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Abstract

Transformer models have achieved remarkable success across various do-
mains, sparking breakthroughs in fields beyond their original applications.
As a use case from neuroscience, distinguishing Alzheimer’s disease (AD)
from healthy brain cells using high-dimensional single-cell transcriptomic
data is a challenging classification task. While attention-based models
offer strong discriminative performance, accuracy alone is not sufficient.
It is essential to balance predictive accuracy with biologically meaningful
interpretations aligned with domain insights. In this work, we propose an
interpretable Transformer architecture based on a Disease-Specific Condi-
tional Guided Self-Attention (DSCGA) mechanism for Alzheimer’s disease
cell classification. The proposed approach maps each cell gene expression
vector into a set of tokens corresponding to a catalogue of known biological
pathways. It first learns pathway-based representations to classify cells,
followed by biologically guided refinement using our proposed DSCGA mech-
anism, which amplifies attention to pathways relevant to a specific condition
while down-weighting irrelevant ones, adapting to the context of each cell
observation Specifically, it extends the standard self-attention mechanism by
progressively incorporating a second term that is activated dynamically to
help the model focus on condition-related biological pathways. The final at-
tention scores are computed by adding the original self-attention scores and
the condition-specific scores. The model requires post-training with DSCGA
to condition attention on disease-specific signals. The ultimate goal is to dis-
tinguish between AD and healthy cells while generating interpretation-driven
predictions aligned with prior biological knowledge. Extensive experiments
were carried out using two different real-world datasets, namely Seattle
and ROSMAP. Experimental results demonstrate the effectiveness of our
proposal and prove its ability to outperform baselines in terms of biolog-
ical interpretation quality while maintaining a controlled accuracy drop.
Precisely, for AD-predicted cells, our method increases the number of cor-
rectly identified AD-related pathways using attention scores, from 3.96 to
18.98 (KEGG) and 8.29 to 30.53 (WikiPathways) on Seattle, and from
3.88 to 18.89 (KEGG) and 7.65 to 30.90 (WikiPathways) on ROSMAP.
Furthermore, our proposal can be adapted to improve the domain specific
interpretability of several existing attention-based architectures if external
established knowledge is available.

1 Introduction

While attention-based architectures have achieved success in various domains, including
neuroscience (Hao et al., 2024; Chen et al., 2023; Cui et al., 2024; Theodoris et al., 2023; Yang
et al., 2022), their interpretability remains a significant challenge. A typical transformer
model comprises multiple blocks, which include self-attention, normalization, and feed-
forward network. These blocks capture complex relationships within biological sequential
data but do so in ways that are often difficult to interpret (Vaswani, 2017; Touvron et al.,
2023a;b; Chen et al., 2021; Devlin et al., 2018).
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Alzheimer’s disease (AD) is a prevalent neurodegenerative pathology, which is deemed a form
of dementia and a major contributor to disability among elderly individuals (Hodgson et al.,
2024; Botto et al., 2022; Winblad et al., 2016; Singh et al., 2024). Recent advancements
in the neuroscience field have shed light on the molecular and cellular pathways involved,
opening the door to the development of powerful tools and therapeutic interventions aimed
at slowing the disease. In particular, research on AD seeks to uncover the underlying factors
and genetic influences contributing to multiple risks, develop effective treatments to combat
this challenging disease and provide high-quality patient care (Zhang et al., 2024a; Lambert
et al., 2023; Hebert et al., 2010; Dubois et al., 2010; James et al., 2014; Ferreira et al., 2020).
In particular, the nature of attention mechanisms in transformer models, coupled with the
non-linearity, makes it challenging to understand why this model makes a specific prediction,
especially in applications where explainability is important such as detecting Alzheimer’s
disease or healthy cells, as accurate predictions alone are often insufficient for the goal of
studying biology. Understanding the biological reasoning behind these predictions is crucial.
However, the standard attention mechanisms often fail to highlight biologically meaningful
relationships between relevant elements.
In previous research, several works (Theodoris et al., 2023; Cui et al., 2024; Yang et al.,
2022; Chen et al., 2023) present models with high discriminative capacity, but their lack of
biological interpretability hinders trust in their predictions. This study focuses on improving
the biological interpretability of a Transformer model trained to classify Alzheimer’s disease
(AD) and healthy (control) from single cell transcriptomic datasets. By explicitly integrating
external biological knowledge into the attention mechanism, we demonstrate a proof of
principle using single-cell transcriptomics data, which represents high-dimensional, challenging
to model biological measurements. Our approach aims to enhance the model’s interpretability,
enabling more meaningful results and deeper insights into disease mechanisms.
In this paper, we adapted the LLaMA model’s transformer block (Touvron et al., 2023a;b) due
to several factors, including the nature of the problem, the data used, quality of predictions,
and our need to train from scratch. We designed an alternative to the standard self-attention
mechanism, termed disease-specific condition guided self-attention (DSCGA), tailored to
replace the one used in many existing works (Theodoris et al., 2023; Yang et al., 2022; Chen
et al., 2023), and enhance the biological interpretability of Attention-based architectures
for cell disease classification, and other application areas with external reference knowledge.
Increasing accuracy is beyond the scope of this work, as it has already been addressed in
numerous existing studies. The contributions of our present work are summarized as follows:

• We proposed an effective technique called disease-specific conditional guided self-
attention to improve the overall biological interpretability of transformers for single
cell disease classification.

