
Data Sharing without Rewards in Multi-Task Offline
Reinforcement Learning

Tianhe Yu∗,1,2, Aviral Kumar∗,2,3, Yevgen Chebotar2, Chelsea Finn1,2,
Sergey Levine2,3, Karol Hausman1,2

1Stanford University, 2Google Research, 3UC Berkeley (∗Equal Contribution)
tianheyu@cs.stanford.edu, aviralk@berkeley.edu

Abstract

Offline reinforcement learning (RL) bears the promise to learn effective control
policies from static datasets but is thus far unable to learn from large databases
of heterogeneous experience. The multi-task version of offline RL enables the
possibility of learning a single policy that can tackle multiple tasks and allows the
algorithm to share offline data across tasks. Recent works indicate that sharing
data between tasks can be highly beneficial in multi-task learning. However, these
benefits come at a cost – for data to be shared between tasks, each transition must
be annotated with reward labels corresponding to other tasks. This is particularly
expensive and unscalable, since the manual effort in annotating reward grows
quadratically with the number of tasks. Can we retain the benefits of data sharing
without requiring reward relabeling for every task pair? In this paper, we show
that, perhaps surprisingly, under a binary-reward assumption, simply utilizing
data from other tasks with constant reward labels can not only provide substantial
improvement over only using the single-task data and previously proposed success
classifiers, but it can also reach comparable performance to baselines that take
advantage of the oracle multi-task reward information. We also show that this
performance can be further improved by selectively deciding which transitions to
share, again without introducing any additional models or classifiers. We discuss
how these approaches relate to each other and baseline strategies under various
assumptions on the dataset. Our empirical results show that it leads to improved
performance across a range of different multi-task offline RL scenarios, including
robotic manipulation from visual inputs and ant-maze navigation.

1 Introduction

Offline reinforcement learning (RL) provides the promise of a fully data-driven framework for
learning performant policies. To avoid costly active data collection and exploration, offline RL
methods utilize a previously collected dataset to extract the best possible behavior, making it feasible
to use RL to solve real-world problems where active exploration is expensive, dangerous, or otherwise
infeasible [82, 8, 68, 29]. However, this concept is only viable when a significant amount of data
for the target task is available in advance. A more realistic scenario might allow for a much smaller
amount of task-specific data, combined with a large amount of task-agnostic data, that is not labeled
with task rewards and some of which may not be relevant. For example, if our goal is to train a
robot to perform a new manipulation task (e.g., cutting an onion), we might have some data of the
robot (suboptimally) attempting that task, perhaps collected under human teleoperation and manually
labeled with rewards, combined with plentiful data of other tasks, some of which might be structurally
related (e.g., picking up an onion, or cutting a carrot). This scenario presents several questions: How

Deep Reinforcement Learning Workshop at 35th Conference on Neural Information Processing Systems
(NeurIPS 2021).

do we decide which prior data should be included when learning the new task? And how do we
determine which reward labels to use for this prior data?

Prior methods have offered several potential answers to these two questions, typically in isolation.
For the first question, it has been recently observed that a naïve sharing strategy of sharing data
from all tasks can be highly suboptimal [30], and some works have proposed both manual [30] and
automated [80, 13] data-sharing strategies that prioritize the most structurally similar prior data.
Most such methods assume that this shared data can be automatically relabeled with the reward
function for the new task [30, 80, 13], but the assumption that we have access to the functional form
of this reward is a strong one: for example, in many real-world settings, the reward might require
human labeling or human-provided examples [5, 16]. To this end, some prior works have proposed
learning classifiers for reward labeling [18, 71, 60], or other automated mechanisms [32]. But these
mechanisms themselves add complexity and potential brittleness to the pipeline. Thus, we aim to
devise a simple unified method that determines which data to share and which rewards to use, with
minimal supervision and no additional modeling and learning.

In this paper, we make the potentially surprising observation that data from other tasks can be utilized
with naïve constant reward labels, when the MDP consists of binary rewards. We show that this
simple method, which does not involve learning any additional models or classifiers, can outperform
more sophisticated techniques in practice. Our approach simply utilizes data from other tasks with a
constant reward label (e.g., r = 0), and uses a value-aware strategy to decide which prior transitions
to include for the new task. This strategy, based on the conservative data sharing (CDS) technique
proposed in prior work (which assumes oracle reward access) [80], also does not require learning any
additional model and simply uses the Q-function that is already learned as part of the RL process.

Our main contribution, which we call conservative unsupervised data sharing (CUDS), is a technique
for sharing data in multi-task offline RL that does not require any reward labels or reward function
access for the task-agnostic data, and requires no additional model or classifier. To achieve that,
our method assumes a particular form of the MDP that consists of binary rewards. We discuss the
behaviors of our methods, showing that, even without ground truth reward labels, our simple data
sharing scheme achieves Q-values that are lower-bounded by the Q-values obtained with sharing
all data with the ground-truth rewards and can be combined CDS to selectively filter out potentially
irrelevant data under different assumptions on the structure of the dataset. Our empirical evaluation
conducted over various multi-task offline RL scenarios such as robotic manipulation from visual
inputs and ant-maze navigation shows that this approach improves over the performance of more
sophisticated techniques that either learn the reward function explicitly, or utilize other methods to
propagate reward labels. In addition, we show that the proposed approach is comparable to an oracle
baseline that has access to true multi-task rewards.

2 Related Work
Offline RL. Offline RL [11, 55, 36, 38] considers the problem of learning a policy from a static
dataset without interacting with the environment, which has shown promises in many practical
applications such as robotic control [29, 45, 53], NLP [27], healthcare [58, 68], education [8],
electricity supply [82] and UI design [3]. The main challenge of offline RL is the distributional
shift between the learned policy and the behavior policy [22, 34], which can cause erroneous value
backups due to out-of-distribution actions generated by the learned policy. To address this issue,
prior methods have constrained the learned policy to not deviate much from the behavior policy via
policy regularization [43, 27, 70, 83, 34, 59, 50, 83, 33, 23], conservative value functions [35, 62], an
auxiliary behavioral cloning loss [21] and model-based training with conservative penalties [79, 31,
4, 66, 46, 37, 81].

