strengthening intermediate representations, and recovering small,
low-contrast lesions without external annotations.

(2) We introduce LGREF, a cross-view, lesion-expert—guided regional fusion module that dynamically
routes experts via contextual corroboration and fuses proposals through Top-K—weighted cross-view
attention, enabling precise, selective integration and superior robustness and interpretability.

(3) Comprehensive evaluations across two multi-view DR benchmarks confirm SOTA competitive-
ness without external supervision, showing self-derived proposals reduce annotation reliance while
still elevating micro-lesion sensitivity and reliability for DR grading.

2 RELATED WORKS

In recent years, deep learning—based automated grading for multi-view DR has shown substantial
promise (Wang et al.|[2025). A major line of research exploits complementary information across
standardized views by designing stronger feature extractors and cross-view fusion strategies to better
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Figure 2: Overall framework. (a) Pipeline with GALP and LGRF. (b) GALP generates lesion pro-
posals with the assistance of auxiliary classifier. (c) LGRF fuses current-view features with cross-
view proposal features via gated mixture-of-experts (MoE) and Top-K-weighted cross-view atten-
tion.

capture heterogeneous lesion morphologies. To our knowledge, [Luo et al.| (2021) is among the
earliest works to employ four-view fundus images for DR grading. Luo et al. subsequently proposed
MVCINN, which hybridizes self-attention with CNNs to fuse multi-view features and improves
accuracy over single-view baselines (Luo et al.,[2023)).

Following the era of multi-view DR recognition, a growing body of work incorporates additional
signals to break performance bottlenecks. Such auxiliary cues compensate for the limited capture of
fine-grained retinal structures by purely end-to-end pipelines and have delivered notable gains (L1
et al., 2024; |Guo et al. 2025). CVSA leverages vessel masks extracted via gaussian modeling as
auxiliary inputs and introduces a cross-view lesion-alignment strategy to aggregate relevant evidence
across views (Lin et al.,[2025al)). This yields a 2.5% absolute accuracy improvement over MVCINN,
a strong end-to-end state-of-the-art (SOTA) baseline. Luo et al. further proposed SMVDR (Luo
et al.| [2024) and LEFMVDR (Luo et al.| [2025), which employ lesion-annotation maps so that the
model persistently attends to clinically salient regions during inference, enhancing both accuracy
and interpretability. Hu et al. introduced WGLIN, a lesion-guided framework that performs wavelet-
based fusion for multi-view integration (Hu et all 2025). Distinct from methods relying on full
vessel or lesion structures, Hou et al. proposed CrossFiT, which uses OD and macular coordinates
to align cross-view information and also reports strong performance (Hou et al.,[2022).

Despite their effectiveness, these approaches introduce practical burdens. Doctor-provided annota-
tions are costly and time-consuming, and when auxiliary inputs are required at inference, the clinical
workflow becomes heavier. Moreover, when auxiliary signals are produced by separate models (e.g.,
lesion segmenters), grading performance becomes tightly coupled to upstream accuracy and calibra-
tion, increasing system brittleness.

3 METHOD

3.1 OVERVIEW

The overall pipeline is shown in Fig. a). LetVY = [Vl, V2. ,VN} denote the multi-view fun-

dus images, where V' € RE*H*W is the i-th view and N is the number of views. All views are
first processed by a convolutional stem (“Conv Block™) inherited from a pretrained backbone. The
pipeline then proceeds through four stages, each using the backbone encoder blocks from shallow
to deep to extract multi-view features. And at each stage s, (n € {1,2,3,4}), the encoded fea-
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tures of view i, F € RCen*HenxWer are then processed by the proposed GALP and LGRF. As
illustrated in Fig. b), GALP attaches an auxiliary classifier to stage features F in and optimizes an
auxiliary loss so that 7, becomes more grade-discriminative. From the auxiliary head we derive
GEMs, upon which Top- K region selection are applied to obtain lesion proposals ’P . As shown
in Fig.[2|c), lesion proposals from the other views are processed by an expert pool whose activations
are gated by the current view’s features. A TopK—weighted cross-view attention module then fuses

the selected expert outputs with the current features F ;n Finally, the stage-s4 features are passed
through global average pooling (GAP) and a linear classifier to produce the DR grade prediction.