• We devised a conditional layer that takes advantage of dynamic selection strategy
according to the provided model’s outcome for improving the biological interpretabil-
ity.

• We developed a strategy that adopts cell sampling to fine-tune only the important
network layers relevant to each predicted condition and yields high-quality biological
interpretations of the conditions of interest.

2 Related work

This section covers a set of state-of-the-art Transformer architectures based on attention
mechanism, developed for single-cell data analysis. For instance, Geneformer (Theodoris
et al., 2023) is a transformer architecture designed to handle transcriptomic data, trained on
a large dataset of 30 million cells. As a context-aware model, it adjusts its understanding of
each gene based on the specific characteristics of the cell, such as cell type, disease state, or
developmental stage. The model employs self-attention as a key component in each block,
enabling it to enhance prediction quality in settings with limited biological data. Similarly,
ScGPT (Cui et al., 2024) is a pre-trained generative model tailored to process single-cell
RNA sequencing (scRNA-seq) data. It can be applied to various downstream applications,
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such as cell type annotation, gene network inference, and perturbation response prediction.
This model adopts attention mechanisms to generate contextualized vector embeddings. In
addition, scBERT (Yang et al., 2022) is an adapted version of the BERT approach (Devlin
et al., 2018), designed for predicting cell types and annotating single-cell RNA-seq data. It
can be used for understanding disease progression. Moreover, CellPLM (Wen et al., 2024) is a
pre-trained model that handles cells and tissues as a set of tokens and sentences respectively.
It encodes cell-cell communication, enhancing its capability for various downstream biological
applications. In parallel, TOSICA (Chen et al., 2023) is a transformer-based approach that
relies on multi-head self-attention to provide biologically interpretable insights, helping to
comprehend cellular behavior during development and disease progression.
Another notable model is xTrimoscFoundation (Hao et al., 2024), a pre-trained foundation
model designed to unravel the language of cells. It can capture complex contextual relation-
ships among genes across diverse cell types. Meanwhile, ACTINN (Ma & Pellegrini, 2020) is
a three-layer neural network architecture developed for automated cell type classification.
It is trained on datasets with annotated cell types and is then applied to predict cell types
in unseen datasets. Lastly, Cell2Sentence (C2S) (Levine et al., 2023) aims to adapt large
language models (LLMs) to transcriptomic data. It converts single-cell gene expression
data into textual sequences and ranks genes based on their expression levels in descending
order. This approach enables LLMs to handle biological information while preserving the
complexity and richness of single-cell data.
Transformer-based architectures, such as Geneformer, scBERT, TOSICA, and scGPT, rely
on attention mechanisms, with scGPT adopting an adapted form. These models are designed
to improve the discriminative capacity for various tasks. However, they fall short when it
comes to biological interpretability. Specifically, the interpretation of attention score matrices
in these models is often inconsistent with biological reasoning. This inconsistency presents a
significant challenge. Relying solely on post-hoc ‘post mortem’ explanations is inadequate
for ensuring biological interpretability. In biological contexts, such as transcriptomics, model
explanations benefit from direct contextualization with established biological processes.
While these models excel in prediction, they lack the transparency and grounding in biology
necessary for revealing biologically interpretable insights.
TOSICA, for example, incorporates biological pathways as input and uses a standard self-
attention mechanism. Yet, our study demonstrates that conventional self-attention alone is
insufficient to capture all the biological nuances associated with different predicted conditions.
Moreover, none of the existing models, including scGPT, scBERT, and Geneformer, were
designed to directly integrate external biological knowledge or enhance biological inter-
pretability through the attention layer. This represents a critical gap, as incorporating
knowledge such as known pathways, gene-disease associations, or other biological frameworks
could substantially improve the biological relevance of these models. By integrating this
external biological knowledge, we aim to enhance the model’s biological interpretability,
yielding more grounded predictions anchored in established biological mechanisms.
In this work, we address the challenge of enhancing biological interpretability in transformer
models. Our approach focuses on improving the model’s understanding of why specific
predictions are made and ensuring consistency with known biological knowledge. By in-
corporating external biological knowledge into the model’s architecture, we improve both
the accuracy and biological interpretability of the predictions. Specifically, we propose
a comprehensive guide for extending a transformer model to enhance its interpretability
using our alternative to the standard self-attention mechanism. Analyzing the attention
score matrices allows us to gain valuable insights into the model’s decision-making process,
revealing the biological pathways associated with each predicted condition and improving
the biological understanding of the model’s predictions.

3 Transformer-based Disease-Specific Condition Guided
Self-Attention (DSCGA)

We propose Disease-Specific Condition Guided Self-Attention (DSCGA) to address the
limitations of standard attention in capturing biologically relevant interactions. Unlike
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conventional self-attention, DSCGA incorporates external biological knowledge to improve
interpretability and align model predictions with known disease-specific pathways. By
modifying the attention mechanism, DSCGA allows the Transformer to highlight biologically
meaningful interactions for each predicted condition.

3.1 Architectural Modification: Integrating Submodules

Given the pre-trained model denoted ModelSA, this step aims to modify its architecture by
integrating two dedicated submodules. The first replaces the conventional self-attention layer
with our proposed DSCGA attention. In particular, it reuses the shared weights extracted
from the attention mechanism of the trained model ModelSA and introduces new layers.
The second module is appended as a secondary output to produce auxiliary information that
guides condition-awareness. Figure 1 illustrates the exact architectural modification required
for ModelSA. The resulting architecture, denoted as ModelDSCGA, integrates the DSCGA
self-attention layer.