Multi-Task RL and data sharing. Multi-task RL [69, 49, 67, 12, 24, 76, 72, 75, 30, 63, 64] enables
the goal of learning a single policy that solves multiple skills efficiently. Despite the promising results,
multi-task RL suffers from three main challenges, optimization difficulties [57, 24, 76], effective
weight sharing for learning shared representations [49, 67, 12, 72, 9, 63, 64], and sharing data across
different tasks [13, 30, 80]. We consider the multi-task offline RL setting and focus on the challenge
of sharing data across different tasks. Prior works share data across tasks based on metrics such as
learned Q-values [13, 39, 80], human domain knowledge [30], the distance to the target goals in
goal-conditioned settings [2, 52, 47, 42, 65, 41, 26, 44, 74, 6], and the learned distance with robust
inference in the offline meta-RL setting [40]. However, all of these either require access to the

2

functional form of the reward functions of each task in order to relabel the rewards or are limited to
goal-conditioned settings. Therefore, they are not applicable to the multi-task offline RL problem
that we consider where only the reward label of the originally-executed task is provided. Our work
addresses this issue via simply relabeling the data shared from other tasks with a constant value and
uses the conservative data sharing strategy [80] to further improve the performance.

RL with unlabeled data. Prior works tackle the problem of learning from data without reward
labels via either directly imitating expert trajectories [51, 56, 25], learning reward functions from
expert data using inverse RL [1, 48, 84, 15, 17, 18, 32], or learning a reward / value classifier that
discriminates successes and failures [71, 60, 14]. These algorithms require online data collection
and do not consider the offline RL setting. [61] considers the single-task offline setting with both
task-specific datasets and task-agnostic prior datasets and relabel the unlabeled prior data as failures
since these prior transitions cannot solve the task. Our method is not limited to such single-task
settings and instead considers the more general multi-task offline RL with data-sharing problem.

3 Preliminaries

Multi-task RL. Standard multi-task RL considers a multi-task Markov decision process (MDP),
M = (S,A, P, γ, {Ri, i}Ni=1), where S and A denote the state and action spaces respectively,
P (s′|s,a) denotes the dynamics, γ ∈ [0, 1) is the discount factor, and R1, · · · , RN correspond to
reward functions of different tasks i ∈ [N] for total number of N tasks where [N] is the shorthand
for {1, 2, . . . , N}. In our setting, we assume a binary per-task Ri ∈ {0, 1}, where 1 denotes success
of the task and 0 otherwise. Note that the dynamics are assumed to be the same across all tasks,
which is not entirely general but is indeed practical in many problem settings as noted in [80] and
stands as a common assumption in prior data sharing works [80, 30, 13]. Regardless, there are many
practical scenarios with changing rewards and invariant dynamics such as various object manipulation
objectives [71], different goal navigation tasks [20], and distinct user preferences [7]. The goal
of multi-task RL is to find a task-conditioned policy π(a|s, i) that expected return in a multi-task
MDP: π∗(a|s, ·) := arg maxπ Ei∼[N]Eπ(·|·,i)[

∑
t γ

tRi(st,at)]. Note that it is possible to model the
policies for each task independently as {π1(a|s), · · · , πN (a|s)} without any weight sharing. In our
work, we use the single task-conditioned policy to study data sharing and do not consider the weight
sharing aspect, which is orthogonal to the focus of the paper, which is also noted in [80].

Multi-task offline RL and data sharing. Multi-task offline RL considers the problem of learning
the multi-task policy π(a|s, i) from a static multi-task dataset with D = ∪Ni=1Di where D〉 =

{(sj ,aj , s′j , rj)}Mj=1 is the per-task dataset. Di is generated by a behavior policy πβ(a|s), without
any interaction with the environment. The most straightforward approach to learn π(a|s, i) would
be train it for task i only using Di. However, sharing data from different tasks to task i has been
shown to be conducive in the multi-task offline RL setting [30, 80]. To do so, prior works [14, 30, 80]
assume access to the functional form of the reward ri, which is a rather strong assumption that is
usually impractical to specify in practical applications due to the challenge of reward specification.
The next straightforward approach is to naïvely sharing data across all tasks, denoted as Sharing
All. Formally, Sharing All defines the dataset of transitions relabeled from task j to task i as Dj→i
and the method can be then defined as Deff

i := Di ∪ (∪j 6=iDj→i), where Deff
i denotes the effective

dataset for task i. While Sharing All improves over not sharing data, as shown in [80], Sharing All
leads to distributional shift that could degrade performance in certain situations [80]. In our work, we
focus on the CDS [80], which relabels data that aims to mitigate the distributional shift introduced
by sharing other task data. CDS addresses such an issue by proposing a conservative data sharing
strategy as follows:

Deff
i = Di ∪ (∪j 6=i{(sj ,aj , s′j , ri) ∈ Dj→i : ∆π(s,a) ≥ 0}), (1)

where sj ,aj , s′j denote the transition from Dj , ri denotes the reward of sj ,aj , s′j relabeled for task i,
π denotes the task-conditioned policy π(·|·, i), ∆π(sj ,aj) is the condition that shares data only if
the expected Q-value of the relabeled transition exceeds the top k-percentile of the Q-values of the
original task data, i.e.

∆π(s,a) := Q̂π(s,a, i)− Pk%

{
Q̂π(s′,a′, i): s′,a′ ∼ Di

}
. (2)

3

Beyond controlling the distributional shift introduced in data sharing, multi-task offline RL also needs
to address the main challenge in standard offline RL, which is the distributional shift between the
learned policy π and the behavior policy πβ . To handle both types of distributional shifts, CDS [80]
combines the conservative data sharing and the constrained policy optimization problem and arrives
at the following objective:

∀i ∈ [N], π∗(a|s, i) := arg max
π

JDeff
i

(π)− αD(π, πeff
β), (3)

where πeff
β (a|s, i) is the effective behavior policy for task i denoted as πeff

β (a|s, i) :=

|Deff
i (s,a)|/|Deff

i (s)|, JDeff
i

(π) denotes the average return of policy π in the empirical MDP induced
by the effective dataset, and D(π, πeff

β) denotes a divergence measure (e.g., KL-divergence [27, 70],
fisher divergence [33], MMD distance [34] or DCQL from conservative Q-learning [35]) between the
learned policy π and the effective behavior policy πeff

β . While optimizing Eq. 3 with Eq. 1 as the data
sharing scheme is able to mitigate distributional shift and improve over multi-task offline RL without
sharing data and naïvely sharing data across all tasks as shown in [80], it requires the assumption of
the access to the functional form of the reward functions, which is rather strong and make application
of data sharing to real-world applications impractical. We will instead present a simple yet effective
data sharing and relabeling scheme in the setting where we do not make such an assumption and
instead, only have the reward labels for originally commanded task in the following section.