3.2 GRADE-ACTIVATED LESION PROPOSALS (GALP)

GALP pursues two objectives: (i) enhancing F in with stage-wise discriminative supervision
through auxiliary classification, and (ii) deriving lesion proposals that can act as surrogates for ex-
ternal cues.

Auxiliary classification: Given the encoded features F an from stage s,, of view ¢, an auxiliary
head computes logits _ _
z. =W GAP(CNNSn (F;n)), (1)

Sn Sn

followed by y; = Softmax(z ). The auxiliary loss encourages grade-discriminative intermediate

representations:
3 N _
Lo =Y > Focal(3l,, y), )

n=1i=1
where y is the ground-truth DR grade and Focal(-, -) is the focal loss.

lesion proposals: Given that DR grades are predominantly determined by lesion evidence, we
compute grade-conditioned regions on the feature maps in a stage-wise manner using class activation
maps (CAMs) (Jiang et al., 2021). These regions are interpreted as grade-related (i.e., lesion) areas.
Let ng‘”‘") € R%n denote the class-specific weight vector for the predicted grade y qu at stage sy,.
The GEMs for view i is

Al (u,v) = ReLU Z wi¥%) (onn, (F )| 3)
c=1
We normalize A’ (Ai — min ) / ( max — min) where min and max are taken over (u, v)

Since AZ isa class -weighted sum of stage-s,, feature responses contributing to the grade logit y yg ,
larger Values mark spatial locations that increase this logit and are therefore more predictive of the
grade. Accordingly, regions with higher activation in A;n are more likely to contain lesion evidence.

Then, the spatial domain of Azn is partitioned into non-overlapping ¢ x g patches (with q chosen
such that ¢ | Hy, and g | Ws,), yielding Ps, = (Hy, /q) x (W, /q) regions {Q%" S” . Therefore,

n S n

lesion-likelihood score for region r is defined as

sii= > Al (uv). (4)

(u,v)eQi'nT

Let Ii = TopKy, ({sZ ’”} s") be the indices of the K 4, highest-scoring regions. It is worth
noting that larger values of s¢" indicate a higher likelihood that lesions reside in region r; thus IZ

selects the most lesion-likely reglons. To extract features for these regions, for each kq 5, € I;n we
compute a masked average over the encoder features:

iK1, 1 i
fo, " = —& - Z F. (u,v). 5)

|Qsa s -
" (u,,v)EQ;’n Lsn

A linear projection produces D-dimensional tokens,

piften = Lp(FiFven) € RP, (©6)
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and the proposal matrix is

i 1,K1, sy, Ki s, XD
P =[P e ERFLXD (7

And the obtained ’Pin can be treated as lesion proposals for downstream cross-view fusion.

Note that a uniform partition of the feature map would yield P, tokens at stage s,,; instead, by
retaining only the Top-K 5, lesion-salient regions, we obtain K s, < F;, proposal tokens that
concentrate evidence on grade-relevant areas. Fusing these lesion-only tokens with cross-view fea-
tures reduces distraction from non-lesion background and strengthens guidance for cross-view inte-
gration.

3.3 CROSS-VIEW LESION EXPERT-GUIDED REGIONAL FUSION

LGREF leverages lesion proposals produced by GALP to enable selective, proposal-aligned fusion
across views. For the current view ¢ at stage s,, with features F i“, we tokenize the feature map
using ViT-style patching with the same patch size ¢ X ¢ as in proposal generation:
H,, . % (8)
q q
Cross-view fusion is performed between the current view and its adjacent (cyclic) view 7 =
i+1, i<N
{1, i1=N’
RK 1,80 XD

T, =TokN(F. ) e RFw*P  p, =

We collect the Top-K; ,, proposal tokens from the adjacent view, ’Pg“ €

, and restrict fusion to these lesion-salient proposals to provide targeted cross-view guid-
ance while suppressing background interference. The following subsections detail (i) Cross-view
lesion proposal expert routing and (ii) Top- K—weighted cross-view attention.