3.2 Disease-Specific Condition Guided Self-Attention (DSCGA)

The DSCGA attention mechanism takes as input (N +1) token vectors Ei = (E1
i , . . . , E

(N+1)
i )

and a condition scalar Ci. Each token corresponds to a biological pathway, obtained by
representing the expression of its member genes from scRNA-seq data (raw count matrix)
using external knowledge databases, namely KEGG and WikiPathways. Additional details
on the definition of these input vectors are provided in Appendix A.
Let Dk be the query/key embedding dimension, DSCGA maps Ei into two queries, Q1 ∈
R(N+1)×(Dk) and Q2 ∈ R(N+1)×Dk , two keys, K1 ∈ R(N+1)×Dk and K2 ∈ R(N+1)×Dk , and a
value matrix V . A condition-aware attention score matrix Attmatrix is computed using two
attention matrices influenced by a condition. The first matrix based on Q1 ∈ R(N+1)×Dk and
K1 ∈ R(N+1)×Dk , is calculated using the shared weights from standard self-attention. The
second matrix, derived from Q2 ∈ R(N+1)×Dk and K2 ∈ R(N+1)×Dk , is computed using newly
introduced layers. A key design feature is the use of two separate attention matrices, where
the second is a condition-dependent matrix that is dynamically activated or deactivated
based on the input context. This is followed by a weighted summation of the value vectors.
Figure 2 illustrates the proposed DSCGA attention mechanism formulated as follows:

DSCGA(Ei, Ci) = (Attmatrix ◦ Repeat(Agg(Attmatrix)Wagg))V
Attmatrix = Softmax(Fbase(Q1, K1) + Fcondition(Ci, Q2, K2)) (1)

Here, Softmax(.) represents the softmax function. DSCGA(·) refers to our proposed
condition-guided attention mechanism. The symbol ◦ denotes the Hadamard product
(element-wise multiplication). Agg(·) is a function that aggregates the attention matrix across
tokens, yielding a summary of token importance for the full input under the current condition.
Wagg ∈ R(N+1)×(N+1) denotes a learnable weight matrix applied to the aggregated vector,
allowing the model to reweight the global importance signal. Repeat(·) is a function that
takes the aggregated importance vector and repeats it along the token dimension to match the
shape of the attention matrix denoted Attmatrix. This latter is computed using two functions,
Fbase(.) for the global attention scores and Fcondition(.) producing conditioned attention
scores dependent on the input context. Note that Attmatrix is estimated progressively,
following the progressive training step described in the next section.

3.3 Progressive Post-training for Biological Interpretability

This section covers the progressive post-training phase of ModelDSCGA based on our Disease-
Specific Condition Guided Self-Attention (DSCGA). Note that the components of the
architecture are added progressively as indicated throughout the post-training stages.

3.3.1 Data sampling and conditional guidance of the attention layer

Given the trained architecture ModelSA, this step involves incorporating a second term into
the standard self-attention mechanism using additional layers. This process is defined as
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Figure 1: (1) The core transformer architecture based on standard self-attention (ModelSA).
(2) The interpretable architecture obtained by replacing self-attention with DSGCA
(ModelDSCGA). (3) The submodule added as a second output to guide biological learning.

Figure 2: Disease-Specific Condition Guided Self-Attention (DSCGA)
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follows:
Softmax

(
MA + MA2√

dk

)
V

MA2 = Q2KT
2 ; Q2 = XW q

2 ; K2 = XW k
2 ;

(2)

Where MA2 is a second attention matrix designed to capture relevant biological information.
W q

2 and W k
2 are newly introduced weight matrices added to the trained model ModelSA.

The key assumption behind incorporating this second term is to guide the model to focus
more effectively on a specific condition of interest such as Alzheimer’s Disease (AD).
Let Datasample be a randomly selected subset of training cells predicted as AD from
the original dataset. It is used to fine-tune the new layers that constitute the second
term and the secondary output, aiming to reproduce the predictions made by ModelSA

produces a secondary output, an (N+1)-dimensional vector denoted as Output2i, which
closely approximates the token relevance in accordance with external knowledge (ground-truth
biological pathways encoded as vector). This process is formulated as follows:

P̂i, Output2i = TransformerDSCGA(Ei, Ci)
Output2i = Agg(MA2)Wagg

(3)

Here, ModelDSCGA(·) refers to the fine-tuned model that incorporates the new layers and
produces two intermediate processing outputs. Agg(·) is an aggregation function (sum) used
to aggregate the MA2 matrix for the condition of interest into a vector representing the
importance of the different tokens (pathways). The key assumption behind this is that each
score reflects the relevance of a biological pathway with respect to the predicted condition
of interest. A high score indicates a more important token (pathway), while a low score
corresponds to an irrelevant one. Wagg ∈ R(N+1)×(N+1) is a learnable weight matrix.