4 Data Sharing without Rewards in Multi-Task Offline RL
The goal of our method is to enable effective data sharing across different tasks without access to
the functional form of the reward functions for each task. Data from each task is only labeled for
that particular task, and we do not know a priori which data is relevant to each task. Effective data
sharing therefore requires resolving two questions: (i) which data from other tasks should we use for
a given task? and (ii) how do we label this data with rewards? One simple approach is to annotate
all available data from other tasks with some “proxy” reward signal, and treat it no differently from
data that is already labeled. That is, after relabeling with the proxy reward, we can simply put these
transitions into the replay buffer of a value-based offline RL method. But how can we obtain a reliable
proxy reward signal? Next, we will discuss two variants of our method in Section 4.1, understanding
of both variants in Section 4.2, and practical implementations in Section 4.3.

4.1 Conservative Unsupervised Data Sharing
Prior work assumes that it is necessary to relabel prior data with some estimate of the true reward
function so that the proxy reward closely reflects the true reward. We take a different approach, and
instead argue that, under some assumptions, we can obtain many of the benefits of data sharing simply
by labeling the multi-task data with the lowest possible reward, which we assume to be 0 without
loss of generality in the binary-reward setting. We refer to this simple strategy as unsupervised data
sharing (UDS). Naïve UDS prescribes sharing data from every task to every other task, and labels the
shared data with a reward value of 0. Formally, for each task i ∈ [N], we define the UDS procedure
as follows:

Deff
i = Di ∪ {(sj ,aj , s′j , 0) ∈ Dj→i : ∀j ∈ [N] \ {i}}. (4)

Intuitively, UDS relabels data shared from other tasks with the lowest possible reward, hence making
the learned Q-functions more conservative that the data sharing scheme with the oracle rewards. We
will show that UDS learns Q-values that are lower-bounded by the Q-values learned by the naïve
Sharing All scheme with true reward relabeling, and can be information-theoretically optimal in
offline RL thanks to such conservatism. Our empirical results in Section 5 also suggests that the
benefits from data sharing outweigh the downsides of reward bias in practice. Next, we move on
from the choice of proxy reward, to the choice of which data should be shared.

While UDS is simple yet effective in multi-task data sharing without reward relabing, naïvely sharing
data from all other tasks with zero rewards in the offline RL setting can result in overly conservative
Q-functions and policies. To further refine this strategy, we can adapt the CDS algorithm [80] detailed
in Section 3 to filter out irrelevant transitions from other tasks, and only share those transitions that
are likely to be informative. We call this strategy conservative unsupervised data sharing (CUDS).
We define the CUDS strategy as follows:

Deff
i = Di ∪ {(sj ,aj , s′j , 0) ∈ Dj→i : ∆π(s,a) ≥ 0 ∀j ∈ [N] \ {i}}. (5)

4

As we will discuss in the next subsection, CUDS is able to select potentially useful transitions under
certain structural assumptions on the multi-task offline dataset, and therefore produce Q-values that
are not as excessively conservative as those produced by UDS. As shown in Section 5, our empirical
evaluation further validates that CUDS improves over UDS and prior approaches.

Algorithm 1 (Conservative) Unsupervised Data Sharing
Require: Multi-task offline datasets ∪Ni=1Di.
1: Randomly initialize policy πθ(a|s, i).
2: for k = 1, 2, 3, · · · , do
3: Initialize Deff ← {}
4: for i = 1, · · · , N do
5: Deff

i =Di∪{(sj ,aj , s′j , 0) ∈ Dj→i ∀j ∈ [N]\{i}} (UDS) orDeff
i =Di∪{(sj ,aj , s′j , 0) ∈ Dj→i :

∆π(s,a) ≥ 0 ∀j ∈ [N] \ {i}} using Eq. 2 (CUDS).
6: Perform policy improvement by solving Eq. 3 by sampling data from Deff .

4.2 Understanding the Behavior of UDS and CUDS

In this section, we aim to understand the behavior of the UDS and CUDS. We first consider the
UDS scheme, which simply shares all available data from other tasks, and labels the reward for each
transition from other tasks as 0. When instantiated with CQL as the offline RL method, the Q-values
of a given policy learned by UDS for each task i are the fixed point of the recursion:

Q̂k+1(s,a, i)← r̂(s,a, i)+γEs′∼P̂ (s′|s,a),π(a′|s′,i)

[
Q̂k(s′,a′, i)

]
−α

(
π(a|s, i)
π̂β(a|s, i)

− 1

)
,(6)

where r̂(s,a, i) = 0 for all (s,a) ∈ Dj→i.j 6= i, and r̂(s,a, i) is equivalent to the empirical reward
observed otherwise [35]. We will now try to understand how UDS compares to the No Sharing
strategy, which only uses the labeled data for training. Note that this comparison is non-trivial since,
while UDS utilizes a larger dataset, it can induce significant reward bias during training. However, by
assumption, 0 is the lowest possible reward, we would intuitively expect that UDS should be more
conservative, compared to Sharing All that relabels with the true reward. While we may surmise
that being too conservative on unlabeled data may be suboptimal, conservatism has been shown to
be information-theoretically optimal [28, 54] in offline RL and bandit problems. Even though an
unlabeled dataset provides us with information about environment dynamics, it does not provide
information about rewards, and any optimistic estimate of reward on this data may lead to poor
performance in the worst case.

We formally derive the performance guarantee for UDS in Proposition F.1 using the framework of
safe-policy improvement and discuss cases where it can perform better than No Sharing. We discuss
in Appendix F.2.3 that UDS can perform better than No Sharing in long horizon tasks as well as
in cases where the unlabeled dataset consists of similar proportions of various state-action pairs as
the labeled dataset. Please refer to this section for the theoretical results. Our bounds utilize a new
technique that allows us to prove tighther, non-trivial bounds for UDS. despite the pessimism which
is discussed in Appendix F.2.1.