Cross-view lesion proposal expert routing: To allow the current view to autonomously select
which experts to activate for processing lesion proposals from the adjacent view, we gate cross-
view experts conditioned on the current view’s features. We first pass the current-view tokens TZ
through a routing network to determine adjacent-view expert activations. Specifically, a linear pro-
jection (denoted Router) maps aggregated current-view tokens to routing logits, which are then
normalized via softmax to obtain routing scores:

Rs!

Sn

= Softmax( Router( mean(77, ))) cRM, 9)
where M denotes the number of predefined experts in the adjacent view. Inspired by the MoE frame-

work (Cao et al [2023), the cross-view lesion proposals ’Pgn are fed into the top- K5 Transformer

experts {Tr 1 Tr?

Sn,27 t

. Tr‘Zn Ky }, selected according to the K largest entries of R.s s’n The
output of the k5-th activated expert is

Pel =Tl (PL). (10

Sn,k2 T

Subsequently, each extracted feature ’Pe ks together with its importance weight @ ks, (the ko-th

largest entry of R} ) and the current—v1ew tokens 7' , is passed to a TopK - welghted Cross-view
attention module to facﬂltate adaptive cross-view fu51on Similar to existing MoE-based methods
(Xie et al., [2025), we incorporate a load-balancing loss term (L;,,4) to encourage equitable utiliza-
tion of experts. Let B be the mini-batch of size, i, be the fraction of tokens actually assigned to
expert m and R s simbm be the m-th score of the R.s! in the b-th batch. The Lyoq is defined as

M B 3 N
% 1 i ~ 7
Ligaon =M Y (5D RS o) ims Lo =YY Liwas, an
m=1 b=1 n=1i=1

Top-K —weighted cross-view attention: The tokens ’Pe Lk Are pr0]ected to keys IC .k, and

values V! . ko> While the current-view tokens TZ are prOJected to queries Q . Region-wise rela-
tionships between view ¢ and lesion regions in view j are computed via

. T
Ma ko = =9l (’an,kz) € RFen > Hran, (12)
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where each row of Q; and IC] , is {o-normalized. With this normalization, M/ , represents
cosine similarities; the entry (m,n) quantifies the relevance between the m-th region of view 7 and
the n-th lesion region of view j. Here, subscripts such as s,, ¢ (), and ko denote different feature
stages, view indices, and expert indices, respectively, and do not refer to individual matrix entries.

For each activated expert ko € {1, ..., K5}, attention and aggregation are
g M _
oy ,, = Softmax( j%’”) V! . €RPXP (13)

Top- K2 weighting by the routing scores w ;7 &, yields the expert-aggregated output

Sn Sn,k2 Sn k2
fa=1

Ko
0F = 3wl 4, FC(OY ) e R *P. (14)

Let MHAGvA (+) denote a multi-head version of the above Top-K weighted cross-view attention.
Then the fused tokens for view ¢ are obtained with standard residual and layer normalization:

T = IN(T%, + MHAova (Q1 4K, 1 1 AVI b 0] 1 1)- (s)
Finally, tokens are reshaped back to the spatial layout to form the fused feature map:
Ful = DeTok(’f:n) € ROen X Han X We, (16)

By routing only lesion-proposal tokens and applying Top-/K—weighted cross-view attention, the
fusion focuses computation on grade-relevant regions, reducing background leakage and improving
alignment fidelity.

3.4 DR GRADING

As shown in Fig. JJ(a), the final grade is predicted from the stage-s4 features by GAP, multi-view
aggregation, and a linear classifier. Let Concat(-) the channel-wise concatenation. For view i €

{1,..., N}, define g' = GAP(F/ ) € R:. The multi-view representation and logits are
h:Concat(gl,gQ,...,gN)GRNCM, z=W,h +b. € R (17)

The predictive distribution is
¥ = Softmax(z). (18)

Training objective: The main grading loss uses the focal loss on the final prediction:
L.s = Focal(y,y). (19)

The overall training objective combines the main loss, the stage-wise auxiliary loss from GALP
(Eq.[2), and the MoE load-balancing regularizer with nonnegative weights A\aux and Ajoad:

Etotal = L"cls + >\aux Eaux + )\Ioad L"load~ (20)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets: We evaluate on two multi-view DR grading datasets used in prior work: MFIDDR
(four-view) (Luo et al.| [2023) and DRTiD (two-view) (Hou et al.l 2022). MFIDDR contains
8,613 eyes, each with four fundus photographs captured from distinct angles. The provider also
releases lesion segmentation masks generated by a segmentation model. The official split is 70/30
for training/testing. Following prior work on this benchmark, we resize each image to 224 x 224
for training and evaluation. In addition, following work (Hu et al.l|2025), we preprocess the images
in MFIDDR using code in [Karthik et al.[(2019). DRTiD comprises 3,100 eyes with two views per
eye. The dataset is partitioned into 2,000 eyes for training and 1,100 for testing. For each image,
the provider additionally supplies OD and macular coordinates. To enable fair comparison with the
SOTA method CrossFiT (Hou et al.,[2022)), we resize images to 512 x 512.
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Table 1: Performance comparison on the four-view MFIDDR dataset.

Method (End-to-End) Acc  Spe Kappa F1

RETFound (Zhou et al.|[2023)) 74.1 738 484 709
MVCINN (Luo et al.l|2023) 80.1 833 625 78.9
MVCNNR (Yu et al.|2020) 774 792 566 < 79.2
MVCNNLV (Yu et al., 2020) 79.1 805 599 77.2
ETMC (Han et al.;2022) 815 834 0648 79.7
LFMVDR(w/o lesion) (Luo et al.|[2024) 80.4 859 640 79.4

Method (Externally informed)

CVSA (with vessel) (Lin et al.;,[2025a) 826 86.8 679 81.9
WGLIN (with lesion) (Hu et al.,|2025) 842 899 712 83.6
SMVDR-W (with lesion) (Luo et al.}[2025) 83.0 885 689 82.4
SMVDR-M (with lesion) (Luo et al.,[2025) 84.0 913 714 83.7

LEMVDR (with lesion) (Luo et al.}|2024) 82.2 86.9 66.9 81.3
Ours (w/o lesion) 839 89.8 70.9 83.5
Ours (with lesion) 84.6 90.6 723 84.4

Implementation details. Following prior fundus analysis work (Wang et al., [2024)), we adopt
Swin-Transformer (Swin-B) as the backbone. Following prior SOTA works on the two datasets, we
initialize the backbone differently: for MFIDDR, the backbone is pretrained on ImageNet, consis-
tent with CVSA (Lin et al., [2025a)); for DRTiD, the backbone is pretrained on the fundus dataset
EyePACS (Dugas et al.,2015)), following CrossFiT (Hou et al., 2022). To ensure that the patch size
exactly divides the spatial dimensions of feature maps with different resolutions, we set the patch
size to ¢="7 for MFIDDR and ¢ =_8 for DRTiD. Since the auxiliary loss £, is also a classification
loss, we use A\,ux =1, identical to the weight of L.js. The load-balancing weight is set to A\jaq =0.1.
For all stages s,,, we retain Ky 5 tokens, corresponding to a retention ratio « = K 5 /Ps, , where
P, is the total number of tokens at stage s,,. In our experiments we fix » = 50%. The expert pool
contains M=6 experts, with Ko = 2 experts activated per routing step. For fair comparison with
methods that utilize additional information, we also report results on MFIDDR using lesion anno-
tations: lesion segments are fused with the original images via Spatially-Adaptive Denormalization
(SPADE) (Park et al.|[2019).

Table 2: Grade-wise Performance comparison on the four-view MFIDDR dataset.