3.3.2 Dynamic selection of attention matrices strategy

Using the trained ModelDSCGA model, the next step requires a purposeful modification of
the self-attention mechanism. This modification introduces a condition-driven mechanism
that dynamically activates or deactivates the second attention matrix based on an input
condition, allowing the model to adaptively adjust its attention computation in accordance
with the context of the input tokens. This process is expressed as follows:

Ci = Encode(arg max(ModelSA(Ei)))

Attmatrix = Softmax
(

MA + MA2 · Ci√
dk

) (4)

where arg max(ModelSA(Ei)) denotes the predicted label for the i-th input cell, produced
by the ModelSA based on standard self-attention. The function Encode(·) converts this
label into a binary condition relative to the condition of interest. The main goal behind this
strategy is to guide the model to uncover the relevant and irrelevant biological pathways
associated with each condition of interest.

3.4 Biological Interpretation-Informed Attention Score

To enable token-level insights, it is important to examine the attention score matrix and
aggregate the interactions of each token with others, resulting in an attribution score vector
that highlights the meaningful pathways associated with each predicted disease-specific
classification label. This process is formulated as follows:

Expi = Agg(softmax(S)))
S = (Attmatrix ◦ Repeat(Agg(Attmatrix))Wagg) (5)

The core assumption behind Expi ∈ R(N+1) is that the attention matrix captures the
relationships between different tokens (pathways) and the cell itself. A high attention score
indicates a more significant interaction, while a lower score suggests less relevance. Therefore,
aggregating these interactions helps to identify the most relevant pathways corresponding to
the predicted outcome label.
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4 Experiments

This section covers the experiments conducted to evaluate the effectiveness of our proposal.
Section 4.1 presents the real-world datasets adopted in this work. Section 4.2 describes the
methodology and evaluation measures. Section 4.5 summarizes the different state-of-the-art
techniques. Finally, section 4.6 details the experimental results.
Note that detailed evaluation measures, implementation details, and hyperparameter settings
with additional experiments are reported in the Appendix.

4.1 Datasets

The experiments are carried out using two real-world single-cell datasets, called Seattle and
ROSMAP. The detailed descriptions of the two datasets are as follows:

1. Seattle dataset (Gabitto et al., 2024): It is a public single-cell dataset, composed
of millions of labeled cells. We sampled 50000 cells. Each one is labeled in one of
two possible classes: AD and Normal (control). The cell labels were sampled in a
balanced way. The distribution of labels is defined as follows: 25000 (50%) Normal
labels, and 25000 (50%) AD labels.

2. ROSMAP dataset (Mathys et al., 2019): Religious Orders Study or the Rush
Memory and Aging Project (ROSMAP) is a popular benchmark dataset. It consists
of a set of instances. Each instance represents a single cell taken from a human
brain donor. The different cells were classified into two separate categories: Normal,
AD. The distribution of instance labels were as follows: 25000 (50%) Normal labels,
25000 (50%) AD labels. The total number of sampled cells adopted in this work
is 50000. Each cell is associated with its corresponding label. The total number of
genes used is 5000.

4.2 Methodology and evaluation measures

For the experimental study, each dataset is randomly partitioned into 2 parts, training and
test sets. The test set is used for evaluating the model’s performance, it consists of 20% of
cells. While the training set composed of 80% of cells is adopted for training the models.
This process is repeated five times, then the average is calculated.
We evaluated the model performance using the classification accuracy for cell disease clas-
sification. We assessed the biological interpretability using a top-k pathway metric, which
measures the model’s ability to identify ground-truth disease-relevant pathways. Full details
of the evaluation measures are provided in Appendix B.1

4.3 Baselines

In this study, we compare our proposed method against a set of baselines described below.
Comparison-based attention mechanism:

1. ModelAttentionsteering (Zhang et al., 2024b): It modifies the self-attention mechanism
by introducing attention steering, a technique designed to bias the attention weights
toward domain-relevant tokens (e.g., biological pathways). It serves as a strong
baseline for guided interpretability.

2. ModelSA (Vaswani, 2017): This is a Transformer architecture based on the standard
self-attention, where the attention scores are learned without any external guidance.
It provides a reference point for unguided, vanilla attention mechanisms.

3. CellEmbeddingSA: It is derived from the ModelSA. This approach extracts token-
level attention scores for each individual cell. These scores reflect how much attention
each pathway receives per cell, enabling fine-grained interpretability.

4. Random Guess: A naive baseline assigns random attribution scores to pathways.

7
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Figure 3: GWAS-based validation for two conditions AD and Control using Seattle and
ROSMAP datasets.

5. ModelDSCGA: This is our interpretable transformer, which incorporates our DSCGA
mechanism. It modifies the attention computation by regressing toward pathway
relevance scores derived from GWAS priors.

6. CellEmbeddingDSCGA: Analogous to CellEmbeddingSA, this variant extracts per-
cell attention scores from ModelDSCGA.

Comparison of attribution-based XAI methods:
We compared our technique with gradient-based attribution approaches, such as Integrated
Gradient (Sundararajan et al., 2017) adopted in (Heimberg et al., 2025), DeepLIFT (Shriku-
mar et al., 2017), GradientSHAP (Scott et al., 2017), and Input×Gradient (Simonyan et al.,
2013).