To understand the behavior of CUDS, we will consider a simple abstract model of CUDS-style
relabeling. In the tabular setting, this model updates the Q-function to match the target (conservative)
Q-value if the transition is selected for the update, and retains the old table entry otherwise. Formally,
consider a binary vector w ∈ R|S|×|A| that indicates whether a corresponding state-action pair (s,a)
is utilized for the backup or not. Then, our weighted scheme performs the following backups:

Q̂k+1(s,a, i) = w(s,a)

[
r̂(s,a, i)− α

(
π(a|s, i)
π̂β(a|s, i)

− 1

)
+ γEs′,a′∼P̂ (·|s,a),π(·|s′,i)

[
Q̂k(s′,a′, i)

]]
(7)

+ (1−w(s,a))Q̂k(s,a, i).

Equation 7 can be intuitively understood as performing a conservative backup from the actual
transition observed in the dataset when the binary weight w(s,a) = 1, and simply truncating
the Bellman backup and retaining the previous Q-values Q̂k(s,a, i), otherwise. For example,

5

CUDS performs a conservative backup with r̂(s,a, i) ≤ r̂Sharing All(s,a, i) only on transitions where
w(s,a) = I[∆π(s,a) ≥ 0].

To understand how this affects the resulting Q-function, we consider two structural conditions on
the offline dataset: (1) a scenario where no trajectory in the relabeled dataset for a given target task
Dj→i actually visits state-action tuples that were observed in Di, and (2) when trajectories in Dj→i
overlap with at least a fraction of state-action tuples in the original labeled data for this task Di. We
will abstract CUDS as utilizing wk(s,a) = I[Q̂k(s,a, i) ≥ ι] for some threshold ι (see Eqn. 2).
Remark 4.1 (CUDS reduces to no sharing under condition (1)). When the trajectories in the
unlabeled, relabeled dataset do not overlap with any trajectory in the labeled dataset for a given task,
any backup performed by CUDS on an unlabeled transition will eventually drive its Q-value to 0 as
k →∞. Thus, CUDS weights wk(s,a) will eventually take on 0 values for such transitions, and will
not be selected by the future weights, i.e., wj(s,a) = 0 ∀j ≥ k + 1.

Perhaps unsurprisingly, when the unlabeled data has no overlap with the labeled data, CUDS reduces
to no sharing. However, the more practically relevant case is when the unlabeled data overlaps with
the labeled data. We consider the scenario when UDS has been run initially to obtain a starting set of
Q-values, Q̂0(s,a, i), which defines the initial weight vector.
Remark 4.2 (CUDS selects more useful unlabeled transitions). Imagine a transitions (s,a, s′, 0) ∈
Dj→i for which the next state (and the next policy action) (s′,a′) are observed in the labeled dataset
(denoted Di). This transition will will attain large initial Q-values Q̂0(s,a, i) if executing the policy
after (s′,a′) eventually reaches the state that corresponds to a high reward of 1.0, due to the Bellman
backup component of CUDS. However, on the flip side, these backups performed by CUDS are
conservative, and performing more backups can reduce the Q-value. Two scenarios might then arise:
(i) the Q-values eventually decrease and CUDS is deactivated, i.e., ∃k, wk(s,a) = 0, in which case
this transition is discarded and not used for learning anymore as the backup in Equation 7 preserves
the Q-value (the second term) when wk(s,a) = 0, or (ii) the learning process reaches an equilibrium
where wk(s,a) = 1 ∀ k, meaning that this relabeled transition is used for learning.

We have now provided a theoretical analysis of CUDS and a comparison between CUDS and UDS in
Appendix F.2. Additionally, we provide several new experiments to build insight into why UDS and
CUDS work in Appendix G.

4.3 Practical Implementations

We present pseudocode for UDS and CUDS in Algorithm 1. We train the Q-values with CQL to
obtain conservative Q-values, and use the conservative Q-values to compute ∆π(s,a) defined in
Eq. 2. For CUDS, in practice, instead of computing the hard threshold of ∆π(s,a) ≥ 0 to determine
data sharing, we follow Yu et al. [80] and transform the condition ∆π(s,a) ≥ 0 into a soft weighting
scheme, with weights given by wCUDS(s,a; j → i) := σ

(
∆(s,a;j→i)

τ

)
, where τ is a hyperparameter

for the temperature of the sigmoid term in wCUDS that is automatically selected by the running
average of ∆(s,a; j → i). These weights are applied to both critic and actor training. For both UDS
and CUDS, we train a policy π(a|s, i) where π(a|s, i) could either be a single task-conditioned task
with weight sharing or separate policies for each task without weight sharing. For more details of the
practice implementations, see Appendix B.

5 Experiments
In this section, we present our empirical evaluation, which aims to answer the following questions: (1)
Can our simple approach outperform prior methods for utilizing unlabeled offline data on multi-task
offline datasets? (2) Can the conservative data sharing strategy further improve the results achieved
by our method? (3) Is our approach able to attain competitive result compared to the prior multi-task
offline RL algorithm that have access to the true rewards? (4) How does CUDS compare to prior
offline RL methods that directly learn representations from the multi-task offline dataset and run
offline training on top of the representation?

Comparisons. We compare UDS and CUDS to a number of prior methods. We first evaluate: No
Sharing, which performs applies standard offline RL algorithm to the multi-task setting without
sharing data across tasks, Reward Predictor, which learns a classifier that directly predicts the
reward using supervised learning, VICE [19], an inverse RL method that learns a reward classifier

6

from the labeled data and then annotates the unlabeled data with the learned classifier, and RCE [14],
a method similar to VICE except that RCE represents the Q-function as a classifier and learns the
reward for unlabeled data implicitly. We adapt VICE and RCE to the multi-task offline RL setting by
extracting transitions with reward labels equal to 1 and treating these datapoints as positives to learn
the classifier for each task. We also train VICE and RCE, but adapt them to the offline setting using
CQL, i.e. the same base offline RL method as in UDS and CUDS. Finally, to answer question (4),
we conduct empirical evaluations on ACL [73], which is a recent offline RL algorithm that performs
representation learning on the offline dataset and trains the policy on top of the representation. For
more details for experimental set-up and hyperparameter settings, please see Appendix B. We also
include evaluations of our methods under different quality of the relabeled data in Appendix C, results
of UDS and CUDS in dense-reward settings in Appendix D, comparisons to model-based offline
RL approaches in Appendix E, and empirical analysis of the reasons that UDS and CUDS work in
Appendix G.

5.1 Main Evaluation

To answer questions (1), (2), and (3), we perform empirical evaluations on two state-based multi-task
robotic manipulation and navigation datasets and one image-based multi-task manipulation dataset
introduced in prior work [80], which we will discuss below.