Grade 0 Grade 1 Grade 2 Grade 3 Grade 4
F1 Pre Spe F1 Pre Spe F1 Pre Spe FI Pre Spe Fl1 Pre Spe

Method (End-to-End)

RETFound (Zhou et all[2023) 87.5 80.1 - 359 50.2 - 494 544 - 66.7 65.8 - 36.7 90.0 -
MVCINN (Luo et al.l|2023) 91.3 86.7 759 56.4 68.3 94.1 59.3 57.4 95.8 68.1 70 97.9 44.8 68.4 99.7
MVCNNR (Yu et al}[2020) 89.4 83.6 69.3 46.1 64.1 94.1 594 58.1 959 684 66 973 22.2 83.3 99.9
MVCNNLV (Yu et al.,2020) 90.1 84.5 71.1 50.0 65.3 94.3 60.2 653 94.3 73.6 66.8 97 38.5 76.9 99.8
ETMC (Han et al., 2022) 91.8 86.8 — 63.7 733 - 554 664 - 70.2 644 - 09 0.1 -

Method (Externally informed)

CVSA (Lin et al,,[2025a) 923 89.2 812 62.6 73.6 95.0 642 61 96 732 72.7 98.0 64.1 64.1 99.3
WGLIN (Hu et al.},2025) 93.5 92.3 87.0 71.4 71.0 92.3 59.9 639 97.1 74.7 71.9 97.7 29.8 87.5 99.9
SMVDR-W (Luo et al.|[2025) 929 91.1 - 68.3 69.1 - 55.6 60.6 - 73.8 715 - 40.8 999 -
SMVDR-M (Luo et all[2025) 93.5 93.4 71.7 71.2 60.3 60 - 742 69.4 30.4 99.9

LFMVDR (Luo et al.}|2024) 924 89.7 82.1 663 69.5 92.7 59 62.1 96.8 70.9 69.5 97.6 17 50 99.9

Ours (w/o lesion) 934 92.0 86.5 69.7 72.2 93.2 62.5 62.6 96.5 74.1 70.3 97.6 36.0 81.8 99.9
Ours (with lesion) 93.5 92.7 87.9 714 723 93.0 652 654 96.8 74.8 73.4 98.0 51.6 69.6 99.8

Metrics: For evaluation on the four-view dataset, we follow the SOTA works (Luo et al., 2024}
20235) and report overall Accuracy (Acc), Specificity (Spe.), Cohen’s Kappa (Kappa.), Precision
(Pre) and F1 score. For the two-view dataset, we follow the protocol established in (Hou et al.
2022), which evaluates methods in terms of Accuracy and the Area Under the ROC Curve (AUC)
for each DR grade.
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Table 3: Performance comparison on the two-view DRTiD dataset.

AUC

Method (End-to-End) AcC Grade 0 Grade! Grade2 Grade3 Grade 4
Binocular Network (Qian et al.|[2021) 66.18  90.7 66.42 78.33 92.25 86.23
Cv-Transformer (Van Tulder et al., 2021) 69.45 922 73.6 81.9 94.6 95.7
MVCNN_R (Yu et al.}[2020) 74.0 94.1 68.4 84.2 953 94.7
MVCNN_V (Yu et al.,[2020) 73.8 93.7 67.4 84.4 94.8 93.3
DeepDR (Dai et al.;,[2021) 72.7 94.1 68.8 84.4 95.2 934
Method (Externally informed)

CVSA (with vessel) (Lin et al}[2025al) 74.7 93.8 66.4 84.1 95.7 95.5
CrossFiT (with OD and macula) (Hou et al.}[2022) 75.6 94.7 70.2 85.8 95.5 954
Ours (End-to-End) 76.0  94.6 71.1 85.3 96.2 95.9

Table 4: Ablation study.
Models Acc  Spec Kappa Fl

w/o GALP 82.7 88.5 68.5 82.1
w/o Experts 826 879 682 814
w/o LGRF 823 87.6 674 812
Ours (w/o lesion) 83.9 89.8 70.9 83.5