4.4 Experimental results

This section covers the evaluation protocol defined to prove the effectiveness of our proposal
in terms of biological interpretability.
GWAS-based validation: This step is intended to uncover the relevant pathways that
contribute to the predicted condition (label). Figure 3 presents the results on the Seattle
and ROSMAP datasets. Specifically, it depicts the number of correctly detected AD-related
pathways achieved by various baselines compared to our proposed model based DSCGA
mechanism. The results reveal that our proposed architecture substantially outperforms
the other baselines on the two datasets. In particular, our proposal is able to yield a much
superior number of correctly detected pathways than the other competitors for AD condition,
while for Control condition, the number of pathways pinpointed is low which proves that our
model distinguishes between the pathways relevant to each condition separately. However,
the Attention steering is biased toward detecting AD pathways correctly but fails for the
control. This fact gives a clear indication that our proposal can enhance the performance of
other existing architectures.
Validation of attribution-based methods explanations: To showcase the performance
of our DSCGA, we employed four popular XAI methods. Each method assigns scores to
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Figure 4: Comparison of our proposal vs. attribution-based methods explanations for AD
and Control conditions using Seattle and ROSMAP datasets.

pinpoint the importance of the tokens (i.e., pathways) under specific pathological conditions.
Figure 4 illustrates the number of pathways detected using the Seattle and ROSMAP
datasets. These results clearly demonstrate that the explanations provided by XAI methods
are not consistent with biological insights (low values for the two conditions). In contrast,
our proposal offers a solution that enables the development of biologically interpretable
transformers (high values for AD condition and low for Control).
Cell disease classification: We evaluated the model performance using Seattle and
ROSMAP. The results show that our proposed DSCGA approach improves the biological
interpretability with minimal loss in classification accuracy compared to standard self-
attention and attention steering baselines. Detailed results and comparisons are provided in
Appendix A.3.
Impact of dynamic selection attention matrices strategy: We assessed the impact of
dynamic selection strategy by comparing DSCGA performance with and without it. The
results proved that the dynamic selection improves the model’s ability to identify pathways
relevant to the predicted condition. Details results are presented in Appendix A.4.
Supplementary experiments using a new larger dataset: We adopted a third dataset
and performed comparisons of cell-level versus donor-wise splits, biological interpretability
validation, top-k pathway overlap, and statistical tests. Results confirm the effectiveness of
our proposal. The details are provided in the Appendix B.4.

5 Conclusion

In the present work, we introduced an interpretable Transformer-based architecture that
incorporates a dynamic condition guided attention mechanism, enabling the model to produce
biologically meaningful interpretations aligned with established neuroscience knowledge. Our
evaluation on two benchmark single-cell transcriptomics datasets demonstrates that the
proposed approach outperforms existing baselines in terms of biological interpretability. Our
collective results highlight the value of integrating domain-specific knowledge into the design of
transformer learning systems to improve interpretability in biomedical applications. As future
work, we plan to explore advanced mechanisms to mitigate attention head polysemanticity,
fostering specialization of attention heads toward distinct roles.
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Appendix

This supplementary material provides additional details regarding the data preprocessing
and input representation, model components and architecture, hyper-parameter settings and
additional experiments using another larger seattle dataset.

A Data preprocessing and input representation

This section describes the data preprocessing, specifically, the gene set enrichment analysis,
and token definition including, encoding pathways and cell representation.
Given a dataset Dcells = {(Cell1, L1), (Cell2, L2), . . . , (Cell|Dcells|, L|Dcells|)}, which is com-
posed of |Dcells| instances. Each instance (Celli, Li) represents a single cell denoted
Celli and its corresponding label Li indicating either AD or healthy condition. Let
C = {Cell1, Cell2, . . . , Cell|Dcells|} and G = {G1, G2, . . . , GZ} be the sets of cells and genes,
respectively. Z = |G| stands for the total number of genes. Each cell Celli = (G1, G2, . . . , GZ)
is made up of Z gene count measurements. Each gene Gj ∈ R has an expression value
indicating the level of activity within the cell.

A.1 Gene set enrichment analysis

This step is tailored to group the set of highly variable genes, denoted G, into gene sets
corresponding to known biological pathways. This process can be expressed as follows:

P = {Pi, i = 1, . . . , |P|} = GSEA(G) (6)

The symbol P represents the set of pathways, where each one corresponds to a gene set. The
function GSEA(.) performs gene set enrichment analysis and returns the relevant pathways
selected based on their p-values ≤ 0.01. The term |P| refers to the total number of pathways.

Given the set of pathways P and genes G, we define a sparse matrix, denoted SM ∈ R|P|×Z ,
where each row corresponds to a pathway and the columns stand for the set of genes. Each
element of SM is computed as follows:

12

https://openreview.net/forum?id=xZDWO0oejD


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

SM i,j =
{

1 if value(Gj) ̸= 0 & Gj ∈ Pi

0 otherwise
(7)

where value(.) is a function that returns the gene expression value.

A.2 Token definition: Encoding pathways and cell representation

Given the set of curated biological pathways P. The i-th pathway Pi can be encoded as
a Z-dimensional vector. Let IPi ∈ RZ be an indicator vector representing the pathway
Pi. For example, suppose the total number of highly variable genes equals 10, and P1 =
{G1, G5, G8, G9} is composed of four genes. The elements of IP1 ∈ R10 corresponding to
the gene indices (1, 5, 8, 9) are set to 1, while all other elements are set to 0. This vector
encodes the presence of genes associated with pathway P1.
Consequently, the n-th cell Celln ∈ RZ can be defined as a sequence of |P| pathways, where
each pathway is encoded as the element-wise product of the indicator vector and the gene
expression values of the cell. This can be expressed as follows:

Inputn = pathways vectn = {T1 = IP1 ∗ Celln, T2 = IP2 ∗ Celln, . . . , T|P| = IP|P| ∗ Celln}
pathways vectn = {T1, T2, . . . , T|P|}

(8)
Here, Inputn and pathways vectn refer to the n-th input cell, represented as set of |P| tokens
(T1, T2, . . . , T|P|), where each token is equivalent to a biological pathway.