Figure 1: Environments (from left to right): Meta-World door and drawer open/close, AntMaze, and vision-
based pick-place tasks.

Tasks and Datasets. Following the experimental setup in prior work [80], we consider three domains
shown in Fig. 1: (i) the Meta-World [77] domain, which consists of four tasks of opening and closing
doors and drawers; (ii) the Antmaze [20] domain, which consists of two sizes of mazes (medium and
large) with 3 and 7 tasks respectively; and (iii) the multi-task visual manipulation domain, which
consists of 10 tasks with different combinations of object-oriented grasping, with 7 objects (banana,
bottle, sausage, milk box, food box, can and carrot), and placing the picked objects onto one of three
fixtures (bowl, plate and divider plate). For all domains, we use binary rewards, where 1 denotes the
successful completion of the task and 0 corresponds to failure. Note that for Meta-World, we use a
fixed 200 timesteps for each episode and do not terminate the episode when receiving a reward of 1
at an intermediate timestep. In Antmaze, we terminate the episode upon seeing a reward of 1 with
the maximum possible 1000 transitions per episode. We use the same datasets as prior work [80].
For Meta-World, we use large datasets with wide coverage of the state space and 152K transitions
for the door open and drawer close tasks and datasets with limited (2K transitions), but optimal
demonstrations for the door close and drawer open tasks. For AntMaze, following [80], we
modify the datasets introduced by Fu et al. [20] by equally dividing the large dataset into different
parts for different tasks, where each task corresponds to a different goal position. For image-based
manipulation, we directly use the dataset collected by Yu et al. [80], which contains a total of 100K
RL episodes with 25 transitions for each episode, where the success rate is 40% and 80% for the
picking and placing tasks, respectively. Note that the success rate of placing is higher because the
robot is already holding the object at the start of the placing tasks, making the placing easier to solve.

Results of Question (1). The main results are in Table 1. UDS achieves better performance than
vanilla multi-task offline RL without data sharing and compared to reward learning methods, sug-
gesting that our simple relabeling method is effective in both multi-task manipulation and navigation
domains. Since the reward learning approaches obtain similar or worse results compared to no
sharing, we only compare our methods to No Sharing and the oracle methods in the image-based
experiments. As shown in Table 2. UDS outperforms No Sharing in 7 out of 10 tasks as well as the
average task performance by a significant margin. Therefore, UDS is able to effectively leverage
unlabeled data shared from other tasks and achieves potentially surprisingly strong results compared
to more sophisticated methods that handle unlabeled offline data, answering question (1).

7

Environment Tasks CUDS (ours) UDS (ours) VICE RCE No Sharing Reward Predictor
door open 61.3%±7.9% 51.9%±25.3% 0.0%±0.0% 0.0%±0.0% 14.5%±12.7 0.0%±0.0%
door close 54.0% ±42.5% 12.3%±27.6% 66.7%%±47.1% 0.0%±0.0% 4.0%±6.1% 99.3%±0.9%

Meta-World drawer open 73.5%±9.6% 61.8%±16.3% 0.0%±0.0% 0.0%±0.0% 16.0%±17.5% 13.3%±18.9%
drawer close 99.3%±0.7% 99.6%±0.7% 19.3%±27.3% 2.7%±1.7% 99.0%±0.7% 50.3%±35.8%
average 71.2% ± 11.3% 56.4%±12.8% 21.5%±0.7% 0.7%±0.4% 33.4%±8.3% 41.0%±11.9%

AntMaze medium maze (3 tasks) 31.5%±3.0% 26.5%±9.1% 2.9%±1.0% 0.0%±0.0% 21.6%±7.1% 3.8%±3.8%
large maze (7 tasks) 18.4%±6.1% 14.2%±3.9% 2.5%±1.1% 0.0%±0.0% 13.3% ± 8.6% 5.9%±4.1%

Table 1: Results for multi-task robotic manipulation (Meta-World) and navigation environments (AntMaze)
with low-dimensional state inputs. Numbers are averaged across 6 seeds, ± the 95%-confidence interval. We
take the results of No Sharing directly from [80]. We include per-task performance for Meta-World domains
and the overall performance averaged across tasks (highlighted in gray) for all three domains. We bold the
highest score across all methods. Both CUDS and UDS outperforms prior vanilla multi-task offline RL approach
(No Sharing) and reward learning methods (Reward Predictor, VICE and RCE)

Task Name CUDS (ours) UDS No Sharing CDS (oracle) Sharing All (oracle)

lift-banana 55.9%±11.7% 48.6%±5.1% 20.0%±6.0% 53.1%±3.2% 41.8%±4.2%
lift-bottle 72.9%±12.8% 58.1%±3.6% 49.7%±8.7% 74.0%±6.3% 60.1%±10.2%
lift-sausage 74.3%±8.3% 66.8% ± 2.7% 60.9%±6.6% 71.8%±3.9% 70.0%±7.0%
lift-milk 73.5%±6.7% 74.5%±2.5% 68.4%±6.1% 83.4%±5.2% 72.5%±5.3%
lift-food 66.3%±8.3% 53.8%±8.8% 39.1%±7.0% 61.4%±9.5% 58.5%±7.0%
lift-can 64.9%±7.1% 61.0%±6.8% 49.1%±9.8% 65.5%±6.9% 57.7%±7.2%
lift-carrot 84.1%±3.6% 73.4%±5.8% 69.4%±7.6% 83.8%±3.5% 75.2%±7.6%
place-bowl 83.4%±3.6% 77.6%±1.6% 80.3%±8.6% 81.0%±8.1% 70.8%±7.8%
place-plate 86.2%±1.8% 78.7%±2.2% 86.1%±7.7% 85.8%±6.6% 78.7%±7.6%
place-divider-plate 89.0%±2.2% 80.2%±2.2% 85.0%±5.9% 87.8%±7.6% 79.2%±6.3%
average 75.0%±3.3% 67.3%±0.8% 60.8%±7.5% 74.8% ±6.4% 66.4%±7.2%

Table 2: Results for multi-task imaged-based robotic manipulation domains in [80]. Numbers are averaged
across 3 seeds, ± the 95% confidence interval. UDS outperforms No Sharing in 7 out of 10 tasks as well
as the average task performance, while performing comparably to Sharing All. CUDS further improves the
performance of UDS and outperforms No Sharing in all of the 10 tasks.