Compared methods: To evaluate the effectiveness of our proposed framework, we compare it
against a comprehensive set of multi-view DR grading baselines. For clarity, the existing methods
are grouped into two categories. (1) End-to-end multi-view methods. This group includes multi-
view version of RETFound (Zhou et al.,2023), MVCINN (Luo et al.,2023)), MVCNN_R (Resnet50
version of MVCNN) and MVCNN_V (vggl9 version of MVCNN) (Yu et al.| [2020), Binocular
Network (Qian et al.;|2021), Cv-Transformer (Van Tulder et al., 2021, DeepDR (Dai et al., [2021])
and ETMC (Han et al.|[2022). These approaches operate in a purely end-to-end fashion, focusing on
feature extraction and cross-view fusion without relying on additional annotations. (2) Externally
informed methods. This group incorporates additional signals to enhance grading performance.
Representative examples include CVSA (using vessel masks) (Lin et al.,2025a)), WGLIN (wavelet-
based lesion guidance) (Hu et al.| [2025), SMVDR and LFMVDR (lesion maps) (Luo et al., 2024;
2025)), and CrossFiT (OD and macula coordinates) (Hou et al., [2022)). These methods demonstrate
how auxiliary cues can improve DR grading, but at the cost of requiring additional annotations.
Together, these two categories cover the mainstream directions of current research: purely end-
to-end multi-view pipelines and annotation-augmented approaches. By comparing with both, we
provide a fair and comprehensive evaluation of our method, highlighting its ability to retain the
advantages of end-to-end training while reducing reliance on external annotations.

4.2 COMPARISON WITH SOTA METHODS

Experiments on MFIDDR: We first evaluate our method on the four-view MFIDDR dataset and
compare it with a series of multi-view approaches. As shown in Table |1} our lesion-free variant
achieves 83.9% accuracy, 89.8% specificity, 70.9% kappa, and 83.5% F1. This performance not
only surpasses all end-to-end baselines, but also outperforms or matches several externally informed
methods such as LFMVDR (with lesion) and CVSA (with vessel). This finding is noteworthy: even
without any external side information, our framework already closes the gap with methods that re-
quire costly annotations, and in some cases performs better. The small residual differences with
the strongest externally informed models are acceptable, given that our approach is fully external-
annotation-free at inference. When lesion information is incorporated, our method further improves
to 84.6% accuracy, 90.6% specificity, 72.3% kappa, and 84.4% F1, establishing new SOTA perfor-
mance on this benchmark. This demonstrates that our architecture is inherently effective, and that
externally provided lesion cues can be integrated to deliver further gains. As summarized in Table[2]
our lesion-free model already surpasses several externally guided methods, showing strong Grade
0-3 performance, particularly in Grade 3 (F1=74.1%). With lesion input, our approach further im-
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Figure 3: The hyperparameter analysis.

proves, reaching the best Grade 2 (F1=65.2%) and Grade 3 (F1=74.8%). Importantly, even without
extra cues, performance is comparable to annotation-based methods, while with lesions we achieve
SOTA.

Experiments on DRTiD: As shown in Table |3} our end-to-end approach achieves the highest
overall accuracy, outperforming all existing methods, including all externally informed methods
(CVSA and CrossFiT), even though our method does not require any external annotations. In terms
of AUC, our method consistently achieves competitive or superior results across different grades
(best on grade 3 and 4).

In summary, our method demonstrates two key advantages. First, even without external annotations,
it achieves or surpasses the performance of most of externally informed approaches, showing that
lesion proposals generated internally by GALP are effective surrogates for expert cues. Second,
when external information is available, our framework can incorporate it and attain state-of-the-art
results. These results confirm the robustness and adaptability of our proposed architecture.

4.3 ABLATION AND HYPERPARAMETER STUDY

We conducted ablation experiments on the MFIDDR dataset to evaluate the contributions of the pro-
posed modules. As shown in Table 4] w/o GALP removes the GALP mechanism and directly uses
all tokens for LGRF fusion; w/o Experts discards the expert pool and directly applies cross-attention
on lesion proposals; w/o LGRF eliminates the fusion module and simply concatenates lesion pro-
posals with cross-view tokens. In addition, we conduct a hyperparameter study on K 5, and K>
(see Fig. ' For K ;, at each stage s,,, we vary the retention ratio « € {0.20, 0.50, 0. 70 1. 00} of
tokens kept as lesion proposals. For K5 (the number of activated experts), we test values {1 2,4,6}.