In this work, we used an additional token, denoted T|P|+1, representing the cell itself (all
genes expression). Consequently, the input comprises |P| + 1 tokens corresponding to |P|
pathways and the cell, defined as follows:

Inputn = {T1 = IP1 ∗ Celln, T2 = IP2 ∗ Celln, . . . , T|P| = IP|P| ∗ Celln, T|P|+1 = Celln}
Inputn = {pathways vectn, T|P|+1 = Celln}

pathways vectn = {T1, T2, . . . , T|P|}
(9)

A.3 Cell disease classification

For the cell disease classification task, the experiments are performed using two real-world
single-cell datasets and two popular biological pathways databases, namely KEGG 2021
Human, and WikiPathways 2024 Human. Each experiment is repeated five times. The
main objective is to evaluate the performance of the transformer based on the standard
self-attention, and compare it with our proposed DSCGA and attention steering baseline.
Figure 5 depicts the results obtained using two datasets. It presents comparative results
in terms of classification accuracy, demonstrating the efficiency of the proposed approach
against other baselines. It can be observed that our approach achieves better results than
the model based on steering attention. The original model based on standard self-attention
outperforms each of the other architectures. This was expected as we need to consider the
trade-off between accuracy drop and biological Interpretability.

A.4 Impact of dynamic selection attention matrices strategy

To evaluate the impact of dynamically selecting attention matrices strategy, we compared
the biological interpretability of attention scores of DSCGA with dynamic selection strategy
vs. DSCGA without it, in terms of their ability to uncover the relevant pathways aligned
with the predicted condition. Figures 6 and 7 depict the results using Seattle and ROSMAP
datasets, respectively. Tables 1 and 2 present the detailed number of detected AD-related
pathways.
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Figure 5: Classification performance comparison using Seattle and ROSMAP datasets.
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Figure 6: Impact of using the dynamic selection of attention matrices strategy (Seattle
dataset)

Table 1: Impact of using the dynamic combination strategy seattle dataset

Method KEGG 2021 Human WikiPathways 2024 Human
AD Control AD Control

ModelDSCGA 18.9816 ± 0.0312 4.0000 ± 0.0000 30.5300 ± 0.6314 5.0000 ± 0.0000
ModelDSCGA without dynamic combination 3.5582 ± 0.4010 3.3469 ± 0.7945 7.6483 ± 1.8629 7.6931 ± 1.8334

Table 2: Impact of using the dynamic combination strategy ROSMAP dataset

Method KEGG 2021 Human WikiPathways 2024 Human
AD Control AD Control

ModelDSCGA with dynamic combination strategy 18.8976 ± 0.0660 4.0000 ± 0.0000 30.9089 ± 0.1025 5.0000 ± 0.0000
ModelDSCGA without dynamic combination strategy 3.5460 ± 0.3740 3.3402 ± 0.2512 7.0880 ± 0.6894 6.4851 ± 0.5669

For the AD condition, a higher value indicates better detection and more accurate identifica-
tion of AD-related pathways, whereas for the control condition, a lower value reflects better
performance, as most AD-related pathways are not highlighted. Our findings show that the
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Figure 7: Impact of using the dynamic selection of attention matrices strategy (ROSMAP
dataset)

dynamic combination of attention matrices strategy enhances biological interpretability and
improves the quality of pathways-level insights.

B Supplementary details and experiments

This section covers the evaluation measures, the optimal hyperparameters used in our
experiments, along with implementation details and additional experimental results using a
new larger dataset.

B.1 Evaluation measures

In this work, we assessed the performance of several models for cell disease classification and
biological interpretability tasks.
For the cell disease classification, we employed the classification accuracy (Lin et al., 2021;
Arnab et al., 2021; An et al., 2021; Dosovitskiy et al., 2021; Liu et al., 2021). In general,
a higher value indicates better performance. Meanwhile, for the biological interpretability
task, we defined our own protocol to assess the learning ability of the model to capture
the biological pathways, quantify their importance, and generate biological interpretations
associated with the different predicted conditions. To do so, we employed the following
metrics:
Top-k pathways ratio: Let k denote the number of ground-truth AD-related biological
pathways. For the i-th cell, let Expi be the interpretation derived from attention scores,
where each element represents a score assigned to a biological pathway. We extract the
top-k elements from Expi, denoted as ExpAD

i for AD-predicted condition and ExpControl
i for

control-predicted condition. These are compared against a set of k ground-truth AD-related
pathways that include at least one gene identified in Genome-Wide Association Studies
(GWAS). This process is repeated for all cells in the test set. Formally, let Gpathways be the
set of k ground-truth AD-related pathways, and let top-k(.) be a function that returns k
relevant pathways for the i-th cell. The number of correctly identified pathways is calculated
as follows:

RAD =
∑MAD

i=0 |Gpathways ∩ top-k(ExpAD
i )|

MAD

RControl =
∑MControl

i=0 |Gpathways ∩ top-k(ExpControl
i )|

MControl

(10)
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where MAD and MControl refer to the number of cells predicted as AD and control, re-
spectively. Specifically, a higher RAD value indicates that more AD-related pathways were
correctly detected. Conversely, for RControl, a smaller value reflects better performance, as
it indicates that pathways not related to the AD condition were detected.