Environment Tasks CUDS (ours) UDS (ours) CDS (oracle) Sharing All (oracle)
door open 61.3%±7.9% 51.9%±25.3% 58.4%±9.3% 34.3%±17.9%
door close 54.0% ±42.5% 12.3%±27.6% 65.3%±27.7% 48.3%±27.3%

Meta-World drawer open 73.5%±9.6% 61.8%±16.3% 57.9%±16.2% 55.1%±9.4%
drawer close 99.3%±0.7% 99.6%±0.7% 99.0%±0.7% 98.8%±0.7%
average 71.2% ± 11.3% 56.4%±12.8% 70.1%±8.1% 59.4%±5.7%

medium maze (3 tasks) 31.5%±3.0% 26.5%±9.1% 36.7%±6.2% 22.9%±3.6%
AntMaze large maze (7 tasks) 18.4%±6.1% 14.2%±3.9% 22.8% ± 4.5% 16.7% ± 7.0%

Table 3: Comparison between UDS / CUDS and the oracle data sharing strategies with access to the true reward
functions for relabeling. We take the results CDS and Sharing All directly from [80]. CDS [80] and Sharing
All [30]. UDS / CUDS achieve competitive results compared to CUDS and UDS.

Results of Question (2). In both the state-based and vision-based experiments shown in Table 1
and Table 2, we find that CUDS further improves upon the performance of UDS, which empirically
indicates that the less conservative policy learned from CUDS’s selective filtering scheme is more
performant in practice. Additionally, we measure the success rates of the relabeled data in Table 5
Appendix C, measured by the oracle multi-task reward function on the Meta-World and AntMaze
domain. We see that the success rates of the relabeled data are above 0% by a significant margin in
most of the tasks. This suggests that UDS and CUDS are not simply relabeling with the true reward,
since the relabeled data does not entirely consist of failures but rather has a significant number of
successful transitions.

Results of Question (3). We also show results for oracle methods that receive true reward labels:
Sharing All, which shares all data with ground truth rewards, and CDS, which uses the CDS
strategy [80] with ground truth reward relabeling. We present the results in Table 3 for state-based
experiments and the last two columns on the right in Table 2 for the vision-based multi-task robotic
manipulation problem. Both CUDS and UDS achieves competitive results compared to CDS and
Sharing All, indicating that our simple relabeling scheme is able to remove the dependence of
functional form of reward functions without much loss of performance due to lacking ground-truth
reward access. This addresses question (3).

Results of Question (4). Finally, to answer question (4), on the Meta-World environment, we
compare UDS and CUDS to ACL [73]. We use the version of ACL without inputting reward labels.
ACL can be viewed as an alternative to our unlabeled sharing data scheme, which leverages unlabeled

8

Environment Tasks CUDS (ours) UDS (ours) ACL

door open 61.3%±7.9% 51.9%±25.3% 2.8%±2.0%
door close 54.0%±42.5% 12.3%±27.6% 0.0%±0.0%

Meta-World drawer open 73.5%±9.6% 61.8%±16.3% 83.2%±14.2%
drawer close 99.3%±0.7% 99.6%±0.7% 100.0%±0.0%
average 71.2%± 11.3% 56.4%±12.8% 46.4%±3.5%

Table 4: Comparison between UDS / CUDS and the ACL [73] that performs representation learning on the
unlabeled data instead of data sharing. Both UDS and CUDS outperforms ACL by a significant margin in the
average task result, suggesting that sharing the unlabeled data is crucial in improving the multi-task offline RL
performance compared to only using the data for learning the representation.
data for representation learning rather than sharing it directly. We show the comparison to ACL
in Table 4. UDS and CUDS outperform ACL in the average task performance while ACL is only
proficient on drawer-open and drawer-close, and it cannot solve door-open or door-close. This
indicates that sharing the unlabeled data conservatively across all tasks is important in multi-task
offline RL while pretraining representations on the whole multi-task offline dataset might have limited
benefit. We note that UDS / CUDS are complementary to ACL and these approaches can be combined
together to further improve performance, which we leave as future work.

6 Conclusion
In the paper, we present two new algorithms, UDS and CUDS, that handle the problem of how to
share data across tasks without access to the functional form of the multi-task reward function in the
multi-task offline RL setting. UDS lifts the strong assumption of having access to the reward of all
tasks at each transition in previous works in multi-task data sharing via simply sharing data across all
tasks and relabeling the reward of data from other tasks to the minimum reward in the MDP, which
indicates failure of the task. CUDS further improves over UDS via applying a more sophisticated
data sharing scheme [80] that shares data only if the relabeled Q-values improve over the expected
Q-values of the original task data. We justify that UDS obtains Q-values that are lower-bounded
by the Q-values learned by data sharing with true reward labels and then discuss that under certain
structures of offline datasets, CUDS can selectively apply conservative policy evaluation on only
transitions with high Q-values, resulting in a less conservative algorithm. Empirically, we show that
both CUDS and UDS significantly outperform vanilla multi-task offline RL without data sharing
as well as more complex methods that learns the reward function either explicitly or implicitly on
a range of robotic manipulation and navigation domains. CUDS also improves over UDS on all of
the domains. Furthermore, CUDS and UDS achieve competitive results compared to data sharing
methods with access to the oracle rewards. While our method removes the strong assumption on
reward functions in data sharing for multi-task offline RL and enjoys both theoretical guarantees and
good empirical results, it does have a few limitations. For example, UDS and CUDS are evaluated
in MDPs with binary rewards. Exploring their effects in MDPs with continuous rewards will be an
exciting future avenue.

References
[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning.

In Proceedings of the twenty-first international conference on Machine learning, page 1, 2004.

[2] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
arXiv preprint arXiv:1707.01495, 2017.

[3] Pavlos Athanasios Apostolopoulos, Zehui Wang, Hanson Wang, Chad Zhou, Kittipat Virochsiri,
Norm Zhou, and Igor L Markov. Personalization for web-based services using offline reinforce-
ment learning. arXiv preprint arXiv:2102.05612, 2021.

[4] Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. arXiv preprint
arXiv:2008.05556, 2020.

[5] Serkan Cabi, Sergio Gómez Colmenarejo, Alexander Novikov, Ksenia Konyushkova, Scott
Reed, Rae Jeong, Konrad Zolna, Yusuf Aytar, David Budden, Mel Vecerik, et al. Scaling
data-driven robotics with reward sketching and batch reinforcement learning. arXiv preprint
arXiv:1909.12200, 2019.