For M (the total number of experts), we test values {2,4, 6,8} As shown in Table 4} the ablatlon
study demonstrates that both GALP and LGRF play crucial roles in enhancing performance: remov-
ing either module leads to clear drops in accuracy, kappa, and F1, confirming their complementary
benefits; eliminating the expert pool further weakens fusion effectiveness. From Fig. [3] the hyper-
parameter analysis shows that retaining 50% of tokens (o« = K 5, /Ps, ) yields the best trade-off
between accuracy and redundancy, while activating Ko = 2 experts in the expert pool of M = 6
provides the most stable and accurate results, balancing diversity and computational efficiency.

5 CONCLUSION

In this work, we propose a novel end-to-end framework for multi-view DR grading that integrates
lesion-aware cues without requiring external annotations. The proposed GALP module strengthens
stage-wise feature discriminability through auxiliary classification and transforms grade-conditioned
evidence maps into lesion proposals, which act as surrogates for costly expert cues. The LGRF mod-
ule further enables context-aware cross-view fusion by dynamically routing experts and applying
Top-K weighted cross-view attention, ensuring precise and selective integration of lesion propos-
als across views. Extensive experiments on two multi-view fundus datasets, MFIDDR and DRTiD,
demonstrate that our method achieves SOTA performance. Importantly, the proposed framework
attains accuracy comparable to models that rely on external annotations, suggesting its practical
potential for clinical deployment where such additional data are often unavailable or costly to ob-
tain. By reducing annotation dependency while maintaining high diagnostic accuracy, our method
provides a label-efficient and scalable solution for large-scale DR screening.
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language model solely as a writing assistant to improve the clarity, grammar, and
style of the manuscript. The model was not involved in research ideation, experimental design, im-
plementation, analysis, or result interpretation. We sincerely appreciate the contribution of the large
language model in enhancing the readability and linguistic quality of this work. Its assistance was
instrumental in refining the presentation of our research. All technical content, including methods,
experiments, and conclusions, was fully developed and verified by the authors. The authors take full
responsibility for the content of this paper.

Table 5: Comparison results against single-view approaches with our proposed multi-view approach.

Method Acc Spe Kappa Fl

Inception_ResNet_k_2 (Szegedy et al.[[2017) 70.6 67.1 38.6 654
Mobile_Net_k2 (Sandler et al.|[2018) 723 68.7 436 672
ResNet50 (He et al., 2016) 732 732 452 693
ResNext50-32x4d (Xie et al.|[2017) 733 73.0 47.1 703
ConvNeXt-B (Liu et al.| [2022) 759 77.8 53.7 73.6
Swin-B (Liu et al.}|2021) 75.0 755 513 724
Vim (Zhu et al.,|2024) 770 812 563 753
PVT-M (Wang et al.| |2021) 74.1 785 504 714
PVT-L (Wang et al.}[2021) 753 80.3 572 738
RETFound (Zhou et al.,|2023) 717 709 436 67.3
Ours 839 89.8 709 835

A.2 COMPARISON WITH SINGLE-VIEW METHODS

We compare our approach with single-view methods on MFIDDR in Table[5] Our model is trained
on all four views jointly, whereas each single-view method is trained separately on each view and
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the best-performing view is reported for comparison. As shown in Table 5] our method attains the
highest Accuracy, Specificity, Kappa, and F1. These results underscore the benefit of multi-view
learning: aggregating complementary cross-view information yields clear gains over the strongest
single-view baselines.

A.3 PSEUDO TRAINING CODE

The training process of our method can be seen in Algorithm 1.

Algorithm 1: The training process of our method

Input: Multi-view Fundus images V = |V, V2, ... V¥ } and its corresponding grading

label y.
Parameters: The retention ratio « of the tokens in the GALP. The number of routed experts
K>. The total number of experts M.
Output: A trained model.
1: for ep=1 to Epo do
Pre-process the images
Extract initial features from the Conv Block
for n=1to 3 do
Extract encoded features 7, from the Encoder in the stage-s,,
Compute the auxiliary loss and the lesion proposals P, with the ratio a
Compute the routing scores ’stn and extract the Top- K5 experts outputs Pe Sjm &

Compute the MoE load-balancing and the cross-view fused results Fuin
end for
10.  Extract features from Fuj, by the Encoder in stage s4, obtaining F,
11. Predict the grade on the FF ; , and compute the grading loss
12:  Update gradient.
13: end for

2
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