B.2 Hyper-parameter settings

In this work, several experiments were carried out to select the optimal hyper-parameters.
The total number of highly variable genes was fixed at 5000, which defines the size of each
input token. We adopted raw count matrix. The embedding size for both pathways and
cells tokens was set to 128. Each dense layer consisted of a number of neurons equals the
number of input tokens. The number of epochs for pre-training the model was set to 5. The
batch size equals 256. The parameters D and Dk were set to 128 and 32, respectively. The
learning rate is fixed at 1 × 10−3. We conducted several experiments by using two pathway
databases, namely KEGG 2021 Human and WikiPathways 2024 Human. We varied the
number of transformer blocks and attention heads. Since interpretation in our framework
involves aggregating attention scores across heads and tokens, we observed that increasing
the number of heads did not significantly alter interpretability results. Additionally, to
avoid overfitting, we used the optimal number of heads. Similarly, increasing the number of
transformer blocks did not yield improved performance in terms of discriminative capacity.
Due to the absence of pre-trained models tailored to our specific task, the model was trained
from scratch, and we set the number of block at one. Post-training was conducted using a
sample of 20,000 cells. As the model produces two outputs, we employed cross-entropy loss
for classification and mean squared error (MSE) for the regression objective.

B.3 Implementation details

In this paper, the experiments were conducted on a cluster. We used 900 GB RAM, and
GPU Nvidia RTX 8000. All the deep learning techniques for cell disease classification were
written in Python. The details of the operating system and the different libraries are: Python
3.8, Pytorch 1.11.0, Captum, Scanpy, GSEApy, Linux.

B.4 Additional results on biological interpretability with an extra dataset

We carried out additional experiments using a third dataset (named larger seattle dataset)
consisting of nearly 84000 cells of 89 donors. The choice is mainly based on the availability
of ground-truth annotations (domain-specific external knowledge) required to validate the
interpretability of our approach. To demonstrate its effectiveness, we considered two scenarios,
called (1) donor-wise splits, and (2) cell-level splits. (1) Donor-wise splits: we split the third
dataset (large Seattle) into 80% of donors in training, the remaining 20% donors for testing
the model. The training and test data are balanced. (2) Cell level splits: this consists in
partitioning the training and test sets at the cell level, i.e., we randomly divide the 84000
cells into training and test sets. The training and test data are balanced.

B.4.1 Classification comparison of cell-level splits vs. Donor-wise splits

The first goal is to compare the predictive performance using different data splits (cells vs
donors). We used the large Seattle dataset. Figures 8-9 depict the results using KEGG
2021 and WikiPathways 2024 Human, respectively. The interpretable model is based on our
proposed DSCGA attention mechanism, while the original model relies on vanilla attention.
The results indicate that both the original model and the interpretable model demonstrate
nearly identical predictive performance with minimal differences. When we train the models
using cell-level splits, higher accuracy is achieved after several epochs. In contrast, the
training with donor-wise splits reaches the optimal performance in just one epoch.
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Figure 8: Classification comparison of cell-level splits vs. donor-wise splits using a third
dataset set (large seattle) and KEGG 2021 pathways database.

Figure 9: Classification comparison of cell-level splits vs. donor-wise splits using a third
dataset set (large seattle) and Wikipathways 2024 Human database.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 10: Interpretability validation using a large Seattle dataset and donor-wise splits.

B.4.2 Biological interpretability validation using cell-level splits vs.
Donor-wise splits

This section aims to assess the biological validity of interpretations using different data splits.
Figures 10-11 display the results based on donor-wise splits and cell-level splits, respectively.
Each one details the number of detected pathways based on KEGG 2021 and WikiPathways
2024 Human for AD and Control conditions.
Our proposed DSCGA attention demonstrates a significantly higher number of correctly
identified pathways for the Alzheimer’s disease (AD) condition compared to random guessing
and vanilla attention baselines. In contrast, the number of pathways pinpointed for the control
condition is low, indicating that our model effectively distinguishes between pathways that
are relevant to each condition separately. In addition, when we compared the interpretability
of DSCGA attention against our DSCGA attention without the dynamic activation gating.
It turns out that the dynamic activation gating contributes significantly to enhancing the
quality of class-specific interpretations.
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Figure 11: Interpretability validation using a large Seattle dataset and cell-level splits.
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Figure 12: Top-k pathway overlap comparison between control and AD across donor-wise
splits using the KEGG database and the large Seattle dataset

B.4.3 Top-k pathway overlap comparison

The next objective is to evaluate the quality of biological interpretability by studying the
impact of varying the number of top-k most relevant biological pathways (tokens). We
evaluated three different values for the parameter k (i.e., 5, 10, 15). Figures 12-13 present
the results based on donor-wise splits and cell-level splits using KEGG database pathways
and a large Seattle dataset. Figures 14-15 illustrate the results based on donor-wise splits
and cell-level splits using the WikiPathways 2024 Human database.
The results support the previous conclusions that the biological interpretability of our
approach remains consistent regardless of the parameter k or data split.
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Figure 13: Top-k pathway overlap comparison between control and AD across cell-level splits
using the KEGG database and the large Seattle dataset
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Figure 14: Top-k pathway overlap comparison between control and AD across donor-wise
splits using the WikiPathways database and the large Seattle dataset
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Figure 15: Top-k pathway overlap comparison between control and AD across cell-level splits
using the WikiPathways database and the large Seattle dataset

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

B.4.4 Statistical test

We employed a paired t-test to compare the predictive performance difference between the
original model based on vanilla self-attention and the interpretable model based on our
DSCGA attention. We considered the two types of splits, cell-level splits and donor-wise
splits. Table 1 shows the results based on KEGG and Wikipathways databases.