9

[6] Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao, Dmitry Kalashnikov, Jake Varley, Alex
Irpan, Benjamin Eysenbach, Ryan Julian, Chelsea Finn, and Sergey Levine. Actionable models:
Unsupervised offline reinforcement learning of robotic skills. arXiv preprint arXiv:2104.07749,
2021.

[7] Paul Christiano, Jan Leike, Tom B Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences. arXiv preprint arXiv:1706.03741, 2017.

[8] Leandro M de Lima and Renato A Krohling. Discovering an aid policy to minimize student
evasion using offline reinforcement learning. arXiv preprint arXiv:2104.10258, 2021.

[9] Carlo D’Eramo, Davide Tateo, Andrea Bonarini, Marcello Restelli, and Jan Peters. Sharing
knowledge in multi-task deep reinforcement learning. In International Conference on Learning
Representations, 2019.

[10] Yaqi Duan, Zeyu Jia, and Mengdi Wang. Minimax-optimal off-policy evaluation with linear
function approximation. In International Conference on Machine Learning, pages 2701–2709.
PMLR, 2020.

[11] Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement
learning. Journal of Machine Learning Research, 6:503–556, 2005.

[12] Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward,
Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu.
IMPALA: scalable distributed deep-rl with importance weighted actor-learner architectures. In
International Conference on Machine Learning, 2018.

[13] Benjamin Eysenbach, Xinyang Geng, Sergey Levine, and Ruslan Salakhutdinov. Rewrit-
ing history with inverse rl: Hindsight inference for policy improvement. arXiv preprint
arXiv:2002.11089, 2020.

[14] Benjamin Eysenbach, Sergey Levine, and Ruslan Salakhutdinov. Replacing rewards with exam-
ples: Example-based policy search via recursive classification. arXiv preprint arXiv:2103.12656,
2021.

[15] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal
control via policy optimization. In International conference on machine learning, pages 49–58.
PMLR, 2016.

[16] Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter Abbeel. Deep
spatial autoencoders for visuomotor learning. In 2016 IEEE International Conference on
Robotics and Automation (ICRA), pages 512–519. IEEE, 2016.

[17] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse
reinforcement learning. International Conference on Learning Representations, 2018.

[18] Justin Fu, Avi Singh, Dibya Ghosh, Larry Yang, and Sergey Levine. Variational inverse control
with events: A general framework for data-driven reward definition. Conference on Neural
Information Processing Systems, 2018.

[19] Justin Fu, Avi Singh, Dibya Ghosh, Larry Yang, and Sergey Levine. Variational inverse
control with events: A general framework for data-driven reward definition. arXiv preprint
arXiv:1805.11686, 2018.

[20] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning, 2020.

[21] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
arXiv preprint arXiv:2106.06860, 2021.

[22] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. arXiv preprint arXiv:1812.02900, 2018.

10

[23] Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. Emaq:
Expected-max q-learning operator for simple yet effective offline and online rl. In International
Conference on Machine Learning, pages 3682–3691. PMLR, 2021.

[24] Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt, and Hado
van Hasselt. Multi-task deep reinforcement learning with popart. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, 2019.

[25] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Conference on
Neural Information Processing Systems, 2016.

[26] Zhiao Huang, Fangchen Liu, and Hao Su. Mapping state space using landmarks for universal
goal reaching. Advances in Neural Information Processing Systems, 32:1942–1952, 2019.

[27] Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza,
Noah Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement
learning of implicit human preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

[28] Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International Conference on Machine Learning, pages 5084–5096. PMLR, 2021.

[29] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang,
Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep
reinforcement learning for vision-based robotic manipulation. In Conference on Robot Learning,
pages 651–673. PMLR, 2018.

[30] Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic
reinforcement learning at scale. Conference on Robot Learning (CoRL), 2021.

[31] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel:
Model-based offline reinforcement learning. arXiv preprint arXiv:2005.05951, 2020.

[32] Ksenia Konyushkova, Konrad Zolna, Yusuf Aytar, Alexander Novikov, Scott Reed, Serkan
Cabi, and Nando de Freitas. Semi-supervised reward learning for offline reinforcement learning.
arXiv preprint arXiv:2012.06899, 2020.

[33] Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement
learning with fisher divergence critic regularization. In International Conference on Machine
Learning, pages 5774–5783. PMLR, 2021.

[34] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Advances in Neural Information Processing
Systems, pages 11761–11771, 2019.

[35] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for
offline reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

[36] Sascha Lange, Thomas Gabel, and Martin A. Riedmiller. Batch reinforcement learning. In
Reinforcement Learning, volume 12. Springer, 2012.

[37] Byung-Jun Lee, Jongmin Lee, and Kee-Eung Kim. Representation balancing offline model-
based reinforcement learning. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=QpNz8r_Ri2Y.

[38] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[39] Alexander C Li, Lerrel Pinto, and Pieter Abbeel. Generalized hindsight for reinforcement
learning. arXiv preprint arXiv:2002.11708, 2020.

[40] Jiachen Li, Quan Vuong, Shuang Liu, Minghua Liu, Kamil Ciosek, Keith Ross, Henrik Iskov
Christensen, and Hao Su. Multi-task batch reinforcement learning with metric learning. arXiv
preprint arXiv:1909.11373, 2019.

11

https://openreview.net/forum?id=QpNz8r_Ri2Y

[41] Xingyu Lin, Harjatin Singh Baweja, and David Held. Reinforcement learning without ground-
truth state. arXiv preprint arXiv:1905.07866, 2019.

[42] Hao Liu, Alexander Trott, Richard Socher, and Caiming Xiong. Competitive experience replay.
arXiv preprint arXiv:1902.00528, 2019.

[43] Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good batch
reinforcement learning without great exploration. arXiv preprint arXiv:2007.08202, 2020.

[44] Corey Lynch and Pierre Sermanet. Grounding language in play. arXiv preprint
arXiv:2005.07648, 2020.

[45] Ajay Mandlekar, Fabio Ramos, Byron Boots, Silvio Savarese, Li Fei-Fei, Animesh Garg, and
Dieter Fox. Iris: Implicit reinforcement without interaction at scale for learning control from
offline robot manipulation data. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 4414–4420. IEEE, 2020.

[46] Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu.
Deployment-efficient reinforcement learning via model-based offline optimization. arXiv
preprint arXiv:2006.03647, 2020.

[47] Ashvin Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
reinforcement learning with imagined goals. arXiv preprint arXiv:1807.04742, 2018.

[48] Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning. In
Proceedings of the Seventeenth International Conference on Machine Learning, ICML ’00,
2000.

[49] Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and
transfer reinforcement learning. arXiv preprint arXiv:1511.06342, 2015.

[50] Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

[51] Dean A Pomerleau. Alvinn: an autonomous land vehicle in a neural network. In Proceedings of
the 1st International Conference on Neural Information Processing Systems, pages 305–313,
1988.

[52] Vitchyr Pong, Shixiang Gu, Murtaza Dalal, and Sergey Levine. Temporal difference models:
Model-free deep rl for model-based control. arXiv preprint arXiv:1802.09081, 2018.

[53] Rafael Rafailov, Tianhe Yu, A. Rajeswaran, and Chelsea Finn. Offline reinforcement learning
from images with latent space models. Learning for Decision Making and Control (L4DC),
2021.

[54] Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging
offline reinforcement learning and imitation learning: A tale of pessimism. arXiv preprint
arXiv:2103.12021, 2021.

[55] Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural
reinforcement learning method. In European Conference on Machine Learning, pages 317–328.
Springer, 2005.

[56] Stephane Ross and Drew Bagnell. Agnostic system identification for model-based reinforcement
learning. In ICML, 2012.

[57] Tom Schaul, Diana Borsa, Joseph Modayil, and Razvan Pascanu. Ray interference: a source of
plateaus in deep reinforcement learning. arXiv preprint arXiv:1904.11455, 2019.

[58] Susan M Shortreed, Eric Laber, Daniel J Lizotte, T Scott Stroup, Joelle Pineau, and Susan A
Murphy. Informing sequential clinical decision-making through reinforcement learning: an
empirical study. Machine learning, 84(1-2):109–136, 2011.

12

[59] Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael
Neunert, Thomas Lampe, Roland Hafner, and Martin Riedmiller. Keep doing what worked:
Behavioral modelling priors for offline reinforcement learning. arXiv preprint arXiv:2002.08396,
2020.

[60] Avi Singh, Larry Yang, Kristian Hartikainen, Chelsea Finn, and Sergey Levine. End-to-end
robotic reinforcement learning without reward engineering. arXiv preprint arXiv:1904.07854,
2019.

[61] Avi Singh, Albert Yu, Jonathan Yang, Jesse Zhang, Aviral Kumar, and Sergey Levine. Cog:
Connecting new skills to past experience with offline reinforcement learning. arXiv preprint
arXiv:2010.14500, 2020.

[62] Samarth Sinha and Animesh Garg. S4rl: Surprisingly simple self-supervision for offline
reinforcement learning. arXiv preprint arXiv:2103.06326, 2021.

[63] Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with
context-based representations. arXiv preprint arXiv:2102.06177, 2021.

[64] Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation
learning from reinforcement learning. In International Conference on Machine Learning, pages
9870–9879. PMLR, 2021.

[65] Hao Sun, Zhizhong Li, Xiaotong Liu, Dahua Lin, and Bolei Zhou. Policy continuation with
hindsight inverse dynamics. arXiv preprint arXiv:1910.14055, 2019.

[66] Phillip Swazinna, Steffen Udluft, and Thomas Runkler. Overcoming model bias for robust
offline deep reinforcement learning. arXiv preprint arXiv:2008.05533, 2020.

[67] Yee Whye Teh, Victor Bapst, Wojciech Marian Czarnecki, John Quan, James Kirkpatrick, Raia
Hadsell, Nicolas Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning.
arXiv preprint arXiv:1707.04175, 2017.

[68] L. Wang, Wei Zhang, Xiaofeng He, and H. Zha. Supervised reinforcement learning with
recurrent neural network for dynamic treatment recommendation. Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018.

[69] Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. Multi-task reinforcement
learning: a hierarchical bayesian approach. In Proceedings of the 24th international conference
on Machine learning, pages 1015–1022, 2007.

[70] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement
learning. arXiv preprint arXiv:1911.11361, 2019.

[71] Annie Xie, Avi Singh, Sergey Levine, and Chelsea Finn. Few-shot goal inference for visuomotor
learning and planning. In Conference on Robot Learning, pages 40–52. PMLR, 2018.

[72] Zhiyuan Xu, Kun Wu, Zhengping Che, Jian Tang, and Jieping Ye. Knowledge transfer in
multi-task deep reinforcement learning for continuous control. 2020.

[73] Mengjiao Yang and Ofir Nachum. Representation matters: Offline pretraining for sequential
decision making. arXiv preprint arXiv:2102.05815, 2021.

[74] Rui Yang, Jiafei Lyu, Yu Yang, Jiangpeng Ya, Feng Luo, Dijun Luo, Lanqing Li, and Xiu Li.
Bias-reduced multi-step hindsight experience replay. arXiv preprint arXiv:2102.12962, 2021.

[75] Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with
soft modularization. arXiv preprint arXiv:2003.13661, 2020.

[76] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. arXiv preprint arXiv:2001.06782, 2020.

[77] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and
Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Conference on Robot Learning, pages 1094–1100. PMLR, 2020.

13

[78] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and
Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Conference on Robot Learning, pages 1094–1100. PMLR, 2020.

[79] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. arXiv preprint
arXiv:2005.13239, 2020.

[80] Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Sergey Levine, and Chelsea
Finn. Conservative data sharing for multi-task offline reinforcement learning. arXiv preprint
arXiv:2109.08128, 2021.

[81] Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea
Finn. Combo: Conservative offline model-based policy optimization. arXiv preprint
arXiv:2102.08363, 2021.

[82] Xianyuan Zhan, Haoran Xu, Yue Zhang, Yusen Huo, Xiangyu Zhu, Honglei Yin, and Yu Zheng.
Deepthermal: Combustion optimization for thermal power generating units using offline rein-
forcement learning. arXiv preprint arXiv:2102.11492, 2021.

[83] Wenxuan Zhou, Sujay Bajracharya, and David Held. Plas: Latent action space for offline
reinforcement learning. arXiv preprint arXiv:2011.07213, 2020.

[84] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy
inverse reinforcement learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.

14

	Introduction
	Related Work
	Preliminaries
	Data Sharing without Rewards in Multi-Task Offline RL
	Conservative Unsupervised Data Sharing
	Understanding the Behavior of UDS and CUDS
	Practical Implementations

	Experiments
	Main Evaluation

	Conclusion