Table 3: Statistical comparison of classification methods (Interpretable model based on our
DSCGA vs. original model based on standard self-attention) using paired t-tests on the
large Seattle dataset.

Pathway Database Split t-statistic p-value
Seattle and KEGG 2021 Human Donor-wise 5.2746 0.0062

Cell-level -1.1879 0.3006
Seattle and WikiPathways 2024 Donor-wise 1.9082 0.1290

Cell-level -1.1998 0.2964

All the p-values except for one were higher than 0.05, which indicates there is no statistical
significance between them. This demonstrates that the predictive performance of both
models is quite similar in most cases, regardless of the data splits used.

C Model components and architecture

This section covers the core components of the architecture, including the self-attention
mechanism, transformer block, and the transformer architecture based on the standard
self-attention mechanism.

C.1 Core components

C.1.1 Self-attention mechanism

The self-attention mechanism underpins much of modern transformer-based large language
models (LLMs). Given a set of input tokens (T1, . . . , T(|P|+1)), each one is embedded into
a vector space. We denote the corresponding embeddings as E = (E1, . . . , E(|P|+1)). The
goal is to map E into a different embedding space that captures the semantic relationships
between the pathways and the cell, resulting in transformed set of representations Y =
(Y1, . . . , Y|P|+1)|). Each output vector Yj depends on all the tokens. This process can be
written as follows:

Y = Attention(E) = Softmax
(

MA√
dk

)
V

MA = QKT

Q = EW q; K = EW k; V = EW v

(11)

where the function Attention(.) denotes the standard self attention. W q ∈ RD×Dq , W k ∈
RD×Dk , W v ∈ RD×Dv are weight matrices used to linearly transform the input tokens using
fully connected layers with linear activation. Dk, Dv, and Dq represent the dimensions of
the key, value, and query vectors, respectively. Dq = Dk and Dv = D ensures the output
representation Y matches the input dimensionality. MA ∈ R(|P|+1)|)×(|P|+1|)) denotes the
attention score matrix, where each element represents the interaction between a pair of
tokens. Notably, the last row of MA captures the interactions between all pathways and the
entire cell context.

C.1.2 Transformer block

Let block(.) be a function representing a Transformer block adopted in this work. It consists
of the following layers:
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• Input Layer: This layer takes each cell as a sequence of |P| + 1) embedding vectors
E representing the pathways and the cell.

• Attention Layer: This is the self-attention that refines the contextual representa-
tion.

• Residual connections: It implements dropout and adds the original input to the
output of the attention layer.

• Post-Normalization Layer: This applies normalization to the input embeddings.
• FFN: This is a feed-forward network (FFN), two-layer fully connected layers with

the SeLU (Scaled Exponential Linear Unit) activation function.

C.2 Transformer-based self-attention architecture

The complete Transformer-based standard self-attention used to classify the i-th cell Inputi

is written as follows:
P̂i = Model(Inputi) (12)

The model’s architecture denoted Model(.) is based on the standard self-attention. It is
made up of the following layers:

• Embedding Layer: This layer takes each cell Inputi, a sequence of sparse pathways
representation and convert it into a sequence of (|P| + 1|) embedding vectors Ei

representing the i-th cell Celli. It employs a dense layer with ReLu (Rectified Linear
Unit) activation function. This layer is expressed as follows:
Ei = Embedding layer(Inputi) = Embedding layer(concat(pathways vecti, Celli))

(13)
where Ei ∈ R(|P|+1|)×D refers to the embedded representation of the entire cell Celli.
Embedding layer(.) represents the embedding layer function.

• Transformer Block: This block is defined in the previous section. It can be written
as follows:

Oi
block = block(Ei) (14)

Here Oi
block ∈ R(|P|+1|)×D is the block’s output with D is the size embedding.

• Convolution1D Layer: This 1D convolutional layer that transforms each cell’s
embedding vectors into (|P| + 1|)-dimensional vector. Each element corresponds to
an aggregated feature for a particular pathway, with the last one representing the
complete set of the cell’s genes. It is expressed as follows:

Oi
Conv = Conv1D(Oi

block) (15)

Where Oi
Conv ∈ R(|P|+1|) is the convolution layer output. The i-th element corre-

sponds to the i-th biological pathway.
• Dense layer: It is a fully connected layer of (|P| + 1|) nodes with SeLU as nonlinear

activation function. It is written as follows:

Oi
Dense = SeLu(Dense(Oi

Conv)) (16)

where Dense(.) is a function representing a dense layer. Oi
Dense ∈ R(|P|+1|) is a

vector.
• Softmax Layer: This is a fully-connected layer with softmax activation function. It

estimates the probability distribution of different conditions. It is defined as follows:

P̂i = Softmax(Oi
Dense) (17)

where P̂i ∈ R2 is a probability distribution over the different conditions (AD and
Control). Softmax(.) refers to the output layer. Oi

Dense ∈ R(|P|+1|) is a vector.
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